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All closed systems have a tendency to evolve toward states in which the properties are determined by
intrinsic factors and not by external forces applied. These states are called equilibrium states. For example,
a stirred cup of coffee returns to such a state eventually, the temperature in a room gradually becomes time
invariant and homogenous etc. Classical thermodynamics is concerned with these equilibrium states. We
follow the posutlatic formulation by Callen [1]. First, the concepts of simple and composite systems are
given.

Definition 0.1. A simple system is a system which is macroscopically homogenous.

For example, a closed container with a mixture of gases is a simple system.

Definition 0.2. A composite system consists of one or more simple systems.

For example, two closed containers containing a mixture of gases considered together is a composiste
system.

Definition 0.3. Constraints that prevent flow of matter, energy or volume among the simple systems
constituting the composite system are called internal constraints.

For example, consider two simple systems separated by a piston. If the piston is made free to move, then
the internal constraint of volume restriction is removed and volume is “free to flow”.

Definition 0.4. If a composite system is surrounded by walls that restrict the flow of volume, energy and
matter, then the system is said to be closed.

0.1 Fundamental Postulates

1. Postulate 1 : The concept of internal energy U gives rise to the first fundamental postulate of Ther-
modynamics : the equilibrium states of a simple system are only functions of the extensive parameters
U, V,N1, N2, · · · , Nr where U, V,Ni are respectively, the internal energy, volume and the number of
moles of species i.

(a) Note that the internal energy of a system is not an absolute quantity. It is defined w.r.t. a fudicial
(reference) state. The reference state is automatically given zero value for internal energy.

(b) The above postulate is for simple systems, i.e. systems which are homogenous.

(c) For composite systems, the above parameters for each sub-system must be specified to completely
describe the equilibrium.

2. Postulate 2 : The second postulate states that there exists a function (called entropy S) of the extensive
parameters of a composite system, i.e.,

S = S(U (1), V (1), N
(1)
1 , N

(1)
2 , · · · , N (1)

r , U (2), V (2), N
(2)
1 , N

(2)
2 , · · · , N (2)

r , · · · , U (n), V (n), N
(n)
1 , N

(n)
2 , · · · , N (n)

r )

defined for all equilibrium states of the constituent subsystems, such that for an closed composite
system S reaches a maximum over the manifold of constrained equilibrium states when an internal
constraint is removed.
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Note that the first part of this postulate defines entropy. The second part is only applicable for
composite systems containing atleast two simple subsystems since internal constraints only exist in
this case.

3. Postulate 3: The third postulate states that

(a) The entropy of a composite system is the sum of entropies of the individual systems and

(b) The entropy of a simple system is continuous and differentiable and is a monotonically increasing
function of U .

4. The fourth postulate states that for a simple system, in any state for which (∂U∂S )V,N1,··· ,Nr
= 0, the

entropy of the system reaches zero.

All standard thermodynamic calculations are essentially applications of these four postulates alone. All
the postulates still hold even if the reference state for internal energy is changed.

0.2 Entropy Maximum Condition

When an internal constraint in an closed system is removed, the system will reach a new equilibrium state.
For a closed system, the total energy, total volume and total moles are conserved. Hence, in the new
equilibrium after an internal constraint is removed the system can only choose between different equilibrium
states which satisfy these constraints. The equilibrium states that satisfy these constrains form a manifold (a
geometric object relating the extensive parameters of the system restricted by the constraints). The entropy
of the composite system is maximized on this manifold.

As S is maximized when an internal constraint is removed, in the new equilibrium state we should have

∂S

∂U i
=

∂S

∂V i
=

∂S

∂N i
j

= 0 ∀i = 1, 2, · · · , n, j = 1, 2, · · · , r

It is very important to understand that these are partial derivatives over the mainfold of constrained
equilibrium states. For example, if we remove a non-permeable partition between two simple sub-systems,
then the “internal constraint”, i.e., the partition is removed and hence the combined system reaches a new
equilibrium state which can be found by using the above relations on S = S1 + S2 where S1, S2 are the
entropies of the two sub-systems with the constraint that the total mole numbers are conserved etc.

0.3 Differentials

Let f : R→ R, then the differential of f is a function of two independent variables x and ∆x given by

df(x,∆x) = f ′(x)∆x

If y = f(x) we write dy = df(x,∆x). Since for y = x, dy = dx = ∆x, we write dy = f ′(x)dx for notational
simplicity.

For a function of several variables f(x1, x2, · · · , xn), we have df(x1, x2, · · · , xn,∆x1,∆x2, · · · ,∆xn) =
∂f
∂x1

∆x1+ ∂f
∂x2

∆x2+ · · ·+ ∂f
∂xn

∆xn Again, this is written for simplicity as df = ∂f
∂x1

dx1+ ∂f
∂x2

dx2+ · · ·+ ∂f
∂xn

dx3

0.3.1 Maxima and Minima

If f attains a (local) maximum, then two conditions need to be satisfied 1) All partial derivatives should be
zero and 2) Hessian is negative definite.

1. If all partial derivatives are zero then it is clear that df(x1, x2, · · · , xn,∆x1,∆x2, · · · ,∆xn) = 0 for
arbitrary values of ∆x1,∆x2, · · · ,∆xn. This statement is also true in the reverse.

2. Let d2f :=
∑n
i=1

∂2f
∂x2

i
∆x2i + 2

∑n
i<j

∂2f
∂xixj

∆xi∆xj . Negative definiteness of the Hessian is equivalent to

d2f < 0 for arbitrary values of ∆x1,∆x2, · · · ,∆xn.
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0.3.2 Differential of Internal Energy

As S = S(U, V,N1, · · · , Nr) is monotonic in U , the relation can be reversed (by taking an inverse) so that
U = U(S, V,N1, · · · , Nr). Based on this fundamental dependence, the differential of U can be written as

dU =
∂U

∂S
dS +

∂U

∂V
dV +

∑
i

∂U

∂Ni
dNi

Now, temperature is defined as ∂U
∂S , pressure is defined as − ∂U∂V and finally the chemical potential µi is defined

as ∂U
∂Ni

. The newly defined variables, T, P, µi are called intensive parameters. In the new notation, the final
equation looks like

dU = TdS − PdV +
∑
i

µidNi

As already stated, S is only defined for equilibrium states and dS is an infinitesimal change in entropy.
Therefore, for the expression dS to be meaningful, the system has to be in equilibrium after the infinitesimal
change has occured. Reversible processes, for example, proceed at such a slow pace that the system is always
in equilibrium.

0.4 Thermodynamic Potentials

The previous equation is the only fundamental relation in thermodynamics. In a few occasions however, it is
desirable to use other functions of the internal energy and entropy. These are called thermodynamic potentials
and can be derived using the mathematical technique called Legendre transformation. The enthalpy H and
the Gibbs free energy G are two such functions. For this course, these two are sufficient.

1. H = H(S, P,N1, N2, · · · , Nr), H = U + PV, dH = TdS + V dP +
∑
i µidNi

2. G = G(T, P,N1, N2, · · · , Nr), G = U − TS + PV, dG = −SdT + V dP +
∑
i µidNi

where U,H,G, S, P, V, µi, Ni are respectively the internal energy, enthalpy, entropy, pressure, volume, chem-
ical potential of the ithe species and number of moles of the ithe species.

0.5 Equilibrium

We can derive similar criterion for the Enthalpy and Gibbs Free energy at equilibrium. They are given next.

1. Consider a system in contact with a pressure (P r) reservoir. Then at equilibrium, P = P r and dH = 0
(H is minimum), i.e., TdS+

∑
i µidNi = 0. This is applicable to systems which are separated from the

reservoir by a diathermal (allows heat to pass), movable, impermeable (allows matter to pass) wall.
What does this equation convey? It gives a relation between the infinitesimal changes in dS, dNi at the
new equilibrium. Therefore, for example, at the new equilibrium, an infinitesimal change in entropy
should equal − 1

T

∑
i µidNi.

2. Consider a system in contact with a pressure (P r), temperature (T r) reservoir. Then at equilibrium,
T = T r, P = P r and dG = 0 (G is minimum), i.e.,

∑
i µidNi = 0. This is applicable to systems which

are separated from the reservoirs by a diathermal, movable, impermeable (allows matter to pass) wall.

0.5.1 Vapor-Liquid Equilibrium

Assume a mixture of r components in Vapor-Liquid equilibrium in a container which is in contact with a
constant temperature, pressure reservoir (e.g. ambient atmosphere). From the equilibrium condition above,
it is clear that the Gibbs free energy of the system reaches a minimum at equilibrium i.e,

∑
i µidNi = 0. Let

dN l
i , dN

v
i be some infinitesimal changes in the moles of the ith component in the liquid and the vapor phases

respectively. Then, due to ith species balance, we have dN l
i = −dNv

i . This gives that
∑
i(µ

l
i − µvi )dN l

i = 0.
Now, considering the fact that the dN l

i for various i’s can be varied independently of each other, we conclude
that µli = µvi .
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0.6 Chemical Potential

For a multi-component system, G = N
∑
i µixi, where N is the total moles of all the species put together.

µi is called the partial molar Gibbs free energy. For a single component µ is called the molar Gibbs free
energy.

0.6.1 Pure Ideal Gas

Consider one mole of the pure ideal gas in a closed (impermeable, diathermal and non-restrictive) container
in contact with a temperature reservoir at temperature T r. As µ = G we have dµ = dG = vdP −sdT , where
v, s are specific volume and entropy. At equilibrium, clearly, T = T r and therefore, dµ = vdP = RT

P dP .
Integrating both sides, we obtain µId,v(T, P ) = µId,v(T, P 0) + RT ln

(
P/P 0

)
. Typically, we can choose

P 0 = 1bar, so that µId,v(T, P ) = µId,v(T, 1 bar) + RT ln(P ). As the first term on the r.h.s. is independent
of P , we write it as µ0(T ). Therefore, µId,v(T, P ) = µ0(T ) +RT ln(P ).

0.6.2 Pure Non-Ideal Gas

Consider the same setup as above. We have, dµ = vdP but here the relation between v and T, P is given by
some other equation of state. Nevertheless, to have a definition of chemical potential similar to the Ideal gas
case, we define µv(T, P ) = µ0(T ) + RT ln(fv(T, P )), where fv is called the fugacity which depends on the

temperature and pressure. The fugacity coefficient is defined as φv(T, P ) = fv(T,P )
P . Note that the fugacity

for gases can be calculated based on the Equation of State (Virial, Peng-Robinson, Soave Redlich Kwong
etc.).

0.6.3 Pure Liquid

At the boiling point of the pure liquid, there exists an equilibrium with the vapor phase. Therefore, the
chemical potential of the liquid and vapor should be the same. Hence, µl(T, P sat(T )) = µv(T, P sat(T )) =
µ0(T ) + RT ln(fv(T, P sat(T ))) where P sat(T ) is the saturation pressure at the temperature T . Using an
equation of state for the liquid provides, Vl as a function of T, P . Then, from dµ = vdP we obtain

µl(T, P ) = µl(T, P sat(T ))+
∫ P
P sat(T )

VldP . Defining fugacity in a similar fashion as above, µl(T, P ) = µ0(T )+

RT ln
(
f l(T, P )

)
. Combining, these three equations, we obtain f l(T, P ) = fv(T, P sat(T )) exp

( ∫ P
P sat(T )

VldP

RT

)
0.6.4 Ideal Gas Mixture

It is easy to show that in this case, µId
i (T, P, yi) = µId(T, P ) + RT ln(yi) where µId

i (T, P, yi) represents the
chemical potential of species i with mole fraction yi in the mixture.

0.6.5 Ideal Mixture (both Vapor and Liquid)

Generalizing from the previouse case, we define an Ideal Mixture as the mixture for which µId-Mix
i (T, P, xi) =

µi(T, P ) +RT ln(xi) where µId-Mix
i (T, P, xi) represents the chemical potential of species i with mole fraction

xi in the mixture and µi(T, P ) represents the pure species chemical potential.

0.6.6 Non-Ideal Mixture

µi(T, P, xi) = µ0(T )+RT ln
(
f̂i(xi)

)
where f̂i(xi) is the fugacity of the species in the mixture which depends

on the mole fraction. We define the fugacity coefficient as φ̂i = f̂i(xi)
xiP

.
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0.6.7 Activity Coefficient

From the two previous definitions, we have

µi(T, P, xi)− µId-Mix
i (T, P, xi) = µ0(T ) +RT ln

(
f̂i(xi)

)
− µi(T, P )−RT ln(xi)

= µ0(T ) +RT ln
(
f̂i(xi)

)
− µ0(T )−RT ln(fi)−RT ln(xi)

= RT ln

(
f̂i(xi)

fixi

)

The activity coefficient is defined as γi = f̂i(xi)
fixi

. If γi = 1 then the mixture is ideal. The l.h.s. in the
previous equation is called the Excess Gibbs free energy.

0.7 Calculating VLE constants

To compute the VLE constant, we can use definitions of fugaicty and activity coefficient. At equilibrium, by
equating the chemical potentials in the Vapor and Liquid Phases, we get

f̂vi = f̂ li

φ̂vi yiP = f lixiγi

K =
yi
xi

=
f liγi

φ̂viP

K =
γiP

sat
i (T )

ΦiP

(1)

where Φi =
φ̂v
i

φv
i

exp

(
−

∫ P
P sat(T )

VldP

RT

)
. Now, we discuss how each of the quantities in the above equation are

computed

1. P sat
i (T ) is calculated using for e.g. the Antoine equation.

2. γi is computed by models such as Margules, NRTL, UNIQUAC etc.

3. φ̂vi , φ
v
i are computed using Predictive Soave-Redlich-Kwong (PSRK) method, Virial Equation of State

etc. The PSRK method internally aslo uses a method for estimating activity coefficients.

4. The Poynting factor exp

( ∫ P
P sat(T )

VldP

RT

)
can again be calculated using the PSRK method . For low to

moderate pressures, this factor is very close to unity and hence can be ignored.

0.8 Fugacities From Virial Equation of State

First conisder the case of one mole of a pure gas. Define the residual volume and residul Gibbs free energy
as

1. V R(T, P ) = V (T, P )− V Id(T, P ) where V Id(T, P ) is the volume of ideal gas.

2. GR(T, P ) = G(T, P )−GId(T, P )

By definition of fugacity, we have GR(T, P ) = RT ln(f/P ) = RT ln(φ). Therefore, by modelling the
residual gibbs free energy, one can obtain f . The Virial equation of state is

PV

RT
= 1 +BP + CP 2 +DP 3 + · · ·
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where the constants B,C,D, · · · are functions of temperature only.
The compressibility factor is defined as Z = PV

RT . Using the Virial Equation, we have Z = 1 +BP . Since,
∂(GR/RT )

∂P = V R

RT and V R = RT
P (Z−1) = BRT , we obtain, ∂(G

R/RT )
∂P = B. Therefore, G

R

RT = BP . Combining
this with, GR(T, P ) = RT ln(φ) we obtain lnφ = BP . In summary, by modelling GR one can obtain the
fugacity of a pure gas.

Next, we will see how to obtain fugacities in mixtures. We know that

µ̂i(T, P,N1, N2, · · · , Nr) = µId(T, P,N1, N2, · · · , Nr) +RT ln
(
φ̂i(T, P,N1, N2, · · · , NR)

)
i.e.,

∂G

∂Ni
=
∂GId

∂Ni
+RT ln

(
φ̂i(T, P,N1, N2, · · · , NR)

)
Therefore,

∂(GR/RT )

∂Ni
= ln

(
φ̂i(T, P,N1, N2, · · · , NR)

)
It was previously shown that GR

RT = BP . In the case of mixtures, B =
∑
i≤j yiyjBij where yi is the

mole fraction of the i component and Bij account for the bimolecular interactions. Hence, the φ̂i’s can be
computed.

0.9 Ideal Mixtures

As mentioned before an ideal mixture, is defined to be a mixture for which

µId-Mix
i (T, P, xi) = µi(T, P ) +RT ln(xi)

Differentiating this expression w.r.t. P gives that the total volume of the mixture is the sum of the compo-
nents. Similarly, differentiating w.r.t. T gives that the enthalpy of the mixture is equal to weighted sum of
enthalpies of the the components where the weights are equal to the mole fractions.
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