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Motivation

Chemical Kinetics - Deterministic Version

dCi

dt
= f (C1,C2, · · · ,CN)

This model works for reactions in test-tubes or larger sizes. For
smaller systems, discreteness and randomness plays a role. An
example is cellular systems in biology.

Stochastic Chemical Kinetics

▶ Assume N species and M reactions

▶ Propensity Function : aj(c)dt be the probability that given
C(t) = c the reaction Rj occurs in time [t, t + dt)

▶ aj needs to be calculated from molecular physics



Stochastic Chemical Kinetics

Poisson Random Variable

P(X = k) =
λk exp(−λ)

k

▶ k is the number of occurances in a time interval

▶ The mean rate of occurance is λ

▶ The events are independent

▶ For large λ Poisson distribution approaches the Gaussian
distribution with the same mean (and std. dev.)

TAU-LEAPING [Gil07]

▶ During [t, t + τ), propensity functions do not change value

▶ Rj then is a Poisson random variable with mean aj(c)τ

▶ Therefore, C(t + τ) = C(t) +
∑

Pj(aj(c)τ)νj



Stochastic Chemical Kinetics

TAU-LEAPING (Contd..)

▶ Assume that aj(c)τ ≫ 1. Then, each Pj(aj(c)τ) is close to a
Gaussian random variable.

▶ Therefore,

C(t + τ) = C(t) +
∑

Pj(aj(c)τ)νj

= C(t) +
∑

Nj(aj(c)τ, aj(c)τ)νj

= C(t) +
∑

(aj(c)τ +
√

aj(c)τNj(0, 1)νj

= C(t) +
∑

aj(c)νjτ +
∑√

aj(c)Nj(0, 1)νj
√
τ

▶ C(t + τ)− C(t) =
∑

aj(c)νjτ +
∑√

aj(c)νjNj(0, 1)
√
τ



Stochastic Chemical Kinetics

TAU-LEAPING (Contd..)

∆C(t) =
∑

aj(C(t))νj∆t +
∑√

aj(C(t))νjΓj
√
∆t

=
∑

aj(C(t))νj∆t +
∑√

aj(C(t))νj∆Bt

Stochastic Differential Equation

The above is an SDE of the form

dXt = b(t,Xt)dt + σ(t,Xt)dBt

where B is called Brownian motion.



Random Variables

Random Variable

X taking real values randomly!

Gaussian Random Variable

P(a ≤ X ≤ b) =

∫ b

a

1√
2πσ

exp

(
−(x − µ)2

2σ2

)
dx

Mean and Variance

EX :=
∫∞
−∞ xfX (x)dx ,E (X − EX )2 :=

∫∞
−∞(x − EX )2fX (x)dx



Random Functions / Stochastic Processes [Kal80]

Discrete Time Stochastic Process

A sequence of random variables Xt , t = 1, 2, · · · is called a discrete
time stochastic process. These are random sequences!

Continuous Time Stochastic Process*

A collection of random variables indexed by a continuous
parameter e.g. Xt , t ≥ 0

Random Functions! What are some unique features of CT vs DT
processes?

The joint distributions (a.k.a. finite dimensional distributions)
completely specify the path properties in the DT case whereas this
is not true in the CT case!

1Measurability conditions are also required
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Brownian Motion

Brownian Motion

A continuous time stochastic process Bt , t ≥ 0 satisfying

1. B0 = 0

2. Bt − Bs ∼ N (0, t − s) for t > s

3. Bs − Br and Bq − Bt are independent for q > t > s > r

4. The paths of the Bt are continuous



Construction [SP12]

Methods :

1. Wiener’s Construction (based on Trignometric functions)

2. Levy-Ciesieslki (General orhto normal systems, e.g. Haar
functions)

3. Kolmogorov’s consistency theorem (Existence only!) - Identify
a stochastic process as a probability measure on the space of
all functions!

Limit of Random Walks

1. Let Xi be i.i.d. random variables taking values ±1 with
probability 1

2 and Sn = X1 + X2 + · · ·Xn

2. Linear interpolation + Gaussian Scaling :
W n(t) := 1√

n

(
S⌊nt⌋ + (nt − ⌊nt⌋)X⌊nt⌋+1

)
, t ∈ [0, 1].

3. As n → ∞, the limiting process is a Brownian motion (in the
weak sense)



Construction using Haar Functions [Kal80]

Haar Orthonormal System

g00(s) = 1

gnj(s) =


2(n−1)/2, s ∈

[
j

2n−1 ,
j+ 1

2
2n−1

)
−2(n−1)/2, s ∈

[
j+ 1

2
2n−1 ,

j+1
2n−1

)
0, otherwise

Construction

Bt =
∑∞

n=0

∑
j∈Sn Yn,jGn,j where Sn = {0, 1, · · · , 2n−1 − 1}, Gn,j

are the integrals of g and Yn,j are i.i.d. N(0, 1) random variables.



Simulation (using Haar Functions)



Properties

Properties of Brownian Motion

1. Gaussian Process - (any finite linear combination is a Gaussian
Random Variable)

2. Self Similarity - 1√
a
Bat is also a Brownian Motion!

3. The Brownian paths are nowhere differentiable!



Reimann-Stieltjes Integral

1.
∫ b
a fdg = lim

∑
i f (ci )(g(ti )− g(ti−1)), where f and g are

functions.

2. The integral exists whenever f is continuous and g is bounded
variation, i.e. sup

∑
|g(ti+1)− g(ti )| < ∞.

1.
∫ b
a f (x)dg(x) = f (b)g(b)− f (a)g(a)−

∫ b
a g(x)df (x)

2. Bt has infinite variation! Therefore, the integral cannot
defined directly!

3. Can we define
∫ b
a fsdBs := fbBb − faBa −

∫ b
a Bsdfs? Yes, but

it restricts the functions f that can be integrated!



Ito Integral

1. Let 0 = t0 < t1 < t2 · · · tn = t be a partition of [0, t] and

consider
∫ 1
0 BtdBt

2. Ln =
∑n

i=1 Bti−1(Bti − Bti−1), Rn =
∑n

i=1 Bti (Bti − Bti−1)

What can we say about the limits of Ln,Rn?

L2-convergence

A sequence of random variables Xn are said to converge to another
random variable X in L2, if E |Xn − X |2 → 0 as n → ∞.



End-Point matters!

1. Rn
L2−→ 1

2(B
2
t + t)

2. Ln
L2−→ 1

2(B
2
t − t) (a Martingale)

1. Ito-Integral : Take left end-point, i.e. Ln

2. Stratonivich Integral : Take right end-point, i.e. Rn

The Ito-integral is defined in terms of convergence in probability in
the general case. However, we skip this important generalization
here.



Ito Formula

Integration by parts∫ b
a f ′(g)dg(x) =

∫ b
a d(f ◦ g) = (f ◦ g)(b)− (f ◦ g)(a)

Ito Formula

For any f : R → R which is twice continuously differentiable,∫ b
a f ′(Bt)dBt = f (Bb)− f (Ba)− 1

2

∫ b
a f ′′(Bs)ds

Ito Formula - Example

1. Take f (x) = 1
2x

2,
∫ t
0 BsdBs =

1
2(B

2
t − t)

2. Take f (x) = exp(x),∫ t
0 exp(Bs)dBs = exp(Bt)− 1− 1

2

∫ t
0 exp(Bs)ds



Ito Formula

Ito Process

Xt = Xa +
∫ t
a fsdBs +

∫ t
a gsds, a ≤ t ≤ b

Ito Formula - General Version [Kuo06]

Let θ(t, x) be a continous function such that ∂θ
∂x ,

∂θ
∂t ,

∂2θ
∂x2

are
continuous. Then θ(t,Xt) is also an Ito process and

θ(t,Xt) = θ(a,Xa) +

∫ t

a

∂θ

∂x
(s,Xs)fsdBs+∫ t

a

(
∂θ

∂t
(s,Xs) +

∂θ

∂x
(s,Xs)gs +

1

2

∂2θ

∂x2
(s,Xs)f

2
s

)
ds

Shorthand notation

dθ = ∂θ
∂x ftdBt +

(
∂θ
∂t +

∂θ
∂x gt +

1
2
∂2θ
∂x2

f 2t

)
dt



Ito Formula

Calculus

dt2 = dtdBt = 0 and (dBt)
2 = dt

dXt = ftdBt + gtdt

(dXt)
2 = f 2t dt

Simplified Representation

dθ =
∂θ

∂t
dt +

∂θ

∂x
dXt +

1

2

∂2θ

∂x2
(dXt)

2



Application of Ito Formula

Example 1

Xt =
∫ t
0 fsdBs − 1

2

∫ t
0 f 2s ds and let θ(t, x) = ex .

deXt = eXt ftdBtXtdt+

Langevin Equation - First SDE

dXt = αdBt − βXtdt,X0 = x0 and let θ(t, x) = eβtXt

d(eβtXt) = βeβtXtdt + eβt(αdBt − βXtdt)

d(eβtXt) = αeβtdBt

eβtXt = X0 +

∫ t

0
eβtdBt

This is the Ornstein–Uhlenbeck process!



Simulation - Langevin SDE



Application of Ito Formula

Stock Prices!

dXt = µXtdt + σXtdBt

d(logXt) =
1

Xt
dXt −

1

2X 2
t

(dXt)
2

=
1

Xt
dXt −

σ2

2X 2
t

((Xt)
2dt)

= µdt + σdBt −
σ2

2
dt

Xt = X0 exp

(
(µ− 1

2
σ2)t + σBt

)
This is Geometric Brownian Motion!



Simulation - Stock Price SDE



Stochastic Differential Equations

SDE

dXt = b(t,Xt)dt + σ(t,Xt)dBt

Solution to SDE

Find a stochastic process Xt which satisfies
Xt = Xa +

∫ t
0 b(t,Xt)dt +

∫ t
0 σ(t,Xt)dBt

Important!

SDEs are not meaningful in the differential form! They have to be
understood in the integral sense.



SDE - Existence and Uniqueness of solution [Øks10]

Growth and Lipschitz Conditions

1. |b(t, x)|+ |σ(t, x)| ≤ C (1 + |x |) : Linear Growth Condition

2. |b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x − y | : Lipschitz
Condition

Strong Solution

The SDE dXt = b(t,Xt)dt + σ(t,Xt)dBt has a unique continuous
solution in [0,T ] provided the above conditions are satisfied and
X0 is independent of the Brownian motion Bt , t ≥ 0.



Numerical Solution

Euler Approximation

Let a = t0 < t1 < · · · < tn = b and δ = maxj |tj+1 − tj |.
Y δ
n+1 = Y δ

n + b(tn,Y
δ
n )(tn+1 − tn) + σ(tn,Y

δ
n )(Btn+1 − Btn)

Convergence of Euler Scheme

E
[
supa≤t≤b |Xs − Y δ

s |2
]
= O(δ1/2)

Milstein scheme is a higher order scheme with

E

[
sup

a≤t≤b
|Xs − Y δ

s |2
]
= O(δ)



Simulation - Stock Price SDE



Densities!

We have simulated along the time direction. How about the
distribution of the solution at a given time t?

Fokker-Plank
∂
∂t p(x , t) = − ∂

∂t [µ(x , t)p(x , t)] +
1
2

∂2

∂t2
[σ2(x , t)p(x , t)]

Example

µ = 0 and σ = 1.0, then ∂
∂t p(x , t) =

1
2

∂2

∂t2
[p(x , t)]
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