Equivalence of Conditional Expectation and Orthongonal Projection for jointly normal random variables

Phanindra Jampana

October 18, 2011

It can be shown that $f\left(Y_{1}, Y_{2}, \cdots, Y_{n}\right)=E\left[X \mid Y_{1}, Y_{2}, \cdots, Y_{n}\right]$ is the best MMSE estimator of the random variable X given the observations $Y_{1}, Y_{2}, \cdots, Y_{n}$.

Let $X, Y_{1}, Y_{2}, \cdots, Y_{n}$ be jointly normal such that $\left(X, Y_{1}, Y_{2}, \cdots, Y_{n}\right) \sim N(\mu, \Sigma)$ and denote the vector of random variables $\left(Y_{1}, Y_{2}, \cdots, Y_{n}\right)$ with Y. Similarly we use the notation y for the vector $\left(y_{1}, y_{2}, \cdots, y_{n}\right)$. Then, we know that

$$
f_{X \mid Y_{1}, Y_{2}, \cdots, Y_{n}}\left(x, y_{1}, y_{2}, \cdots, y_{n}\right) \sim N\left(E[X]+\Sigma_{X Y} \Sigma_{Y Y}^{-1}(y-E[Y]), \Sigma_{X X}-\Sigma_{X Y} \Sigma_{Y Y}^{-1} \Sigma_{Y X}\right)
$$

The conditional expectation given the values of $Y_{1}, Y_{2}, \cdots, Y_{n}$ is:

$$
\begin{aligned}
E\left[X \mid Y_{1}=y_{1}, Y_{2}=y_{2}, \cdots Y_{n}=y_{n}\right] & =\int_{-\infty}^{\infty} x f_{X \mid Y_{1}, Y_{2}, \cdots, Y_{n}}\left(x, y_{1}, y_{2}, \cdots, y_{n}\right) d x \\
& =E[X]+\Sigma_{X Y} \Sigma_{Y Y}^{-1}(y-E[Y])
\end{aligned}
$$

Hence, conditional expectation can be defined as :

$$
E[X \mid Y]=E[X]+\Sigma_{X Y} \Sigma_{Y Y}^{-1}(Y-E[Y])
$$

We would like to show that the random variable $E[X \mid Y]$ is just the projection of X on the vector space spanned by the vectors in Y i.e. the vector space spanned by $Y_{1}, Y_{2}, \cdots, Y_{n}$. To be able to talk about projections we need an inner product on the space of random variables. This is defined for any random variables V, W as:

$$
\langle V, W\rangle=E[V W]
$$

It can be easily verified that this definition of the inner product satisfies the all the criterion for an inner product.

Let the projection of X on to the vector space spanned by $Y_{1}, Y_{2}, \cdots, Y_{n}$ be denoted by X_{1}. Then we know from definition that $X-X_{1}$ is orthogonal to every vector Y_{j}. In this note we will just be showing that if $X_{1}=E[X \mid Y]$ then $X-X_{1}$ is indeed perpendicular to all the vectors Y_{j}. As the projection is unique, the final result immediately follows.

$$
\begin{aligned}
E\left[\left(X-X_{1}\right) Y_{j}\right] & =E\left[(X-E[X \mid Y]) Y_{j}\right] \\
& =E\left[X Y_{j}\right]-E\left[E[X \mid Y] Y_{j}\right] \\
& =E\left[X Y_{j}\right]-E\left[\left(E[X]+\Sigma_{X Y} \Sigma_{Y Y}^{-1}(Y-E[Y])\right) Y_{j}\right] \\
& =E\left[X Y_{j}\right]-E[X] E\left[Y_{j}\right]+E\left[Y_{j}\right] \Sigma_{X Y} \Sigma_{Y Y}^{-1} E[Y]-E\left(Y_{j} \Sigma_{X Y} \Sigma_{Y Y}^{-1} Y\right) \\
& \left.=E\left[(X-E[X])\left(Y_{j}-E\left[Y_{j}\right]\right)\right]+\Sigma_{X Y} \Sigma_{Y Y}^{-1}\left(E\left[Y_{j}\right] E[Y]\right)-\Sigma_{X Y} \Sigma_{Y Y}^{-1} E\left[Y Y_{j}\right]\right) \\
& =E\left[(X-E[X])\left(Y_{j}-E\left[Y_{j}\right]\right)\right]-\Sigma_{X Y} \Sigma_{Y Y}^{-1}\left(E\left[(Y-E[Y])\left(Y_{j}-E\left[Y_{j}\right]\right)\right)\right.
\end{aligned}
$$

Note now that $E\left[(Y-E[Y])\left(Y_{j}-E\left[Y_{j}\right]\right)\right.$ is the j th column in the covariance ma$\operatorname{trix} \Sigma_{Y Y} . \Sigma_{Y Y}^{-1}$ multiplied by that column is just the vector $\{0,0,0, \cdots, 1,0,0, \cdots, 0\}$ where the 1 is located at the j th co-ordinate. $\Sigma_{X Y}$ times this vector is just the element of Σ in the first row and $j+1$ th column. By definition the first term in the last expression is also the element of Σ in the first row and the $j+1$ th location. Therefore, the result is zero.

