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0.1 Kalman Filter

For vector valued random variables, the following definitions are used:

• E(x) = (E(x1)E(x2) · · ·E(xn))′ (Just component wise expectation)

• Cov(x) = E((x− Ex)(x− Ex)T )

• E(x|y) = (E(x1|y)E(x2|y) · · ·E(xn|y))′

• L2 = {x|Ex2 <∞}

• x has a multivariate Gaussian distribution if all linear combinations,
∑n

k=1 akxk are univariate Gaussian

• Also, if x, y ∈ L2 then xy ∈ L1

x[n+ 1] = A(θ)x[n] +B(θ)u[n] + w[n]

y[n] = C(θ)x[n] +D(θ)u[n] + v[n]

Ew[n]w[n]T = R1(θ)

Ev[n]v[n]T = R2(θ)

Ew[n]v[n]T = R12(θ)

where w[n], v[n] are multivariate Gaussian and A(θ) ∈ Rn×n, B(θ) ∈ Rn×r, C(θ) ∈ Rm×n, D(θ) ∈ Rm×r. We
will denote by xi[n] the ith component of the vector x[n].

We would like to derive the predictor x[n|n − 1] := E(x[n]|y[k], k ≤ n − 1). The main idea used in the
derivation of this predictor is that if X,Y are jointly Gaussian then E(X|Y ) can be treated as an orthogonal
projection in L2. We will show this now.

The following theorem can be found in [1]:

Theorem 0.1.1. If K is a complete vector subspace of L2(Ω,F , P ), then given X ∈ L2(Ω,F , P ) there exists
Y ∈ K such that

• ‖X − Y ‖ := inf{‖X −W‖ : W ∈ K}

• E((X − Y )Z) = 0 ∀Z ∈ K

• Both the above are equivalent and if Ỹ is another r.v. which satisfies either the above, then ‖Y −Ỹ ‖ = 0
a.s.

Let X ∈ L2(Ω,F , P ),G be a sub σ-algebra of F and let K = L2(Ω,G, P ). Then taking Z = IG, G ∈ G,
we get that Y = E(X|G). Hence, conditional expectation is equal to orthogonal projection for L2 random
variables.

In rough terms, the conditional expectation of an L2 random variable X given Y is the same as the
orthogonal projection of X on the space of all random variables of the form f(Y ) where f is any
(measurable)-function.

Now, let’s consider the space L2 and define the inner product, < X,Y >= E(XY ). (This is not a true
inner product as it does not satisfy the positive definiteness condition. However, if we identity equivalence
classes with the a.s. relation, then it is a correct inner product).
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So, essentially, we think of random variables as vectors. The difference from Rn is that no finite number
of vectors span the entire space as L2 is infinite dimensional.

With the inner product, we can define the orthogonal projection of X onto the span(Y1, Y2, · · · , Yn)
denoted by Ê(X|Y1, Y2, · · · , Yn). From standard ideas in orthogonal projection we have

E((X − Ê(X|Y1, Y2, · · · , Yn))Yk) = 0 ∀1 ≤ k ≤ n

If we now assume thatX,Y1, Y2, · · · , Yn are multivariate Gaussian, then by definitionX−Ê(X|Y1, Y2, · · · , Yn)
is also Gaussian (as Ê(X|Y1, Y2, · · · , Yn) =

∑n
k=1 akYk for some ak’s).

However, ifX,Y are Gaussian and E(XY ) = 0 thenX,Y are independent. Hence, X−Ê(X|Y1, Y2, · · · , Yn)
and Yk are independent. This in-turn gives that X − Ê(X|Y1, Y2, · · · , Yn), f(Y1, Y2, · · · , Yk) are independent
for any measurable f . From the above theorem, it follows that

Ê(X|Y1, Y2, · · · , Yn) = E(X1|Y1, Y2, · · · , Yn) (1)

Without multivariate Gaussianity, conditional expectation is the projection on to a very complicated
space f(Y1, Y2, · · · , Yn), where f is any measurable function such that f(Y1, Y2, · · · , Yn) is square in-
tegrable. However, with the assumption of Gaussianity, the projection is onto a much simpler space,
span(Y1, Y2, · · · , Yn). Now, standard projection ideas can be easily applied. Therefore, this idea can be
considered to central to the development of the theory.

First, it is to be noted that all random variables that we get during the computations are multivariate
Gaussian. For example, (x[n], y[1], y[2], · · · , y[n]) is multivariate Gaussian as x[n] and each of the y[k] are
linear combinations of w[n] and v[n]. Therefore, we can freely use (1).

Denoting span(y[k], 1 ≤ k ≤ n) =: Y[n] and following Kalman, we start with

E(x[n+ 1]|y[k], 1 ≤ k ≤ n) = Ê(x[n+ 1]|Y[n])

= Ê(x[n+ 1]|Y[n− 1]) + Ê(x[n+ 1]|Z[n])

= A(θ)E(x[n]|y[k], 1 ≤ k ≤ n− 1) +B(θ)u[n] + Ê(x[n+ 1]|Z[n])

Note here that Y[n] = Y[n−1]⊕Z[n], i.e. direct sum of two vector subspaces. Z[n] is spanned by ỹ[n|n−1],
where y[n] = ȳ[n|n − 1] + ỹ[n|n − 1] and ȳ[n|n − 1] ∈ Y[n − 1]. Hence, Ê(x[n + 1]|Z[n]) = ∆∗[n]ỹ[n|n − 1]
and

ỹ[n|n− 1] = y[n]− ȳ[n|n− 1]

= y[n]− C(θ)E(x[n]|y[k], 1 ≤ k ≤ n− 1)−D(θ)u[n]

Therefore,

x[n+ 1|n] = A(θ)x[n|n− 1] +B(θ)u[n] + ∆∗[n](y[n]− C(θ)x[n|n− 1]−D(θ)u[n])

= (A(θ)−∆∗[n]C(θ))x[n|n− 1] +B(θ)u[n] + ∆∗[n](y[n]−D(θ)u[n])

where we used the notation, x[n+ 1|n] = E(x[n+ 1]|y[k], 1 ≤ k ≤ n). In the following, we use x̃[n+ 1|n] =
x[n+ 1]− x[n+ 1|n]. From the above

x̃[n+ 1|n] = x[n+ 1]− (A(θ)−∆∗[n]C(θ))x[n|n− 1]−B(θ)u[n]−∆∗[n](y[n]−D(θ)u[n])

= A(θ)x[n]− (A(θ)−∆∗[n]C(θ))x[n|n− 1]−∆∗[n](C(θ)x[n] + v[n]) + w[n]

= (A(θ)−∆∗[n]C(θ))x̃[n|n− 1]−∆∗[n]v[n] + w[n]

2



We will denote (A(θ) − ∆∗[n]C(θ)) =: A∗(θ, n), E(x̃[n + 1|n]x̃[n + 1|n]T ) = P [n + 1|n]. We can now
calculate this covariance matrix of the error in estimation, x̃[n+ 1|n] assuming that E(x[0]) = 0.

P [n+ 1|n] = A∗(θ, n)P [n|n− 1]A∗(θ, n) +R1(θ) + ∆∗[n]R2(θ)∆∗[n]−∆∗[n](R12(θ))T −R12(θ)(∆∗[n])T

Now, we need to find ∆∗[n]. Now, x[n+ 1]− Ê(x[n+ 1]|Z[n]) is orthogonal to ỹ[n|n− 1]. Therefore,

0 = E(x[n+ 1]− Ê(x[n+ 1]|Z[n]))ỹ[n|n− 1]T

= E(x[n+ 1]−∆∗[n]ỹ[n|n− 1])ỹ[n|n− 1]T

= E(x[n+ 1]ỹ[n|n− 1]T )− E(∆∗[n]ỹ[n|n− 1]ỹ[n|n− 1]T )

= E(x̃[n+ 1|n− 1]ỹ[n|n− 1]T )− E(∆∗[n]ỹ[n|n− 1]ỹ[n|n− 1]T )

Now,

E(x̃[n+ 1|n− 1]ỹ[n|n− 1]T ) = x[n+ 1]−A(θ)x[n|n− 1]−B(θ)u[n]

= A(θ)x̃[n|n− 1] + w[n]

ỹ[n|n− 1] = y[n]− C(θ)x[n|n− 1]−D(θ)u[n]

= C(θ)x̃[n|n− 1] + v[n]

Therefore,

0 = E(x̃[n+ 1|n− 1]ỹ[n|n− 1]T )− E(∆∗[n]ỹ[n|n− 1]ỹ[n|n− 1]T )

= E((A(θ)x̃[n|n− 1] + w[n])(ỹ[n|n− 1]T )− E(∆∗[n]ỹ[n|n− 1]ỹ[n|n− 1]T )

= E(A(θ)x̃[n|n− 1] + w[n])(x̃[n|n− 1]TC(θ)T + v[n]T )− E(∆∗[n](C(θ)x̃[n|n− 1] + v[n])(x̃[n|n− 1]TC(θ)T + v[n]T )

= A(θ)P [n|n− 1]C(θ)T +R12(θ)−∆∗[n]C(θ)P [n|n− 1]C(θ)T −∆∗[n]R2(θ)

which results in the Kalman gain,

∆∗[n] = (A(θ)P [n|n− 1]C(θ)T +R12(θ)) ∗ (C(θ)P [n|n− 1]C(θ)T +R2(θ))−1

Note that the prediction can be taken one step further by estimating x[n|n] but this will not be done here
as it is easy to derive once the concepts are understood.
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