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Dielectric nanoantennas with low dissipative losses at visible 
and near-infrared wavelengths provide a more promising 
way to efficiently manipulate light at the nanoscale compared 

with conventional plasmonics1–4. Another advantage of many suit-
able dielectric materials is their compatibility with semiconductor 
fabrication processes, which is promising for on-chip integration in 
photonic devices. Finally, the wealth of optical modes accessible in 
dielectric nanoparticles—even in their simplest shapes—and their 
associated interference effects bring exciting opportunities to realize 
optical antennas with strong directionality that are straightforward 
to fabricate. Due to these advantages, many applications of resonant 
dielectric nanostructures have been proposed and demonstrated 
in the past few years, such as beam bending and switching5–10, 
flat lenses11–14, nonlinear harmonic generation15–18, directional 
scattering19–21, hologram and vortex-beam generation6,7,22–24, and  
polarization control24,25.

A particularly important characteristic of any photonic system 
is the ability to produce amplified spontaneous or stimulated emis-
sion. While dielectric resonant nanostructures have been studied 
for light confinement and enhanced spectroscopies (Raman and 
fluorescence26–29), up to now, despite some theoretical proposals30, 
there has been no experimental demonstration of lasing action 
based on dielectric nanoantenna concepts. The main reasons can be 
attributed to the low quality factor (Q) of the resonant modes and, 
thus, the lack of suitable cavity designs.

Recently, a novel method of light confinement has been demon-
strated by means of so-called bound states in the continuum (BICs). 
In these states, light is localized within the structure supporting 
the BIC mode, despite the mode lying in the continuum part of 
the spectrum, therefore coexisting with the radiative modes31–34. 
Theoretically, the Q factor of these modes can reach infinity if the BIC 
condition is strictly satisfied33. In practice, the Q factor is limited by 
the finite size of real systems, which implies the existence of unpro-
tected channels and renders the BIC into so-called supercavities 

or leaky resonances33,35–37 (leaky resonances may emerge even for 
infinite systems37). Nevertheless, the high Q values achievable even 
in real, practical systems supporting these modes make them per-
fectly suitable for lasing, and some devices working under this 
principle have recently been described38–42. A common limita-
tion of these devices is the poor directionality of the emitted light, 
which is radiated into free space by defects or simply by the edges  
of the device43.

Here, we propose a design that takes advantage of both dielectric 
nanoantenna resonances and BIC confinement to experimentally 
realize lasing in a two-dimensional (2D) array of resonant dielectric 
nanostructures with controlled directionality.

Lasing cavity based on a BIC
The BIC is formed at the gamma (Γ​) point of the array; that is, for 
the emission wave-vector = =∣∣ k kk ( , ) 0x y , where kx and ky are the 
components of the wave-vector along the x and y directions, when 
the particles support only the resonant vertical dipole mode (that 
is, oriented along the z axis, normal to the array) and the array is 
strictly subdiffractive and of infinite size in the x and y directions 
(see Fig. 1a,b). In this situation, it is easy to visualize how the BIC 
is formed. For a subdiffractive, 2D array of dipoles oscillating in 
phase, radiation is only allowed in the normal direction to the array 
(in all other directions, destructive interference from the rest of 
the dipoles in the array leads to zero net radiation). In the case in 
which these dipoles oscillate precisely in the normal direction, and 
therefore do not radiate towards it, no radiation from the system is 
allowed, and the BIC is formed. This BIC is topologically robust. 
The polarization vector forms a vortex around the = =k k 0x y  point 
with topological charge =q 1 (and nodal lines =E 0x  along =k 0x  and 

=E 0y  along =k 0y ), and therefore cannot be removed unless strong 
variations in the geometric parameters of the system are intro-
duced44. Now, by carefully adjusting one of the periods to support 
a diffraction order at the resonant wavelength, a leaky channel can 
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be opened37. In this way, it is possible to control the directionality of 
the emission while still maintaining a very high confinement factor 
of the cavity near the vertical direction. This design can be applied 
to various active high-index semiconductor materials to achieve las-
ing at visible and infrared wavelengths. Moreover, the low surface 
footprint of our laser structure leads to high transparency in the 
wavelength range of interest (for example, >​85% over 750–900 nm). 
This surface-emitting laser might have applications in multi-layered 
photonic devices.

Our laser device consists of vertical coupled gallium arsenide 
(GaAs) nanopillars as building blocks with a diameter of ~100 nm 
and a height of 250 nm. GaAs is a widely used III–V semiconductor 
with a near-infrared direct bandgap at ~1.42 eV (300 K) and a rela-
tively high refractive index of ~3.5 (refs 45,46). Recently, GaAs-based 
metasurfaces have also been studied for second-harmonic genera-
tion and optical modulation16,47,48. When using GaAs, it should be 
noted that it presents a high surface-charge recombination due to 
defects at room temperature, which becomes especially important 
in nanoscaled samples49. This leads to a poor external quantum effi-
ciency of the material photoluminescence. In our sample, neither 
a surface passivation layer (for example, AlGaAs) nor a chemical 
treatment process was applied. To increase the emission yield, we 
performed the measurements at low temperature (that is, 77 K), and 
thus the emission wavelength of GaAs was blue-shifted to ~830 nm 
from the usual room temperature peak at ~870 nm. Hence, we will 
discuss our design concept based on the emission of GaAs at this 
particular wavelength (that is, 830 nm). In our device, both vertical 
and in-plane dipole resonances are supported in the nanopillars, as 
illustrated in Fig. 1a. The nanopillars are arranged in a 2D rectan-
gular array, supported by a quartz substrate and embedded in silica 
(SiO2), as depicted in Fig. 1b. In one of the directions, the period 
of the lattice is subdiffractive for wavelengths within the photolu-
minescence band of GaAs (namely, the x axis; Px =​ 300 nm), while 
in the other direction, the period is diffractive (namely, the y axis; 
Py =​ 540 nm). This design opens up a radiation channel that turns 

the BIC mode of the purely subdiffractive case into a leaky resonance 
with finite Q (see further details in Supplementary Figs. 1 and 2)  
and presents a cross-point with =k 0y  in the emission plane, as sche-
matically depicted in Fig. 1b.

GaAs nanopillar arrays were fabricated on a fused silica sub-
strate using epitaxial lift-off of a GaAs film, e-beam lithography 
and dry etching techniques, and embedded into a homogeneous 
medium with a refractive index of ~1.5, as described in detail in 
Supplementary Fig. 3. The scanning electron microscope (SEM) 
images of one of the fabricated GaAs arrays before final coating are 
shown in Fig. 1c. To investigate the resonant modes in the GaAs 
array, we performed spectrally resolved back focal plane imaging14 
(see Methods). The schematic of the measurement set-up is illus-
trated in Fig. 2a.

Figure 2b shows the measured transmission for p-polarized light 
(polarization along the x axis at normal incidence) passing through 
the GaAs nanopillar array as a function of the wavelength and the 
angle of incidence. The results show two resonant bands in the sys-
tem (manifested as dips in transmission). The lowest energy band 
narrows and then vanishes when incidence becomes normal. The 
transmission spectra at various angles, as extracted from Fig. 2b, 
are shown in Supplementary Fig. 4. The resonance at ~825 nm 
vanishes at 0° while the other mode at ~790 nm is red-shifted for 
decreasing angle of incidence. To understand the nature of these 
resonant modes, we performed numerical simulations of the trans-
mission spectrum dependence on angular incidence using a com-
mercial electromagnetic solver based on the finite element method 
(COMSOL Multiphysics). The results, presented in Fig. 2c, are in a 
very good agreement with the experimental ones, showing two res-
onance modes at ~790 and ~825 nm for close-to-normal incidence 
that blue-shift as the angle increases. Multipole decomposition of 
the displacement currents induced in the nanopillars is used to iden-
tify the nature of these resonances. The results of this analysis are 
plotted in Fig. 2d. They clearly show that the resonant dips observed 
in the transmission spectra correspond to a diffractively coupled, 
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Fig. 1 | Structure of the resonant dielectric nanoantenna array. a, Resonant modes in a dielectric nanopillar showing the vertical and horizontal dipole 
resonances. The GaAs pillar in our laser device has a diameter of 100 nm and a height of 250 nm. b, Schematics of the GaAs nanopillar array on a fused 
silica substrate embedded in hydrogen silsesquioxane (HSQ) resist (spin-on glass). Along the y axis, the period (Py =​ 540 nm) is designed to support 
diffraction at the emission wavelength range of GaAs (~830 nm at 77 K). Along the x axis, the period is fixed at 300 nm and is subdiffractive. c, SEM image 
of the fabricated array at normal incidence. Inset: SEM image at a 30° tilted angle, showing the cylinder shape.
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x-oriented, in-plane electric dipole and a z-oriented vertical elec-
tric dipole, for the high- and low-energy resonances, respectively. 
Details of both the numerical simulations and the multipole decom-
position can be found in the Methods. The resonance at 825 nm is 
associated with the vertical dipole vanishing at normal incidence, 
corresponding to the emergence of the symmetry-protected, leaky 
resonance associated with the bound state at the Γ​ point of the first 
Brillouin zone for the purely subdiffractive array. Figure 2e shows 
the angle-dependent wavelength and Q factor of the vertical elec-
tric dipole resonance extracted from angle-resolved transmission 
data in Fig. 2b. As can be seen, the Q factor sharply increases as the 
angle decreases below 10°. The Q factor reaches ~1,500 at around 4°,  
which is at the resolution limit of the spectrometer (~0.6 nm for 
150 g mm−1 grating). This behaviour confirms the BIC characteristic 
of the resonant mode.

Directional lasing in the 2D GaAs nanopillar array
To demonstrate lasing, the 2D GaAs nanopillar array was placed in 
a liquid nitrogen-cooled cryostat (ST-500; Janis Research) and opti-
cally pumped using a femtosecond laser (780 nm, 200 fs pulse width 
at a repetition rate of 100 KHz). The pumping laser was focused 
on the sample using a ×​5 microscope objective resulting in a laser 
spot diameter of ~40 μ​m. The emission signal from the array was 
collected using a ×​50 long working distance microscope objective 
(NA =​ 0.45) and dispersed in the spectrometer using a 1,200 g mm−1 
grating with 1,000 nm blaze giving a spectral resolution of 0.1 nm. 
A long pass filter (800 nm; Thorlabs) was used to filter out the  
excitation laser line.

Figure 3a shows the normalized evolution of the emission 
spectra of the nanopillar array when pumping it at different laser 
fluences. The top panel in Fig. 3b shows the output intensity in log–
log scale of the photoluminescence as a function of the pumping  
fluence. The observed S shape represents the spontaneous emis-
sion to amplified spontaneous emission to stimulated emission 
transition with a threshold of ~14 μ​J cm−2, which is conventionally 
defined by the kink in the log–log curve. When the pumping flu-
ence is above 10 μ​J cm−2, a high-intensity, narrow peak appears at 
~825 nm. The full width at half maximum (FWHM) of the photo-
luminescence also decreases from 8 nm to a minimum of ~0.3 nm, 
corresponding to a lasing Q factor of 2,750. Here, the Q factor of the 
laser emission is defined by the emission wavelength divided by its 
FWHM. To further verify that the emission of our device indeed 
corresponds to lasing, we measured the second-order photon corre-
lation function using a Hanbury–Brown–Twiss set-up50 (see details 
in Supplementary Fig. 5). The normalized intensity correlation at 
zero time delay g2(0) as a function of pumping fluence is shown 
in the bottom panel of Fig. 3b. The result shows that g2(0) reaches 
unity when the pumping fluence is above 20 μ​J cm−2, indicating a 
coherent light emission. It is noted that the g2(0) value decays at 
a pumping fluence lower than ~15 μ​J cm−2 instead of approaching 
the theoretical value g2(0) =​ 2 for an ideal thermal light source. This 
happens because the coherence time drops below the detection 
limit of our set-up (that is, 81 ps). A similar observation has been 
reported and thoroughly discussed previously51. Figure 3c shows 
the optical image (top) and the photoluminescence images below 
(middle) and above (bottom) the lasing threshold. The red dashed 
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Fig. 2 | Resonant modes in the GaAs nanopillar array. a, Schematic of the spectrally resolved back focal plane imaging measurements. CCD, charge-
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d, Numerically calculated multipolar decomposition, showing the two modes excited in the nanopillars as a function of the angle and wavelength of 
incidence. In particular, the colour maps represent the scattering cross section associated with a horizontal electric dipole (red colour scale, CED,x) and  
a vertical electric dipole (blue colour scale, CED,z). The simulations show that the resonance dip observed in transmission at ~830 nm for oblique incidence 
corresponds to the excitation of a vertical electric dipole resonance, which vanishes at 0° forming the BIC. e, Angular dependence of the wavelength and  
Q factor for the vertical electric dipole mode extracted from b showing emergence of the BIC with Q factor growing to infinity at λBIC ~ 830 nm. The resonance 
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the peak fitting to determine FWHM.
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oval in these images corresponds to the array size, with the x and 
y axis labelled. The green dashed circle in the middle image repre-
sents the pumping laser spot, which is about 40 μ​m in diameter. To 
determine the lasing directivity, the back focal plane images of the 
emission are collected using a long working distance ×​50 micro-
scope objective (NA =​ 0.45). The images and extracted directivity 
of the emission below and above the lasing threshold are shown in  
Fig. 3d,e, respectively. Below the threshold, the emission directivity 
follows two photonic bands due to the grating effect of the diffrac-
tion periodicity along the y axis. In contrast, above the threshold, the 
lasing emission only happens at a specific angle (that is, ~3° to the 
normal axis) along the x axis. This angle corresponds to the crossing 
point of the emission bands, with kx in the emission plane (leaky 
channel cross points). Polarization dependence measurement of the 

emission intensity also shows maximum values along the x axis (as 
shown in Supplementary Fig. 6).

In general, the lasing threshold is inversely proportional to the 
optical gain (g) and the confinement factor (ΓE): Pth ~ (g(λ) ×​ ΓE)−1. 
As discussed in Fig. 2, as the angle of incidence (or, by reciprocity, 
the angle of emission), θ, approaches 0, the resonance wavelength is 
red-shifted and the Q factor dramatically increases (ΓE increases). 
Thus, the lasing happens at the wavelength and angle where the 
minimum lasing threshold is achieved. It should be noted that the 
emission bands below the lasing threshold, shown in Fig. 3d, van-
ish near the normal axis. This is due to the fact that the emission 
is a combination of the lattice effect (emission along the diffrac-
tion directions) and the emission of vertical dipoles, which reso-
nantly enhance the photoluminescence and which have vanishing 
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emission at angles close to the normal direction (the oscillation 
direction of the dipoles). The resonantly enhanced photolumines-
cence is discussed in more detail in Supplementary Fig. 7. Another 
interesting feature of the system is that, when higher pumping flu-
ence is used, higher energy modes are also excited, with lower Q and 
a higher emission angle (see Supplementary Fig. 8). By changing 
the temperature of the device, it is possible to spectrally move the 
maximum of the gain in such a way that the minimum threshold 
happens at higher angles, despite having a lower Q factor. In this 
way, it is possible to obtain directional lasing at an angle as large as 
~25° (see Supplementary Fig. 9).

Lasing wavelength tunability
One of the advantages of using the vertical dipole resonance mode 
in our laser structure is that the leaky resonance from the BIC con-
dition can be satisfied with a wide range of geometric parameters. 
By tuning either the particle diameter or the y axis period, the quasi-
BIC resonant wavelength can be precisely tuned. Figure 4a shows the 
leaky resonance wavelength for various arrays with different par-
ticle sizes and periods, extracted from angle-resolved transmission 
measurements (see Supplementary Fig. 10 for full data). Also, by 
changing the temperature from 77–200 K, the peak of the gain spec-
trum of GaAs can be shifted from 830–850 nm (see Supplementary 
Fig. 11). Combining these two effects, it is possible to achieve lasing 
at different selected angles and wavelengths from different resonant 
arrays. Figure 4b shows lasing spectra achieved for 4 different arrays 
(corresponding to the same colour-dashed circles in Fig. 4a) at 77 K 
(for arrays 1–3) and 200 K (for array 4). Attempts to achieve lasing 
at a higher temperature were not successful because of the low gain 
of GaAs caused by its high surface recombination. We believe that 
by using higher gain material or improving the emission quantum 
efficiency of GaAs (for example, by surface passivation) it should 
become possible to achieve lasing at room temperature.

Conclusion
We have experimentally demonstrated directional lasing action in 
arrays of active dielectric nanoantennas. This was achieved using 
vertical electric dipole resonances excited inside GaAs nanopillars, 
which, in the purely non-diffractive case, would form a non-radiative 
BIC. The directionality of the laser was controlled by a leaky channel, 
opened by designing one period of the array to support diffractive 
orders. The lasing happened at the angle where the emission bands 
(defined by the leaky channel) presented a crossing point in the emis-
sion plane. Despite the presence of the radiation channel, sufficiently 
high Q factors could be retained for small lasing angles (that is, <​10°). 

Moreover, lasing could also be obtained at an angle as large as 25° to 
the normal. This was achieved by temperature-induced tuning of the 
gain spectrum to compensate for the lower Q factor corresponding 
to a larger angle, and led to a minimum lasing threshold at the cor-
responding wavelength. By tuning geometric parameters of the array, 
such as particle size or period, the leaky resonance wavelength could 
be precisely controlled to achieve lasing at different wavelengths. 
This design concept can be applied to other high-index active semi-
conductor materials and can be readily integrated in multi-layered 
photonic devices due to its high transparency. Magnetic dipole and 
higher-order multipole resonances can also be used to generate BIC 
modes in this scheme, provided the symmetry protection is pre-
served33. Our results demonstrate that Mie resonances in dielectric 
nanoparticles can be used to achieve stimulated emission even in 
relatively low-gain materials such as unpassivated GaAs. While the 
array sizes used in our experiments were chosen to be large enough as 
to closely mimic an infinite system (namely, on the order of 200 ×​ 200 
particles), recent studies suggest that quasi-BIC modes sustaining 
large Q factors can be achieved for systems with as few as 8 ×​ 8 unit 
cells in 2D arrays42 and 5 of them in one directional ones52, opening 
pathways to further miniaturization of these devices. This brings new 
opportunities to nanophotonic research by providing a platform for 
making highly efficient directional emitting devices based on active 
semiconductor nanoantennas.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41565-018-0245-5.
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Methods
Back focal plane spectroscopy. The measurements were performed with an 
inverted optical microscope set-up (Nikon Ti-U) coupled to a spectrometer 
(Andor SR-303i) equipped with an EMCCD detector (Andor Newton)3. Light from 
a halogen lamp polarized along the x axis was focused on the sample surface via a 
top objective (×​50, 0.55 NA). The transmission signal was then collected by a lower 
objective with the same specifications. The back focal plane of the bottom objective 
was imaged onto the entrance slit of the spectrometer. The slit had a width of 50 µ​m  
and was oriented along the x axis of the sample. This measurement provided an 
angular-resolved transmission spectrum of the sample in a single image (see Fig. 2b). 
Angular information was recorded along the slit axis of the spectrometer (that is, 
corresponding to a variation of the angle of incidence contained in the x–z plane 
of the sample). The maximum detected angle was determined by the NA of the 
objective and was ~33° for the lens used.

Numerical simulations. Numerical simulations presented in the paper were 
performed using a commercial solver based on the finite element method 
(COMSOL Multiphysics). The simulation domain consisted of a rectangular 
box, representing a unit cell of the array, and a cylinder representing the GaAs 
nanopillar. Periodic Bloch boundary conditions were applied in the boundaries 
along the x and y directions to mimic an infinite, 2D system. The periodicities 
of the array were Px =​ 300 nm and Py =​ 540 nm (corresponding to the physical 
size of the rectangular box in the x and y directions, respectively). Port boundary 
conditions were used in the top and bottom boundaries to excite the system and 
to collect outgoing waves, both in transmission and reflection. As many ports 
as diffraction orders supported by the lattice were used both in transmission 
and reflection. The excitation field corresponded to that of a p-polarized plane 
wave incident onto the array at a certain angle, θ, contained in the x–z plane. The 
total size of the rectangular box was 1 µ​m in the z direction. GaAs particles were 

modelled as cylinders with height H =​ 250 nm and diameter D =​ 100 nm, and were 
considered to be embedded in a background material with a refractive index of 
1.45. The material parameters used for GaAs were those experimentally measured 
by ellipsometry in the GaAs films used. In the transmission results presented in 
Fig. 2d, only the direct transmission is plotted.

The multipole decomposition presented in Fig. 2e is based on the 
decomposition of the particle internal fields using a Cartesian basis. The electric 
dipole moment excited in the particle can be calculated as:

∫ ε ε ε= − dp E r( ) (1)0 d

In this expression, ε0 is the permittivity of vacuum, εd and ε are the relative 
permittivities of the surrounding medium and the particle, respectively, =E E r( ) 
is the vector electric field and the integral is taken over the volume of the particle. 
From this calculation, one can readily identify the main component of the electric 
dipole induced in the particles, as done in Fig. 2e, in which both horizontal and 
vertical induced electric dipoles could be identified. From the dipole moments, it is 
then possible to compute the scattering cross-section associated with them as:
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The rest of the multipole moments (not shown in this paper) can also be 
computed from the internal fields of the particle following expressions detailed 
elsewhere25.

Data availability. The data that support the findings of this study are available 
from the corresponding author upon request.
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