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Motivation - from NCC 2014, IIT Kanpur!

Gerhard Fettweis,  “Designing the Physical Layer of 5G for Enabling the Tactile 
Internet”

• What sets 5G apart from prior generations is the emphasis on latency

• Low-latency communication will revolutionize education, mobility, 
healthcare, sports, entertainment, gaming,....
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The General Goal

Reliable, low-
latency 

communication
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Some Potential Coding Strategies

Reliable, low-
latency 

communication

Physical layer 
forward-error 

correction 

Automatic 
Repeat Request

Packet 
Duplication

Raptor Codes
MDS 

Convolutional 
Codes
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Streaming Codes - An Added Option

Reliable, low-
latency 

communication

Physical layer 
forward-error 

correction 

Automatic 
Repeat Request

Packet 
Duplication

Raptor Codes
MDS 

Convolutional 
Codes

Streaming Codes
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Setting Addressed by Streaming Codes

Sequence of information-bearing packets s0, s1, . . ., sent over an
erasure channel

Packet drops (erasures), shown below in in blue, due to
I network congestion,
I a degraded wireless link, or
I a packet that arrives too late.

1 ….

Network

2 3 4 5 1 ….3 5

Streaming Server

(blue rectangles denote erased packets)

Goal: use packet-level FEC to ensure best-possible tradeoff between rate
and reliability

under decoding-delay constraint of τ packets
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The GE Channel Model
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Packet Erasure Model: The Gilbert-Elliott Channel

PEC(𝜖0) PEC(𝜖1)

G B

𝛼

𝛽

(1 − 𝛼) (1 − 𝛽)

Gilbert Elliott (GE) is a two-state channel model
I G ≡ Good State, B ≡ Bad State

I PEC is a packet-level erasure channel
F ε0 is the probability of packet erasure in good state
F ε1 is the probability of packet erasure in bad state

capable of generating the random and burst erasures that one might
encounter in practice
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Potential Applications of Streaming Codes

Massive IoT
Latency

Ultra reliability and 
low latency

Enhanced Broadband

5G

Multiplayer Gaming

Interactive 
Voice & Video AR & VR

Industrial 
Automation

Traffic 
Control & 

Safety

Tele-surgery

Commonality: Underlying each of these applications is:
I a stream of packets: voice, video or data
I the need for reliable, low-latency communication
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The Sliding Window Approximation
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Tractable Approximation to the GE Channel

Challenging to design codes for the GE channel to ensure a desired
reliability level

Our approach (following work of Prof Ashish Khisti’s group 1):

Replace the GE channel with a tractable approximation

a sliding-window channel model that introduces burst and random
erasures

1Badr et al., “Layered Constructions for Low-Delay Streaming Codes,” IEEE Trans.
Inf. Theory, 2017.
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The Sliding-Window (SW) Channel Model

An admissible erasure pattern is one in which, within each sliding window
of w -packet duration, there are

either ≤ a random erasures,

or else, a burst of ≤ b erasures

Eg.

𝑥(8) 𝑥(9) 𝑥(10) 𝑥(11) 𝑥(12) 𝑥(13) 𝑥(14) 𝑥(15) 𝑥(16) 𝑥(17)…. ….

burst of 𝐛 = 𝟒 erasures

within a window
𝒂 = 𝟐 random erasures

within a window

𝑥(7)

(𝑎 = 2,  𝑏 = 4,  𝑤 = 5, 𝜏 = 4)

delay constraint 𝝉 = 𝟒
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The DCSW Channel Model

Combining the

sliding-window channel model with the

τ -packet decoding-delay constraint,

we arrive at the Delay-Constrained, Sliding Window (DCSW) channel
model.
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Span and Weight of an Erasure Pattern

Consider a window of size w = 6.

26 erasure patterns possible.

The example erasure pattern below has
I (Hamming) weight 2 and
I span 4.

w = 6

span = 4
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GE Channel: Empirical Probabilities of Erasure Patterns

b = 6 0.0098% 0.0005% 0.0000% 0.0000% 0.0002%
b = 5 0.020% 0.0008% 0.0001% 0.0005%
b = 4 0.029% 0.0008% 0.0017%
b = 3 0.04% 0.01%
b = 2 0.06%
b = 1 5.75%
b = 0 94.08%

a=0 a=1 a=2 a=3 a=4 a=5 a=6

span

weight

Table shows empirical probabilities of

I erasure patterns with weight a
I and span b
I over window of length τ + 1 = 6

of an example GE Channel: ( α = 10−4, β = 0.6, ε0 = 0.01, ε1 = 1 )

Erasure probabilities in red add to < 10−5.
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Our Consequent, Packet-Level FEC Approach

Given

a GE channel model,

a delay constraint τ , and

a desired probability Pe of unrecoverable packets

our approach is to:

select an {a, b,w , τ} DCSW channel approximation of highest rate
achieving desired probability Pe of unrecoverable packets

then employ a rate-optimal packet-level FEC for that {a, b,w , τ}
channel
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Linear Codes
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Linear Codes

We begin with some background on linear codes

An [n, k] code C denotes a linear code of length n and dimension k

By which we mean a subspace C of Fn
q having dimension k

Code symbols are drawn from a finite field Fq of size q

Rate R of the code is k
n
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Linear Codes and Erasure Recovery

Let [n, k] linear code C have parity-check matrix H. Then

c ∈ C iff Hc = 0.

If for example n = 7 and

H =
[
h1 h2 h3 h4 h5 h6 h7

]
,

and there are erasures in positions 1, 3, 6, then

the code can recover from all three erasures iff
I {h1, h3, h6} are linearly independent,

on the other hand, to recover c1 alone, it suffices if
I h1 is linearly independent of {h3, h6}.
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Hamming Code Recovery as an Example

[7, 4] Hamming code

H =

 1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


Suppose code symbols 1,3,6 are erased. 1

0
0

 ,
 0

0
1

 ,
 0

1
1

 are linearly independent,

code can recover all three erased symbols
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Hamming Code Recovery as an Example
Suppose code symbols 1,2,3,6 are erased.

H =

 1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


 0

1
0

+

 0
0
1

+

 0
1
1

 =

 0
0
0


can not recover all four erased symbols together

 1
0
0

 is linearly independent of


 0

1
0

 ,
 0

0
1

 ,
 0

1
1


can recover c1
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MDS and Reed-Solomon Codes
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Maximum Distance Separable (MDS) Codes

An [n, k] MDS code is a linear block code over a finite field Fq that possess
the ‘any k of n’ property

1 the message symbols can all be recovered if one has access to any k of
n symbols

2 this class includes Reed-Solomon codes

3 the minimum Hamming distance dmin between a pair of distinct
codewords in an MDS code satisfies the Singleton bound

dmin ≤ n − k + 1,

with equality and the codes are hence said to be maximum distance
separable.
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The Underlying Principle of Reed-Solomon (RS) Codes

Assume that this is the plot of a polynomial of degree 5

then its values at any 6 of the 9 points shown are sufficient to
determine its values everywhere else

thus the code can recover from 3 symbol erasures

Here (n = 9, k = 6, dmin = 4), so

k = n − dmin + 1.
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All Arithmetic Takes Place in A Finite Field

F3 , {0, 1, 2}

Table: Addition

0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

Table: Multiplication

0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

(an example finite field of 3 elements under modulo-3 arithmetic)
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Convolutional Codes
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Convolutional Code Example

rate 1
2 code

k = 1, n = 2

Polynomial generator matrix G (D) =
[
1 + D + D2 1 + D2

]

D Dut

vt
(1)

vt
(2)
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Trellis Diagram

00

10

01

11

00 00 00 00 00

11 11 11 11 11

10 10 10

01 01 01 01

01 01 01

10 10 10 10

11 11 11

00 00 00

0

1

Input
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MDS Convolutional Code

Puncturing the convolutional code to this depth
yields an MDS code
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Return to the Streaming Code Setting
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Recall: The Sliding-Window (SW) Channel Model

An admissible erasure pattern is one in which, within each sliding window
of w -packet duration, there are

either ≤ a random erasures,

or else, a burst of ≤ b erasures

Eg.

𝑥(8) 𝑥(9) 𝑥(10) 𝑥(11) 𝑥(12) 𝑥(13) 𝑥(14) 𝑥(15) 𝑥(16) 𝑥(17)…. ….

burst of 𝐛 = 𝟒 erasures

within a window
𝒂 = 𝟐 random erasures

within a window

𝑥(7)

(𝑎 = 2,  𝑏 = 4,  𝑤 = 5, 𝜏 = 4)

delay constraint 𝝉 = 𝟒
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Key Upper Bound on Code Rate
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Upper Bound on Code Rate R for the DCSW Channel

The erasure pattern below needs to be handled:

……

! (# + 1 − ')

……

……

! (w − ')

……

It follows that

R =
k

n
≤ w − a

(w − a) + b
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Upper Bound on Code Rate R for the DCSW Channel

The erasure pattern below also needs to be handled:

……

! (# + 1 − ')

……

……

! (w − ')

……

It follows that

R =
k

n
≤ τ + 1− a

(τ + 1− a) + b
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Upper Bound on Code Rate R for the SW Channel
Thus both erasure patterns below need to be handled:

……

! (# + 1 − ')

……

……

! (w − ')

……

It follows that

R =
k

n
≤ τeff + 1− a

(τeff + 1− a) + b
; τeff + 1 = min{w , τ + 1}

But this is achievable with w = τ + 1. Hence we assume WOLOG that

w = τ + 1

and dispense with w . We will henceforth speak of an {a, b, τ} DCSW
channel.

Badr et al., “Layered Constructions for Low-Delay Streaming Codes,” IEEE Trans. Inf. Theory,

2017.
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Sub-optimality of MDS Codes
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MDS Codes are Sub-Optimal

Recall the rate upper bound for Sliding-Window Channel:

R ≤ τ + 1− a

(τ + 1− a) + b
:= Ropt.

Let C be an [n, k] MDS code. Then necessarily

n ≤ τ + 1 (from the latency requirement)

n − k ≥ b (to handle a burst of b erasures).

Hence rate

RMDS = 1− (n − k)

n
≤ 1− b

τ + 1
=

τ + 1− b

τ + 1

<
τ + 1− b + (b− a)

τ + 1 +(b− a)
= Ropt,

if a < b. Thus MDS codes do not achieve Ropt for a < b.
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Note on Minimum Possible Block Length

Recall the rate upper bound for Sliding-Window Channel:

R ≤ τ + 1− a

(τ + 1− a) + b
:= Ropt.

If numerator and denominator of Ropt expression are relatively prime,
then n = τ + 1− a + b is the minimum possible block length of
rate-optimal code.

(we will indirectly exploit this fact when we bring back MDS codes later
into the picture)
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Block or Convolutional Coding

One could employ codes that at the packet-level are either

block or

convolutional codes
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Our Approach

Construct packet-level codes that are built out of scalar block codes

using one of:

1 Horizontal Embedding (HE)

2 Diagonal Embedding (DE) or its variations

Scalar Block Code 

Packet-Level
Convolutional Code 

Packet-Level
Block Code

Embedded within 
the packet stream 

HE DE or its 
variations
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Horizontal-Embedding

m1 m2 m3 m4 p1 p2 p3 p4

m1 m2 m3 m4 p1 p2 p3 p4

m1 m2 m3 m4 p1 p2 p3 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥 10 𝑥(11)

next codeword
previous

codeword

each column is a packet

each row is a distinct codeword of an example [8, 4] code C
leads to a packet-level block code

we are in effect inserting redundant packets
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Diagonal-Embedding (DE)

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥 10 𝑥(11)

each column is a packet

each diagonal is a distinct codeword of an example [8, 4] code C
we are in effect, expanding each individual packet

Martinian and Trott, “Delay-Optimal Burst Erasure Code Construction,” ISIT, 2007.
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Diagonal-Embedding

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥 10 𝑥(11)

a parity symbol in a packet is a function of message symbols in prior
packets

this is thus an instance of convolutional encoding
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Staggered Diagonal Embedding (variant of DE)
Codewords are embedded diagonally with gaps in the packet stream.

The tiling of the 2D grid shown below under SDE, may be regarded as
a kind of interleaving

Such interleaving is not possible in general, with horizontal embedding

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

!(0) !(1) !(2) !(3) !(4) !(5) !(6) !(7) !(8) !(9) !(10) !(11)
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Dispersion of Code Symbols under SDE

Dispersion span N: number of consecutive packets across which
codewords are spread.

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥(10) 𝑥(11)

Dispersion Span N = 10
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Generalized Diagonal Embedding (a second variant of DE)

Similar to DE except that each codeword may have more than one
symbol per packet

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9)

c1 c1 c1 c1 c1
c2 c2 c2 c2 c2
c3 c3 c3 c3 c3

c4 c4 c4 c4 c4
c5 c5 c5 c5 c5

c6 c6 c6 c6 c6
c7 c7 c7 c7 c7

c8 c8 c8 c8 c8
c9 c9 c9 c9 c9
c10 c10 c10 c10 c10
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Streaming Codes

By Streaming Code, we will here mean

a packet-level erasure-recovery code that is designed to efficiently
communicate over the Sliding-Window channel

while permitting decoding under decoding-delay constraint τ
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Our Results

Rate-Optimal Streaming Code Constructions:
I Jigsaw Code
I The Explicit Jigsaw Code
I Simple Streaming (SS) Codes
I Long SDE Code

Near-rate-Optimal Streaming Code Constructions Having Low Field
Size

Performance Evaluation over the GE Channel

An Experimental Attempt at Channel Adaptation
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Rate-Optimal Constructions of Streaming Codes

Embed- Dispersion Field Based Parameter
Name ding Span Size on MDS Range

Codes ? Covered

Jigsaw* DE > (τ + 1) Quadratic No all {a, b, τ}

Dominovitz
et al DE > (τ + 1) Quadratic No all {a, b, τ}

Jigsaw
(explicit) DE > (τ + 1) Quadratic No all {a, b, τ}

SS codes SDE = (τ + 1) Linear Yes τ + 1 = a (mod b)

Long SDE SDE > (τ + 1) Linear No (τ + 1− a, b) = g
a ≤ g < b

* not fully explicit
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Near Rate-Optimality of Simple Streaming Codes

τ + 1 = mb + ρ

Rate-optimal when ρ = a

 (m-1)/m    m/(m+1)

MDS Code

Optimal Rate

ρ < a

  1/m(m+1)

m/(m+1) (m+1)/(m+2)

Binary Code,
MDS Code

 Optimal Rate

ρ > a

1/(m+2)(m+1)
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Other Approaches to

Reliable Low-Latency Communication
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Other Approaches: Packet Duplication

Reliable, low-
latency 

communication

Packet 
Duplication

Packet duplication is 
clearly inefficient and 
corresponds to using a 

repetition code
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Other Approaches: Physical-Layer FEC

Reliable, low-
latency 

communication

Physical layer 
forward-error 

correction 

Physical-layer FEC 
cannot clearly handle 
erasures arising at the 

packet level
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Other Approaches: ARQ

Reliable, low-
latency 

communication

Automatic 
Repeat Request

ARQ schemes incur an 
undesirable round-trip 

transmission delay
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Other Approaches: MDS Convolutional Codes

Reliable, low-
latency 

communication

MDS 
Convolutional 

Codes

MDS convolutional 
codes, lead to MDS 

codes and are hence not 
designed to handle 

burst erasures
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Other Approaches: Raptor Codes

Reliable, low-
latency 

communication

Raptor Codes

Raptor codes are block 
codes of relatively large 

block length, have 
overhead that is larger 

than that of an MDS code 
and are not designed to 
handle burst erasures
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Streaming Codes

By Streaming Code, we will here mean

a packet-level erasure-recovery code that is designed to efficiently
communicate over the Sliding-Window channel

while permitting decoding under decoding-delay constraint τ

Work on streaming codes

originated at MIT

continued at the University of Toronto (Prof Ashish Khisti’s group)

continued at the Indian Institute of Science (our group)
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Literature on Streaming Codes
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Literature on Streaming Codes

Non-Explicit, 

𝜏2 Field-Size

Explicit, 

(𝜏+b-a)2 Field-Size

Explicit, 

𝜏2 Field-Size

Burst and Random Erasures

Burst Only
Near Rate-

Optimal

Martinian-

Sundberg (2004)

Martinian-

Trott 

(2007)

Badr et al.

(2017)

Krishnan-Kumar

(2018)

Fong et al. 

(2018)

Rate-Optimal

Krishnan et al. 

(2019)

Domanovitz et al.

( 2019)

Vajha et al.

(2021)

Quadratic Field-Size,

Rate-Optimal

65/163



Low-Complexity Streaming Codes

Simple 

Streaming Codes

Krishnan et al. 

(2019)

Ramkumar et al.

(2020)

𝜏Field-size Rate-

Optimal Codes 

for a Large Set of 

Parameters*

Ramkumar et al.

(2021)

MDS Code Based 

Streaming Codes

∗ gcd(b, τ + 1− a) ∈ {a, a + 1, a + 2, · · · , b}
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Streaming Codes for Other Settings

Variable Message 

Packet Size 

Rudow-Rashmi 

(2018)

Multicast Over 

Burst Erasure 

Channels 

Badr et al. 

(2011, 2015)

3 Node Relay 

Network

Fong et al. 

(2020)
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Construction Requirements
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Diagonal Embedding

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥 10 𝑥(11)

Focus on diagonal embedding of scalar block code.
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Requirement of a Rate-Optimal Code

Basic idea:

design the code so that one can recover from erasure patterns given
only the next τ code symbols.

We illustrate with an example:

{a, b, τ} = {5, 8, 12}

Ropt = τ+1−a
τ+1−a+b = 8

16 = 0.5

Consider an [n = 16, k = 8] code C.
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Burst Erasure Correction - Requirements
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Random Erasure Correction - Requirements
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Implications of Requirements on the Parity-Check Matrix
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Decoding c0 in the Presence of a Burst (Bpartial)

{a, b, τ} = {5, 8, 12}
Goal: recover c0 while c13, c14, c15 are inaccessible

𝑐𝟎 𝑐𝟏 𝑐𝟐 𝑐𝟑 𝑐𝟒 𝑐𝟓 𝑐𝟔 𝑐𝟕 𝑐𝟖 𝑐𝟗 𝑐𝟏𝟎 𝑐𝟏𝟏 𝑐𝟏𝟐 𝑐𝟏𝟑 𝑐𝟏𝟒 𝑐𝟏𝟓

Burst erasure of length 8

symbol to be recovered
inaccessible due to delay 

constraint 𝜏 = 12

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 1 0 0

* * * * * * * * * * * * * 0 1 0

* * * * * * * * * * * * * 0 0 1

this column does not lie in the 
span of 7 columns to the right

parity-check 
matrix for the 

code punctured 
on last 3 

coordinates
𝐻 =
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Decoding c2 in the Presence of a Burst (Bpartial)

{a, b, τ} = {5, 8, 12}
Goal: recover c2 while c15 is inaccessible

𝑐𝟎 𝑐𝟏 𝑐𝟐 𝑐𝟑 𝑐𝟒 𝑐𝟓 𝑐𝟔 𝑐𝟕 𝑐𝟖 𝑐𝟗 𝑐𝟏𝟎 𝑐𝟏𝟏 𝑐𝟏𝟐 𝑐𝟏𝟑 𝑐𝟏𝟒 𝑐𝟏𝟓

Burst erasure of length 8

symbol to be recovered
inaccessible due to delay 

constraint 𝜏 = 12

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 1 0 0

* * * * * * * * * * * * * 0 1 0

* * * * * * * * * * * * * 0 0 1

this column does not lie in the 
span of 7 columns to the right

parity-check 
matrix for the 

code punctured 
on the last 
coordinate

𝐻 =
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Decoding (c6, c7, · · · , c13) in the Presence of a Burst (Bfull)

{a, b, τ} = {5, 8, 12}

𝑐𝟎 𝑐𝟏 𝑐𝟐 𝑐𝟑 𝑐𝟒 𝑐𝟓 𝑐𝟔 𝑐𝟕 𝑐𝟖 𝑐𝟗 𝑐𝟏𝟎 𝑐𝟏𝟏 𝑐𝟏𝟐 𝑐𝟏𝟑 𝑐𝟏𝟒 𝑐𝟏𝟓

Burst erasure of length 8

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 1 0 0

* * * * * * * * * * * * * 0 1 0

* * * * * * * * * * * * * 0 0 1

matrix is non-singular

𝐻 =
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Decoding c0 in the Presence of Random Erasures (Rpartial)

{a, b, τ} = {5, 8, 12}
Goal: recover c0 while c13, c14, c15 are inaccessible

𝑐𝟎 𝑐𝟏 𝑐𝟐 𝑐𝟑 𝑐𝟒 𝑐𝟓 𝑐𝟔 𝑐𝟕 𝑐𝟖 𝑐𝟗 𝑐𝟏𝟎 𝑐𝟏𝟏 𝑐𝟏𝟐 𝑐𝟏𝟑 𝑐𝟏𝟒 𝑐𝟏𝟓

5 random erasures

symbol to be recovered inaccessible due to delay 
constraint 𝜏 = 12

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 1 0 0

* * * * * * * * * * * * * 0 1 0

* * * * * * * * * * * * * 0 0 1

this column  does not lie in the span of 
4 demarcated columns on the right

parity-check 
matrix for the 

code punctured 
on last 3 

coordinates
𝐻 =
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Decoding (c5, c8, c9, c13, c14) in the Presence of Random
Erasures (Rfull)

{a, b, τ} = {5, 8, 12}

𝑐𝟎 𝑐𝟏 𝑐𝟐 𝑐𝟑 𝑐𝟒 𝑐𝟓 𝑐𝟔 𝑐𝟕 𝑐𝟖 𝑐𝟗 𝑐𝟏𝟎 𝑐𝟏𝟏 𝑐𝟏𝟐 𝑐𝟏𝟑 𝑐𝟏𝟒 𝑐𝟏𝟓

5 random erasures

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 1 0 0

* * * * * * * * * * * * * 0 1 0

* * * * * * * * * * * * * 0 0 1

the five marked columns are independent

𝐻 =
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The Jigsaw Code

M. N. Krishnan, D. Shukla, and P. V. Kumar, “Low Field-size, Rate-Optimal
Streaming Codes for Channels With Burst and Random Erasures,” IEEE Trans. IT, 2020.
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An Example Construction

{a, b, τ} = {5, 8, 12}

We construct an [n = 16, k = 8] code C.

80/163



An Example Construction: {a = 5, b = 8, τ = 12}
parity-check matrix H shown below

provides codes for all {a, b, τ}
built up in segments like a jigsaw puzzle

field size q ∈ O(τ2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Any 5 columns are linearly independent
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An Example Construction: {a = 5, b = 8, τ = 12}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Any 5 columns are linearly independent
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An Example Construction: {a = 5, b = 8, τ = 12}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

Any 5 columns are linearly independent
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An Example Construction: {a = 5, b = 8, τ = 12}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

Any 5 columns are linearly independent
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An Example Construction: {a = 5, b = 8, τ = 12}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

Any 5 columns are linearly independent
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An Example Construction: {a = 5, b = 8, τ = 12}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

Any 5 columns are linearly independent
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A Note on α

All entries of parity-check matrix except      belong to   

drawn from
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Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Inaccessible due to delay constraint 𝜏 = 12Burst of length 𝑏 = 8
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Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12

Burst of length 𝑏 = 8
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Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Inaccessible due to delay 
constraint 𝜏 = 12

Burst of length 𝑏 = 8
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Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0

1

2

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14

Burst of length 𝑏 = 8
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Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8
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Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8
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Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8
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Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8
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Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8
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Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8
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Recovery from Random Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Inaccessible due to delay constraint 𝜏 = 12
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Recovery from Random Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12
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Recovery from Random Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Inaccessible due to delay 
constraint 𝜏 = 12
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Recovery from Random Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0

1

2

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14
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Recovery from Random Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0

1

2

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14

coefficients of linear 

combination over 
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Recovery from Random Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0

1

2

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14

coefficients of linear 

combination over 
drawn from
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Recovery from Random Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15
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The Explicit Jigsaw Code

M. Vajha, V. Ramkumar, M. N. Krishnan, and P. V. Kumar, ”Explicit Rate-Optimal
Streaming Codes with Smaller Field Size,” ISIT 2021.
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An Example
Returning to the same parameters (a = 5, b = 8, τ = 12).

We start with parity check of Jigsaw construction

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

Any 5 columns are linearly independent

106/163



Explicit Jigsaw Code: Parity Check Matrix

(a = 5, b = 8, τ = 12).

Replace some vi ’s with matrix P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0

P

𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

107/163



Explicit Jigsaw Code: Parity Check Matrix

(a = 5, b = 8, τ = 12)

After setting the value for P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

108/163



Explicit Jigsaw Code

(a = 5, b = 8, τ = 12)

We will see Bfull property where burst starts at index i ∈ [3 : 8].

The properties Rpartial, Rfull, Bpartial go through due to similar structure as previous
construction.
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Recovering from Burst at index 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8
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Recovering from Burst at index 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8
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Recovering from Burst at index 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8

112/163



Recovering from Burst at index 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8
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Recovering from Burst at index 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8
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Recovering from Burst at index 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8
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Recovering from Burst at index 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8
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Desired Properties of P

To satisfy Bfull property, intuitively we want the first δ rows of the b × b sub-matrix

of parity check matrix to be comprised of

I a zero columns and
I δ × δ invertible matrix.

Then the Cauchy property of C can be leveraged.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7
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The Assignment of P

P = Pa
δ,τ−b

Recursive construction of (u × v) matrix Pa
u,v .

Pa
u,v =



[
Iu 0︸︷︷︸

(u×a)

Pa
u,v−u−a

]
u + a < v

[
Iu 0︸︷︷︸

(u×(v−u))

]
u ≤ v ≤ u + a

[
Iv

Pa
u−v,v

]
v < u

For example:

P2
5,3 =

[
I3
P2

2,3

]

=


1 0 0
0 1 0
0 0 1

1 0 0
0 1 0


P1

3,1 =

 1
1
1


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Staggered Diagonal Embedding
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Recall: The Diagonal-Embedding Approach

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥 10 𝑥(11)

Each diagonal is a distinct codeword in [n = 8, k = 4] code C here.
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Variation: Staggered Diagonal Embedding (SDE)
Codewords are embedded diagonally with gaps in the packet stream.
This is in effect a form of interleaving made possible by diagonal
embedding
Reduces a burst of 6 erasures to a burst of length 4 in the example
shown below.

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

!(0) !(1) !(2) !(3) !(4) !(5) !(6) !(7) !(8) !(9) !(10) !(11)

M. N. Krishnan, V. Ramkumar, M. Vajha, and P. V. Kumar, “Simple streaming codes for reliable,
low-latency communication,” IEEE Comm. Letters, 2020.
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Why Staggered Diagonal Embedding?

Easy to 

implement, 

linear field-size 

constructions

Shorter block 

length

Rate-optimal 

for a subset of  

parameters*

Near rate-

optimal 

for other  

parameters

SDE

∗ gcd(b, τ + 1− a) ∈ {a, a + 1, a + 2, · · · , b}
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Dispersion of Code Symbols under SDE

Base code: [n, k] scalar block code

Dispersion span N: number of consecutive packets across which
codewords are spread.

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥(10) 𝑥(11)

Dispersion Span N = 10
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SDE: Two Regimes

N ≥ 𝜏+1

Jigsaw 

Code

N ≤ 𝜏+1

SDE DE

Simple 

Streaming 

Code

Long SDE 

Code

N > τ + 1 =⇒ partial knowledge decoding is needed.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

inaccessible

Partial knowledge recovery of c0
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Simple Streaming Codes

M. N. Krishnan, V. Ramkumar, M. Vajha, and P. V. Kumar, “Simple streaming
codes for reliable, low-latency communication,” IEEE Comm. Letters, 2020.
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Simple Streaming Codes: SDE with N ≤ τ + 1

Setting N ≤ τ + 1, ensures that no partial knowledge decoding is
needed.

Constituent base codes are MDS or binary cyclic codes.

Simple Streaming 
Code

MDS Base Code Binary Base Code

Rate optimal with smaller block length and linear field size for

τ + 1 = a (mod b).

Near optimal in terms of rate for other parameter sets.
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MDS-Code-Based Simple Streaming Codes: An Example

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥(10) 𝑥(11)

(a = 4, b = 6, τ = 9) streaming code

m1 m2 m3 m4 p1 p2 p3 p4

SDE of [8, 4] MDS code

N = 10 = τ + 1
=⇒ delay-constraint satisfied

Rate = 1
2

= Ropt

a = 4 random 
packet erasures

burst of b = 6  
packet erasures

at most 4 
symbols erased 
from any MDS 

codeword  
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MDS-Code-Based Simple Streaming Codes

τ + 1 = mb + ρ, 0 ≤ ρ < b

ρ∗ = min{ρ, a}.

Pick [n = ma + ρ∗, k = (m − 1)a + ρ∗] MDS code

a b-a

…........
a b-a ρ*

mb

burst of b packet erasures =⇒ erasure of (n − k) = a consecutive code symbols
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Binary-Code-Based Simple Streaming Codes for ρ > a

[7, 4] binary Hamming code

H =

 1 0 0 1 1 1 0
0 1 0 0 1 1 1
0 0 1 1 1 0 1


The above code can recover from any burst of 3 erasures.

[n, k] cyclic codes have (n − k) burst erasure recovery capability.

This property is utilized to come up with binary-code-based simple
streaming codes.
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Binary-Code-Based Simple Streaming Codes for ρ > a

[7, 4] binary Hamming code

H =

 1 0 0 1 1 1 0
0 1 0 0 1 1 1
0 0 1 1 1 0 1


The above code can recover from any burst of 3 erasures.

[n, k] cyclic codes have (n − k) burst erasure recovery capability.

This property is utilized to come up with binary-code-based simple
streaming codes.
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Near Rate-Optimality of Simple Streaming Codes
τ + 1 = mb + ρ

Rate-optimal when ρ = a

 (m-1)/m    m/(m+1)

MDS Code

Optimal Rate

ρ < a

  1/m(m+1)

m/(m+1) (m+1)/(m+2)

Binary Code,
MDS Code

 Optimal Rate

ρ > a

1/(m+2)(m+1)
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Rate Comparison for Some Parameters: MDS Base Code

a b τ N n − k n k RMDS Ropt

2 3 3 4 2 3 1 0.333 0.4

2 3 4 5 2 4 2 0.5 0.5

2 3 5 6 2 4 2 0.5 0.571

3 5 5 6 3 4 1 0.25 0.375

3 5 11 12 3 8 5 0.625 0.6429

3 5 12 13 3 9 6 0.666 0.666

3 5 13 13 3 9 6 0.666 0.6875

For some parameters it is possible to get better rate than this while
retaining the simplicity of employing MDS codes.
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Generalized Diagonal Embedding

Allows embedding of more than one symbol of an MDS codeword within a single
coded packet.

Rate improvement possible for some cases, by exploiting increase in block length.

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9)

c1 c1 c1 c1 c1
c2 c2 c2 c2 c2
c3 c3 c3 c3 c3

c4 c4 c4 c4 c4
c5 c5 c5 c5 c5

c6 c6 c6 c6 c6
c7 c7 c7 c7 c7

c8 c8 c8 c8 c8
c9 c9 c9 c9 c9
c10 c10 c10 c10 c10

(a = 3, b = 5, τ = 5) Example

[10, 3] MDS code as base code

N = 6 = τ + 1

No more than 7 code symbols erased
from any MDS codeword

Rate = 0.3 > 0.25 = RMDS
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Rate Improvement

Rate increase happens if b > a > (m + 1)ρ > 0.

 (m-1)/m    m/(m+1)

MDS Code

Optimal Rate

a > (m+1)ρ > 0 

Improved Rate

V. Ramkumar, M. Vajha, and P. V. Kumar, ”Generalized Simple Streaming Codes from MDS
Codes,” ISIT 2021.
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Rate Comparison for Some Parameters: Binary Base Code

a b τ N r n k Rbinary Ropt

3 6 9 10 4 8 4 0.5 0.538

3 7 10 11 4 8 4 0.5 0.533

3 6 16 17 5 15 10 0.666 0.7

3 7 19 19 5 15 10 0.666 0.708

3 8 21 21 5 15 10 0.666 0.703

3 9 22 23 5 15 10 0.666 0.689
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Long SDE Code

V. Ramkumar, M. Vajha, M. N. Krishnan, and P. V. Kumar, ”Staggered Diagonal
Embedding Based Linear Field Size Streaming Codes,” ISIT 2020.
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Long SDE Code: SDE with N > τ + 1

N > τ + 1 =⇒ partial-knowledge decoding is required

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10) x(11) x(12) x(13) x(14) x(15) x(16)

c0
c1

c2
c3

c4
c5

c6
c7

c8
c9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

SDE of [10, 6] scalar code with N = 14 to

construct (a = 2, b = 6, τ = 10) streaming code

4 X 4 Cauchy matrix 

   2 X 4 ZB MDS gen matrix 

Parity check matrix of [10, 6] scalar code

O(τ) field-size scalar code, but not
MDS code

This rate-optimal construction works provided:

gcd(b, τ + 1− a) ∈ {a, a + 1, a + 2, · · · , b − 1}.
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Block Erasure Probability of Streaming Code
Over GE Channel

M. Vajha, V. Ramkumar, M. Jhamtani, P. V. Kumar, “On Sliding Window
Approximation of Gilbert-Elliott Channel for Delay Constrained Setting,” arXiv 2020.
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Guaranteeing Reliability

Given

a GE channel model,

a delay constraint τ , and

a desired block erasure probability (BEP) Pe

select best rate (by choosing a, b), {a, b, τ} streaming code such that BEP≤ Pe
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Computing BEP Using Probability of Admissible Erasure
Patterns

Rate-optimal streaming codes with following parameters exist for any (a, b, τ):

(n = τ + 1 + b − a, k = n − b)

Horizontal embedding results in a block streaming code

1 2 3 4 5 6 7 8 9 11 1210

block

BEP over GE(α, β, ε0, ε1)

BEP(n, a, b, τ) = 1− P(AEP)

AEP: set of admissible erasure patterns of an (a, b, τ) DCSW channel over a length
n.
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Admissible Erasure Patterns

1 2 3 4 5 6 7 8 9 10

𝑛 = 10

𝜏 + 1 = 8

AEP = ∩n−τ
i=1 (Ai ∪ Bi )

Ai is the set of erasure patterns that have weight ≤ a in window [i : i + τ ]

Bi is the set of erasure patterns that have span ≤ b in window [i : i + τ ]

Goal: To get a handle on the P(AEP)

141/163



What is Known for GE Channels ?
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Computing P(AEP)

Closed form expression for P(Ai ) and P(Bi ) known.

We provide an expression for P(Ai ∪ Bi )

Characterising P(AEP) = P(∩n−τ
i=1 (Ai ∪ Bi )) is hard.

We come up with bounds for P(AEP).

143/163



Computing Probability of an Erasure Pattern

PEC(𝜖0) PEC(𝜖1)

G B

𝛼

𝛽

(1 − 𝛼) (1 − 𝛽)
Can show that

P(E n
1 = en1 ) = 1TΨ(en) · · ·Ψ(e1)π

π = [ β
α+β

α
α+β

] is the stationary probability vector

Ψ is defined as below:

Ψ(e) =

{
ΛS e = 1

(I − Λ)S e = 0

S =

[
1− α β
α 1− β

]
︸ ︷︷ ︸

transitional probability matrix

and Λ =

[
ε0

ε1

]
.

Notice that Ψ(0) + Ψ(1) = S
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Computing Random Erasure Probabilities

Let A be the set of erasures whose weight is atmost a in window of length n.

P(A) =
a∑

i=0

P(w(E n
1 ) = i)︸ ︷︷ ︸

closed form expression known

BEP of an [n, k = n − a] MDS code when used over GE channel is given by
1− P(A).

C. Pimentel and I. F. Blake, “Enumeration of markov chains and burst error statistics for finite state channel models,” IEEE

Transactions on Vehicular Technology, 1999.
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Computing Burst Erasure Probabilities
Let B be the set of erasures whose span is atmost b in window of length n.

Let qi be the probability of erasures where the first erasure appears at index i and
the span ≤ b.

1 … 𝑖 − 1 𝑖 𝑖 + 1 … 𝑖 + bᇱ − 1 𝑖 + b′
…

n

0 … 0 1 X … X 0 … 0

don’t care

P(B) = P(E n
1 = 0) +

n∑
i=1

qi

qi = 1TΨ(0)n−i−b′+1Sb′−1Ψ(1)Ψ(0)i−1π

where b′ = min{b, n − i + 1}.

Any cyclic code with parameters [n, k = n − b] has BEP upper bounded by
1− P(B).

G. Haßlinger and O. Hohlfeld, “Analysis of random and burst error codes in 2-state markov channels,” in 34th International

Conference on Telecommunications and Signal Processing (TSP 2011).
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What is New ?
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Computing P(A ∪ B)

A∪B is the set of erasure patterns either have weight atmost a or span atmost b in
window of length n.

P(A ∪ B) = P(A) + P(B)− P(A ∩ B) , Pws(n, a, b)

Let qi be the probability of erasures where the first erasure appears at index i and
the span ≤ b and weight ≤ a.

P(A ∩ B) = P(E n
1 = 0) +

n∑
i=1

qi

qi = 1TΨ(0)n−i−b′+1Q(b′ − 1, a− 1)Ψ(1)Ψ(0)i−1π

where b′ = min{b, n − i + 1}
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Bounding P(AEP)

P(AEP) = P(∩n−τ
i=1 (Ai ∪ Bi ))

A∪B is the set of erasure patterns that either have weight atmost a or span atmost
b in a window [1 : n].

Ai ∪ Bi is the set of erasure patterns that either have weight atmost a or span
atmost b in a window [i : τ + i ].

(A ∪ B) ⊆ AEP ⊆ (A1 ∪ B1)

Pws(n, a, b) ≤ P(AEP) ≤ Pws(τ + 1, a, b)

149/163



Bounds on BEP of streaming code
Improved the bounds by coming up with tractable sets L,U such that:

(A ∪ B) ⊆ L ⊆ AEP ⊆ U ⊆ (A1 ∪ B1)

1− P(U) ≤ BEP ≤ 1− P(L)

(a = 3, b = 6, τ = 10) streaming code

0 0.002 0.004 0.006 0.008 0.01
0.5

1

1.5

2

2.5

3

3.5

4

4.5

B
E

P

10
-5

Upper Bound

Improved Upper Bound

Block Erasure Probability

Improved Lower Bound

Lower Bound

GE(α = 10−4, β = 0.5, ε0 = ε, ε1 = 1)
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Choosing a, b Using BEP Upper Bound
(a, b) is picked to give best rate while meeting BEP≤ Pe requirement for
(n = τ + 1 + b − a, k = n − b) streaming code.

For [τ + 1, τ + 1− a] MDS codes minimal value of a is picked to satisfy BEP
requirement.

GE(α = 10−4, β = 0.5, ε0 = ε, ε1 = 1), τ = 10 and Pe = 10−5
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An Experimental Attempt at Channel Adaptation
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Parameters of Interest for Any Streaming Application

End to End Delay (∆)

I V2X requires ∆ ≤ 100ms and,
I Telesurgery Camera Flow requires ∆ ≤ 150ms

Reliability (Pe)

I Packet Erasure Probability (PEP) ≤ Pe

OR

I Block Erasure Probability (BEP) ≤ Pe .

ETSI TS 122 185 V14.3.0. LTE;Service requirements for V2X services. 2017.

5G Americas. 5G Services Innovation. 2019.
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Breakup of E2E Delay

1 2 3 4 5 6 7 8 9

Source

Δ = 140ms

1 2 3 4 5 6 7 8 9T = 20ms

P = 40ms

Destination

T: Inter packet delay, P: Propagation Delay

Pick τ such that:

P + T ∗ (τ + 1) ≤ ∆

For the example above τ = 4 should suffice.
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System Architecture for Rate Adaptation

Source

FEC 
Encoder

Sender

Destination

FEC 
Decoder

Receiver

feedback

UDP link

Adaptation Adaptation

Source uses VP8 encoder to compress video frames.

Compressed frame is divided into equal sized packets and sent over UDP link

We introduce erasures in the UDP link using GE channel model

{a, b} parameters obtained by adaptation algorithm that has access to packet
erasure patterns.

FEC encoder uses simple streaming code family implemented using Jerasure library.
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Outage Based Rate Adaptation

M past packets are used to estimate (a, b) parameters.

Estimation of (a, b) parameters takes place once every L packets.

weight
0 1 2 3 4 5 6 7 8 9 10

(4,7)

sp
an

0 
   

  1
   

  2
   

   
3 

   
  4

   
   

5 
   

 6
   

   
7 

   
 8

   
   

9 
   

 1
0

Contribute to 
Outage probability

(a = 4, b = 7, τ = 9) code
can recover from all the
erasures other than the
ones show in red

empirical probabilities of (span, weight) pairs are maintained.

allows for a small nonzero probability (outage) of uncorrectable erasure patterns
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Video Demo Setting

The Channels:

I C0: perfect channel (no erasures)
I C1: GE (α = 0.01, β = 0.5, ε0 = 0.001, ε1 = 1)

PEC(𝜖0) PEC(𝜖1)

G B

𝛼

𝛽

(1 − 𝛼) (1 − 𝛽)

τ is set to 9

Outage adaptation parameters: M = 105, L = 103, Pout = 10−3.

Video1: We set (a = 0, b = 0) at the start of experiment and move from C0 to C1
(we see adaptation taking place)

Video2: After the adaptation has converged
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Description of Four Windows Appearing in The Demo

Text stream shows 
adaptation of  {a,b} 

parameters

Video at the 
source

Video after 
Erasure 
Recovery

Video before 
Erasure 

Recovery

Demo Video Window Format
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