
Tutorial on

Streaming Codes

P. Vijay Kumar*, Nikhil Krishnan†, Myna Vajha*, Vinayak Ramkumar*

* Electrical Communication Engineering, Indian Institute of Science, Bengaluru
† International Institute of Information Technology, Bengaluru

National Conference on Communications (NCC 2021)

Indian Institute of Technology Kanpur (Virtual)
July 27

1/163

Thanks go out to Prof Adrish Banerjee as well as other members of the
organizing committee of NCC 2021:

1 General Co-Chairs: Rajesh Hegde & Sudeb Dasgupta

2 TPC Co-Chairs: Ketan Rajawat, Debashis Ghosh & Rohit Budhiraja

3 Tutorial Committee: R K Bansal, Amalendu Patnaik, Srikrishna
Bhashyam

for the invitation...

2/163

Motivation - from NCC 2014, IIT Kanpur!

Gerhard Fettweis, “Designing the Physical Layer of 5G for Enabling the Tactile
Internet”

• What sets 5G apart from prior generations is the emphasis on latency

• Low-latency communication will revolutionize education, mobility,
healthcare, sports, entertainment, gaming,....

3/163

The General Goal

Reliable, low-
latency

communication

4/163

Some Potential Coding Strategies

Reliable, low-
latency

communication

Physical layer
forward-error

correction

Automatic
Repeat Request

Packet
Duplication

Raptor Codes
MDS

Convolutional
Codes

5/163

Streaming Codes - An Added Option

Reliable, low-
latency

communication

Physical layer
forward-error

correction

Automatic
Repeat Request

Packet
Duplication

Raptor Codes
MDS

Convolutional
Codes

Streaming Codes

6/163

ToC

1 Streaming Code Setting
The GE Channel Model
The Sliding Window Approximation

2 Quick Review of Error-Correcting Codes

3 Our Approach

4 Our Results

5 Construction of Streaming Codes

6 Block Erasure Probability of Streaming Codes Over GE Channel

7 An Experimental Attempt at Channel Adaptation

7/163

Setting Addressed by Streaming Codes

Sequence of information-bearing packets s0, s1, . . ., sent over an
erasure channel

Packet drops (erasures), shown below in in blue, due to
I network congestion,
I a degraded wireless link, or
I a packet that arrives too late.

1 ….

Network

2 3 4 5 1 ….3 5

Streaming Server

(blue rectangles denote erased packets)

Goal: use packet-level FEC to ensure best-possible tradeoff between rate
and reliability

under decoding-delay constraint of τ packets

8/163

The GE Channel Model

9/163

Packet Erasure Model: The Gilbert-Elliott Channel

PEC(𝜖0) PEC(𝜖1)

G B

𝛼

𝛽

(1 − 𝛼) (1 − 𝛽)

Gilbert Elliott (GE) is a two-state channel model
I G ≡ Good State, B ≡ Bad State

I PEC is a packet-level erasure channel
F ε0 is the probability of packet erasure in good state
F ε1 is the probability of packet erasure in bad state

capable of generating the random and burst erasures that one might
encounter in practice

10/163

Potential Applications of Streaming Codes

Massive IoT
Latency

Ultra reliability and
low latency

Enhanced Broadband

5G

Multiplayer Gaming

Interactive
Voice & Video AR & VR

Industrial
Automation

Traffic
Control &

Safety

Tele-surgery

Commonality: Underlying each of these applications is:
I a stream of packets: voice, video or data
I the need for reliable, low-latency communication

11/163

The Sliding Window Approximation

12/163

Tractable Approximation to the GE Channel

Challenging to design codes for the GE channel to ensure a desired
reliability level

Our approach (following work of Prof Ashish Khisti’s group 1):

Replace the GE channel with a tractable approximation

a sliding-window channel model that introduces burst and random
erasures

1Badr et al., “Layered Constructions for Low-Delay Streaming Codes,” IEEE Trans.
Inf. Theory, 2017.

13/163

The Sliding-Window (SW) Channel Model

An admissible erasure pattern is one in which, within each sliding window
of w -packet duration, there are

either ≤ a random erasures,

or else, a burst of ≤ b erasures

Eg.

𝑥(8) 𝑥(9) 𝑥(10) 𝑥(11) 𝑥(12) 𝑥(13) 𝑥(14) 𝑥(15) 𝑥(16) 𝑥(17)…. ….

burst of 𝐛 = 𝟒 erasures

within a window
𝒂 = 𝟐 random erasures

within a window

𝑥(7)

(𝑎 = 2, 𝑏 = 4, 𝑤 = 5, 𝜏 = 4)

delay constraint 𝝉 = 𝟒

14/163

The DCSW Channel Model

Combining the

sliding-window channel model with the

τ -packet decoding-delay constraint,

we arrive at the Delay-Constrained, Sliding Window (DCSW) channel
model.

15/163

Span and Weight of an Erasure Pattern

Consider a window of size w = 6.

26 erasure patterns possible.

The example erasure pattern below has
I (Hamming) weight 2 and
I span 4.

w = 6

span = 4

16/163

GE Channel: Empirical Probabilities of Erasure Patterns

b = 6 0.0098% 0.0005% 0.0000% 0.0000% 0.0002%
b = 5 0.020% 0.0008% 0.0001% 0.0005%
b = 4 0.029% 0.0008% 0.0017%
b = 3 0.04% 0.01%
b = 2 0.06%
b = 1 5.75%
b = 0 94.08%

a=0 a=1 a=2 a=3 a=4 a=5 a=6

span

weight

Table shows empirical probabilities of

I erasure patterns with weight a
I and span b
I over window of length τ + 1 = 6

of an example GE Channel: (α = 10−4, β = 0.6, ε0 = 0.01, ε1 = 1)

Erasure probabilities in red add to < 10−5.

17/163

Our Consequent, Packet-Level FEC Approach

Given

a GE channel model,

a delay constraint τ , and

a desired probability Pe of unrecoverable packets

our approach is to:

select an {a, b,w , τ} DCSW channel approximation of highest rate
achieving desired probability Pe of unrecoverable packets

then employ a rate-optimal packet-level FEC for that {a, b,w , τ}
channel

18/163

ToC

1 Streaming Code Setting

2 Quick Review of Error-Correcting Codes
Linear Codes
MDS Codes
Convolutional Codes
Key Upper Bound on Code Rate
Sub-optimality of MDS Codes

3 Our Approach

4 Our Results

5 Construction of Streaming Codes

6 Block Erasure Probability of Streaming Codes Over GE Channel

7 An Experimental Attempt at Channel Adaptation

19/163

Linear Codes

20/163

Linear Codes

We begin with some background on linear codes

An [n, k] code C denotes a linear code of length n and dimension k

By which we mean a subspace C of Fn
q having dimension k

Code symbols are drawn from a finite field Fq of size q

Rate R of the code is k
n

21/163

Linear Codes and Erasure Recovery

Let [n, k] linear code C have parity-check matrix H. Then

c ∈ C iff Hc = 0.

If for example n = 7 and

H =
[
h1 h2 h3 h4 h5 h6 h7

]
,

and there are erasures in positions 1, 3, 6, then

the code can recover from all three erasures iff
I {h1, h3, h6} are linearly independent,

on the other hand, to recover c1 alone, it suffices if
I h1 is linearly independent of {h3, h6}.

22/163

Hamming Code Recovery as an Example

[7, 4] Hamming code

H =

 1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


Suppose code symbols 1,3,6 are erased. 1

0
0

 ,
 0

0
1

 ,
 0

1
1

 are linearly independent,

code can recover all three erased symbols

23/163

Hamming Code Recovery as an Example
Suppose code symbols 1,2,3,6 are erased.

H =

 1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


 0

1
0

+

 0
0
1

+

 0
1
1

 =

 0
0
0


can not recover all four erased symbols together

 1
0
0

 is linearly independent of


 0

1
0

 ,
 0

0
1

 ,
 0

1
1


can recover c1

24/163

MDS and Reed-Solomon Codes

25/163

Maximum Distance Separable (MDS) Codes

An [n, k] MDS code is a linear block code over a finite field Fq that possess
the ‘any k of n’ property

1 the message symbols can all be recovered if one has access to any k of
n symbols

2 this class includes Reed-Solomon codes

3 the minimum Hamming distance dmin between a pair of distinct
codewords in an MDS code satisfies the Singleton bound

dmin ≤ n − k + 1,

with equality and the codes are hence said to be maximum distance
separable.

26/163

The Underlying Principle of Reed-Solomon (RS) Codes

Assume that this is the plot of a polynomial of degree 5

then its values at any 6 of the 9 points shown are sufficient to
determine its values everywhere else

thus the code can recover from 3 symbol erasures

Here (n = 9, k = 6, dmin = 4), so

k = n − dmin + 1.

27/163

All Arithmetic Takes Place in A Finite Field

F3 , {0, 1, 2}

Table: Addition

0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

Table: Multiplication

0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

(an example finite field of 3 elements under modulo-3 arithmetic)

28/163

Convolutional Codes

29/163

Convolutional Code Example

rate 1
2 code

k = 1, n = 2

Polynomial generator matrix G (D) =
[
1 + D + D2 1 + D2

]

D Dut

vt
(1)

vt
(2)

30/163

Trellis Diagram

00

10

01

11

00 00 00 00 00

11 11 11 11 11

10 10 10

01 01 01 01

01 01 01

10 10 10 10

11 11 11

00 00 00

0

1

Input

31/163

MDS Convolutional Code

Puncturing the convolutional code to this depth
yields an MDS code

32/163

Return to the Streaming Code Setting

33/163

Recall: The Sliding-Window (SW) Channel Model

An admissible erasure pattern is one in which, within each sliding window
of w -packet duration, there are

either ≤ a random erasures,

or else, a burst of ≤ b erasures

Eg.

𝑥(8) 𝑥(9) 𝑥(10) 𝑥(11) 𝑥(12) 𝑥(13) 𝑥(14) 𝑥(15) 𝑥(16) 𝑥(17)…. ….

burst of 𝐛 = 𝟒 erasures

within a window
𝒂 = 𝟐 random erasures

within a window

𝑥(7)

(𝑎 = 2, 𝑏 = 4, 𝑤 = 5, 𝜏 = 4)

delay constraint 𝝉 = 𝟒

34/163

Key Upper Bound on Code Rate

35/163

Upper Bound on Code Rate R for the DCSW Channel

The erasure pattern below needs to be handled:

……

! (# + 1 − ')

……

……

! (w − ')

……

It follows that

R =
k

n
≤ w − a

(w − a) + b

36/163

Upper Bound on Code Rate R for the DCSW Channel

The erasure pattern below also needs to be handled:

……

! (# + 1 − ')

……

……

! (w − ')

……

It follows that

R =
k

n
≤ τ + 1− a

(τ + 1− a) + b

37/163

Upper Bound on Code Rate R for the SW Channel
Thus both erasure patterns below need to be handled:

……

! (# + 1 − ')

……

……

! (w − ')

……

It follows that

R =
k

n
≤ τeff + 1− a

(τeff + 1− a) + b
; τeff + 1 = min{w , τ + 1}

But this is achievable with w = τ + 1. Hence we assume WOLOG that

w = τ + 1

and dispense with w . We will henceforth speak of an {a, b, τ} DCSW
channel.

Badr et al., “Layered Constructions for Low-Delay Streaming Codes,” IEEE Trans. Inf. Theory,

2017.
38/163

Sub-optimality of MDS Codes

39/163

MDS Codes are Sub-Optimal

Recall the rate upper bound for Sliding-Window Channel:

R ≤ τ + 1− a

(τ + 1− a) + b
:= Ropt.

Let C be an [n, k] MDS code. Then necessarily

n ≤ τ + 1 (from the latency requirement)

n − k ≥ b (to handle a burst of b erasures).

Hence rate

RMDS = 1− (n − k)

n
≤ 1− b

τ + 1
=

τ + 1− b

τ + 1

<
τ + 1− b + (b− a)

τ + 1 +(b− a)
= Ropt,

if a < b. Thus MDS codes do not achieve Ropt for a < b.

40/163

Note on Minimum Possible Block Length

Recall the rate upper bound for Sliding-Window Channel:

R ≤ τ + 1− a

(τ + 1− a) + b
:= Ropt.

If numerator and denominator of Ropt expression are relatively prime,
then n = τ + 1− a + b is the minimum possible block length of
rate-optimal code.

(we will indirectly exploit this fact when we bring back MDS codes later
into the picture)

41/163

ToC

1 Streaming Code Setting

2 Quick Review of Error-Correcting Codes

3 Our Approach

4 Our Results

5 Construction of Streaming Codes

6 Block Erasure Probability of Streaming Codes Over GE Channel

7 An Experimental Attempt at Channel Adaptation

42/163

Block or Convolutional Coding

One could employ codes that at the packet-level are either

block or

convolutional codes

43/163

Our Approach

Construct packet-level codes that are built out of scalar block codes

using one of:

1 Horizontal Embedding (HE)

2 Diagonal Embedding (DE) or its variations

Scalar Block Code

Packet-Level
Convolutional Code

Packet-Level
Block Code

Embedded within
the packet stream

HE DE or its
variations

44/163

Horizontal-Embedding

m1 m2 m3 m4 p1 p2 p3 p4

m1 m2 m3 m4 p1 p2 p3 p4

m1 m2 m3 m4 p1 p2 p3 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥 10 𝑥(11)

next codeword
previous

codeword

each column is a packet

each row is a distinct codeword of an example [8, 4] code C
leads to a packet-level block code

we are in effect inserting redundant packets

45/163

Diagonal-Embedding (DE)

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥 10 𝑥(11)

each column is a packet

each diagonal is a distinct codeword of an example [8, 4] code C
we are in effect, expanding each individual packet

Martinian and Trott, “Delay-Optimal Burst Erasure Code Construction,” ISIT, 2007.

46/163

Diagonal-Embedding

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥 10 𝑥(11)

a parity symbol in a packet is a function of message symbols in prior
packets

this is thus an instance of convolutional encoding

47/163

Staggered Diagonal Embedding (variant of DE)
Codewords are embedded diagonally with gaps in the packet stream.

The tiling of the 2D grid shown below under SDE, may be regarded as
a kind of interleaving

Such interleaving is not possible in general, with horizontal embedding

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

!(0) !(1) !(2) !(3) !(4) !(5) !(6) !(7) !(8) !(9) !(10) !(11)

48/163

Dispersion of Code Symbols under SDE

Dispersion span N: number of consecutive packets across which
codewords are spread.

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥(10) 𝑥(11)

Dispersion Span N = 10

49/163

Generalized Diagonal Embedding (a second variant of DE)

Similar to DE except that each codeword may have more than one
symbol per packet

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9)

c1 c1 c1 c1 c1
c2 c2 c2 c2 c2
c3 c3 c3 c3 c3

c4 c4 c4 c4 c4
c5 c5 c5 c5 c5

c6 c6 c6 c6 c6
c7 c7 c7 c7 c7

c8 c8 c8 c8 c8
c9 c9 c9 c9 c9
c10 c10 c10 c10 c10

50/163

Streaming Codes

By Streaming Code, we will here mean

a packet-level erasure-recovery code that is designed to efficiently
communicate over the Sliding-Window channel

while permitting decoding under decoding-delay constraint τ

51/163

ToC

1 Streaming Code Setting

2 Quick Review of Error-Correcting Codes

3 Our Approach

4 Our Results
Other Approaches to Reliable Low-Latency Communication

5 Construction of Streaming Codes

6 Block Erasure Probability of Streaming Codes Over GE Channel

7 An Experimental Attempt at Channel Adaptation

52/163

Our Results

Rate-Optimal Streaming Code Constructions:
I Jigsaw Code
I The Explicit Jigsaw Code
I Simple Streaming (SS) Codes
I Long SDE Code

Near-rate-Optimal Streaming Code Constructions Having Low Field
Size

Performance Evaluation over the GE Channel

An Experimental Attempt at Channel Adaptation

53/163

Rate-Optimal Constructions of Streaming Codes

Embed- Dispersion Field Based Parameter
Name ding Span Size on MDS Range

Codes ? Covered

Jigsaw* DE > (τ + 1) Quadratic No all {a, b, τ}

Dominovitz
et al DE > (τ + 1) Quadratic No all {a, b, τ}

Jigsaw
(explicit) DE > (τ + 1) Quadratic No all {a, b, τ}

SS codes SDE = (τ + 1) Linear Yes τ + 1 = a (mod b)

Long SDE SDE > (τ + 1) Linear No (τ + 1− a, b) = g
a ≤ g < b

* not fully explicit
54/163

Near Rate-Optimality of Simple Streaming Codes

τ + 1 = mb + ρ

Rate-optimal when ρ = a

 (m-1)/m m/(m+1)

MDS Code

Optimal Rate

ρ < a

 1/m(m+1)

m/(m+1) (m+1)/(m+2)

Binary Code,
MDS Code

 Optimal Rate

ρ > a

1/(m+2)(m+1)

55/163

Other Approaches to

Reliable Low-Latency Communication

56/163

Other Approaches: Packet Duplication

Reliable, low-
latency

communication

Packet
Duplication

Packet duplication is
clearly inefficient and
corresponds to using a

repetition code

57/163

Other Approaches: Physical-Layer FEC

Reliable, low-
latency

communication

Physical layer
forward-error

correction

Physical-layer FEC
cannot clearly handle
erasures arising at the

packet level

58/163

Other Approaches: ARQ

Reliable, low-
latency

communication

Automatic
Repeat Request

ARQ schemes incur an
undesirable round-trip

transmission delay

59/163

Other Approaches: MDS Convolutional Codes

Reliable, low-
latency

communication

MDS
Convolutional

Codes

MDS convolutional
codes, lead to MDS

codes and are hence not
designed to handle

burst erasures

60/163

Other Approaches: Raptor Codes

Reliable, low-
latency

communication

Raptor Codes

Raptor codes are block
codes of relatively large

block length, have
overhead that is larger

than that of an MDS code
and are not designed to
handle burst erasures

61/163

ToC

1 Streaming Code Setting

2 Quick Review of Error-Correcting Codes

3 Our Approach

4 Our Results

5 Construction of Streaming Codes
Literature on Streaming Codes
Construction Requirements
Implications of Requirements on the Parity-Check Matrix
The Jigsaw Code
The Explicit Jigsaw Code
Staggered Diagonal Embedding
Simple Streaming Codes
Long SDE Code

6 Block Erasure Probability of Streaming Codes Over GE Channel

7 An Experimental Attempt at Channel Adaptation
62/163

Streaming Codes

By Streaming Code, we will here mean

a packet-level erasure-recovery code that is designed to efficiently
communicate over the Sliding-Window channel

while permitting decoding under decoding-delay constraint τ

Work on streaming codes

originated at MIT

continued at the University of Toronto (Prof Ashish Khisti’s group)

continued at the Indian Institute of Science (our group)

63/163

Literature on Streaming Codes

64/163

Literature on Streaming Codes

Non-Explicit,

𝜏2 Field-Size

Explicit,

(𝜏+b-a)2 Field-Size

Explicit,

𝜏2 Field-Size

Burst and Random Erasures

Burst Only
Near Rate-

Optimal

Martinian-

Sundberg (2004)

Martinian-

Trott

(2007)

Badr et al.

(2017)

Krishnan-Kumar

(2018)

Fong et al.

(2018)

Rate-Optimal

Krishnan et al.

(2019)

Domanovitz et al.

(2019)

Vajha et al.

(2021)

Quadratic Field-Size,

Rate-Optimal

65/163

Low-Complexity Streaming Codes

Simple

Streaming Codes

Krishnan et al.

(2019)

Ramkumar et al.

(2020)

𝜏Field-size Rate-

Optimal Codes

for a Large Set of

Parameters*

Ramkumar et al.

(2021)

MDS Code Based

Streaming Codes

∗ gcd(b, τ + 1− a) ∈ {a, a + 1, a + 2, · · · , b}
66/163

Streaming Codes for Other Settings

Variable Message

Packet Size

Rudow-Rashmi

(2018)

Multicast Over

Burst Erasure

Channels

Badr et al.

(2011, 2015)

3 Node Relay

Network

Fong et al.

(2020)

67/163

Construction Requirements

68/163

Diagonal Embedding

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥 10 𝑥(11)

Focus on diagonal embedding of scalar block code.

69/163

Requirement of a Rate-Optimal Code

Basic idea:

design the code so that one can recover from erasure patterns given
only the next τ code symbols.

We illustrate with an example:

{a, b, τ} = {5, 8, 12}

Ropt = τ+1−a
τ+1−a+b = 8

16 = 0.5

Consider an [n = 16, k = 8] code C.

70/163

Burst Erasure Correction - Requirements

71/163

Random Erasure Correction - Requirements

72/163

Implications of Requirements on the Parity-Check Matrix

73/163

Decoding c0 in the Presence of a Burst (Bpartial)

{a, b, τ} = {5, 8, 12}
Goal: recover c0 while c13, c14, c15 are inaccessible

𝑐𝟎 𝑐𝟏 𝑐𝟐 𝑐𝟑 𝑐𝟒 𝑐𝟓 𝑐𝟔 𝑐𝟕 𝑐𝟖 𝑐𝟗 𝑐𝟏𝟎 𝑐𝟏𝟏 𝑐𝟏𝟐 𝑐𝟏𝟑 𝑐𝟏𝟒 𝑐𝟏𝟓

Burst erasure of length 8

symbol to be recovered
inaccessible due to delay

constraint 𝜏 = 12

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 1 0 0

* * * * * * * * * * * * * 0 1 0

* * * * * * * * * * * * * 0 0 1

this column does not lie in the
span of 7 columns to the right

parity-check
matrix for the

code punctured
on last 3

coordinates
𝐻 =

74/163

Decoding c2 in the Presence of a Burst (Bpartial)

{a, b, τ} = {5, 8, 12}
Goal: recover c2 while c15 is inaccessible

𝑐𝟎 𝑐𝟏 𝑐𝟐 𝑐𝟑 𝑐𝟒 𝑐𝟓 𝑐𝟔 𝑐𝟕 𝑐𝟖 𝑐𝟗 𝑐𝟏𝟎 𝑐𝟏𝟏 𝑐𝟏𝟐 𝑐𝟏𝟑 𝑐𝟏𝟒 𝑐𝟏𝟓

Burst erasure of length 8

symbol to be recovered
inaccessible due to delay

constraint 𝜏 = 12

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 1 0 0

* * * * * * * * * * * * * 0 1 0

* * * * * * * * * * * * * 0 0 1

this column does not lie in the
span of 7 columns to the right

parity-check
matrix for the

code punctured
on the last
coordinate

𝐻 =

75/163

Decoding (c6, c7, · · · , c13) in the Presence of a Burst (Bfull)

{a, b, τ} = {5, 8, 12}

𝑐𝟎 𝑐𝟏 𝑐𝟐 𝑐𝟑 𝑐𝟒 𝑐𝟓 𝑐𝟔 𝑐𝟕 𝑐𝟖 𝑐𝟗 𝑐𝟏𝟎 𝑐𝟏𝟏 𝑐𝟏𝟐 𝑐𝟏𝟑 𝑐𝟏𝟒 𝑐𝟏𝟓

Burst erasure of length 8

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 1 0 0

* * * * * * * * * * * * * 0 1 0

* * * * * * * * * * * * * 0 0 1

matrix is non-singular

𝐻 =

76/163

Decoding c0 in the Presence of Random Erasures (Rpartial)

{a, b, τ} = {5, 8, 12}
Goal: recover c0 while c13, c14, c15 are inaccessible

𝑐𝟎 𝑐𝟏 𝑐𝟐 𝑐𝟑 𝑐𝟒 𝑐𝟓 𝑐𝟔 𝑐𝟕 𝑐𝟖 𝑐𝟗 𝑐𝟏𝟎 𝑐𝟏𝟏 𝑐𝟏𝟐 𝑐𝟏𝟑 𝑐𝟏𝟒 𝑐𝟏𝟓

5 random erasures

symbol to be recovered inaccessible due to delay
constraint 𝜏 = 12

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 1 0 0

* * * * * * * * * * * * * 0 1 0

* * * * * * * * * * * * * 0 0 1

this column does not lie in the span of
4 demarcated columns on the right

parity-check
matrix for the

code punctured
on last 3

coordinates
𝐻 =

77/163

Decoding (c5, c8, c9, c13, c14) in the Presence of Random
Erasures (Rfull)

{a, b, τ} = {5, 8, 12}

𝑐𝟎 𝑐𝟏 𝑐𝟐 𝑐𝟑 𝑐𝟒 𝑐𝟓 𝑐𝟔 𝑐𝟕 𝑐𝟖 𝑐𝟗 𝑐𝟏𝟎 𝑐𝟏𝟏 𝑐𝟏𝟐 𝑐𝟏𝟑 𝑐𝟏𝟒 𝑐𝟏𝟓

5 random erasures

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 0 0 0

* * * * * * * * * * * * * 1 0 0

* * * * * * * * * * * * * 0 1 0

* * * * * * * * * * * * * 0 0 1

the five marked columns are independent

𝐻 =

78/163

The Jigsaw Code

M. N. Krishnan, D. Shukla, and P. V. Kumar, “Low Field-size, Rate-Optimal
Streaming Codes for Channels With Burst and Random Erasures,” IEEE Trans. IT, 2020.

79/163

An Example Construction

{a, b, τ} = {5, 8, 12}

We construct an [n = 16, k = 8] code C.

80/163

An Example Construction: {a = 5, b = 8, τ = 12}
parity-check matrix H shown below

provides codes for all {a, b, τ}
built up in segments like a jigsaw puzzle

field size q ∈ O(τ2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Any 5 columns are linearly independent

81/163

An Example Construction: {a = 5, b = 8, τ = 12}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Any 5 columns are linearly independent

82/163

An Example Construction: {a = 5, b = 8, τ = 12}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

Any 5 columns are linearly independent

83/163

An Example Construction: {a = 5, b = 8, τ = 12}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

Any 5 columns are linearly independent

84/163

An Example Construction: {a = 5, b = 8, τ = 12}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

Any 5 columns are linearly independent

85/163

An Example Construction: {a = 5, b = 8, τ = 12}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

Any 5 columns are linearly independent

86/163

A Note on α

All entries of parity-check matrix except belong to

drawn from

87/163

Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Inaccessible due to delay constraint 𝜏 = 12Burst of length 𝑏 = 8

88/163

Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12

Burst of length 𝑏 = 8

89/163

Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Inaccessible due to delay
constraint 𝜏 = 12

Burst of length 𝑏 = 8

90/163

Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0

1

2

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14

Burst of length 𝑏 = 8

91/163

Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8

92/163

Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8

93/163

Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8

94/163

Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8

95/163

Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8

96/163

Recovery from Burst Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8

97/163

Recovery from Random Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Inaccessible due to delay constraint 𝜏 = 12

98/163

Recovery from Random Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12

99/163

Recovery from Random Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Inaccessible due to delay
constraint 𝜏 = 12

100/163

Recovery from Random Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0

1

2

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14

101/163

Recovery from Random Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0

1

2

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14

coefficients of linear

combination over

102/163

Recovery from Random Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

0

1

2

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14

coefficients of linear

combination over
drawn from

103/163

Recovery from Random Erasures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

104/163

The Explicit Jigsaw Code

M. Vajha, V. Ramkumar, M. N. Krishnan, and P. V. Kumar, ”Explicit Rate-Optimal
Streaming Codes with Smaller Field Size,” ISIT 2021.

105/163

An Example
Returning to the same parameters (a = 5, b = 8, τ = 12).

We start with parity check of Jigsaw construction

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 0 0 0

0 α 0 0 0 0 0 0 0 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 0 0

0 0 α 0 0 0 0 0 0 0 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

Any 5 columns are linearly independent

106/163

Explicit Jigsaw Code: Parity Check Matrix

(a = 5, b = 8, τ = 12).

Replace some vi ’s with matrix P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0

P

𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

107/163

Explicit Jigsaw Code: Parity Check Matrix

(a = 5, b = 8, τ = 12)

After setting the value for P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

108/163

Explicit Jigsaw Code

(a = 5, b = 8, τ = 12)

We will see Bfull property where burst starts at index i ∈ [3 : 8].

The properties Rpartial, Rfull, Bpartial go through due to similar structure as previous
construction.

109/163

Recovering from Burst at index 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8

110/163

Recovering from Burst at index 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8

111/163

Recovering from Burst at index 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8

112/163

Recovering from Burst at index 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8

113/163

Recovering from Burst at index 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8

114/163

Recovering from Burst at index 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8

115/163

Recovering from Burst at index 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

Burst of length 𝑏 = 8

116/163

Desired Properties of P

To satisfy Bfull property, intuitively we want the first δ rows of the b × b sub-matrix

of parity check matrix to be comprised of

I a zero columns and
I δ × δ invertible matrix.

Then the Cauchy property of C can be leveraged.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0 0 0 0 0 0 0 1 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 α 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

6

7

117/163

The Assignment of P

P = Pa
δ,τ−b

Recursive construction of (u × v) matrix Pa
u,v .

Pa
u,v =



[
Iu 0︸︷︷︸

(u×a)

Pa
u,v−u−a

]
u + a < v

[
Iu 0︸︷︷︸

(u×(v−u))

]
u ≤ v ≤ u + a

[
Iv

Pa
u−v,v

]
v < u

For example:

P2
5,3 =

[
I3
P2

2,3

]

=


1 0 0
0 1 0
0 0 1

1 0 0
0 1 0


P1

3,1 =

 1
1
1



118/163

Staggered Diagonal Embedding

119/163

Recall: The Diagonal-Embedding Approach

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥 10 𝑥(11)

Each diagonal is a distinct codeword in [n = 8, k = 4] code C here.

120/163

Variation: Staggered Diagonal Embedding (SDE)
Codewords are embedded diagonally with gaps in the packet stream.
This is in effect a form of interleaving made possible by diagonal
embedding
Reduces a burst of 6 erasures to a burst of length 4 in the example
shown below.

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

!(0) !(1) !(2) !(3) !(4) !(5) !(6) !(7) !(8) !(9) !(10) !(11)

M. N. Krishnan, V. Ramkumar, M. Vajha, and P. V. Kumar, “Simple streaming codes for reliable,
low-latency communication,” IEEE Comm. Letters, 2020.

121/163

Why Staggered Diagonal Embedding?

Easy to

implement,

linear field-size

constructions

Shorter block

length

Rate-optimal

for a subset of

parameters*

Near rate-

optimal

for other

parameters

SDE

∗ gcd(b, τ + 1− a) ∈ {a, a + 1, a + 2, · · · , b}
122/163

Dispersion of Code Symbols under SDE

Base code: [n, k] scalar block code

Dispersion span N: number of consecutive packets across which
codewords are spread.

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥(10) 𝑥(11)

Dispersion Span N = 10

123/163

SDE: Two Regimes

N ≥ 𝜏+1

Jigsaw

Code

N ≤ 𝜏+1

SDE DE

Simple

Streaming

Code

Long SDE

Code

N > τ + 1 =⇒ partial knowledge decoding is needed.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

inaccessible

Partial knowledge recovery of c0

124/163

Simple Streaming Codes

M. N. Krishnan, V. Ramkumar, M. Vajha, and P. V. Kumar, “Simple streaming
codes for reliable, low-latency communication,” IEEE Comm. Letters, 2020.

125/163

Simple Streaming Codes: SDE with N ≤ τ + 1

Setting N ≤ τ + 1, ensures that no partial knowledge decoding is
needed.

Constituent base codes are MDS or binary cyclic codes.

Simple Streaming
Code

MDS Base Code Binary Base Code

Rate optimal with smaller block length and linear field size for

τ + 1 = a (mod b).

Near optimal in terms of rate for other parameter sets.

126/163

MDS-Code-Based Simple Streaming Codes: An Example

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥(10) 𝑥(11)

(a = 4, b = 6, τ = 9) streaming code

m1 m2 m3 m4 p1 p2 p3 p4

SDE of [8, 4] MDS code

N = 10 = τ + 1
=⇒ delay-constraint satisfied

Rate = 1
2

= Ropt

a = 4 random
packet erasures

burst of b = 6
packet erasures

at most 4
symbols erased
from any MDS

codeword

127/163

MDS-Code-Based Simple Streaming Codes

τ + 1 = mb + ρ, 0 ≤ ρ < b

ρ∗ = min{ρ, a}.

Pick [n = ma + ρ∗, k = (m − 1)a + ρ∗] MDS code

a b-a

…........
a b-a ρ*

mb

burst of b packet erasures =⇒ erasure of (n − k) = a consecutive code symbols

128/163

Binary-Code-Based Simple Streaming Codes for ρ > a

[7, 4] binary Hamming code

H =

 1 0 0 1 1 1 0
0 1 0 0 1 1 1
0 0 1 1 1 0 1


The above code can recover from any burst of 3 erasures.

[n, k] cyclic codes have (n − k) burst erasure recovery capability.

This property is utilized to come up with binary-code-based simple
streaming codes.

129/163

Binary-Code-Based Simple Streaming Codes for ρ > a

[7, 4] binary Hamming code

H =

 1 0 0 1 1 1 0
0 1 0 0 1 1 1
0 0 1 1 1 0 1


The above code can recover from any burst of 3 erasures.

[n, k] cyclic codes have (n − k) burst erasure recovery capability.

This property is utilized to come up with binary-code-based simple
streaming codes.

129/163

Near Rate-Optimality of Simple Streaming Codes
τ + 1 = mb + ρ

Rate-optimal when ρ = a

 (m-1)/m m/(m+1)

MDS Code

Optimal Rate

ρ < a

 1/m(m+1)

m/(m+1) (m+1)/(m+2)

Binary Code,
MDS Code

 Optimal Rate

ρ > a

1/(m+2)(m+1)

130/163

Near Rate-Optimality of Simple Streaming Codes
τ + 1 = mb + ρ

Rate-optimal when ρ = a

 (m-1)/m m/(m+1)

MDS Code

Optimal Rate

ρ < a

 1/m(m+1)

m/(m+1) (m+1)/(m+2)

Binary Code,
MDS Code

 Optimal Rate

ρ > a

1/(m+2)(m+1)

130/163

Rate Comparison for Some Parameters: MDS Base Code

a b τ N n − k n k RMDS Ropt

2 3 3 4 2 3 1 0.333 0.4

2 3 4 5 2 4 2 0.5 0.5

2 3 5 6 2 4 2 0.5 0.571

3 5 5 6 3 4 1 0.25 0.375

3 5 11 12 3 8 5 0.625 0.6429

3 5 12 13 3 9 6 0.666 0.666

3 5 13 13 3 9 6 0.666 0.6875

For some parameters it is possible to get better rate than this while
retaining the simplicity of employing MDS codes.

131/163

Rate Comparison for Some Parameters: MDS Base Code

a b τ N n − k n k RMDS Ropt

2 3 3 4 2 3 1 0.333 0.4

2 3 4 5 2 4 2 0.5 0.5

2 3 5 6 2 4 2 0.5 0.571

3 5 5 6 3 4 1 0.25 0.375

3 5 11 12 3 8 5 0.625 0.6429

3 5 12 13 3 9 6 0.666 0.666

3 5 13 13 3 9 6 0.666 0.6875

For some parameters it is possible to get better rate than this while
retaining the simplicity of employing MDS codes.

131/163

Generalized Diagonal Embedding

Allows embedding of more than one symbol of an MDS codeword within a single
coded packet.

Rate improvement possible for some cases, by exploiting increase in block length.

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9)

c1 c1 c1 c1 c1
c2 c2 c2 c2 c2
c3 c3 c3 c3 c3

c4 c4 c4 c4 c4
c5 c5 c5 c5 c5

c6 c6 c6 c6 c6
c7 c7 c7 c7 c7

c8 c8 c8 c8 c8
c9 c9 c9 c9 c9
c10 c10 c10 c10 c10

(a = 3, b = 5, τ = 5) Example

[10, 3] MDS code as base code

N = 6 = τ + 1

No more than 7 code symbols erased
from any MDS codeword

Rate = 0.3 > 0.25 = RMDS

132/163

Rate Improvement

Rate increase happens if b > a > (m + 1)ρ > 0.

 (m-1)/m m/(m+1)

MDS Code

Optimal Rate

a > (m+1)ρ > 0

Improved Rate

V. Ramkumar, M. Vajha, and P. V. Kumar, ”Generalized Simple Streaming Codes from MDS
Codes,” ISIT 2021.

133/163

Rate Comparison for Some Parameters: Binary Base Code

a b τ N r n k Rbinary Ropt

3 6 9 10 4 8 4 0.5 0.538

3 7 10 11 4 8 4 0.5 0.533

3 6 16 17 5 15 10 0.666 0.7

3 7 19 19 5 15 10 0.666 0.708

3 8 21 21 5 15 10 0.666 0.703

3 9 22 23 5 15 10 0.666 0.689

134/163

Long SDE Code

V. Ramkumar, M. Vajha, M. N. Krishnan, and P. V. Kumar, ”Staggered Diagonal
Embedding Based Linear Field Size Streaming Codes,” ISIT 2020.

135/163

Long SDE Code: SDE with N > τ + 1

N > τ + 1 =⇒ partial-knowledge decoding is required

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10) x(11) x(12) x(13) x(14) x(15) x(16)

c0
c1

c2
c3

c4
c5

c6
c7

c8
c9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

SDE of [10, 6] scalar code with N = 14 to

construct (a = 2, b = 6, τ = 10) streaming code

4 X 4 Cauchy matrix

 2 X 4 ZB MDS gen matrix

Parity check matrix of [10, 6] scalar code

O(τ) field-size scalar code, but not
MDS code

This rate-optimal construction works provided:

gcd(b, τ + 1− a) ∈ {a, a + 1, a + 2, · · · , b − 1}.

136/163

ToC

1 Streaming Code Setting

2 Quick Review of Error-Correcting Codes

3 Our Approach

4 Our Results

5 Construction of Streaming Codes

6 Block Erasure Probability of Streaming Codes Over GE Channel

7 An Experimental Attempt at Channel Adaptation

137/163

Block Erasure Probability of Streaming Code
Over GE Channel

M. Vajha, V. Ramkumar, M. Jhamtani, P. V. Kumar, “On Sliding Window
Approximation of Gilbert-Elliott Channel for Delay Constrained Setting,” arXiv 2020.

138/163

Guaranteeing Reliability

Given

a GE channel model,

a delay constraint τ , and

a desired block erasure probability (BEP) Pe

select best rate (by choosing a, b), {a, b, τ} streaming code such that BEP≤ Pe

139/163

Computing BEP Using Probability of Admissible Erasure
Patterns

Rate-optimal streaming codes with following parameters exist for any (a, b, τ):

(n = τ + 1 + b − a, k = n − b)

Horizontal embedding results in a block streaming code

1 2 3 4 5 6 7 8 9 11 1210

block

BEP over GE(α, β, ε0, ε1)

BEP(n, a, b, τ) = 1− P(AEP)

AEP: set of admissible erasure patterns of an (a, b, τ) DCSW channel over a length
n.

140/163

Admissible Erasure Patterns

1 2 3 4 5 6 7 8 9 10

𝑛 = 10

𝜏 + 1 = 8

AEP = ∩n−τ
i=1 (Ai ∪ Bi)

Ai is the set of erasure patterns that have weight ≤ a in window [i : i + τ]

Bi is the set of erasure patterns that have span ≤ b in window [i : i + τ]

Goal: To get a handle on the P(AEP)

141/163

What is Known for GE Channels ?

142/163

Computing P(AEP)

Closed form expression for P(Ai) and P(Bi) known.

We provide an expression for P(Ai ∪ Bi)

Characterising P(AEP) = P(∩n−τ
i=1 (Ai ∪ Bi)) is hard.

We come up with bounds for P(AEP).

143/163

Computing Probability of an Erasure Pattern

PEC(𝜖0) PEC(𝜖1)

G B

𝛼

𝛽

(1 − 𝛼) (1 − 𝛽)
Can show that

P(E n
1 = en1) = 1TΨ(en) · · ·Ψ(e1)π

π = [β
α+β

α
α+β

] is the stationary probability vector

Ψ is defined as below:

Ψ(e) =

{
ΛS e = 1

(I − Λ)S e = 0

S =

[
1− α β
α 1− β

]
︸ ︷︷ ︸

transitional probability matrix

and Λ =

[
ε0

ε1

]
.

Notice that Ψ(0) + Ψ(1) = S

144/163

Computing Random Erasure Probabilities

Let A be the set of erasures whose weight is atmost a in window of length n.

P(A) =
a∑

i=0

P(w(E n
1) = i)︸ ︷︷ ︸

closed form expression known

BEP of an [n, k = n − a] MDS code when used over GE channel is given by
1− P(A).

C. Pimentel and I. F. Blake, “Enumeration of markov chains and burst error statistics for finite state channel models,” IEEE

Transactions on Vehicular Technology, 1999.

145/163

Computing Burst Erasure Probabilities
Let B be the set of erasures whose span is atmost b in window of length n.

Let qi be the probability of erasures where the first erasure appears at index i and
the span ≤ b.

1 … 𝑖 − 1 𝑖 𝑖 + 1 … 𝑖 + bᇱ − 1 𝑖 + b′
…

n

0 … 0 1 X … X 0 … 0

don’t care

P(B) = P(E n
1 = 0) +

n∑
i=1

qi

qi = 1TΨ(0)n−i−b′+1Sb′−1Ψ(1)Ψ(0)i−1π

where b′ = min{b, n − i + 1}.

Any cyclic code with parameters [n, k = n − b] has BEP upper bounded by
1− P(B).

G. Haßlinger and O. Hohlfeld, “Analysis of random and burst error codes in 2-state markov channels,” in 34th International

Conference on Telecommunications and Signal Processing (TSP 2011).

146/163

What is New ?

147/163

Computing P(A ∪ B)

A∪B is the set of erasure patterns either have weight atmost a or span atmost b in
window of length n.

P(A ∪ B) = P(A) + P(B)− P(A ∩ B) , Pws(n, a, b)

Let qi be the probability of erasures where the first erasure appears at index i and
the span ≤ b and weight ≤ a.

P(A ∩ B) = P(E n
1 = 0) +

n∑
i=1

qi

qi = 1TΨ(0)n−i−b′+1Q(b′ − 1, a− 1)Ψ(1)Ψ(0)i−1π

where b′ = min{b, n − i + 1}

148/163

Bounding P(AEP)

P(AEP) = P(∩n−τ
i=1 (Ai ∪ Bi))

A∪B is the set of erasure patterns that either have weight atmost a or span atmost
b in a window [1 : n].

Ai ∪ Bi is the set of erasure patterns that either have weight atmost a or span
atmost b in a window [i : τ + i].

(A ∪ B) ⊆ AEP ⊆ (A1 ∪ B1)

Pws(n, a, b) ≤ P(AEP) ≤ Pws(τ + 1, a, b)

149/163

Bounds on BEP of streaming code
Improved the bounds by coming up with tractable sets L,U such that:

(A ∪ B) ⊆ L ⊆ AEP ⊆ U ⊆ (A1 ∪ B1)

1− P(U) ≤ BEP ≤ 1− P(L)

(a = 3, b = 6, τ = 10) streaming code

0 0.002 0.004 0.006 0.008 0.01
0.5

1

1.5

2

2.5

3

3.5

4

4.5

B
E

P

10
-5

Upper Bound

Improved Upper Bound

Block Erasure Probability

Improved Lower Bound

Lower Bound

GE(α = 10−4, β = 0.5, ε0 = ε, ε1 = 1)

150/163

Choosing a, b Using BEP Upper Bound
(a, b) is picked to give best rate while meeting BEP≤ Pe requirement for
(n = τ + 1 + b − a, k = n − b) streaming code.

For [τ + 1, τ + 1− a] MDS codes minimal value of a is picked to satisfy BEP
requirement.

GE(α = 10−4, β = 0.5, ε0 = ε, ε1 = 1), τ = 10 and Pe = 10−5

151/163

ToC

1 Streaming Code Setting

2 Quick Review of Error-Correcting Codes

3 Our Approach

4 Our Results

5 Construction of Streaming Codes

6 Block Erasure Probability of Streaming Codes Over GE Channel

7 An Experimental Attempt at Channel Adaptation

152/163

An Experimental Attempt at Channel Adaptation

153/163

Parameters of Interest for Any Streaming Application

End to End Delay (∆)

I V2X requires ∆ ≤ 100ms and,
I Telesurgery Camera Flow requires ∆ ≤ 150ms

Reliability (Pe)

I Packet Erasure Probability (PEP) ≤ Pe

OR

I Block Erasure Probability (BEP) ≤ Pe .

ETSI TS 122 185 V14.3.0. LTE;Service requirements for V2X services. 2017.

5G Americas. 5G Services Innovation. 2019.

154/163

Breakup of E2E Delay

1 2 3 4 5 6 7 8 9

Source

Δ = 140ms

1 2 3 4 5 6 7 8 9T = 20ms

P = 40ms

Destination

T: Inter packet delay, P: Propagation Delay

Pick τ such that:

P + T ∗ (τ + 1) ≤ ∆

For the example above τ = 4 should suffice.

155/163

System Architecture for Rate Adaptation

Source

FEC
Encoder

Sender

Destination

FEC
Decoder

Receiver

feedback

UDP link

Adaptation Adaptation

Source uses VP8 encoder to compress video frames.

Compressed frame is divided into equal sized packets and sent over UDP link

We introduce erasures in the UDP link using GE channel model

{a, b} parameters obtained by adaptation algorithm that has access to packet
erasure patterns.

FEC encoder uses simple streaming code family implemented using Jerasure library.

156/163

Outage Based Rate Adaptation

M past packets are used to estimate (a, b) parameters.

Estimation of (a, b) parameters takes place once every L packets.

weight
0 1 2 3 4 5 6 7 8 9 10

(4,7)

sp
an

0

 1

 2

3

 4

5

 6

7

 8

9

 1
0

Contribute to
Outage probability

(a = 4, b = 7, τ = 9) code
can recover from all the
erasures other than the
ones show in red

empirical probabilities of (span, weight) pairs are maintained.

allows for a small nonzero probability (outage) of uncorrectable erasure patterns

157/163

Video Demo Setting

The Channels:

I C0: perfect channel (no erasures)
I C1: GE (α = 0.01, β = 0.5, ε0 = 0.001, ε1 = 1)

PEC(𝜖0) PEC(𝜖1)

G B

𝛼

𝛽

(1 − 𝛼) (1 − 𝛽)

τ is set to 9

Outage adaptation parameters: M = 105, L = 103, Pout = 10−3.

Video1: We set (a = 0, b = 0) at the start of experiment and move from C0 to C1
(we see adaptation taking place)

Video2: After the adaptation has converged

158/163

Description of Four Windows Appearing in The Demo

Text stream shows
adaptation of {a,b}

parameters

Video at the
source

Video after
Erasure
Recovery

Video before
Erasure

Recovery

Demo Video Window Format

159/163

References

1 E. Martinian and C. W. Sundberg, “Burst erasure correction codes with low decoding
delay,” IEEE Trans. Inf. Theory, 2004.

2 E. Martinian and M. Trott, “Delay-Optimal Burst Erasure Code Construction,” ISIT 2007.

3 A. Badr, P. Patil, A. Khisti, W. Tan, and J. G. Apostolopoulos, “Layered Constructions for
Low-Delay Streaming Codes,” IEEE Trans. Inf. Theory, 2017.

4 N. Krishnan and P. V. Kumar, “Rate-Optimal Streaming Codes for Channels with Burst
and Isolated Erasures,” ISIT 2018.

5 S. L. Fong, A. Khisti, B. Li, W. Tan, X. Zhu, and J. G. Apostolopoulos, “Optimal streaming
codes for channels with burst and arbitrary erasures,” IEEE Trans. Inf. Theory, 2019.

6 N. Krishnan, D. Shukla and P. V. Kumar, “A Quadratic Field-Size Rate-Optimal Streaming
Code for Channels with Burst and Random Erasures,” ISIT 2019.
(finalist for IEEE Jack Wolf Student Paper Award).

160/163

References

7 N. Krishnan, D. Shukla and P. V. Kumar, “Low Field-size, Rate-Optimal Streaming Codes
for Channels with Burst and Random Erasures,” IEEE Trans. Inf. Theory, 2020.

8 E. Domanovitz, S. L. Fong, and A. Khisti, “An explicit rate-optimal streaming code for
channels with burst and arbitrary erasures,” ITW 2019.

9 N. Krishnan, V. Ramkumar, M. Vajha and P. V. Kumar, “Simple Streaming Codes for
Reliable, Low-Latency Communication,” IEEE Comm. Letters, 2020.

10 V. Ramkumar, M. Vajha, M. N. Krishnan, and P. V. Kumar, “Staggered Diagonal
Embedding Based Linear Field Size Streaming Codes,” ISIT 2020.

11 M. Vajha, V. Ramkumar, M. N. Krishnan, and P. V. Kumar, “Explicit Rate-Optimal
Streaming Codes with Smaller Field Size,” ISIT 2021.

12 V. Ramkumar, M. Vajha, and P. V. Kumar, “Generalized Simple Streaming Codes from
MDS Codes,” ISIT 2021.

161/163

References

13 A. Badr, A. Khisti, and E. Martinian, “Diversity Embedded Streaming Erasure Codes
(de-sco): Constructions and Optimality,” IEEE J. Sel. Areas Commun., 2011.

14 A. Badr, D. Lui, and A. Khisti, “Streaming Codes for Multicast over Burst Erasure
Channels,” IEEE Trans. Inf. Theory, 2015.

15 M. Rudow and K. V. Rashmi, “Streaming Codes for Variable-Size Arrivals,” Allerton 2018.

16 S. L. Fong, A. Khisti, B. Li, W. Tan, X. Zhu, J. G. Apostolopoulos, “Optimal Streaming
Erasure Codes Over the Three-Node Relay Network,” IEEE Trans. Inf. Theory, 2020.

17 M. Vajha, V. Ramkumar, M. Jhamtani, P. V. Kumar, “On Sliding Window Approximation
of Gilbert-Elliott Channel for Delay Constrained Setting,” arXiv 2020.

162/163

Thanks!

163/163

	Streaming Code Setting
	The GE Channel Model
	The Sliding Window Approximation

	Quick Review of Error-Correcting Codes
	Linear Codes
	MDS Codes
	Convolutional Codes
	Key Upper Bound on Code Rate
	Sub-optimality of MDS Codes

	Our Approach
	Our Results
	Other Approaches to Reliable Low-Latency Communication

	Construction of Streaming Codes
	Literature on Streaming Codes
	Construction Requirements
	Implications of Requirements on the Parity-Check Matrix
	The Jigsaw Code
	The Explicit Jigsaw Code
	Staggered Diagonal Embedding
	Simple Streaming Codes
	Long SDE Code

	Block Erasure Probability of Streaming Codes Over GE Channel
	An Experimental Attempt at Channel Adaptation

