Streaming Codes for Three-Node Relay Networks With Burst Erasures

Vinayak Ramkumar ^{*} Myna Vajha [‡] M. Nikhil Krishnan [†]

*Tel Aviv University, [‡]IIT Hyderabad, [†]IIT Palakkad

IEEE ISIT 2024, July 10

Motivation: Latency Sensitive Applications

• Several latency sensitive applications (real-time audio/video, AR/VR etc) that have end-to-end (E2E) latency requirements under packet erasures

 Δ : E2E delay, au = 4: Delay in packet count

- E2E delay modeled through count of packets accessed in future.
- Goal: Design packet level FECs that can recover erasures within delay τ .

Literature: Settings Considered

Point to Point (PP), Burst Erasures

- Martinian and Sundberg, TIT 2004
 - (b, τ) -streaming codes can recover from any burst of size b within delay au
 - Correctable erasure pattern:

Rate upper bounded by:

$${{\it R}} \leq rac{ au}{ au+b} riangleq {\it R}_{ ext{opt}}^{(ext{PP})}(b, au)$$

- $(n = \tau, k = \tau b)$ wrap-around burst correcting code (WA-BCC) \implies rate-optimal (b, τ) streaming code
- Hollmann and Tolhuizen, TIT 2008
 - ▶ binary WA-BCC construction implying rate-optimal binary (b, τ) streaming code

Literature: Settings Considered

- Extensions to either burst b or random erasures a under delay constraint τ .
- Extensions to simultaneous bursts and random erasures. Bhatnagar et al. ISIT 24
- Current work: 3-node relay, burst erasures only, delay constraint au
 - Rate upper bound
 - Constructions that achieve rate arbitrarily close to upper bound for any b, τ

- 3 node relay with random erasures: Fong et al. TIT 2020,, Facenda et al. TIT 23, Kaleem et al. ISIT 24
 - Extensions to multiple-node relay network: Domanovitz et al. TIT 2022
- 3 node relay with random and burst erasures: S. Singhvi et al. ISIT 2022.
 - Results in optimal codes for our setting for the special case $b|\tau$.

Redundancy through Packet Expansion Framework

• Can use scalar block codes to come up with streaming codes.

Diagonal Embedding (DE)

• Codewords of [n, k] scalar block code are diagonally placed in the packet stream.

DE of [10, 6] scalar code where $b = 4, \tau = 6$

Delay Profile Of a Block Code

• Need $(n = \tau + b, \tau)$ streaming code with delay profile

$$(\underbrace{ au,\cdots, au}_{b ext{ of them}}, au-1,\cdots,b)$$

• Hollmann and Tolhuizen (HT) code has parity check matrix:

$$H_{ extsf{HT}}$$
 $=$ $[P_{b, au} \ I_b]$ and

Recursive construction of (u × v) matrix P_{u,v} that appends identity matrices column-wise or row-wise.

$$P_{u,v} = \begin{cases} [I_u \ P_{u,v-u}] & v > u \\ \begin{bmatrix} I_v \\ P_{u-v,v} \end{bmatrix} & \text{otherwise} \end{cases}$$

- E. Martinian and M. Trott, "Delay-Optimal Burst Erasure Code Construction," ISIT 2007
- H. D. L. Hollmann and L. M. G. M. Tolhuizen, "Optimal Codes for Correcting a Single (Wrap-Around) Burst of Erasures," in TIT 2008

3 Node Relay, Burst Erasures

Rate Bound

• An example, permissible erasure pattern in the R-D link

$x^{r}(t)$	$x^r(t+\tau-b)$	$x^r(t+\tau-b+1)$		$x^r(t+\tau)$
------------	-----------------	-------------------	--	---------------

- m(t) should be recovered at relay by $t + \tau b$
- Rate in the S-R link upper bounded by rate of $(b, \tau b)$ streaming code

$$R \leq R_{ ext{opt}}^{(ext{PP})}(b, au-b) = rac{ au-b}{ au} riangleq R_{ ext{opt}}^{ ext{rel}}(b, au)$$

 We construct streaming codes that achieve rates arbitrarily close to the upper bound.

Source-Relay Link

- Transmit at Source
 - $(n = \tau, k = \tau b)$ HT code is used at the source.
 - Example: $\tau = 10, b = 4$, (4×10) pc matrix

$$H_{HT} = \begin{bmatrix} P_{4,6} \mid I_4 \end{bmatrix} = \begin{bmatrix} I_4 \mid I_2 \mid I_4 \end{bmatrix}$$

*
$$p_0 = m_0 + m_4, p_1 = m_1 + m_5, p_2 = m_2 + m_4, p_3 = m_3 + m_5$$

* m_i can be recovered by p_i for $i = 0, \dots, 3$.

t	0	1	2	3	4	5	6	7	8	9	10	11	12	13
$x^{s}(t)$	m_0	m_1	m_2	m_3	m_4	m_5	p_0	p_1	p_2	p_3				

• Receive at Relay: Burst starting at time 0/1 in S-R link

Relay-Destination Link

Information set needs to be preserved.

- Can resolve m_4 from $p_0 = m_0 + m_4$, and m_0
- $\alpha = \min\{\beta, b-1\}$ where β is burst start and set $(\hat{m}_0, \dots, \hat{m}_{k-1})$ as

$$\underbrace{(\underbrace{m_0, \cdots, m_{\alpha-1}}_{\alpha \text{ urgent symbols}}, \underbrace{x^s(\alpha), \cdots, x^s(k-b+\alpha-1)}_{(k-\alpha) \text{ non-urgent symbols}}, \underbrace{m_{\alpha}, \cdots, m_{b-1}}_{(b-\alpha) \text{ urgent symbols}})$$

HT code guarantees the information set property

Relay-Destination Link

• Urgent messages:

- For $i \in [0 : \alpha 1]$ \hat{m}_i requires delay $\leq \tau b$ (until \hat{p}_i available)
- For $i \in [0: b \alpha 1]$ \hat{m}_{k-1-i} requires delay $\leq b$ (until \hat{p}_{b-1-i} is available)
- Delay profile of the form:

$$\underbrace{(\tau-b,\cdots,\tau-b}_{\alpha \text{ urgent symbols}},\underbrace{\tau-\alpha-1,\cdots,2b-\alpha}_{(\tau-2b) \text{ non-urgent symbols}},\underbrace{b,\cdots,b}_{(b-\alpha) \text{ urgent symbols}})$$

- We construct generalized HT (GHT) code to handle this delay profile
- GHT code used at relay is dependent on $\alpha \implies$ overhead in communicating the α at destination.
 - Overhead can be made negligible by ammortization.

Relay-Destination Link

Burst at 1 in S-R link

Urgent messages:

- ▶ For $i \in [0 : \alpha 1]$ \hat{m}_i requires delay $\leq \tau b$ (until \hat{p}_i available)
- For $i \in [0: b \alpha 1]$ \hat{m}_{k-1-i} requires delay $\leq b$ (until \hat{p}_{b-1-i} is available)
- Delay profile of the form:

$$\underbrace{(\underline{\tau-b,\cdots,\tau-b}}_{\alpha \text{ urgent symbols}}, \underbrace{\tau-\alpha-1,\cdots,2b-\alpha}_{(\tau-2b) \text{ non-urgent symbols}}, \underbrace{b,\cdots,b}_{(b-\alpha) \text{ urgent symbols}})$$

- We construct generalized HT (GHT) code to handle this delay profile
- GHT code used at relay is dependent on $\alpha \implies$ overhead in communicating the α at destination.
 - Overhead can be made negligible by ammortization.

• Retain row 0, ensures in time recovery of \hat{m}_0

Get 1 in the diagonal of bottom-right (b − α) × (b − α) sub-matrix through row permutations

• Set the upper triangular elements to 0

- \hat{m}_3, \hat{m}_5 can be recovered in delay
- *m*₁ can be recovered from any burst

• \hat{m}_4 recovery: part of parities \hat{p}_0, \hat{p}_2

• \hat{m}_4 recovery: if \hat{m}_2 is available can recover it using \hat{p}_2 otherwise from \hat{p}_0 .

- Triangle property: \hat{p}_0 and \hat{m}_2 are spaced by b.
- *m̂*₂ recovery follows.
- Can recover *m_i* within delay.

Key Ideas in General Proof

Open Questions

• Construction of codes for any ordering of the urgent symbols (m_0, \cdots, m_{b-1}) that are "allowed".

 $(m_0, *, *, m_1, m_2, m_3, p_0, p_1, p_2, p_3)$ \checkmark $(m_1, *, *, m_0, m_2, m_3, p_0, p_1, p_2, p_3)$ \checkmark

- leads to streaming codes for *m*-node relay settings
- 3-node relay settings with different size bursts b_1, b_2 .
- Characterize the delay-profiles for which constructions are possible

Thank You!