
Codes for Distributed Storage: Theory and Practice

Myna Vajha
Department of ECE, IISc Bangalore.

STCS Symposium, TIFR

1st March, 2020

1 / 32

Collaborators

My advisor Prof. Vijay Kumar

Birenjith Sasidharan, Balaji S. B (MSR constructions)

IISc: Vinayak Ramkumar, Bhagyasree Puranik and Ganesh Kini
(systems evaluation)

Netapp: Srinivas Narayanamurthy, Syed Hussain, Siddhartha Nandi
(systems evaluation)

University of Maryland: Min Ye and Alexandar Barg (systems
evaluation)

2 / 32

Erasure Coding for Fault Tolerance

Fault tolerance is achieved using erasure coding

File or Object

Split it into
chunks

Ak

Store the n chunks in different
nodes of the storage network

A2A1

(n,k) erasure code
n=k+m

P1 P2 Pm

k data chunks m parity chunks

The n chunks taken together, form

a stripe.

Two Key Performance Measures

1 Storage Overhead n
k

2 Fault Tolerance - at most m storage units

MDS Codes

1 For given (n, k), MDS erasure codes have the
maximum-possible fault tolerance

2 RAID 6 and Reed-Solomon codes are examples
of MDS codes.

3 / 32

Erasure Coding for Fault Tolerance

Fault tolerance is achieved using erasure coding

File or Object

Split it into
chunks

Ak

Store the n chunks in different
nodes of the storage network

A2A1

(n,k) erasure code
n=k+m

P1 P2 Pm

k data chunks m parity chunks

The n chunks taken together, form

a stripe.

Two Key Performance Measures

1 Storage Overhead n
k

2 Fault Tolerance - at most m storage units

MDS Codes

1 For given (n, k), MDS erasure codes have the
maximum-possible fault tolerance

2 RAID 6 and Reed-Solomon codes are examples
of MDS codes.

3 / 32

Erasure Coding for Fault Tolerance

Fault tolerance is achieved using erasure coding

File or Object

Split it into
chunks

Ak

Store the n chunks in different
nodes of the storage network

A2A1

(n,k) erasure code
n=k+m

P1 P2 Pm

k data chunks m parity chunks

The n chunks taken together, form

a stripe.

Two Key Performance Measures

1 Storage Overhead n
k

2 Fault Tolerance - at most m storage units

MDS Codes

1 For given (n, k), MDS erasure codes have the
maximum-possible fault tolerance

2 RAID 6 and Reed-Solomon codes are examples
of MDS codes.

3 / 32

RS Codes in Practice

H. Dau et al, “Repairing Reed-Solomon Codes with Single and Multiple Erasures,” ITA, 2017,

San Diego.

4 / 32

Erasure Codes and Node Failures

A median of 50 nodes are unavailable
per day.

98% of the failures are single chunk
failures.

A median of 180TB of network traffic
per day is generated in order to
reconstruct the RS coded data
corresponding to unavailable
machines.

Thus there is a strong need for
erasure codes that can efficiently
recover from single-node failures.

Image courtesy: Rashmi et al.: “A Solution to the Network Challenges of Data Recovery in Erasure-coded Distributed Storage

Systems: A Study on the Facebook Warehouse Cluster,” USENIX Hotstorage, 2013.

5 / 32

Conventional Node Repair of an RS Code

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

10 X 100MB

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data Chunk Parity Chunk Erased Chunk

In the example (14, 10) RS code,

1 the amount of data downloaded to repair 100MB of data equals 1GB.

clearly, there is room for improvement...

6 / 32

Conventional Node Repair of an RS Code

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

10 X 100MB

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data Chunk Parity Chunk Erased Chunk

In the example (14, 10) RS code,

1 the amount of data downloaded to repair 100MB of data equals 1GB.

clearly, there is room for improvement...

6 / 32

Regenerating Codes

Parameters: ((n, k , d), (α, β), B, Fq)

1

2

k

n

Data
Collector

ᶓ

ᶓ
ᶓ

ᶓ capacity nodes

k+1

1

2

ᶔ

n

3

1’

ᶔ

ᶔ

ᶓ capacity nodes

d+1

Data (of size B) can be recovered by connecting to any k of n nodes

A failed node can be repaired by connecting to any d nodes, downloading β
symbols from each node; (dβ << file size B)

Dimakis et al. Network Coding for Distributed Storage Systems

7 / 32

Regenerating Codes

1 Optimal File size B possible by an (n, k , d , α, β) regenerating code:

B =
k−1∑
i=0

min(α, (d − i)β)

≤ kα

2 Minimum storage regenerating (MSR) codes are a subclass of
regenerating codes such that:

α =
B

k
, β =

α

d − k + 1

3 We restrict to Minimum-Storage-Regenerating (MSR) codes –
repair-optimal MDS codes.

8 / 32

Regenerating Codes

1 Optimal File size B possible by an (n, k , d , α, β) regenerating code:

B =
k−1∑
i=0

min(α, (d − i)β)

≤ kα

2 Minimum storage regenerating (MSR) codes are a subclass of
regenerating codes such that:

α =
B

k
, β =

α

d − k + 1

3 We restrict to Minimum-Storage-Regenerating (MSR) codes –
repair-optimal MDS codes.

8 / 32

MSR Codes

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

13 X 25MB

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data Chunk Parity Chunk Erased Chunk

1 Size of failed node’s contents: 100MB

2 RS repair BW: 1 GB

3 MSR Repair BW: 325 MB

9 / 32

Key to the Impressive, Low-Repair BW of MSR Codes

In a nutshell: sub-packetization... we explain...

10 / 32

Key to the Impressive, Low-Repair BW of MSR Codes

In a nutshell: sub-packetization... we explain...

10 / 32

n = k+m

Chunk

k data chunks m parity chunks

n = k+m

Chunk

k data chunks m parity chunks

k

n = k+m

Chunk

k data chunks m parity chunks

k

sub-chunk
α

sub-packetization level

n = k+m

Chunk

k data chunks m parity chunks

k

sub-chunk
α

sub-packetization level ᶔ < α

 d
k<d<n

n = k+m

Chunk

k data chunks m parity chunks

k

sub-chunk
α

sub-packetization level ᶔ < α

 d
k<d<n

kα
(1GB)

dᶔ
<< kα

(325MB)

n = k+m

Chunk

k data chunks m parity chunks

k

sub-chunk
α

sub-packetization level ᶔ < α

 d
k<d<n

kα
(1GB)

dᶔ
<< kα

(325MB)

ᶔ = α/(d-k+1)
 ᶔ is a fraction of α

Repair BW = dᶔ
We consider d=n-1, then
Repair BW = (n-1)α/(n-k)

n = k+m

Chunk

k data chunks m parity chunks

k

sub-chunk
α

sub-packetization level ᶔ < α

 d
k<d<n

kα
(1GB)

dᶔ
<< kα

(325MB)

Larger the m=n-k, larger the savings!!

ᶔ = α/(d-k+1)
 ᶔ is a fraction of α

Repair BW = dᶔ
We consider d=n-1, then
Repair BW = (n-1)α/(n-k)

Additional Properties Desired of an MSR Code

1 Minimal Disk Read (Optimal Access): Read exactly what is needed to be
transferred

2 Minimize sub-packetization level α

3 Small field size, low-complexity implementation.

4 Two family of constructions

I Coupled Layer (CLay) MSR code (d = n − 1)
I Small d MSR code (d = k + 1, k + 2, k + 3)

11 / 32

4-way Optimality of Clay code

Least possible storage overhead
(MDS Codes)

Least possible repair bandwidth
(MSR Codes)

Least possible disk read
(Optimal access MSR Codes)

Least possible sub-packetization
(Clay Codes)

Image courtesy: denverpost.com

12 / 32

Putting Clay codes in perspective

Given (n, k , d) let s = d − k + 1, r = n − k

MSR Code Parameters α Field Size (q) All Node Optimal
Repair Access

Shah et al. (n, k, d = n − 1 ≥ 2k − 1) r 2r No Yes

Suh et al. (n, k , d ≥ 2k − 1) s 2r Yes No
(n, k ≤ 3, d)

Rashmi et al. (n ≥ 2k − 1, k , d) r n Yes No

Papailiopoulos et al. (n, k, d = n − 1) rk non-explicit No No

Tamo et al. (n, k, d = n − 1) rk+1 ≤ 4 when r ≤ 3, Yes Yes
Wang et al. else non-explicit

Cadambe et al. (n ≥ 3k
2 , k, d = n − 1) O(k2) non-explicit No Yes

Sasidharan et al. (n, k, d = n − 1) rd
n
r e O(nr) Yes Yes

Goparaju et al. (n, k , d) sk(rs) - No Yes

Rawat et al. (n, k , d) sd
n
s e O(nr) Yes Yes

Ye & Barg (1a) (n, k , d) sn sn Yes No

Ye & Barg (1b) (n, k , d) sn−1 n + 1 Yes Yes

13 / 32

Putting Clay codes in perspective

Given (n, k , d) let s = d − k + 1, r = n − k

MSR Code Parameters α Field Size (q) All Node Optimal
Repair Access

Shah et al. (n, k , d = n − 1 ≥ 2k − 1) r 2r No Yes

Suh et al. (n, k , d ≥ 2k − 1) s 2r Yes No
(n, k ≤ 3, d)

Rashmi et al. (n ≥ 2k − 1, k , d) r n Yes No

Papailiopoulos et al. (n, k , d = n − 1) rk non-explicit No No

Tamo et al. (n, k , d = n − 1) rk+1 ≤ 4 when r ≤ 3, Yes Yes
Wang et al. else non-explicit

Cadambe et al. (n ≥ 3k
2 , k, d = n − 1) O(k2) non-explicit No Yes

Sasidharan et al. (n, k , d = n − 1) rd
n
r e O(nr) Yes Yes

Goparaju et al. (n, k , d) sk(rs) - No Yes

Rawat et al. (n, k , d) sd
n
s e O(nr) Yes Yes

Ye & Barg (1a) (n, k , d) sn sn Yes No

Ye & Barg (1b) (n, k , d) sn−1 n + 1 Yes Yes

13 / 32

Literature on High-Rate, OA MSR Codes with Optimum α

(n, k, d = n − 1, α = rd
n
r
e), q ≥ rdn

r
e

In May 2016, Ye & Barg came up with MSR codes that are based on
Vandermonde RS codes.

In July 2016, Sasidharan et.al came up with MSR codes that could be constructed
from any MDS code.

In ISIT 2017, Li et.al came up with a transformation that could convert any scalar
MDS code to MSR construction.

In FAST 2018, Vajha et al. explained the three constructions using a pairwise
coupling transform. The Clay (coupled-layer) code was implemented and evaluated
in Ceph.

Sub-packetization bounds for optimal access MSR codes

I Shown to be α ≥ r
k
r for d = n − 1 by Tamo et al.

I This bound is tightened to α ≥ s
n
s by Balaji et al.

We recently proved that the support of parity checks defining these constructions
are forced by the optimal access, optimal sub-packetization.

14 / 32

Literature on High-Rate, OA MSR Codes with Optimum α

(n, k, d = n − 1, α = rd
n
r
e), q ≥ rdn

r
e

In May 2016, Ye & Barg came up with MSR codes that are based on
Vandermonde RS codes.

In July 2016, Sasidharan et.al came up with MSR codes that could be constructed
from any MDS code.

In ISIT 2017, Li et.al came up with a transformation that could convert any scalar
MDS code to MSR construction.

In FAST 2018, Vajha et al. explained the three constructions using a pairwise
coupling transform. The Clay (coupled-layer) code was implemented and evaluated
in Ceph.

Sub-packetization bounds for optimal access MSR codes

I Shown to be α ≥ r
k
r for d = n − 1 by Tamo et al.

I This bound is tightened to α ≥ s
n
s by Balaji et al.

We recently proved that the support of parity checks defining these constructions
are forced by the optimal access, optimal sub-packetization.

14 / 32

Literature on High-Rate, OA MSR Codes with Optimum α

(n, k, d = n − 1, α = rd
n
r
e), q ≥ rdn

r
e

In May 2016, Ye & Barg came up with MSR codes that are based on
Vandermonde RS codes.

In July 2016, Sasidharan et.al came up with MSR codes that could be constructed
from any MDS code.

In ISIT 2017, Li et.al came up with a transformation that could convert any scalar
MDS code to MSR construction.

In FAST 2018, Vajha et al. explained the three constructions using a pairwise
coupling transform. The Clay (coupled-layer) code was implemented and evaluated
in Ceph.

Sub-packetization bounds for optimal access MSR codes

I Shown to be α ≥ r
k
r for d = n − 1 by Tamo et al.

I This bound is tightened to α ≥ s
n
s by Balaji et al.

We recently proved that the support of parity checks defining these constructions
are forced by the optimal access, optimal sub-packetization.

14 / 32

Literature on High-Rate, OA MSR Codes with Optimum α

(n, k, d = n − 1, α = rd
n
r
e), q ≥ rdn

r
e

In May 2016, Ye & Barg came up with MSR codes that are based on
Vandermonde RS codes.

In July 2016, Sasidharan et.al came up with MSR codes that could be constructed
from any MDS code.

In ISIT 2017, Li et.al came up with a transformation that could convert any scalar
MDS code to MSR construction.

In FAST 2018, Vajha et al. explained the three constructions using a pairwise
coupling transform. The Clay (coupled-layer) code was implemented and evaluated
in Ceph.

Sub-packetization bounds for optimal access MSR codes

I Shown to be α ≥ r
k
r for d = n − 1 by Tamo et al.

I This bound is tightened to α ≥ s
n
s by Balaji et al.

We recently proved that the support of parity checks defining these constructions
are forced by the optimal access, optimal sub-packetization.

14 / 32

Systems Implementations of Bandwidth Efficient MDS
codes

Code MDS
Least

Repair
BW

Least
Disk
Read

Least
α Restrictions

Implemented
Distributed

Systems

Piggybacked RS
(Sigcomm 2014)

✔ ✗ ✗ - None HDFS

Product Matrix
(FAST 2015)

✔ ✔ ✔ ✔ Limited to
Storage

Overhead > 2

Own System

Butterfly Code
(FAST 2016)

✔ ✔ ✗ ✗ Limited to the 2
parity nodes

HDFS, Ceph

HashTag Code
(Trans. on Big Data

2017)

✔ ✗ ✗ - Only
systematic node

repair

HDFS

Clay
(FAST 2018)

✔ ✔ ✔ ✔ None! Ceph

The Butterfly, HashTag codes have least disk read for systematic node repair.

15 / 32

Moulding an MDS Code to Yield the Clay Code

(n = 4, k = 2) MDS code with optimal repair of systematic nodes, α = 2

(0,0) (0,1)
(1,0) (1,1)

Parity
Data

Code symbols of [4, 2] MDS

code.

z=0

x
y

z=1

Layer two such units

z=0

x
y

z=1

Index the layers using the

red dots. symbols with

yellow rectangles are paired

Uncoupled code still needs 4 symbols during recovery of single node
(containing 2 symbols).

16 / 32

Moulding an MDS Code to Yield the Clay Code

(n = 4, k = 2) MDS code with optimal repair of systematic nodes, α = 2

(0,0) (0,1)
(1,0) (1,1)

Parity
Data

Code symbols of [4, 2] MDS

code.

z=0

x
y

z=1

Layer two such units

z=0

x
y

z=1

Index the layers using the

red dots. symbols with

yellow rectangles are paired

Uncoupled code still needs 4 symbols during recovery of single node
(containing 2 symbols).

16 / 32

Moulding an MDS Code to Yield the Clay Code

(n = 4, k = 2) MDS code with optimal repair of systematic nodes, α = 2

(0,0) (0,1)
(1,0) (1,1)

Parity
Data

Code symbols of [4, 2] MDS

code.

z=0

x
y

z=1

Layer two such units

z=0

x
y

z=1

Index the layers using the

red dots. symbols with

yellow rectangles are paired

Uncoupled code still needs 4 symbols during recovery of single node
(containing 2 symbols).

16 / 32

Moulding an MDS Code to Yield the Clay Code

(n = 4, k = 2) MDS code with optimal repair of systematic nodes, α = 2

C

C*U*
U

Coupled CodeUnCoupled Code[
C
C ∗

]
=

[
1 γ
γ 1

] [
U
U∗

]

Uncoupled code has 2 planes, where each plane
corresponds to an [4, 2] MDS code

Coupled code symbols are obtained by:

I Copying symbols with red dots
I Pair of yellow symbols {C ,C∗} are

obtained by transformation

17 / 32

Repair from single node loss

C

C*

symbols that are available as part of helper
information

symbols that are computable in uncoupled
cube

U*

symbols recovered after using the [4, 2]
MDS code

C

C*

C recovered from C∗,U∗

18 / 32

Repair from single node loss

C

C*

symbols that are available as part of helper
information

symbols that are computable in uncoupled
cube

U*

symbols recovered after using the [4, 2]
MDS code

C

C*

C recovered from C∗,U∗

18 / 32

Repair from single node loss

C

C*

symbols that are available as part of helper
information

symbols that are computable in uncoupled
cube

U*

symbols recovered after using the [4, 2]
MDS code

C

C*

C recovered from C∗,U∗

18 / 32

Repair from single node loss

C

C*

symbols that are available as part of helper
information

symbols that are computable in uncoupled
cube

U*

symbols recovered after using the [4, 2]
MDS code

C

C*

C recovered from C∗,U∗

18 / 32

Repair from single node loss

C

C*

symbols that are available as part of helper
information

symbols that are computable in uncoupled
cube

U*

symbols recovered after using the [4, 2]
MDS code

C

C*

C recovered from C∗,U∗

18 / 32

Clay Code

(n = 4, k = 2, d = 3) MSR code with all node optimal repair

C

C*

Coupled Code

U

U*

Uncoupled Code

The same construction extends to any (n, k, d)
19 / 32

Open Source: Contributions

A popular opensource distributed
storage system used by CERN,

Flipkart, Cisco etc

”Us (+Vinayak) pitching Clay codes to Ceph in April
2017”

We have introduced Clay code as erasure code plugin. It is part of Ceph’s Nautilus
release (March 2019) as experimental feature. As part of this we also introduced
support for vector codes in Ceph.

20 / 32

Open Source: Contributions

A popular opensource distributed
storage system used by CERN,

Flipkart, Cisco etc

”Us (+Vinayak) pitching Clay codes to Ceph in April
2017”

We have introduced Clay code as erasure code plugin. It is part of Ceph’s Nautilus
release (March 2019) as experimental feature. As part of this we also introduced
support for vector codes in Ceph.

20 / 32

Clay Code Summary

The open-source implementation of Clay code that we provide is for any (n, k, d)
parameters.

In comparison to (20, 16) RS code, for Workloads with large sized objects (64MB),

the Clay code (20, 16, 19):

I resulted in repair time reduction by 3X .
I Improved degraded read and write performance by 27.17% and 106.68%

respectively.

Our systems work on Clay code got featured in a popular computer science blog
”the morning paper”

For the case when d < n − 1, the clay codes are not exactly MSR, though they
have optimal repair bandwidth. (few compulsory helper nodes (d − k) need to be
contacted compulsorily during a node’s recovery).

21 / 32

Clay Code Summary

The open-source implementation of Clay code that we provide is for any (n, k, d)
parameters.

In comparison to (20, 16) RS code, for Workloads with large sized objects (64MB),

the Clay code (20, 16, 19):

I resulted in repair time reduction by 3X .
I Improved degraded read and write performance by 27.17% and 106.68%

respectively.

Our systems work on Clay code got featured in a popular computer science blog
”the morning paper”

For the case when d < n − 1, the clay codes are not exactly MSR, though they
have optimal repair bandwidth. (few compulsory helper nodes (d − k) need to be
contacted compulsorily during a node’s recovery).

21 / 32

Small d MSR Construction

MSR Construction (d < n − 1) with parameters:

(n = st, k = n − r , d = k + s − 1), (α = st , β = st−1, Fq)

for any s ∈ {2, 3, 4}, t ≥ 2, r ≥ s.

(n, k, d) MSR codes for d ∈ {k + 1, k + 2, k + 3} can be obtained by
shortening (n + ∆, k + ∆, d + ∆) MSR code where ∆ = dns es − n

22 / 32

Small d MSR Construction

MSR Construction (d < n − 1) with parameters:

(n = st, k = n − r , d = k + s − 1), (α = st , β = st−1, Fq)

for any s ∈ {2, 3, 4}, t ≥ 2, r ≥ s.

(n, k, d) MSR codes for d ∈ {k + 1, k + 2, k + 3} can be obtained by
shortening (n + ∆, k + ∆, d + ∆) MSR code where ∆ = dns es − n

22 / 32

MSR Construction: 3D Representation of a Codeword

(n = st, k, d), (α = s t , β = s t−1, Fq), s = d − k + 1

s = 4, t = 5

Plane dot representation
y=0 1 2 3 4

x=0
1
2
3

z = (3, 2, 3, 1, 0)

There are nα = s × t × s t code symbols in Fq.

They can be indexed by 3-tuple (x , y ; z) where x ∈ Zs ,
y ∈ Zt , z ∈ Zt

s .

(x , y) tuple indicates node, z is used to index the α
symbols within a node.

The code is described by rα parity check equations over

nα symbols.

I Each parity check equation is indexed by tuple
(`, z), ` ∈ [0, r − 1], z ∈ Zt

s .
I This can be viewed as r equations per plane.

23 / 32

MSR Construction: 3D Representation of a Codeword

(n = st, k, d), (α = s t , β = s t−1, Fq), s = d − k + 1

s = 4, t = 5

Plane dot representation
y=0 1 2 3 4

x=0
1
2
3

z = (3, 2, 3, 1, 0)

There are nα = s × t × s t code symbols in Fq.

They can be indexed by 3-tuple (x , y ; z) where x ∈ Zs ,
y ∈ Zt , z ∈ Zt

s .

(x , y) tuple indicates node, z is used to index the α
symbols within a node.

The code is described by rα parity check equations over

nα symbols.

I Each parity check equation is indexed by tuple
(`, z), ` ∈ [0, r − 1], z ∈ Zt

s .
I This can be viewed as r equations per plane.

23 / 32

MSR Construction: Parity Checks

The r parity check equations corresponding to plane z are given by:∑
y∈Zt

∑
x∈Zs

θ`x,y ;zyC(x , y , z)

︸ ︷︷ ︸
in-plane symbols

+
∑
y∈Zt

∑
x 6=zy

γθ`zy ,y ;xC(zy , y , z(y , x))

︸ ︷︷ ︸
out-of-plane symbols

= 0

for all ` ∈ [0, r − 1], where z = (z0, z1, · · · , zt−1) and

z(y , x) = (z0, · · · , zy−1, x , zy+1, · · · , zt−1), γ2 6= 0, 1.

24 / 32

MSR Construction: Out of Plane Symbols

s = 2, t = 3

Circled symbols are involved in parity checks of plane z = (1, 1, 0)

Blue circles are in-plane and Red are out-of-plane

y=0 1 2
x=0

1
z = (1, 1, 0)

z(0, 0) = (0, 1, 0) z(1, 0) = (1, 0, 0) z(2, 1) = (1, 1, 1)

25 / 32

MSR Construction: Theta Assignment

θx,y,x′ = Θy (x , x ′), ∀x , x ′ ∈ Zs

Θy is designed to have following properties for every y ∈ Zt :

θx,y,x = θy for all x ∈ Zs =⇒ to satisfy MDS property

For s = 2

Θy =

[
θy θ1,y
θ2,y θy

]

For s = 2, need q ≥ 2n and for s = 3, 4 need q ≥ 18t + 2 = O(n)

26 / 32

An Example: s = 2, r = 3

(n = 2t, k = n − 3, d = n − 2)

MDS Property:

The code should be able to recover from any r = 3 erasure patterns.

Given an r erasure pattern E , each plane is associated with a score called
Intersection Score (IS).

IS(E , z) = |{(zy , y) ∈ E|y ∈ Zt}|

For, E = {(0, 0), (1, 1), (1, 2)}

IS = 0 IS = 1 IS = 2
Intersection score is number of hole-dot pairs in the plane-dot representation.

27 / 32

An Example: s = 2, r = 3

Planes are ordered by their intersection score and erased symbols are recovered
sequentially.

Sometimes few planes with same intersection scores are to be solved together.

We will look at an erasure pattern of the form:

I Two erasures with same y value i.e., E = {(0, y1), (1, y1), (x2, y2)}

Case 2

For this case, planes can have intersection scores 1, 2

28 / 32

An Example: s = 2, r = 3

Planes are ordered by their intersection score and erased symbols are recovered
sequentially.

Sometimes few planes with same intersection scores are to be solved together.

We will look at an erasure pattern of the form:

I Two erasures with same y value i.e., E = {(0, y1), (1, y1), (x2, y2)}

Case 2

For this case, planes can have intersection scores 1, 2

28 / 32

An Example: s = 2, r = 3
Two erasures with same y value i.e., E = {(0, y1), (1, y1), (x2, y2)}∑

y∈Zt

∑
x∈Zs

θ`x,y ;zyC(x , y , z) +
∑
y∈Zt

∑
x 6=zy

γx,zy θ
`
zy ,y ;xC(zy , y , z(y , x)) = 0

IS(E , z) = 1, zy1 = 0, zy2 6= x2 reduces to:∑
(x,y)∈E

θ`x,y ;zyC(x , y , z) + γ1,0θ
`
0,y1,1C(0, y1, z(y1, 1)) = κ∗

Look at plane z ′ = z(y1, 1), IS(E , z) = 1 and∑
(x,y)∈E

θ`x,y,z′yC(x , y , z ′) + γ0,1θ
`
1,y1,0C(1, y1, z) = κ∗

6 equations and 6 unknowns.

29 / 32

An Example: s = 2, r = 3

HS =



1 1 1 1
θ0,y1,0 θ1,y1,0 θx2,y2,ay2 θ0,y1,1
θ20,y1,0 θ21,y1,0 θ2x2,y2,ay2 θ20,y1,1

γ 1 1 1
γθ1,y1,0 θ0,y1,1 θ1,y1,1 θx2,y2,ay2
γθ21,y1,0 θ20,y1,1 θ21,y1,1 θ2x2,y2,ay2


Let (f0, f1, f2, g0, g1, g2)T be an vector in left null space of HS . Let,

f (x) =
2∑

j=0

fjx
j and g(x) =

2∑
j=0

gjx
j .

fHs = 0 implies that

f (θy1) = f (θx2,y2,ay2) = g(θy1) = g(θx2,y2,ay2) = 0 where θ0,y1,0 = θ1,y1,1 = θy1

f (θ1,y1,0) + γg(θ1,y1,0) = 0, γf (θ0,y1,1) + g(θ0,y1,1) = 0

Substituting f (x) = f2(x − θy1)(x − θx2,y2,ay2) and g(x) = g2(x − θy1)(x − θx2,y2,ay2)
we get [

1 γ
γ 1

] [
f2
g2

]
= 0 =⇒ f2 = g2 = 0 =⇒ f = g = 0

30 / 32

An Example: s = 2, r = 3

HS =



1 1 1 1
θ0,y1,0 θ1,y1,0 θx2,y2,ay2 θ0,y1,1
θ20,y1,0 θ21,y1,0 θ2x2,y2,ay2 θ20,y1,1

γ 1 1 1
γθ1,y1,0 θ0,y1,1 θ1,y1,1 θx2,y2,ay2
γθ21,y1,0 θ20,y1,1 θ21,y1,1 θ2x2,y2,ay2


Let (f0, f1, f2, g0, g1, g2)T be an vector in left null space of HS . Let,

f (x) =
2∑

j=0

fjx
j and g(x) =

2∑
j=0

gjx
j .

fHs = 0 implies that

f (θy1) = f (θx2,y2,ay2) = g(θy1) = g(θx2,y2,ay2) = 0 where θ0,y1,0 = θ1,y1,1 = θy1

f (θ1,y1,0) + γg(θ1,y1,0) = 0, γf (θ0,y1,1) + g(θ0,y1,1) = 0

Substituting f (x) = f2(x − θy1)(x − θx2,y2,ay2) and g(x) = g2(x − θy1)(x − θx2,y2,ay2)
we get [

1 γ
γ 1

] [
f2
g2

]
= 0 =⇒ f2 = g2 = 0 =⇒ f = g = 0

30 / 32

An Example: s = 2, r = 3

HS =



1 1 1 1
θ0,y1,0 θ1,y1,0 θx2,y2,ay2 θ0,y1,1
θ20,y1,0 θ21,y1,0 θ2x2,y2,ay2 θ20,y1,1

γ 1 1 1
γθ1,y1,0 θ0,y1,1 θ1,y1,1 θx2,y2,ay2
γθ21,y1,0 θ20,y1,1 θ21,y1,1 θ2x2,y2,ay2


Let (f0, f1, f2, g0, g1, g2)T be an vector in left null space of HS . Let,

f (x) =
2∑

j=0

fjx
j and g(x) =

2∑
j=0

gjx
j .

fHs = 0 implies that

f (θy1) = f (θx2,y2,ay2) = g(θy1) = g(θx2,y2,ay2) = 0 where θ0,y1,0 = θ1,y1,1 = θy1

f (θ1,y1,0) + γg(θ1,y1,0) = 0, γf (θ0,y1,1) + g(θ0,y1,1) = 0

Substituting f (x) = f2(x − θy1)(x − θx2,y2,ay2) and g(x) = g2(x − θy1)(x − θx2,y2,ay2)
we get [

1 γ
γ 1

] [
f2
g2

]
= 0 =⇒ f2 = g2 = 0 =⇒ f = g = 0

30 / 32

MSR Codes: Summary

Optimal access, optimal sub-packetization, explicit MSR
constructions for the parameters d = n − 1

Systems implementation and evaluation of Clay codes over Ceph.

Small d constructions for d ∈ {k + 1, k + 2, k + 3}.

31 / 32

Thanks!!

32 / 32

