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Outline

Erasure Codes and Distributed Storage.
▶ MDS codes

Code conversion problem
▶ MDS convertible codes
▶ Access and Bandwidth Cost
▶ Access Optimal Constructions
▶ Bandwidth Optimal Constructions

Node repair problem (Overview)
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How to save yourself from Data Loss ?

1 Redundant Array of independent Disks (RAID)

▶ RAID 1: uses replication
▶ RAID 3: adds a parity

2 Distributed Storage (Replication or Erasure
Codes)

2-Replication Ap(1−3) = A1 ⊕ A2 ⊕ A3
DSS

Image Souces: Wikipedia, vifx.co.nz, techmissile.com
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Erasure Code

Used to recover from data loss.

In a (n, k) erasure code, k units of data are encoded to get n units of data.

▶ Storage Overhead of such a code ν = n
k
= 1 + r

k
▶ erasure tolerance (number of erasures (any pattern) that can be corrected)

A Maximum Distance Separable (MDS) Code provides reliability against erasure of

any r = n − k units.

▶ (6, 4) MDS code below has storage overhead 1.5 and it can recover from 2 erasures.

1 42 3 5 6 1 42 3 5 6
Recovery
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Replication Code vs Erasure Code

Google’s GFS uses 3-replication code.

Facebook’s Hadoop uses [14, 10] Reed Solomon(RS) Code.

 A  B

A  B  A+B A+2B

 B

A+2B

 A  B  A+B A+2B A B  A  B  A  B  A  B

A  B A B A B

 B  B

(6,2) 3-Replication [4,2] Reed Solomon 

Code Storage O/h Bandwidth 1 Reliability

[6,2] 3-rep 3x 0.5 2

[4,2] RS 2x 1.0 2

1
As a fraction of k units
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MDS codes: Properties

Let G = [I P] be (k × n) generator matrix of [n, k] code i.e.,

[p1 p2 · · · pn−k ] = [m1 · · · mk ]


p1,1 p1,2 · · · p1,n−k

p2,1 p2,2 · · · p2,n−k

...
...

. . .
...

pk,1 pk,2 · · · pk,n−k


︸ ︷︷ ︸

P

Say there are (n − k) erasures out of which m of them are message erasures given
by i1, · · · , im and available parities given by j1, · · · , jm.

[pj1 pj2 · · · pjm ] = [mi1 · · · mim ]


pi1,j1 pi1,j2 · · · pi1,jm
pi2,j1 pi2,j2 · · · pi2,jm
...

...
. . .

...
pim,j1 pim,j2 · · · pim,jm


︸ ︷︷ ︸

sub-matrix of P

▶ Code is MDS iff any m ×m sub-matrix of P is invertible for all m ≤ min(k, n − k)

6/40



MDS Code: Reed Solomon Construction
[n, k] RS code.

▶ A message of k symbols can be thought of as coefficients of a polynomial with
degree < k.

▶ Evaluate the polynomial at n distinct points. (message symbols need not be present
directly in these n evaluations)
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k = 2, the polynomial is a line. Two
evaluations enough to recover a line
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k = 4, the polynomial is of degree 3. Four
evaluations enough to recover it

If you have one evaluation of a line, then are infinitely many options for the lines
that pass through the point.

Need k evaluations to recover any polynomial of degree < k. 7/40



The Code Conversion Problem

Joint work with

Nikhil Krishnan (Assistant Professor, IIT Palakkad)

Vinayak Ramkumar (Postdoc, TU Munich)

Xiangliang Kong, (Postdoc, Tel Aviv University)
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The Code Conversion Problem: Motivation

As the disks age, it makes sense to
increase/decrease overhead of the code
to use the resources efficiently

Typically conversions that do
re-encoding incur high IO cost

▶ Weeks of 100 % cluster IO
bandwidth spent on conversion

Kadekodi et. al. “Cluster storage systems gotta have HeART: improving storage efficiency by exploiting disk-reliability
heterogeneity”. USENIX FAST, 2019.

Kadekodi et. al, “ PACEMAKER: Avoiding HeART attacks in storage clusters with disk-adaptive redundancy”, USENIX
OSDI 2020

‘
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Convertible Codes: Framework

Convertible codes a framework introduced by Maturana and Rashmi [TIT 2022] to
study the code conversion.

Goal: To be able to effectively change from any [nI = k I + r I , k I ] initial code to a

[nF = kF + rF , kF ] final code.

▶ Multiple initial codewords converted to multiple final codewords

k I = 6, kF = 4,M = 12, λI = 2, λF = 3, r I = 3, rF = 2

▶ For M = lcm(k I , kF ), λI = M
k I

initial codewords get converted to λF = M
kF

final
codewords. Number of message symbols across initial and final codewords is M.
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MDS Convertible Codes: Access cost

MDS convertible codes are convertible codes where the initial and final codes are
Maximum Distance Separable (MDS) codes.

Access cost: number of symbols read from initial codewords to construct the final
codewords plus the number of symbols written.

We will focus on merge regime where kF = λk I .

▶ default approach: download λk I symbols to construct the parity symbols of the final
code.

▶ Tight lower bound on access cost ( Maturana and Rashmi, TIT 22)

access cost ≥
{
λrF + rF rF ≤ min(r I , k I )

λk I + rF otherwise

▶ Assume rF ≤ min(r I , k I ) the non-trivial case

Split regime when k I = λFkF
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MDS Convertible Codes: An Example
Let G I = [Ik I P

I ],GF = [IkF PF ] be generator matrices of initial and final codes
respectively. P I ,PF are of sizes k I × r I and λk I × rF respectively.

Example: k I = 3, λ = 2, kF = 6 and r I = rF = 2

P I =

 1 1
θ1 θ2
θ21 θ22

 ,PF =



1 1
θ1 θ2
θ21 θ22
θ31 θ32
θ41 θ42
θ51 θ52


▶ Let p11 , p

1
2 and p21 , p

2
2 be the parities from two initial codewords.

[pj1 pj2] = [mj
1 mj

2 mj
3]PI =⇒ pji = mj

1 +mj
2θi +mj

3θ
2
i[

pF1 pF2

]
= [m1

1 m1
2 m1

3 m2
1 m2

2 m2
3]PF

pF1 = p11 + θ31p
2
1

pF2 = p12 + θ32p
2
2

▶ Can do conversion in this case by accessing λrF = 4 < λk I = 6 symbols
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Access Optimality from Block-Reconstructable Property

PF =


PF ,1

PF ,2

...
PF ,λ

 where PF ,ℓ is k I × rF matrix.

PF is said to be rF -block reconstructable from P I if for each ℓ ∈ [λ] there exists rF

columns of P I that span the columns of PF ,ℓ.

MDS convertible code is access-optimal if PF is rF -block reconstructable from P I

▶ rF final parities can be constructed by accessing exactly λr I parity symbols.
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Per-Symbol Access Optimality

Recovery of each final parity symbol uses exactly λ initial parities with each parity
belonging to an initial codeword.

PF is said to be parallel-block reconstructable from P I if for each ℓ ∈ [λ] there exist
rF columns of P I that are exactly equal to or scaling of columns seen in PF ,ℓ.

parallel-block reconstructable → block-reconstructable

Helps non-central conversion setting where the new node downloads the required
data to reconstruct the corresponding final parity.
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Earlier Approaches
1 Vandermonde construction

P I =


1 1 · · · 1
θ1 θ2 · · · θr I
...

...
. . .

...

θk
I−1

1 θk
I−1

2 · · · θk
I−1

r I

 ,PF =


1 1 · · · 1
θ1 θ2 · · · θr I
...

...
. . .

...

θλk
I−1

1 θλk
I−1

2 · · · θλk
I−1

r I


▶ Need q to be large (O(2(n

F )3 )) to guarantee that PF and P I are super-regular

2 Hankel matrix based convertible codes
▶ Super-regular property guaranteed for sub-matrices of Hankel matrices.
▶ Constructions limited to parameters rF ≤ r I − λ+ 1 with linear field size for fixed

number of parities

1 3 4 3 10 10 5 9 6 5 10
3 4 3 10 10 5 9 6 5 10
4 3 10 10 5 9 6 5 10
3 10 10 5 9 6 5 10
10 10 5 9 6 5 10
10 5 9 6 5 10
5 9 6 5 10
9 6 5 10
6 5 10
5 10
10

k I = 5, λ = 2, rF = 2, r I = 4
Hankel array of size nF − 1 = 11

Maturana and Rashmi, “Convertible Codes: New Class of Codes for Efficient Conversion of Coded Data in Distributed Storage”,

ITCS 2020
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Earlier Approaches: Polynomial Construction

HX =


1 1 · · · 1
x1 x2 · · · xm
x2
1 x2

2 · · · x2
m

...
...

. . .
...

x r I−1
1 x r I−1

2 · · · x r I−1
m

, where X = {x1, · · · , xm}

Initial code: An (nI , k I ) MDS code defined by parity check matrix:

H I = [HX1 HY ] =⇒ −HX1m
j = HY p

j

Final code: An (nI , k I ) MDS code defined by parity check matrix:

HF = [HX1 HX2 · · · HXλ HY ] =⇒ −
λ∑
j=1

HXjm
j = HY p

F

Suppose HXj = DjHX1 where Dj is r
I × r I diagonal matrix

pF = −H−1
Y

λ∑
j=1

HXjm
j = −H−1

Y

λ∑
j=1

DjHX1m
j = −H−1

Y

λ∑
j=1

Djp
j

=⇒ access-optimal MDS code. Pick Xj = γjX1 such that Xi ’s, Y are disjoint.

Can add a column to HY such that q ≥ kF + r I − 1 is sufficient

Xiangliang Kong, “Locally Repairable Convertible Codes With Optimal Access Costs”, IEEE Trans. in Info. Theory 2024.

Krishnan et. al. ”On Low Field Size MDS Convertible Codes”, IEEE ISIT 2025
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Our Approach

P I and PF are Cauchy matrices.

Cauchy matrix C(X ,Y ) where X = {x1, · · · , xk}, Y = {y1, · · · , yr} :

C(X ,Y ) =


1

x1−y1

1
x1−y2

· · · 1
x1−yr

1
x2−y1

1
x2−y2

· · · 1
x2−yr

...
...

. . .
...

1
xk−y1

1
xk−y2

· · · 1
xk−yr


Cauchy matrices are super-regular.

Goal: Design X ,Y and X1 of cardinalities kF , r I , k I such that:

PF = C (X ,Y ) is parallel-block reconstructable from P I = C(X1,Y )

Enough to look at rF = r I = r .

For rF ≤ r I , we do not convert (r I − rF ) nodes
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Sub-Group Based Construction: Using Multiplicative
Sub-Group of F∗

q

Let Fq be such that r | (q − 1) and ν = q−1
r
, k I ≤ ν − 1

Let α be the primitive element of Fq and γ = αν .

Y = {γ, γ2, · · · , γr = 1}, X1 = {α, α2, · · · , αk I }, Xℓ = γℓ−1X1,X = ∪λ
ℓ=1Xℓ

X1, · · · ,Xλ,Y are disjoint if λ ≤ r

PF = C (X ,Y ) is parallel-block reconstructable from P I = C (X1,Y )

PF ,ℓ(i , j) =
1

γℓ−1αi − γ j
=

γ−(ℓ−1)

αi − γ j−ℓ+1

= γ−(ℓ−1)P I (i , j ′)

where j ′ ∈ [r ] such that γ j′ = γ j−ℓ+1.

▶ j-th column of PF ,ℓ is scaling of j ′-th column of P I
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Sub-Group Based Construction: Using Multiplicative
Sub-Group of F∗

q

Modification 1: λ ≤ (r − 1)

▶ Let Fq be such that (r − 1) | (q − 1) and ν = q−1
r−1

, k I ≤ ν − 1, γ = αν .

Y = {0, γ, · · · , γr−1 = 1}

▶ PF = C(X ,Y ) is parallel-block reconstructable from P I = C(X1,Y )
⋆ PF ,ℓ(i , 1) = 1

γℓ−1αi = γ−(ℓ−1)P I (i , 1)

Modification 2: λ ≤ (r − 2)

▶ Append an all-one column to Cauchy matrix is still super-regular matrix (Roth and G.
Seroussi, TIT 85)

▶ Fq be such that (r − 2) | (q − 1) and ν = q−1
r−2

, k I ≤ ν − 1, γ = αν .

Y = {0, γ, · · · , γr−2 = 1},

▶ PF =
[

1 C(X ,Y )
]
is parallel-block reconstructable from

P I =
[

1 C(X1,Y )
]
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Sub-Group Based Construction: Using Multiplicative
Sub-Group of F∗

q

r I = rF = 4, k I = 5, λ = 2 =⇒ kF =
10, nF = 14

Let q = 13 (meets the MDS conjecture
q = nF − 1)

Y = {26 = 11, 212 = 1, 0},X1 = {2, 22, 23, 24, 25},
X2 = {26, 27, 28, 29, 210, 211}

If λ = r − 2 and (r − 2) | (q − 1) for
q = (k I + 1)(r − 2) + 1 = nF − 1, then
MDS conjecture is met.

𝑃𝐼
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Sub-Group Based Construction: Additive Sub-Group of Fq

Let q = pm then Fq is isomorphic to {f (x) ∈ Fp[x ] | deg(f (x)) < m}
r = pu i.e., r | q and ν = q

r
= pm−u

Y = {f (x) ∈ Fp[x ] | deg(f (x)) < u} = {y1(x), · · · , yr (x)}
X1 = {f1(x), · · · , fk(x)}

⊆ {xuf (x) | f (x) ∈ Fp[x ], deg(f (x)) < m − u − 1}
Xℓ = yℓ(x) + X1

PF = C (X ,Y ) is parallel-block reconstructable from P I = C (X1,Y )

PF ,ℓ(i , j) =
1

yℓ(x) + fi (x)− yj(x)
=

1

fi (x)− yj′(x)

= P I (i , j ′)

where j ′ ∈ [r ] such that yj′(x) = yj(x)− yℓ(x).

▶ j-th column of PF ,ℓ is same as j ′-th column of P I

Can similarly modify to add all one column.
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Access Cost: Split regime

access cost ≥

{
(λ− 1)kF +min(rF , kF ) + rF r I ≥ rF

λkF + rF otherwise

(nI = k I + rF , k I = λkF , nF = kF + rF , kF )

Consider any initial MDS code described by generator matrix G I = [I P I ]

▶ Let GF = [I PF ] be generator matrix of final code where PF = P I (1 : kF , 1 : rF )
▶ Let m1, · · · ,mλ be message symbols of the λ final codewords
▶ Download m2, · · · ,mλ and compute m2pF , · · · ,mλpF

▶ Download the rF initial parities given by:

[m1 · · · mλ]P
I = m1P

F + [m2 · · · mλ]︸ ︷︷ ︸
known

P I (kF + 1 : k I , 1 : rF )

recover m1PF from above.
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Central vs Cooperative Conversion

γR ≥


λα(r I + k I (1− r I

rF
)) r I ≤ rF ≤ k I

λαrF rF ≤ r I

λαk I otherwise

Write cost is rFα in the central scheme

Can be made to be much smaller in the cooperative scheme.

Maturana and Rashmi: “Bandwidth Cost of Code Conversions in Distributed Storage: Fundamental Limit and Optimal

Constructions”, Trans. in Info. Theory 2023
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Bandwidth Cost of Code Conversion: Merge Regime
α is the number of symbols stored at each node.

▶ Example: k I = 4, r I = 1, rF = 3. Two initial codewords shown below. Each code
symbol is a vector with α = rF = 3 symbols in Fq . (Maturana and Rashmi, TIT
2023)

m1
0,0 m1

0,1 m1
0,2

m1
1,0 m1

1,1 m1
1,2

m1
2,0 m1

2,1 m1
2,2

m1
3,0 m1

3,1 m1
3,2

m1
0p

(1,0) m1
1p

(1,0) +m1
0p

(1,1) m1
2p

(1,0) +m1
0p

(1,2)

,

m2
0,0 m2

0,1 m2
0,2

m2
1,0 m2

1,1 m2
1,2

m2
2,0 m2

2,1 m2
2,2

m2
3,0 m2

3,1 m2
3,2

m2
0p

(1,0) m2
1p

(1,0) +m2
0p

(1,1) m2
2p

(1,0) +m2
0p

(1,2)

m1
0,0 m1

0,1 m1
0,2

m1
1,0 m1

1,1 m1
1,2

m1
2,0 m1

2,1 m1
2,2

m1
3,0 m1

3,1 m1
3,2

m2
0,0 m2

0,1 m2
0,2

m2
1,0 m2

1,1 m2
1,2

m2
2,0 m2

2,1 m2
2,2

m2
3,0 m2

3,1 m2
3,2

m1
0p

(1,0) +m2
0p

(2,0) m1
1p

(1,0) +m2
1p

(2,0) m1
2p

(1,0) +m2
2p

(2,0)

m1
0p

(1,1) +m2
0p

(2,1) m1
1p

(1,1) +m2
1p

(2,1) m1
2p

(1,1) +m2
2p

(2,1)

m1
0p

(1,2) +m2
0p

(2,2) m1
1p

(1,2) +m2
1p

(2,2) m1
2p

(1,2) +m2
2p

(2,2)

Maturana and Rashmi: “Bandwidth Cost of Code Conversions in Distributed Storage: Fundamental Limit and Optimal

Constructions”, Trans. in Info. Theory 2023
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Conclusions and Open Questions

Per-symbol access-optimal constructions for λ ≤ r with low field size.
▶ Can this parameter restriction be removed without increasing the field

size ?

What are the fundamental bandwidth limits for code conversion in split
regime ?

What are the fundamental bandwidth limits of co-operative conversion
?

▶ We have some preliminary schemes for the cooperative case that have
smaller bandwidth requirements compared to central conversion
bandwidth
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The Node Repair Problem

26/40



Erasure Codes and Node Failures

A median of 50 nodes are unavailable
per day.

98% of the failures are single node
failures.

A median of 180TB of network traffic
per day is generated in order to
reconstruct the RS coded data
corresponding to unavailable machines.

Thus there is a strong need for
erasure codes that can efficiently
recover from single-node failures.

Image courtesy: Rashmi et al.: “A Solution to the Network Challenges of Data Recovery in Erasure-coded Distributed Storage

Systems: A Study on the Facebook Warehouse Cluster,” USENIX Hotstorage, 2013.
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Conventional Node Repair of an RS Code

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

10 X 100MB

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data Chunk Parity Chunk Erased Chunk

In the example (14, 10) RS code,

1 the amount of data downloaded to repair 100MB of data equals 1GB.

clearly, there is room for improvement...
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Things that matter.

Low Storage Overhead. ✓

High Tolerance for erasures. ✓

Fast Repair (Single Node
Failure). ??

▶ Computation efficiency.
▶ Speed in procuring repair data.

⋆ low repair traffic.
⋆ smaller disk read latencies.

Image source: sine.co, cartoonstock.com
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Regenerating Codes

Parameters: ( (n, k, d), (α, β), B, Fq )

1

2

k

n

Data 
Collector

ᶓ

ᶓ
ᶓ

ᶓ capacity nodes

k+1

1

2

ᶔ

n

3

1’

ᶔ

ᶔ

ᶓ capacity nodes

d+1

Data (of size B) can be recovered by connecting to any k of n nodes

A failed node can be repaired by connecting to any d nodes, downloading β
symbols from each node; (dβ << file size B )

A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, “Network coding for distributed storage systems”, IEEE

Transactions on Information Theory, 2010
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Minimum Storage Regenerating Code

MSR codes are MDS that have least possible repair bandwidth

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

13 X 25MB

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data Chunk Parity Chunk Erased Chunk

1 Size of failed node’s contents: 100MB

2 RS repair BW: 1 GB

3 MSR Repair BW: 325 MB
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4-way Optimality of Clay code

Least possible storage overhead
(MDS Codes)

Least possible repair bandwidth
(MSR Codes)

Least possible disk read
(Optimal access MSR Codes)

Least possible sub-packetization
(Clay Codes)

Image courtesy: denverpost.com

Vajha et. al., Clay Codes: Moulding MDS Codes to Yield an MSR Code, USENIX FAST 2018.
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Ceph: Contributions

A popular opensource distributed
storage system used by CERN,

Flipkart, Cisco etc

”Us (+Vinayak) pitching Clay codes to Ceph in April
2017”

We have introduced Clay code as erasure code plugin. It is part of Ceph’s Nautilus release
(March 2019). As part of this we also introduced support for vector codes in Ceph.

Vajha et. al., Clay Codes: Moulding MDS Codes to Yield an MSR Code, USENIX FAST 2018.
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Clay Code Summary

The open-source implementation of Clay code in Ceph is for any (n, k, d)
parameters.

In comparison to (20, 16) RS code, for Workloads with large sized objects (64MB),

the Clay code (20, 16, 19):

▶ resulted in repair time reduction by 3X .
▶ Improved degraded read and write performance by 27.17% and 106.68%

respectively.

Vajha et. al., Clay Codes: Moulding MDS Codes to Yield an MSR Code, USENIX FAST 2018.
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Open Questions

Sub-packetization level prohibitive in realizing the benefits of MSR
codes in practice.

Given a fixed sub-packetization level, what is the minimal repair
bandwidth that is required ?
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Appendix
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Moulding an MDS Code to Yield the Clay Code

(n = 4, k = 2) MDS code with optimal repair of systematic nodes, α = 2

(0,0) (0,1)
(1,0) (1,1)

Parity
Data

Code symbols of [4, 2] MDS code.

z=0

x
y

z=1

Layer two such units

Uncoupled code still needs 4 symbols during recovery of single node
(containing 2 symbols).
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Moulding an MDS Code to Yield the Clay Code

(n = 4, k = 2) MDS code with optimal repair of systematic nodes, α = 2

(0,0) (0,1)
(1,0) (1,1)

Parity
Data

Code symbols of [4, 2] MDS code.

z=0

x
y

z=1

Layer two such units

Uncoupled code still needs 4 symbols during recovery of single node
(containing 2 symbols).
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Moulding an MDS Code to Yield the Clay Code

(n = 4, k = 2) MDS code with optimal repair of systematic nodes, α = 2

C

C*U*
U

Coupled CodeUnCoupled Code[
C
C∗

]
=

[
1 γ
γ 1

] [
U
U∗

]

Uncoupled code has 2 planes, where each plane
corresponds to an [4, 2] MDS code

Coupled code symbols are obtained by:

▶ Copying symbols with red dots
▶ Pair of yellow symbols {C ,C∗} are

obtained by transformation

Note that recovery of any failed node in Uncoupled code requires 4 symbols
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Repair from single node loss

C

C*

symbols that are available as part of helper
information

symbols that are computable in uncoupled
cube

U*

symbols recovered after using the [4, 2] MDS
code

C

C*

C recovered from C∗,U∗

Used 3 symbols to recover the 2 symbols. For a file of size 1GB distributed across 2
500MB nodes. Need 750MB to recover the 500MB node instead of the whole 1GB.
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Clay Code

(n = 4, k = 2, d = 3) MSR code with all node optimal repair

C

C*

Coupled Code

U

U*

Uncoupled Code

The same construction extends to any (n, k , d)
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