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Setting Addressed by Streaming Codes

@ Sequence of information-bearing packets x(0), x(1), ..., sent over an erasure channel
@ Packet drops (erasures), occur due to

> network congestion,
> a degraded wireless link, or
> a packet that arrives too late.
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(blue rectangles denote erased packets)

Goal: use packet-level FEC to ensure best-possible tradeoff between rate and reliability

@ under decoding-delay constraint of 7 packets
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Tractable Packet Erasure Model

3/23



Delay Constrained Sliding-Window (DCSW) Channel
Model

(a, b, w, 7)-DCSW Channel

@ An admissible erasure pattern (AEP) is one in which, within each sliding window of
w-packet duration, there are
> either < a random erasures,
» or else, a burst of < b erasures
@ T7-packet decoding-delay constraint,

(3:27b:47WZ557—:4)

burst of b = 4 erasures a = 2 random erasures
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delay constraint T = 4

Badr et al., Layered Constructions for Low-Delay Streaming Codes,” IEEE Trans. Inf. Theory, 2017. 4/23



Streaming Codes

@ Streaming codes are packet-level FEC codes that can recover from all admissible
erasure patterns seen in a DCSW channel.

@ Can assume w.l.o.gthat w =7+1

T+1—a

Ron(a:0,7) & 59—

@ Restrict to parameters {a, b, 7}

» a<b<rT
> (a,b = a, ) case captures random erasures of size atmost a
> (a=1,b,7) case captures burst erasures of size atmost b.

Badr et al., Layered Constructions for Low-Delay Streaming Codes,” IEEE Trans. Inf. Theory, 2017.
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How do Streaming Codes perform over
Probabilistic Channels ?
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The Gilbert-Elliott Channel

| =1

PEC(e,) PEC(e,)

@ Gilbert Elliott (GE) is a two-state channel model
» G = Good State, B = Bad State

» PEC is a packet-level erasure channel

* ¢ is the probability of packet erasure in good state
* ¢; is the probability of packet erasure in bad state

@ capable of generating the random and burst erasures that one might encounter in
practice
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The Problem

Given
@ a GE channel model,
@ a delay constraint 7, and
@ a desired reliability Pe

> block erasure probability (BEP)
> packet erasure probability (PEP)

our approach is to:
@ select (4, b) parameters such that

» (3, b, ) streaming code achieves desired reliability P.
> results in highest rate among the set of (a, b) pairs that satisfy the reliability
constraint

@ can then employ a rate-optimal streaming code for (3§, b, 7)-DCSW channel.
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How to Estimate Reliability of Streaming Codes?

9/23



Two Approaches to Constructing Streaming Codes

(a=2,b=3,7=4)

Diagonal Embedding (DE)
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DE of (n =6, k = 3) Scalar Code

Parity-Check of Scalar Code:
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Horizontal Embedding (HE)

HE of (n =6, k = 3) Scalar Code
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Properties Required from Embedded Scalar Code (ESC)

@ j-th window for i € [n — 7 — 1]: Should be able to recover ¢; from available symbols

Window of size 7 + 1

C1

C2

S e e e e e ————

known symbols

@ n — 7-th window: Should be able to recover all the erased code symbols in this
window

Window of size 7+ 1

e === ——

| €1 | C2 | Cn-1-1 Cn-t

known symbols

@ There are rate-optimal ESC code constructions for any {a, b, 7} with field size
O(r®) with (n=7+1—a+ b k=n—b).

11/23



Two Approaches to Constructing Streaming Codes

@ HE of ESC results in parity packet insertion approach. Can compute the block
erasure probability (BEP) as follows:

BEP(n, a, b,7) = P(E{ ¢ AEP) £ A

@ DE of ESC results in packet expansion approach. Can use A to determine upper
bounds on packet erasure probability (PEP).

t+n-1

t—k+1 t—1 t t+n—-2
! tt Trivial bound on PEP
2
PEP = P(E.=1nUD(ESHT))
k < P((Ee=1)n (USL(EZT ¢ AEP)))
< kP(E! ¢ AEP)

Goal: To compute P(E{ ¢ AEP).
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Admissible Erasure Patterns

T+1=28

AEP = N (AUB)

@ A; is the set of erasure patterns that have weight < a in window [i : i + 7]

@ B; is the set of erasure patterns that have span < b in window [i : i + 7]

Goal: To get a handle on the P(AEP)
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What is Known for GE Channels ?

@ Closed form expression for P(A;) and P(B;) known.
@ We provide an expression for P(A; U B;)

@ We come up with bounds for P(AEP).
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Computing Probability of an Erasure Pattern

Can show that
(1*0)‘ a-m
e G P En_ ny _ 4T
(Ef =€) =1 V(en)-
|

I

PEC(e,) PECe,)
o = [aiiﬁ aL-I—ﬁ] is the stationary probability vector

@ V s defined as below:

rs e=1
w(e):{(/—r)s e=0

@ S= [1;04 165} andr:[60 61].

transitional probability matrix

@ Notice that V(0) + V(1) =S

S W(ey)m
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Computing Random Erasure Probabilities

@ Let A be the set of erasures whose weight is atmost a in window of length n.

a

P(A) = > P(w(E)=1i)

closed form expression known

@ BEP of an [n, k = n — a] MDS code when used over GE channel is given by
1— P(A).

C. Pimentel and I. F. Blake, “Enumeration of markov chains and burst error statistics for finite state channel models,” IEEE

Transactions on Vehicular Technology, 1999.
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Computing Burst Erasure Probabilities

@ Let B be the set of erasures whose span is atmost b in window of length n.

@ Let b; be the probability of erasures where the first erasure appears at index i and

SR T S S S N

don’t care
P(B) = P(E'=0)+) b
i=1

b = 1Tw(o)nfifburlSb’flw(l)w(o)ifll

where b’ = min{b,n — i + 1}.

@ Any cyclic code with parameters [n, k = n — b] has BEP upper bounded by
1 - P(B).

G. HaBlinger and O. Hohlfeld, "Analysis of random and burst error codes in 2-state markov channels,” in 34th International

Conference on Telecommunications and Signal Processing (TSP 2011).
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Computing P(AU B)

@ AU B is the set of erasure patterns either have weight atmost a or span atmost b in
window of length n.

P(AUB) = P(A)+P(B\A)2 Pu(n,a,b)

@ Let a; be the probability of erasures where the first erasure appears at index i and
the span < b and weight > a.

Lo [ - Jo [ [ x[ [ x]of . [o]
( Y )
weight > a
P(B\A) = nifa;
a = 1Tw(0)"PFIQ(E — 1,2 D)WA)W(0) 'x

where b’ = min{b,n — i + 1}
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Bounding P(AEP)

P(AEP) = P(N!Z (Ai U B;))

@ AU B is the set of erasure patterns that either have weight atmost a or span atmost
b in a window [1 : n].

@ A; U B; is the set of erasure patterns that either have weight atmost a or span
atmost b in a window [i : 7 + i].

(AU B) AEP

- (A1 @] B1)
Pws(n, a, b) < P(AEP)

c
S PWS(T+17a7b)
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Bounds on BEP of streaming code

@ Improved the bounds by coming up with tractable sets L, U such that:

(AUB)CLC AEP CUC (AUB)
1-P(U)< BEP <1-P(L)

L £ LaU Lg

@ L4 and Lg defined such that AC Ly and B\ AC Lg

Le = UL upin bt gy
Lgip = {ef|w(e)=0,e=epp1=1,
W(eierir;,{i+b/+T—a,n}) -0, W(e/_i+b’—1) > a}
[o [Tl e e oo lx]x]x]
LTighYtT} don’t care
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Bounds on BEP of streaming code

(a=3,b=6,7 = 10) streaming code
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Choosing a, b Using BEP Upper Bound

@ (a,b) is picked to give best rate while meeting BEP< P, requirement for
(n=74+14b—a, k =n— b) streaming code.

@ For [r+ 1,7+ 1 — a] MDS codes minimal value of a is picked

requirement.
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Thanks!
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