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Setting Addressed by Streaming Codes

Sequence of information-bearing packets x(0), x(1), . . ., sent over an erasure channel

Packet drops (erasures), occur due to

I network congestion,
I a degraded wireless link, or
I a packet that arrives too late.

1 ….

Network

2 3 4 5 1 ….3 5

Streaming Server

(blue rectangles denote erased packets)

Goal: use packet-level FEC to ensure best-possible tradeoff between rate and reliability

under decoding-delay constraint of τ packets
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Tractable Packet Erasure Model
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Delay Constrained Sliding-Window (DCSW) Channel
Model

(a, b,w , τ)-DCSW Channel

An admissible erasure pattern (AEP) is one in which, within each sliding window of

w -packet duration, there are

I either ≤ a random erasures,
I or else, a burst of ≤ b erasures

τ -packet decoding-delay constraint,

(a = 2, b = 4,w = 5, τ = 4)

𝑥(8) 𝑥(9) 𝑥(10) 𝑥(11) 𝑥(12) 𝑥(13) 𝑥(14) 𝑥(15) 𝑥(16) 𝑥(17)…. ….

burst of 𝐛 = 𝟒 erasures 𝒂 = 𝟐 random erasures

𝑥(7)

delay constraint 

Badr et al., Layered Constructions for Low-Delay Streaming Codes,” IEEE Trans. Inf. Theory, 2017.
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Streaming Codes
Streaming codes are packet-level FEC codes that can recover from all admissible
erasure patterns seen in a DCSW channel.

Can assume w.l.o.g that w = τ + 1

……

! (# + 1 − ')

……

……

! (w − ')

……

Ropt(a, b, τ) ,
τ + 1− a

τ + 1− a + b

Restrict to parameters {a, b, τ}
I a ≤ b ≤ τ
I (a, b = a, τ) case captures random erasures of size atmost a
I (a = 1, b, τ) case captures burst erasures of size atmost b.

Badr et al., Layered Constructions for Low-Delay Streaming Codes,” IEEE Trans. Inf. Theory, 2017.
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How do Streaming Codes perform over
Probabilistic Channels ?
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The Gilbert-Elliott Channel

PEC(𝜖0) PEC(𝜖1)

G B

𝛼

𝛽

(1 − 𝛼) (1 − 𝛽)

Gilbert Elliott (GE) is a two-state channel model

I G ≡ Good State, B ≡ Bad State

I PEC is a packet-level erasure channel

F ε0 is the probability of packet erasure in good state
F ε1 is the probability of packet erasure in bad state

capable of generating the random and burst erasures that one might encounter in
practice
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The Problem

Given

a GE channel model,

a delay constraint τ , and

a desired reliability Pe

I block erasure probability (BEP)
I packet erasure probability (PEP)

our approach is to:

select (â, b̂) parameters such that

I (â, b̂, τ) streaming code achieves desired reliability Pe

I results in highest rate among the set of (a, b) pairs that satisfy the reliability
constraint

can then employ a rate-optimal streaming code for (â, b̂, τ)-DCSW channel.
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How to Estimate Reliability of Streaming Codes?
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Two Approaches to Constructing Streaming Codes

(a = 2, b = 3, τ = 4)

Diagonal Embedding (DE)

c1

c2

c3

c4

c5

c6

𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7)

re
du
n
da
nc
y

τ=4 deadline

DE of (n = 6, k = 3) Scalar Code

Horizontal Embedding (HE)

c1 c2 c3 c4 c5 c6

𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6)

redundancy

τ=4 deadline

HE of (n = 6, k = 3) Scalar Code
Parity-Check of Scalar Code: 1 0 0 1 α 0

1 0 c11 c12 c13 1
0 1 c21 c22 c23 0


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Properties Required from Embedded Scalar Code (ESC)

i-th window for i ∈ [n− τ − 1]: Should be able to recover ci from available symbols

𝑐ଵ 𝑐ଶ … 𝑐௜ିଵ 𝑐௜ 𝑐௜ାଵ 𝑐௜ାଶ … 𝑐௜ାఛ 𝑐௜ାఛାଵ … 𝑐௡

Window of size 𝜏 + 1

known symbols inaccessible symbols

n − τ -th window: Should be able to recover all the erased code symbols in this
window

𝑐ଵ 𝑐ଶ … 𝑐௡ିఛିଵ 𝑐௡ିఛ 𝑐௡ିఛାଵ … 𝑐௡

Window of size 𝜏 + 1

known symbols

There are rate-optimal ESC code constructions for any {a, b, τ} with field size
O(τ 2) with (n = τ + 1− a + b, k = n − b).

11/23



Two Approaches to Constructing Streaming Codes

HE of ESC results in parity packet insertion approach. Can compute the block
erasure probability (BEP) as follows:

BEP(n, a, b, τ) = P(E n
1 /∈ AEP) , ∆

DE of ESC results in packet expansion approach. Can use ∆ to determine upper
bounds on packet erasure probability (PEP).

𝑡𝑡 − 𝑘 + 1
𝑡 + 𝑛 − 1

1

2

1 1

𝑘

𝑛

𝑡 − 1 𝑡 + 𝑛 − 2

𝑛𝑛

Trivial bound on PEP

PEP = P(Et = 1 ∩ ∪k
i=1Di (E

t−i+n
t−i+1 ))

≤ P
(
(Et = 1) ∩

(
∪k

i=1(E t−i+n
t−i+1 /∈ AEP)

))
≤ kP(E n

1 /∈ AEP)

Goal: To compute P(E n
1 /∈ AEP).
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Admissible Erasure Patterns

1 2 3 4 5 6 7 8 9 10

𝑛 = 10

𝜏 + 1 = 8

AEP = ∩n−τ
i=1 (Ai ∪ Bi )

Ai is the set of erasure patterns that have weight ≤ a in window [i : i + τ ]

Bi is the set of erasure patterns that have span ≤ b in window [i : i + τ ]

Goal: To get a handle on the P(AEP)
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What is Known for GE Channels ?

Closed form expression for P(Ai ) and P(Bi ) known.

We provide an expression for P(Ai ∪ Bi )

We come up with bounds for P(AEP).
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Computing Probability of an Erasure Pattern

PEC(𝜖0) PEC(𝜖1)

G B

𝛼

𝛽

(1 − 𝛼) (1 − 𝛽)
Can show that

P(E n
1 = en1 ) = 1TΨ(en) · · ·Ψ(e1)π

π = [ β
α+β

α
α+β

] is the stationary probability vector

Ψ is defined as below:

Ψ(e) =

{
ΓS e = 1

(I − Γ)S e = 0

S =

[
1− α β
α 1− β

]
︸ ︷︷ ︸

transitional probability matrix

and Γ =

[
ε0

ε1

]
.

Notice that Ψ(0) + Ψ(1) = S
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Computing Random Erasure Probabilities

Let A be the set of erasures whose weight is atmost a in window of length n.

P(A) =
a∑

i=0

P(w(E n
1 ) = i)︸ ︷︷ ︸

closed form expression known

BEP of an [n, k = n − a] MDS code when used over GE channel is given by
1− P(A).

C. Pimentel and I. F. Blake, “Enumeration of markov chains and burst error statistics for finite state channel models,” IEEE

Transactions on Vehicular Technology, 1999.
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Computing Burst Erasure Probabilities
Let B be the set of erasures whose span is atmost b in window of length n.

Let bi be the probability of erasures where the first erasure appears at index i and
the span ≤ b.

1 … 𝑖 − 1 𝑖 𝑖 + 1 … 𝑖 + bᇱ − 1 𝑖 + b′
…

n

0 … 0 1 X … X 0 … 0

don’t care

P(B) = P(E n
1 = 0) +

n∑
i=1

bi

bi = 1TΨ(0)n−i−b′+1Sb′−1Ψ(1)Ψ(0)i−1π

where b′ = min{b, n − i + 1}.

Any cyclic code with parameters [n, k = n − b] has BEP upper bounded by
1− P(B).

G. Haßlinger and O. Hohlfeld, “Analysis of random and burst error codes in 2-state markov channels,” in 34th International

Conference on Telecommunications and Signal Processing (TSP 2011).
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Computing P(A ∪ B)

A∪B is the set of erasure patterns either have weight atmost a or span atmost b in
window of length n.

P(A ∪ B) = P(A) + P(B \ A) , Pws(n, a, b)

Let ai be the probability of erasures where the first erasure appears at index i and
the span ≤ b and weight > a.

1 … 𝑖 − 1 𝑖 𝑖 + 1 … 𝑖 + bᇱ − 1 𝑖 + b′
…

n

0 … 0 1 X … X 0 … 0

weight 

P(B \ A) =
n−a∑
i=1

ai

ai = 1TΨ(0)n−i−b′+1Q(b′ − 1, a− 1)Ψ(1)Ψ(0)i−1π

where b′ = min{b, n − i + 1}
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Bounding P(AEP)

P(AEP) = P(∩n−τ
i=1 (Ai ∪ Bi ))

A∪B is the set of erasure patterns that either have weight atmost a or span atmost
b in a window [1 : n].

Ai ∪ Bi is the set of erasure patterns that either have weight atmost a or span
atmost b in a window [i : τ + i ].

(A ∪ B) ⊆ AEP ⊆ (A1 ∪ B1)

Pws(n, a, b) ≤ P(AEP) ≤ Pws(τ + 1, a, b)
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Bounds on BEP of streaming code

Improved the bounds by coming up with tractable sets L,U such that:

(A ∪ B) ⊆ L ⊆ AEP ⊆ U ⊆ (A1 ∪ B1)

1− P(U) ≤ BEP ≤ 1− P(L)

L , LA ∪ LB

LA and LB defined such that A ⊆ LA and B \ A ⊆ LB

LB = ∪n−a
i=1 ∪

min{n−i+1,b}
b′=a+1 LB,i,b′

LB,i,b′ = {en1 | w(e i−1
1 ) = 0, ei = ei+b′−1 = 1,

w(e
min{i+b′+τ−a,n}
i+b′ ) = 0,w(e i+b′−1

i ) > a}

1 … 𝑖 − 1 𝑖 𝑖 + 1 … 𝑖 + bᇱ − 1 𝑖 + b′
…

𝑖 + bᇱ + 𝜏 − 𝑎 … n

0 … 0 1 X … 1 0 … 0 X X X

weight 
don’t care
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Bounds on BEP of streaming code

(a = 3, b = 6, τ = 10) streaming code

0 0.002 0.004 0.006 0.008 0.01
0.5

1
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4.5
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10
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Upper Bound

Improved Upper Bound

Block Erasure Probability

Improved Lower Bound

Lower Bound

GE(α = 10−4, β = 0.5, ε0 = ε, ε1 = 1)
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Choosing a, b Using BEP Upper Bound
(a, b) is picked to give best rate while meeting BEP≤ Pe requirement for
(n = τ + 1 + b − a, k = n − b) streaming code.

For [τ + 1, τ + 1− a] MDS codes minimal value of a is picked to satisfy BEP
requirement.

GE(α = 10−4, β = 0.5, ε0 = ε, ε1 = 1), τ = 10 and Pe = 10−5
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Thanks!
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