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Sphere packings

What is the maximum number of n-dim spheres we can pack in a given volume?
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Infinite sphere packings
• Sphere packing: Collection of infinitely many non-overlapping spheres of
radius r in Rn

• Density: Fraction of volume in Rn that is occupied by the spheres

Problem: Find a sphere packing with the largest density

• Open problem! Solutions only known for:

n Optimality
1 trivial
2 Hexagonal [Lagrange 1773, Thue 1890]
3 BCC [Kepler 1611, Gauss 1831, Hales 1998]
8 E8 [Viazovska 2017]
24 Leech [Cohn-Kumar 2009, Cohn et al, 2017]
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What about large n?

Open problem!

Best known bounds [Campos et al 2023, Kabatiyanskii-Levenshtein 1978]:

1
2n ď

n lnn
2n`1 p1 ´ op1qq ď ∆optpnq ď

1
20.599np1`op1qq

Nice survey: Cohn, “A conceptual breakthrough in sphere packings,” 2017
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Sphere packings within bounded regions

How many nonoverlapping n-dimensional
balls of radius

?
nN can we pack in a larger

ball of radius
?
nP?

Open problem!
[Blachman 1962]

[Kabatiansky and Levenshtein 1978]
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An equivalent formulation

How many points can we place within
Bnp

?
nPq such that the minimum pairwise

distance between points is at least 2
?
nN?
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Connection to channel coding: Jamming adversary

Encoder

Jammer

Decoder

Want a code with minimum pairwise distance 2
?
nN
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Connection to channel coding: Jamming adversary

Encoder

Jammer

+ Decoder

Want a code with minimum pairwise distance 2
?
nN

7



Relaxation: Multiple packing

How many Bp¨,
?
nNq balls can we pack in

Bp0,
?
nPq such that no more than L balls
intersect at any given point?
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Relaxation: Multiple packing

How many Bp¨,
?
nNq balls can we pack in

Bp0,
?
nPq such that no more than L balls
intersect at any given point?

We can answer this! (partially)
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(Adversarial) List decoding

Encoder

Jammer

Decoder

Output ML “ tM1, . . . ,MLu with the guarantee that M P ML
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Why study list decoding?

• Interesting generalization of unique decoding [Elias 1957, Wozencraft 1958]
and sphere packing

• With short pre-shared secret key between Encoder-Decoder, possible to
decode message uniquely! [Langberg 2004, Sarwate 2008, Bhattacharya et al.
2019]

• Useful proof technique to prove achievability results for more complicated
channels with jammers [Zhang et al. 2018, Zhang et al. 2020]

• Large body of work on list decoding over finite fields, and many connections
to complexity theory, cryptography, combinatorics, quantum, etc.
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Formal definition
Given P,N ą 0 and L P Zě2, a pP,N, Lq list decodable code C is a collection of
points in Rn satisfying

• Power constraint: x P Bnp0,
?
nPq for all x P C

• List decodability: |Bnpy,
?
nNq X C| ď L, for

all y P Rn.
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Formal definition
Given P,N ą 0 and L P Zě2, a pP,N, Lq list decodable code C is a collection of
points in Rn satisfying

• Power constraint: x P Bnp0,
?
nPq for all x P C

• List decodability: |Bnpy,
?
nNq X C| ď L, for

all y P Rn.

Rate of C:
RpCq –

1
n ln |C|
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Fundamental question

Goal: Characterize the list decoding capacity CLpP,Nq: The limsup of achievable
rates of pP,N, Lq-list decodable codes.

Theorem (List decoding capacity - folklore)
CpP,Nq

def
“

1
2 ln

P
N

• There exist codes with rate CpP,Nq ´ ϵ that are pP,N, Lq list decodable with
L “ Op 1ϵ log

1
ϵq.

• Any sequence of pP,N, Lq list decodable codes with asymptotic rate greater than
CpP,Nq must necessarily have L “ eΘpnq.
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Existence of codes
Take

?
Nδ “

?
N `

?
δ,

R “
1
2 ln

P
Nδ

´ ϵ

Random coding: Pick enR codewords cp1q, . . . , cp2nRq i.i.d. uniform over Bnp
?
nPq.

For any y P Rn and i P r2nRs,

Prrcpiq P Bnpy,
a

nNδqs ď
volpBnp

?
nNδqq

volpBnp
?
nPqq

“

ˆ

Nδ

P

˙n{2

For any y P Rn and i1, i2, . . . , iL`1,

Prrcpikq P Bnpy,
a

nNδq for k “ 1, 2, . . . , L ` 1s ď

ˆ

Nδ

P

˙npL`1q{2
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Existence of codes (contd)
For any y P Rn,

PrrThere are more than L codewords in Bnpy,
a

nNδqs

ď

˜

enR

L ` 1

¸

ˆ

Nδ

P

˙npL`1q{2

ď exp

ˆ

npL ` 1q
ˆ

R ´
1
2 ln

P
Nδ

˙˙

ď exp p´npL ` 1qϵq

Final step: Take a δ-covering of Bnp
?
nP `

?
nδq and use union bound

PrrThere are more than L codewords in Bnpy,
?
nNq for any ys

ď
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Final step: Take a δ-covering of Bnp
?
nP `

?
nδq and use union bound

PrrThere are more than L codewords in Bnpy,
?
nNq for any ys

ď exp

˜

n ln
˜?

P `
?
δ

?
δ

¸

p1 ` op1qq ´ npL ` 1qϵ
¸

ďL exppΘpnqq
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Comments
• R ą CpP,Nq: Show the existence of a “witness” y by picking one at random
[Zhang et al. 2018]

• Structured codes: There exist nested lattice codes with rate R “ CpP,Nq ´ ϵ

that are pP,N, Lq list decodable with L “ 2Op 1
ϵ
log2 1

ϵ
q [Zhang and Vatedka 2019]

• Unbounded L-packings: There exist unbounded L-packings with density
p1 ` δq´n for L “ Op 1

δ log
1
δ q

• Unbounded lattice packings: There exist lattices with density p1 ` δq´n that
are L-packings for L “ 2Op 1

δ
log2 1

δ
q [Zhang and Vatedka 2019]

• Open questions: Order-optimal dependence on ϵ, δ
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What about CLpP,Nq for fixed L?

• Using random (expurgated) Gaussian codebooks [Zhang and Vatedka 2022],

CLpP,Nq ě
1
2

„

ln
LP

pL ` 1qN `
pL ` 1qN

LP ` 1
ȷ

• Using random (expurgated) spherical codebooks [Zhang and Vatedka 2022],

CLpP,Nq ě
1
2

„

1 ´
pL ` 1qN

LP `
1
L ln

P
LpP ´ Nq

ȷ

• For N ď PL{pL ` 1q [Blinovsky 1999, Zhang and Vatedka 2022],

CLpP,Nq ď
1
2 ln

LP
pL ` 1qN
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Tighter lower bound

[Blinovsky 1999, Zhang and Vatedka 2021]1

CLpP,Nq ě
1
2

„

ln

ˆ

LP
pL ` 1qN

˙

`
1
L ln

ˆ

P
pL ` 1qpP ´ Nq

˙ȷ

• Also holds under a stronger notion of average-radius list decoding
• As L Ñ 8, the r.h.s. Ñ 1

2 ln
P
N

• L “ 1: recovers best known lower bound for sphere packing [Blachman 1962]

1Blinovsky, “Multiple packing of the Euclidean sphere,” IEEE Trans Inf Theory, 1999
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Bounds on C5pP,Nq

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
N/P

0.0

0.5

1.0

1.5

2.0
Ra

te
List decoding capacity for L
This work
Achievable rates using Gaussian codebooks [Zhang-Vatedka]
Upper bound [Blinovsky]
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Bounds on C6pP,Nq
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Ideas

Key tool: identifying a connection between adversarial list decoding and list
decoding over Gaussian channels.

Good codes for (error exponents of) AWGN channels
yield good (adversarial) list decodable codes!

(with expurgation)

Careful analysis of higher-order Voronoi regions
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Useful connection

Chebyshev radius: For any L Ă Rn, the
Chebyshev radius radpLq is the radius of
the smallest closed ball containing L.

A code C is pP,N, L ´ 1q list decodable iff
it satisfies a power constraint of P, and
every L Ă C of size L has Chebyshev
radius at least

?
nN.
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Step 1: Key lemma
We show: for any code C of size M, there exists a subcode C1 of size M{2 for which
the following holds:

For every L Ă C1 with |L| “ L, we have

PML
e,avg,L´1pCq ě exp

ˆ

´
radpLq

2σ2 ´ opnq

˙

or,

radpLq ě 2σ2 ˆ ln

˜

1
PML

e,avg,L´1pCq

¸

` opnq

Connects Chebyshev radius of L-subsets of codes with error exponents for list
decoding over Gaussian channels.
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Step 2: Bounds on list decoding error exponent for
Gaussian channels

Achievable expurgated error exponent: There exist sequences of codes for which

1
n ln

1
PML

e,avg,L´1pCq
“ Eex,L´1pRq ´ op1q “ ´ min

sě0,ρě1
Fps, ρq ´ op1q

where

Fps, ρq :“ RpL ´ 1qρ ´ ρ

„

sLP `
1
2 lnp1 ´ 2sPq `

L ´ 1
2 ln

ˆ

1 ´ 2sP `
P

σ2Lρ

˙ ȷ

.
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Error exponents

• Proof: standard techniques [Gallager 1968]

• List decoding error exponents for Gaussian channels: [Gallager 1968, Merhav
2014]2

• This work: more explicit expressions for the error exponent

2N. Merhav, “List decoding – random coding exponents and expurgated exponents,” IEEE Trans Inf
Theory, 2014
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Achievable rate for adversarial list decoding
Set partial derivatives of Fps, ρq to 0. We get ρ “ L´1´2LPs

2L2sp1´2Psqσ2 , and

R “
1
2

„

ln
pL ´ 1qp1 ´ 2Psq

Lp1 ´ 2Psq ´ 1 `
1

L ´ 1 lnp1 ´ 2Psq

ȷ

.

Use this ρ, then
Fps, ρq “ ´

PpLp1 ´ 2Psq ´ 1q
2Lσ2p1 ´ 2Psq

and
N ě

PpLp1 ´ 2Psq ´ 1q
Lp1 ´ 2Psq

.

Choose the s that maximizes the r.h.s. above.

R “
1
2

„

ln
pL ´ 1qP

LN `
1

L ´ 1 ln
P

LpP ´ Nq

ȷ

.
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Higher-order Voronoi regions
For any x1, x2, . . . , xL, define

Vpx1, . . . , xL´1q “

!

y P Rn : }y ´ xL} ą }y ´ xi}, 1 ď i ď L ´ 1
)
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Probability of ML list-decoding error

• When xL is transmitted across AWGNC, ML decoder makes error if received
vector lies in Vpx1, . . . , xL´1q

• Bound this probability from above
• But higher-order Voronoi regions are complicated!
• Idea: lower bound error probability using a simpler region
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Lower bound error probability using simpler region

As long as minimum distance between
codewords is Ωp

?
nq, higher order

Voronoi region always contains a cone of
certain radius.

Use this to show

PML
e,avg,L´1pLq ě exp

ˆ

´
radpLq

2σ2 ´ op1q
˙
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Extensions: Unbounded packings

Infinite Constellations: Same setup, but no power constraint at the transmitter

“Rate”: Normalized Logarithmic Density

R “
1
n lim sup

aÑ8
ln

ˆ

|C X r´a{2,a{2sn|

an

˙

List decoding capacity: For L “ ωp1q,

CpNq “
1
2 ln

1
2πeN
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Bounds for unbounded L-packings

Similar ideas yield

CLpNq ě
1
2 ln

ˆ

L
2πeNpL ` 1q

˙

´
lnpL ` 1q

2L

The r.h.s. Ñ 1
2 ln

1
2πeN as L Ñ 8.

We can also show that
CLpNq ď

1
2 ln

ˆ

L
2πeNpL ` 1q

˙

30
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Open questions

• Tighter upper/lower bounds on CLpP,Nq and CLpNq

• Improved bounds on list size for lattices and nested lattice codes

• Explicit codes/lattices that achieve list decoding capacity

• Connections of Euclidean list decoding to other problems
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More details

• Yihan Zhang and Shashank Vatedka, “Multiple packing: Lower and upper
bounds,” Arxiv, 2022

• Yihan Zhang and Shashank Vatedka, “Multiple packing: Lower bounds via
infinite constellations,” IEEE Transactions on Information Theory, July 2023

• Yihan Zhang and Shashank Vatedka, “Multiple packing: Lower bounds using
error exponents,” IEEE Transactions on Information Theory, Feb 2024

• Yihan Zhang and Shashank Vatedka, “List decoding random Euclidean codes
and infinite constellations,” IEEE Transactions on Information Theory, Dec
2022
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