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Motivation: Latency Sensitive Applications

Several latency sensitive applications (real-time audio/video, AR/VR etc) that have
end-to-end (E2E) latency requirements under packet erasures

1 2 3 4 5 6 7 8 9

Source

Δ = 140ms

2 4 5 6 7 8 9P = 40ms

Destination

erased packetNetwork

∆: E2E delay, τ = 4: Delay in packet count

E2E delay modeled through count of packets accessed in future.

Goal: Design packet level FECs that can recover erasures within delay τ .
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Delay Profile Of a Block Code
An (n, k) linear block code can guarantee a worst case delay of (n − 1).

I systematic case, the message symbols have delay profile
(n − 1, n − 2, n − 3, · · · , n − k).

For a worst-case delay guarantee of τ , in presence of burst erasures of size b, any

burst correcting code with parameters n = τ + 1, k = n − b will work.

Can we do better (rate)?

Yes. Can construct (n = τ + b, k = n − b) linear block code with delay profile

(τ, · · · , τ︸ ︷︷ ︸
(b−1)

, τ, τ − 1, · · · , b). (details to follow)

I i-th message symbol with delay requirement < n − i will be refered to as
urgent symbol. Otherwise it is non-urgent symbol.

E. Martinian and M. Trott, ”Delay-Optimal Burst Erasure Code Construction,” ISIT 2007
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Erasure Model: Delay Constrained Sliding Window
(DC-SW) Channel

(i) Admissible erasure patterns (AEP): within a sliding window of size w :

either ≤ a random erasures, or a burst of ≤ b erasures

(ii) Decoding-Delay Parameter: τ

9 10

a = 2 random erasures

0 1 2 3 4 6 7 85

w = 5

burst of b = 4 erasures

w = 5
i erased pkt

(a = 2, b = 4,w = 5, τ = 4)

Badr et al., “Layered Constructions for Low-Delay Streaming Codes,” Trans. IT, 2017.
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Streaming Codes and Optimal Rate

Streaming code is a packet-level FEC that can correct from all AEP of DCSW
channel within a decoding delay constraint τ .

It turns out that WOLOG, we can assume w = τ + 1.

The rate R of an {a, b, τ} streaming code has the upper bound:

R ≤ (τ + 1)− a

(τ + 1) + b − a
, Ropt.

b b b𝜏+1-a 𝜏+1-a

Rate is 0 if τ < b. Non-trivial only when a ≤ b ≤ τ .

Badr et al., “Layered Constructions for Low-Delay Streaming Codes,” Trans. IT, 2017.

M. Vajha, V. Ramkumar, M. Jhamtani and P. V. Kumar, “On the Performance Analysis of Streaming Codes over the
Gilbert-Elliott Channel,” ITW 2021
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Settings Discussed in This Talk

S1: Single link, burst erasures only

(a = 1, 𝑏, 𝜏)
DCSW channel

S2: Single link, burst or random erasures

(a, 𝑏, 𝜏) DCSW 
channel

S3: 3-node relay, burst erasures only, delay constraint τ

Burst of size at 
most 𝑏

Burst of size at 
most 𝑏
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Redundancy through Packet Expansion Framework

Encoder�
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Can use scalar block codes to come up with streaming codes.
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Diagonal Embedding (DE)

Codewords of [n, k] scalar block code are diagonally placed in the packet stream.

This approach needs n − k ≥ b

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

m5 m5 m5

m6 m6 m6

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

p5 p5 p5

p6 p6 p6

	(0) 	(1) 	(2) 	(3) 	(4) 	(5) 	(6) 	(7) 	(8) 	(9) 	(10)	(11)	(12)	(13)

DE of [12, 6] scalar code where a = 4, b = 6, τ = 9
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Scalar Code Properties
For a given {a, b, τ} let

n = τ + 1 + δ, k = n − b where δ = b − a

For i ∈ [0 : δ − 1], to recover ci :

c0 ---- ci-1 ci ---- c𝜏+i c𝜏+i+1 ---- c𝜏+𝛿
a random erasures 
or burst of size b

available

Not accessible

Let E ⊂ [δ : τ + δ] be either the set of a random erasures or a set of consecutive b
erasures. To recover {cj | j ∈ E}:

c0 c1 ---- c𝛿-1 c𝛿 c𝛿+1 ---- c𝜏+𝛿-1 c𝜏+𝛿

a random erasures or 
burst of size b

available

The delay profile requirement here is ( τ, · · · , τ︸ ︷︷ ︸
δ urgent symbols

, τ, τ − 1, · · · , b︸ ︷︷ ︸
(k−δ) non-urgent symbols

)

δ = b − 1 when a = 1 for the burst only case.
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S1: Single Link, Burst Erasures

Ropt = τ
τ+b

(by setting a = 1 in Ropt)

Use (τ, τ − b) wrap-around burst correcting code (WA-BCC) to construct
(a = 1, b, τ) streaming code with (n = τ + b, k = n − b).

HWB =

[
P︸︷︷︸

(b×τ−b)

Ib
]

(n = τ + b, k = n − b) code with pc matrix H is an (a = 1, b, τ) streaming code

HWBS =
[
Ib P Ib

]
I Clearly burst erasure correcting code
I What about worst case delay ?
I i ∈ [0 : b − 1], mi requires delay τ , (until i-th parity available)
I m0 recovery: use 0-th pc
I mi recovery i ∈ [1 : b − 1]: need a pc equation with 0’s in locations

[i + 1 : i + b − 1], [τ + i + 1 : n − 1].

E. Martinian and M. Trott, ”Delay-Optimal Burst Erasure Code Construction,” ISIT 2007
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S1: Single Link, Burst Erasures
mi recovery

HWB =
[
P Ib

]
, HWBS =

[
Ib P Ib

]
HWBS([0 : i ], :) = [Ii+1 0︸︷︷︸

(i+1)×(b−i−1)

P([0 : i ], :) Ii+1 0︸︷︷︸
(i+1)×(b−i−1)

]

‘‘top-left” (i × i) sub-matrix of P (say Pi ) is invertible for any

i ∈ [min{b, n − b} − 1]

I ∃v ∈ Fi
2 such that [vT 1]P([0 : i ], [0 : i − 1]) = 0.[

vT 1
]
HWBS([0 : i ], :) = [vT 1 0︸︷︷︸

b−1

X vT 1 0︸︷︷︸
b−i−1

]

if n − b < b, any n − b “consecutive-rows” of P are l.i. Can show mi recoverable in
delay for i ∈ [n − b : b − 1]

Hollmann and Toulhuizen (HT) code is a binary WA-BCC.

E. Martinian and M. Trott, ”Delay-Optimal Burst Erasure Code Construction,” ISIT 2007
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WA-BCC: Hollmann and Toulhuizen (HT) Code

Recursive construction of (u × v) matrix Pu,v that appends identity matrices
column-wise or row-wise.

Pu,v =


[Iu Pu,v−u] v > u[

Iv

Pu−v,v

]
otherwise

Let HWB = [P Ib] be the pc matrix of (n, n − b) WA-BCC. P is an (b × n − b)

matrix.

I clear that Hcol
WB = [Ib P Ib] is pc matrix of (n + b, n) WA-BCC.

I Can show that row extension also retains the WA-BCC (using the fact that
dual of WA-BCC is also WA-BCC)

H row
WB =

[
In

In−b

P

]

H. D. L. Hollmann and L. M. G. M. Tolhuizen, ”Optimal Codes for Correcting a Single (Wrap-Around) Burst of Erasures,” in TIT

2008
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S2: Single Link, Random and Burst Erasures
JigSaw code

(a = 3, b = 6, τ = 8) streaming code defined by (6× 12) parity check matrix

0 1 2 3 4 5 6 7 8 9 10 11

α 0 0 0 0 0 𝑣0,6 𝑣0,7 𝑣0,8 0 0 0

0 α 0 0 0 0 0 𝑣1,7 𝑣1,8 𝑣1,9 0 0

0 0 α 0 0 0 0 0 𝑣0,8 𝑣1,9 𝑣2,10 0

1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

JigSaw is rate-optimal streaming code for any (a, b, τ) with field size of q2 where q ≥ τ .

α ∈ Fq2 \ Fq

M. Nikhil Krishnan, Deeptanshu Shukla and P. Vijay Kumar, “Rate-Optimal Streaming Codes for Channels With Burst and

Random Erasures”, IEEE Trans. Info. Theory, 2020
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S2: Explicit JigSaw Code
(a = 3, b = 6, τ = 8)

0 1 2 3 4 5 6 7 8 9 10 11

α 0 0 0 0 0 𝛼 0 0 0

0 α 0 0 0 0 0 1 0 0

0 0 α 0 0 0 0 0 1 0

1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

Last a = 3 rows of the pc matrix unchanged. Random erasure recovery follows from the
structure of JigSaw.

Support of the first δ = b − a = 3 rows changed construction. Matrix P has 0, 1 elements.

M. Vajha, V. Ramkumar, M. N. Krishnan and P. Vijay Kumar, ”Explicit Rate-Optimal Streaming Codes With Smaller Field Size,”

in IEEE ISIT 2021, Trans. Info. Theory, 2024
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S2: Explicit JigSaw Code
The definition of (u × v) matrix Pa

u,v is recursive.

Pa
u,v =



[
Iu 0︸︷︷︸

(u×a)

Pa
u,v−u−a

]
u + a < v

[
Iu 0︸︷︷︸

(u×(v−u))

]
u ≤ v ≤ u + a

[
Iv

Pa
u−v,v

]
v < u

This structure of the P matrix results in two properties on P̂ = [ 0︸︷︷︸
δ×a

P]

I consecutive-columns: any b consecutive columns of P̂ have a-zero columns and δ
linearly independent columns.

I bottom-right: bottom right sub-matrix of P̂ of size θ × (θ + a), there are a-zero
columns and θ linearly independent columns.

I top-left, consecutive-rows properties hold for P.

P3
3,2 =

[
I2
P3

1,2

]
=

 1 0
0 1
1 0

 .
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S2: Explicit JigSaw Code

(a = 3, b = 6, τ = 8). Support of the first δ = b − a = 3 rows changed.

0 1 2 3 4 5 6 7 8 9 10 11

α 0 0 0 0 0 1 0 𝛼 0 0 0

0 α 0 0 0 0 0 1 0 1 0 0

0 0 α 0 0 0 1 0 0 0 1 0

1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

0

1

2

3

4

5

top-left, consecutive rows properties can be used to show urgent symbol recovery from
burst.
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S2: Explicit JigSaw Code

(a = 3, b = 6, τ = 8).Burst erasure starting at index 4.

bottom-right, consecutive columns properties used to show burst recovery of non-urgent
symbols
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S3: 3 Node Relay, Burst Erasures
Rate Bound

Burst of size at 
most 𝑏

Burst of size at 
most 𝑏

An example, permissible erasure pattern in the R-D link

𝑥௥(𝑡 + 𝜏)𝑥௥(𝑡 + 𝜏 − 𝑏 + 1)𝑥௥(𝑡 + 𝜏 − 𝑏)𝑥௥(𝑡)

m(t) should be recovered at relay by t + τ − b

Rate in the S-R link upper bounded by rate of (a = 1, b, τ − b) DCSW channel.

(b, τ) streaming code for S3 satisfies

R ≤

{
τ−b
τ

τ ≥ 2b

0 otherwise

Generalized HT based streaming code achieves rate arbitrarily close to the upper
bound.

V. Ramkumar, M. Vajha, M. N. Krishnan, “Streaming Codes for Three-Node Relay Networks With Burst Erasures”, to appear in

ISIT 2024
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S3: 3 Node Relay, Burst Erasures
S-R link

(n = τ, k = τ − b) HT code is used at the source.

Example: τ = 10, b = 4, (4× 10) pc matrix

HHT =
[
I4 P4,2 I4

]
=
[
P4,6 I4

]
=

[
I4

I2 I4I2

]

I p0 = m0 + m4, p1 = m1 + m5, p2 = m2 + m4, p3 = m3 + m5

Transmit at Source

𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴𝑚ହ𝑚ସ𝑚ଷ𝑚ଶ𝑚ଵ𝑚଴

131211109876543210

𝑥௦(𝑡)

𝑡

Receive at Relay: Burst starting at time 0/1 in S-R link

𝑝̂ଷ𝑝̂ଶ𝑝̂ଵ𝑝̂଴𝑚ଷ𝑚ଶ𝑚ଵ𝑚଴𝑚ହ𝑚ସ

𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴𝑚ହ𝑚ସ

𝑥௥(𝑡)

𝑦௥(𝑡)

𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴𝑚ହ𝑚଴

𝑝̂ଷ𝑝̂ଶ𝑝̂ଵ𝑝̂଴𝑚ଷ𝑚ଶ𝑚ଵ𝑝଴𝑚ହ𝑚଴

𝑦௥(𝑡)

𝑥௥(𝑡)

18/22



S3: 3 Node Relay, Burst Erasures
R-D Link

𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴𝑚ହ𝑚ସ𝑚ଷ𝑚ଶ𝑚ଵ𝑚଴

131211109876543210

𝑥௦(𝑡)

𝑡

𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴𝑚ହ𝑚଴

𝑝̂ଷ𝑝̂ଶ𝑝̂ଵ𝑝̂଴𝑚ଷ𝑚ଶ𝑚ଵ𝑝଴𝑚ହ𝑚଴

𝑦௥(𝑡)

𝑥௥(𝑡)

Burst at 1 in S-R link

Information needs to be preserved.
I Can resolve m4 from p0 = m0 + m4, and m0

I α = min{β, b − 1} where β is burst start and set (m̂0, · · · , m̂k−1) as

(m0, · · · ,mα−1︸ ︷︷ ︸
α urgent symbols

, x s(α), · · · , x s(k − b + α− 1)︸ ︷︷ ︸
(k−α) non-urgent symbols

, mα, · · · ,mb−1︸ ︷︷ ︸
(b−α) urgent symbols

)

I HT code guarantees the information preservation property
I GHT code parameterized by α. Slight overhead to communicate α to

destination

Urgent messages:
I For i ∈ [0 : α− 1] m̂i requires delay ≤ τ − b (until p̂i available)
I For i ∈ [0 : b − α− 1] m̂k−1−i requires delay ≤ b ( until p̂b−1−i is available)
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S3: 3 Node Relay, Burst Erasures
GHT construction

𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴𝑚ହ𝑚଴

𝑝̂ଷ𝑝̂ଶ𝑝̂ଵ𝑝̂଴𝑚ෝହ𝑚ෝସ𝑚ෝଷ𝑚ෝଶ𝑚ෝଵ𝑚ෝ଴

𝑦௥(𝑡)

𝑥௥(𝑡)

Burst at 1 in S-R link

pc matrix of (b = 4, τ − b = 6) HT code

Retain row 0, ensures in time recovery of m̂0
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S3: 3 Node Relay, Burst Erasures
GHT Construction

𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴𝑚ହ𝑚଴

𝑝̂ଷ𝑝̂ଶ𝑝̂ଵ𝑝̂଴𝑚ෝହ𝑚ෝସ𝑚ෝଷ𝑚ෝଶ𝑚ෝଵ𝑚ෝ଴

𝑦௥(𝑡)

𝑥௥(𝑡)

Burst at 1 in S-R link

***

***

***

pc matrix of (b = 4, τ − b = 6) HT code

Structured Bottom-Right Property: Permute rows of parity check matrix to get 1 in
the diagonal of bottom-right (b − α)× (b − α) sub-matrix
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S3: 3 Node Relay, Burst Erasures
GHT Construction

𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴𝑚ହ𝑚଴

𝑝̂ଷ𝑝̂ଶ𝑝̂ଵ𝑝̂଴𝑚ෝହ𝑚ෝସ𝑚ෝଷ𝑚ෝଶ𝑚ෝଵ𝑚ෝ଴

𝑦௥(𝑡)

𝑥௥(𝑡)

Burst at 1 in S-R link

Set the upper triangular elements to 0
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S3: 3 Node Relay, Burst Erasures
GHT Construction

𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴𝑚ହ𝑚଴

𝑝̂ଷ𝑝̂ଶ𝑝̂ଵ𝑝̂଴𝑚ෝହ𝑚ෝସ𝑚ෝଷ𝑚ෝଶ𝑚ෝଵ𝑚ෝ଴

𝑦௥(𝑡)

𝑥௥(𝑡)

Burst at 1 in S-R link

0

pc matrix of (b = 4, τ − b = 6) GHT code for α = 1.

m̂3, m̂5 can be recovered in delay

m̂1 can be recovered from any burst
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S3: 3 Node Relay, Burst Erasures
GHT Construction

𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴𝑚ହ𝑚଴

𝑝̂ଷ𝑝̂ଶ𝑝̂ଵ𝑝̂଴𝑚ෝହ𝑚ෝସ𝑚ෝଷ𝑚ෝଶ𝑚ෝଵ𝑚ෝ଴

𝑦௥(𝑡)

𝑥௥(𝑡)

Burst at 1 in S-R link

0

pc matrix of (b = 4, τ − b = 6) GHT code for α = 1.

m̂4 recovery: if m̂2 is available can recover it using p̂2 otherwise from p̂0.

p̂0 and m̂2 are spaced by b by triangle property

m̂2 recovery follows.

Can recover mi within delay.
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Key Ideas in General Proof

Urgent symbols: in-time 
recovery from burst

HT P2: if a parity is available, 
then the message symbols 

involved in it can be recovered 
without later parities

Non-urgent symbols: recovery 
from burst

GHT

HT P3: triangle property
HT P1: existence of 

permutation that results in 
“structured” bottom-right
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Future Directions

Construction of codes for any ordering of the urgent symbols
(m0, · · · ,mb−1) that are “allowed”.

(m0, ∗, ∗,m1,m2,m3, p0, p1, p2, p3) X

(m1, ∗, ∗,m0,m2,m3, p0, p1, p2, p3) 7

I leads to streaming codes for m-node relay settings

3-node relay settings with different size bursts b1, b2.

Characterize the delay-profiles for which constructions are possible

Thank You!

22/22


