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Motivation: Latency Sensitive Applications

@ Several latency sensitive applications (real-time audio/video, AR/VR etc) that have
end-to-end (E2E) latency requirements under packet erasures
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A: E2E delay, 7 = 4: Delay in packet count

@ E2E delay modeled through count of packets accessed in future.

@ Goal: Design packet level FECs that can recover erasures within delay 7.
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Delay Profile Of a Block Code

@ An (n, k) linear block code can guarantee a worst case delay of (n — 1).

> systematic case, the message symbols have delay profile
(n=1,n—2,n—3,--- . n—k).

@ For a worst-case delay guarantee of 7, in presence of burst erasures of size b, any
burst correcting code with parameters n =7+ 1, k = n — b will work.

Can we do better (rate)?
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Delay Profile Of a Block Code

@ An (n, k) linear block code can guarantee a worst case delay of (n — 1).
> systematic case, the message symbols have delay profile
(n=1,n—2,n—3,--- . n—k).
@ For a worst-case delay guarantee of 7, in presence of burst erasures of size b, any
burst correcting code with parameters n =7+ 1, k = n — b will work.
Can we do better (rate)?
@ Yes. Can construct (n =7 + b, k = n — b) linear block code with delay profile
(ry-- 7,77 —1,--- | b). (details to follow)
N——
(b-1)

> j-th message symbol with delay requirement < n — i will be refered to as
urgent symbol. Otherwise it is non-urgent symbol.

E. Martinian and M. Trott, " Delay-Optimal Burst Erasure Code Construction,” ISIT 2007
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Erasure Model: Delay Constrained Sliding Window
(DC-SW) Channel

(i) Admissible erasure patterns (AEP): within a sliding window of size W:

either < a random erasures, or a burst of < b erasures

(ii) Decoding-Delay Parameter: 7

i erased pkt

burst of b = 4 erasures a =2 random erasures

(a=2,b=4,w=5,T=4)

Badr et al., “Layered Constructions for Low-Delay Streaming Codes,” Trans. IT, 2017.
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Streaming Codes and Optimal Rate

@ Streaming code is a packet-level FEC that can correct from all AEP of DCSW
channel within a decoding delay constraint 7.

@ It turns out that WOLOG, we can assume w = 7 + 1.
@ The rate R of an {a, b, 7} streaming code has the upper bound:
(t+1)—a 4 R
“(r+1l)+b-—a

—b——1+1-a b——r7+1-a b—

CEEET [T T 1T T T - -

@ Rate is 0 if 7 < b. Non-trivial only when a < b < 7.

@ Badret al., “Layered Constructions for Low-Delay Streaming Codes,” Trans. IT, 2017.

@ M. Vajha, V. Ramkumar, M. Jhamtani and P. V. Kumar, “On the Performance Analysis of Streaming Codes over the
Gilbert-Elliott Channel,” ITW 2021
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Settings Discussed in This Talk

S1: Single link, burst erasures only

(@a=1,b,7)
DCSW channel

S2: Single link, burst or random erasures

(a,b,7) DCSW
channel

S3: 3-node relay, burst erasures only, delay constraint 7

Burst of size at Burst of size at
most b most b
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Redundancy through Packet Expansion Framework
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message packets

Encoder

timet

coded packet

@ Can use scalar block codes to come up with streaming codes.
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Diagonal Embedding (DE)

@ Codewords of [n, k] scalar block code are diagonally placed in the packet stream.
@ This approach needs n— k> b

—
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DE of [12, 6] scalar code where a=4,b=6,7=9
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Scalar Code Properties
@ For a given {a, b, 7} let
n=7+1+6k=n—b where § =b—a

@ For i€ [0:0 —1], to recover ¢;:
Not accessible
Co | ™| CGai & | 7 Ci (G T G
availlable —————
.. a random erasures
or burst of size b
@ Let E C [0 : 7+ 0] be either the set of a random erasures or a set of consecutive b
erasures. To recover {¢; | j € E}:
Co ¢ = | Gl G5 Csig 7 [ Chisi| Cras |
available — arandom erasuresor ———————
burst of size b
@ The delay profile requirement hereis ( 7,---,7 , 7,7—1,---,b )
N—_—— N————
& urgent symbols (k—8&) non-urgent symbols
@ § = b—1 when a =1 for the burst only case.
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S1: Single Link, Burst Erasures

@ Ropt = by setting a =1 in Ropt)

75 (
@ Use (7,7 — b) wrap-around burst correcting code (WA-BCC) to construct
(a=1, b, 7) streaming code with (n =7+ b, k = n— b).
P I
Hws = |: ~~ b :|
(bxT—b)

@ (n=17+ b,k =n— b) code with pc matrix H is an (a = 1, b, 7) streaming code

Hwes=[ 1l P I ]

> Clearly burst erasure correcting code
» What about worst case delay ?
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S1: Single Link, Burst Erasures

@ Ropt = TLH’ (by setting a =1 in Ropt)
@ Use (7,7 — b) wrap-around burst correcting code (WA-BCC) to construct
(a=1, b, 7) streaming code with (n =7+ b, k = n— b).

P I
Hws = |: ~~ b :|
(bxT—b)

@ (n=17+ b,k =n— b) code with pc matrix H is an (a = 1, b, 7) streaming code

Hwes=[ 1l P I ]

Clearly burst erasure correcting code

What about worst case delay ?

i €[0:b—1], m; requires delay 7, (until i-th parity available)

mg recovery: use 0-th pc

m; recovery i € [1: b—1]: need a pc equation with O's in locations
[+1:i+b—-1], [r+i+1:n-1].

vVvyVvyywy

E. Martinian and M. Trott, " Delay-Optimal Burst Erasure Code Construction,” ISIT 2007
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S1: Single Link, Burst Erasures

m; recovery

Hwe=[ P Ipb ]|, Hawes=[ 1 P I |

Hwes([0:1],:) = [l 0 P0:i],:) lira 0]
(i+1)x (b—i—1) (i+1)x (b—i—1)

@ “top-left’ (i x i) sub-matrix of P (say P;) is invertible for any
i € [min{b,n — b} — 1]
» 3v € F) such that [v™ 1]P([0:],[0:i—1]) =0.
[VT 1} Hues(0:1,:) = ' 1 0 X v 1 0]
b—1 b—i—1

@ if n— b < b, any n— b “consecutive-rows" of P are l.i. Can show m; recoverable in
delay for i€ [n—b: b—1]

@ Hollmann and Toulhuizen (HT) code is a binary WA-BCC.

E. Martinian and M. Trott, " Delay-Optimal Burst Erasure Code Construction,” ISIT 2007
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WA-BCC: Hollmann and Toulhuizen (HT) Code

@ Recursive construction of (v x v) matrix P, that appends identity matrices
column-wise or row-wise.

[Iu Pu,vfu] v>u

Pu,v = |: Iv :| .
otherwise
P

u—v,v
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WA-BCC: Hollmann and Toulhuizen (HT) Code

@ Recursive construction of (v x v) matrix P, that appends identity matrices
column-wise or row-wise.

[Iu Pu,vfu] v>u

I
Pufv,v

Puv:

’

] otherwise

@ Let Hwg = [P Ip] be the pc matrix of (n,n — b) WA-BCC. P is an (b x n— b)
matrix.
> clear that Hs = [l P Iy] is pc matrix of (n + b, n) WA-BCC.

> Can show that row extension also retains the WA-BCC (using the fact that
dual of WA-BCC is also WA-BCC)

row Infb
= 1 e

H. D. L. Hollmann and L. M. G. M. Tolhuizen, " Optimal Codes for Correcting a Single (Wrap-Around) Burst of Erasures,” in TIT
2008
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S2: Single Link, Random and Burst Erasures

JigSaw code
@ (a=3,b=6,7 = 8) streaming code defined by (6 x 12) parity check matrix
o 1 2 3 4 5 6 7 8 9 10 11
’: 0 OIO 0 0|U_06v07v08|0 0 0
| L2 e
110 a«a 0l0 0 0 o0 V17 Vi vlygl_o 0

|
2 0 0 o 0 0 0 0 0 Ivog U1,9 v2,10| 0

@ JigSaw is rate-optimal streaming code for any (a, b, 7) with field size of g2 where q > 7.
@ ac ]qu \ Fq

M. Nikhil Krishnan, Deeptanshu Shukla and P. Vijay Kumar, “Rate-Optimal Streaming Codes for Channels With Burst and

Random Erasures”, |IEEE Trans. Info. Theory, 2020
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S2: Explicit JigSaw Code

@ (a=3,b=6,7=8)

0 1 2 3 4 5 6 7 8 9 10 11
0 q_o_glo 0 0:___:_(1-{_0 o o |
1o « olo o o P | 0 1_|L0 0
2o 0 @0 0 0 jo o il
311 0 o0 * * ok kX *|0 0'1_
400 1 0 * x % x = *:o o 0
510 0 1 % *x % o« *JO 0 0

@ Last a = 3 rows of the pc matrix unchanged. Random erasure recovery follows from the
structure of JigSaw.

@ Support of the first 6 = b — a = 3 rows changed construction. Matrix P has 0, 1 elements.

M. Vajha, V. Ramkumar, M. N. Krishnan and P. Vijay Kumar, " Explicit Rate-Optimal Streaming Codes With Smaller Field Size,”

in IEEE ISIT 2021, Trans. Info. Theory, 2024
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S2: Explicit JigSaw Code

@ The definition of (u X v) matrix P , is recursive.

[ a
i O Phva |y acy
(uxa)
P, = b O ] u<v<u+a
(ux(v—u))
o
Pa v<u

@ This structure of the P matrix results in two properties on P = [\O/P]
dXa

> consecutive-columns: any b consecutive columns of P have a-zero columns and §
linearly independent columns.

> bottom-right: bottom right sub-matrix of P of size 6 x (6 + a), there are a-zero
columns and 6 linearly independent columns.

> top-left, consecutive-rows properties hold for P.

/ 1 0
P§’,2:{P1§72]: (1)(1)
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S2: Explicit JigSaw Code

@ (a=3,b=6,7 =8). Support of the first § = b — a = 3 rows changed.

@ top-left, consecutive rows properties can be used to show urgent symbol recovery from

burst.

0 1 2 3 4
o« o 0}0 0
I

5

6 7 8 9 10 11
:_1__0:_021_ 0 0 0
[o 1] 0 10 o
I1 ol o o 1l o
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S2: Explicit JigSaw Code

@ (a=3,b=06,7 = 8).Burst erasure starting at index 4.
0 1 2 3 4 5 6 7 8 9 10 11

_—————— —
* ok | x * x* 01
I
|
* * * * * ()I
I
* * * * * 01
I

@ bottom-right, consecutive columns properties used to show burst recovery of non-urgent
symbols
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S3: 3 Node Relay, Burst Erasures

Rate Bound
ZL( ) m(t—7)
Burst of size at Burst of size at
most b most b

An example, permissible erasure pattern in the R-D link

| x"(t) | | x"(t+1—Db) x"(t+1—-b+1) | | x"(t+1)

m(t) should be recovered at relay by t + 7 — b
Rate in the S-R link upper bounded by rate of (a =1, b,7 — b) DCSW channel.

(b, T) streaming code for S3 satisfies

T—b >
Rg{T T>2b

0 otherwise

Generalized HT based streaming code achieves rate arbitrarily close to the upper
bound.

V. Ramkumar, M. Vajha, M. N. Krishnan, “Streaming Codes for Three-Node Relay Networks With Burst Erasures”, to appear in

ISIT 2024
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S3: 3 Node Relay, Burst Erasures
S-R link

@ (n=r71,k=7—b) HT code is used at the source.
@ Example: 7 =10,b =4, (4 x 10) pc matrix

HHT:[I4‘P4a2‘14]:[P4’6‘l4]:[l4 Z I4:|

> po=mo—+ mg,pr =mi+ ms,pp = my+ ma,p3 = m3+ ms

@ Transmit at Source
¢ [0[1[2[3[4[5[6[7[8[9[10[11[12[13]

w©  [mo [y [ma [ oma [oma [ms [ oo oo [ 02 [ 0]

@ Receive at Relay: Burst starting at time 0/1 in S-R link

oo [T T T meme o [o [o [0 ]
O [ [ms [omo [ o [ [ons [0 [ 20 [ 00 [ 04 ]
y© [m [T e oo [0 [0 [ ]
oo Lo [ms [ oo [ om [ [oms [0 [ 20 [ 02 [ 04 ]
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S3: 3 Node Relay, Burst Erasures

R-D Link
S I I I 0 N R G R
> [ou L Lo T [ Lo Lo T [ e |
v [ [ e T [ e [ ]
"o [ o T o T o]

Burst at 1 in S-R link

@ Information needs to be preserved.
» Can resolve ma from pg = mo + mg, and mo

» a=min{B,b— 1} where 3 is burst start and set (rf1o, - - , ffik—1) as
s s
(mo,-++ ,ma—1,x°(a), -+, x(k—b+a—1), ma, -+, mp_1)
o urgent symbols (k— ) non-urgent symbols (b—a) urgent symbols

» HT code guarantees the information preservation property
> GHT code parameterized by «. Slight overhead to communicate « to
destination
@ Urgent messages:
> For i € [0: «— 1] iy requires delay < 7 — b (until p; available)
» Fori€[0:b—a—1] mx_1_; requires delay < b ( until pp_1—_; is available)
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S3: 3 Node Relay, Burst Erasures

GHT construction

y@ [ [T T e [ [ [0 [ 0]

(0) [0 [0 [ [ s [ n [ | 60 | 81 | P2 | 65 |

Burst at 1 in S-R link
0 1 2 3 4 5 6 7 8 9

0fr1 o o o0 1 o0 1 ]
1170 1 0 0 0 1 1

210 o 1 0 1 O 1
310 0 0 1 0 1 1_

pc matrix of (b =4,7 — b =6) HT code

@ Retain row 0, ensures in time recovery of g
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S3: 3 Node Relay, Burst Erasures

GHT Construction

y@ [mo [T e w0 [0 [ ]

x7() [0 [ [ e [ [ [ s [ B0 [ 64 [ 82 | 05 |

Burst at 1 in S-R link
0 1 2 3 4 5 6 7 8 9

0fr1 o o o0 1 o0 1 ]
11 * *[1 =% = 1

2 1 * *|x 1 x 1
31 o s o+ 1 1_

pc matrix of (b =4,7 — b =6) HT code

@ Structured Bottom-Right Property: Permute rows of parity check matrix to get 1 in
the diagonal of bottom-right (b — a) x (b — &) sub-matrix
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S3: 3 Node Relay, Burst Erasures

GHT Construction

y@ [ [T T me [ [0 [0 [ ]

x"(6)

[ wme [ e[ T [ T T

Burst at 1 in S-R link

o 1 2 3 4

0Ofr o o0 o0 1

5

0

@ Set the upper triangular elements to 0

6 7 8 9

1
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S3: 3 Node Relay, Burst Erasures

GHT Construction

o [m]

x(t)

pc matrix of (b=14,7 — b =6) GHT code for a = 1.

@ /M3, Ms can be recovered in delay

@ i can be recovered from any burst

[ [0 [ [ o2 [0 ]

0

0

0

1

1

0

[#0 [ [ o [ [ [ s [ B0 | 64 [ 2 | s |

Burst at 1 in S-R link

3 4 5
0 1 0
1 0 O
0 1 0
0 0 1
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S3: 3 Node Relay, Burst Erasures

GHT Construction

o [m]

[ [ oo [ [0 [0 ]

()

0
0 [ 1
110
210
310

0

1

1

0

[ la]

iy [ s [ [ s [ oo [oa [ 2o [ s ]

Burst at 1 in S-R link

3

0

1

0

0

4

1

0

5

0
0
0
1

6 7 8 9

pc matrix of (b=4,7 — b =6) GHT code for o = 1.

My recovery: if My is available can recover it using p, otherwise from fo.

Po and M, are spaced by b by triangle property

My recovery follows.

Can recover m; within delay.
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Key ldeas in General Proof

.
\

Urgent symbols: in-time [ Non-urgent symbols: recovery

recovery from burst from burst

e

HT P2: if a parity is available,
then the message symbols
involved in it can be recovered
without later parities

HT P1: existence of
permutation that results in
“structured” bottom-right

HT P3: triangle property
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Future Directions

@ Construction of codes for any ordering of the urgent symbols
(mo,- -+, mp_1) that are “allowed".

(mo) *, %, my, mp, m3, po, P1, P2, P3)
(mla*,*)mO:m2:m3:POaP15P27P3) X

> leads to streaming codes for m-node relay settings

@ 3-node relay settings with different size bursts by, bs.

@ Characterize the delay-profiles for which constructions are possible

Thank You!
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