[Introduction](#page-6-0) [Smoothing capacity of codes](#page-29-0) Linear hashing Linear hashing Worst-to-average case reduction
1999 - March 2000000000 COOO COOO COOOO COOOO COOOO COOOOO

Smoothing of codes, uniform distributions, and applications

Alexander Barg (based on joint works with Madhura Pathegama)

University of Maryland

IITH, August 21, 2024

Outline

- \triangleright Uniformly distributed point sets
- \triangleright Smoothing binary codes: Asymptotic limits
- ▷ BSC wiretap channel, strong secrecy
- \triangleright Linear hashing and randomness extraction
- \triangleright Smoothing and hardness of Learning Parity with Noise (LPN)

References (Madhura Pathegama and A.B.): arXiv:2308.11009, arXiv:2405.04406, arXiv:2408:03742

Uniformly distributed point sets

U.D. point sets approximate random subsets of the metric space

Classical theory of uniform distributions (H. WEYL, 1916) developed to measure errors in numerical (QMC) integration on $\mathfrak{X} = [0,1]^d$

A set $Z_N = \{z_1, \ldots, z_N\} \subset \mathfrak{X}$ is used to approximate $\int_{\mathfrak{X}} f(x) dx \approx \frac{1}{N} \sum_{i=1}^N f(z_i)$

Uniformly distributed sets of points are studied in multiple contexts. In information theory the most relevant are:

- \triangleright "uniform" subsets in $\mathcal{H}_n := \{0,1\}^n$
- \triangleright uniformly distributed points on the sphere $S^n(\mathbb{R})$

[Introduction](#page-6-0) [Smoothing capacity of codes](#page-29-0) [Linear hashing](#page-0-0) University of the Smoothing capacity of codes COOOC COOOC

Uniform distributon on the sphere

Spherical cap Cap $(x, t) = \{y \in S^d : (x, y) \geq t\}; t = \cos \theta$

A *spherical code* is a finite set $Z_N\subset S^d$

A sequence of spherical codes $(Z_N)_N$ is called uniformly distributed if

$$
\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{C(x,t)}(z_i) = \sigma(C(x,t)) \text{ for all } x \in S^d, t \in [-1,1]
$$

BORODACHOV-HARDIN-SAFF, Discrete energy on rectifiable sets, Springer 2019

[Introduction](#page-6-0) [Smoothing capacity of codes](#page-29-0) [Linear hashing](#page-0-0) University of the Smoothing capacity of codes COOOC COOOC

Uniform distribution in $\mathcal{H}_n := \{0,1\}^n$

- ▷ Code C ⊂ H*ⁿ*
- \triangleright View C as a distribution on the space, $P_{\mathcal{C}}(y) = \frac{1}{|\mathcal{C}|} \mathbbm{1}_{\mathcal{C}}(y)$
- ▷ We could attempt a similar definition in the Hamming space: A subset (code) C ⊂ H*ⁿ* is (approximately) uniform if

$$
d_{\text{TV}}\left(\frac{\mathbb{1}_{\mathcal{C}}}{|\mathcal{C}|}, U_n\right) \leq \epsilon
$$
, where $U_n(z) = 1/2^n$ for all z

 \triangleright It is useful to think of "smoothed" code distributions. E.g., Bernoulli noise:

$$
(T_{\beta_{\delta}}\mathcal{C})(x):=\frac{1}{|\mathcal{C}|}\sum_{y\in\mathcal{H}_n}\mathbb{1}_{\mathcal{C}}(x+y)\delta^{|y|}(1-\delta)^{n-|y|}
$$

Uniformity and smoothing

Noise operator on $\mathcal{H}_n := \{0,1\}^n$

- \triangleright Let $r : \mathcal{H}_n \to \mathbb{R}$ be a function
- \rhd $T_r f(x) = (r * f)(x) := \sum_{z \in \mathcal{H}_n} r(z) f(x z)$
- $\triangleright \hspace{0.2cm}$ Let $\mathfrak{C}\subset \mathcal{H}_n$ be a code, $f_{\mathfrak{C}}:=\frac{\mathbbm{1}_{\mathfrak{C}}}{|\mathfrak{C}|}$
- \triangleright If *r* is a pmf, then $T_r f_{\mathcal{C}}$ is also a pmf
- ▷ Examples:
	- \rhd Bernoulli noise $(T_{\beta_{\delta}}C)(x) := \frac{1}{|C|}\sum_{y \in \mathcal{H}_n} 1\!\!1_{\mathcal{C}}(x+y)\delta^{|y|}(1-\delta)^{n-|y|}$
	- \triangleright Ball noise $(T_{b_t}\mathcal{C})(x) := \frac{1}{V(t)}\sum_{y:|y|\leqslant t}\mathbb{1}_{\mathcal{C}}(x+y)$
- Clearly if C is of small size, $T_r f_{\mathcal{C}}$ cannot be close to uniform $U_n, U_n(x) = 2^{-n}$
- \rhd Let $|\mathcal{C}| = 2^{Rn}$. We are interested in conditions on $\mathcal C$ or R for $T_r f_{\mathcal C}$ to be close to U_n and applications of this property

Related work in Information theory and Cryptography

\triangleright Channel resolvability

Given $P_{Y|X}^n:\mathcal{X}^n\to \mathcal{Y}^n,$ what is $\min|\mathcal{C}|$ such that $d_{\text{TV}}(\frac{1}{|\mathcal{C}|}\mathbb{1}_\mathcal{C}\circ P_{Y|X}^n, Q_Y^n)$ is small? HAN-VERDÚ '94, HAYASHI '06, YU-TAN '18, PATHEGAMA-B. '23, YU '23

\triangleright Strong coordination

BLOCH-LANEMAN '13, CHOU E.A. '18, COVER-PERMUTER '07, CUFF E.A., '10-'13

\triangleright Entropy of noisy functions and BSC decoding SAMORODNITSKY '16, ORDENTLICH-POLYANSKIY '18 Decoding: HAZŁA E.A. '21, SPRUMONT-RAO '23, PATHEGAMA-B. '23

▷ Wiretap Channels

Discrete: HAYASHI '06, YU-TAN '19, PATHEGAMA-B. '23 Gaussian: BELFIORE-OGGIER '10, LUZZI E.A. '23

▷ Linear hashing

General results: IMPAGLIAZZO E.A. '89, HAYASHI-TAN '16-'18 Linear hashing: PATHEGAMA-B. '24, YAN-LING '24

▷ WDP-to-LPN (worst-to-average) case reductions

BRAKERSKY '19, DEBRIS-ALAZARD E.A. '22, DEBRIS-ALAZARD–RESCH '22, PATHEGAMA-B. '24

Application of uniformity: The Wiretap Channel

Goals:

(1) Main receiver B can recover *W* with high probability, (2) $I(Z^N, W) \leqslant \epsilon$ \triangleright Strong secrecy $I(Z^N, W) \to 0$ \triangleright Weak secrecy $\frac{1}{N}I(Z^N, W) \to 0$

Capacity of the BSC wiretap channel $\mathcal{C} = H(\delta_e) - H(\delta_b)$

Smoothing of binary codes

Definition: A sequence of codes $(\mathcal{C}_n)_n$ is asymptotically perfectly D_n -smoothable with respect to kernels $(r_n)_n$ if

$$
\lim_{n\to\infty}D_p(T_{r_n}f_{\mathcal{C}_n}||U_n)=0,\quad 0\leqslant p\leqslant\infty.
$$

Here $D_p(P||Q)$ is the Rényi divergence of order p :

$$
D_p(P||Q) = \frac{1}{p-1} \log \left(\mathbb{E}_P \frac{dP}{dQ} \right)^{p-1} = \frac{1}{p-1} \log \sum_i P_i^p Q_i^{-(p-1)}
$$

For $p = 1$ this is the KL divergence.

If *Q* is uniform, *Dp* is related to the Rényi entropy:

$$
D_p(P||U_n) = n - H_p(P)
$$

$$
H_p(P) = \frac{1}{1-p} \log \left(\sum_i P_i^p \right)
$$

For $P \sim \text{Ber}(\delta), H_p(P) = H_p(\delta, 1 - \delta) = \frac{1}{1-p} \log(\delta^p + (1 - \delta)^p)$

Rényi entropy

Our results

- \triangleright Finding the threshold rates for binary codes to achieve asymptotically perfect smoothing under Bernoulli noise
- \triangleright Threshold rates for ball noise
- \triangleright Bounds on the achievable rate of Reed-Muller codes on the wiretap channel

Remark: Recent results established that Reed-Muller codes achieve capacity of the binary-input symmetric channels

- \triangleright BEC: KUDEKAR, KUMAR, MONDELLI, PFISTER, SASÕGLU, URBANKE, '17
- ▷ BMS: ABBE-SANDON, '23

The property of achieving BEC capacity is the reason that RM codes figure in our examples

Threshold for perfect smoothing

Definition: Let $(r_n)_n$ be a sequence of noise kernels. Rate R is achievable for perfect D_p -smoothing if there exists a sequence of codes $(\mathcal{C}_n)_n$ such that $R(\mathcal{C}_n) \to R$ as $n \to \infty$ and $(C_n)_n$ is perfectly D_p -smoothable.

Define the capacity of perfect smoothing S_p^r as inf(achievable rates) for D_p smoothing w.r.t. $(r_n)_n$.

This is a particular case of the general problem of channel resolvability (T.-S. HAN AND S. VERDÚ, 1983)

The current state of the art for Bernoulli kernels is given in the next theorem.

Theorem $S_{p}^{\beta\delta} =$ \int $\overline{\mathcal{L}}$ 0 *if* $p = 0$ 1 − *H*(δ) *if p* ∈ (0, 1] $1 - H_p(\delta)$ *if* $p \in (1, \infty]$,

where $H_p(\delta) = \frac{1}{1-p} \log(\delta^p + (1-\delta)^p)$ *is the Rényi entropy of order p*.

Here the results for $p \in [0, 2] \cup \{\infty\}$ are due to L.Yu AND V.Y.F. TAN, 2018, while the cases $2 < p < \infty$ are new.

Threshold rates for perfect asymptotic smoothing (top to bottom)

- $\triangleright \ \mathcal{S}_\infty^{\beta_\delta}$
- \triangleright $S_2^{\beta_{\delta}}$

 D_1 smoothing threshold for (duals of) codes achieving BEC capacity

 D_p smoothing capacity, $p \in (0, 1]$ = Shannon capacity of BSC(δ)

Remarks on the proof

To show that this rate is attainable, we use random coding.

For the lower bound on *R* we use the equality

$$
D_p(f_{\mathcal{C}}\|U_n)=\frac{p}{p-1}\log\|2^nf_{\mathcal{C}}\|_p.
$$

Then use induction to establish the bound for all rational *p* and a density argument to prove it for all real *p*.

[Introduction](#page-6-0) **[Smoothing capacity of codes](#page-29-0)** [Linear hashing](#page-0-0) Linear hashing [Worst-to-average case reduction](#page-0-0)

00000 00000 0000000000 00

Which (explicit) codes achieve perfect smoothing?

- \triangleright Achieving BSC capacity does not imply perfect smoothing
- \triangleright Polar codes achieve perfect smoothing at smoothing capacity
- \triangleright RM codes (and other BEC capacity achieving codes) achieve a certain rate $R > S₁$

Good codes for the erasure channel and perfect smoothing

- \triangleright A. SAMORODNITSKY 2016-'21 proved general bounds for the entropy of noisy functions on \mathcal{H}_n
- ▷ Using these results, ^H ˛AZŁA-SAMORODNITSKY-SBERLO '21 connected performance of codes on the BEC and on the BSC
- \triangleright Extending these ideas, we derive smoothing properties from erasure correction properties of codes
- \triangleright Key statement: Bernoulli smoothing is "bounded above" by BEC performance. Take a linear code \mathcal{C} , let $X_{\mathcal{C}^\perp}$ be a random codeword of \mathcal{C}^\perp . Let $Y_{X_\mathcal{C}^\perp,\lambda}$ be the output of $\text{BEC}(\lambda)$ for the input $X_{\varphi \perp}$. Then

$$
D_p(T_\delta f_{\mathcal{C}} \| U_n) \leqslant H(X_{\mathcal{C}}^\perp | Y_{X_{\mathcal{C}}^\perp, \lambda}),
$$

where $\lambda = (1-2\delta)^2$ for $p=1$ and $\lambda = 1 - H_p(\delta)$ for $p \geqslant 2$

Good codes for the erasure channel and perfect smoothing

Using this lemma, we show that certain *explicit* code families attain perfect smoothing

Theorem

Let $(C_n)_n$ *be a sequence of linear codes with rate* $R_n \to R$ *. Suppose that the dual sequence* $(\mathcal{C}_n^{\perp})_n$ achieves capacity of the BEC(λ) with $\lambda = R$. Assume that $d(\mathcal{C}_n^{\perp}) = \omega(\log(n))$ and $R > (1-2\delta)^2$, then

$$
D(T_{\delta}f_{\mathcal{C}_n}||U_n)\to 0 \quad \text{as} \quad n\to\infty.
$$

Let $p \in \{2, 3, \ldots, \infty\}$. *If* $R > 1 - h_p(\delta)$, then

 $D_p(T_\delta f_{\mathcal{C}_n} || U_n) \to 0$ *as* $n \to \infty$

In particular, the sequence \mathcal{C}_n *achieves* D_p *-smoothing capacity* $S_p^{\beta\delta}$ *for* $p \in \{2, 3, \ldots, \infty\}$.

Example: Reed-Muller codes

Smoothing for the wiretap channel: Main ideas

A. Wyner ('75) suggested the following scheme for transmission over the wiretap channel:

Let $\mathcal{C}_0 \subset \mathcal{C}_1 \subset \mathcal{H}_n$ be linear codes. Encode messages into cosets $\mathcal{C}_1/\mathcal{C}_0$; transmit a random vector from the coset.

 $\mathsf{Reliability}\colon P(\hat{W} \neq W) \to 0; \quad \mathsf{Secrecy}\colon T_{\delta_e}f_{\mathcal{C}_0}$ approaches U_n

$$
P_{Z|M=m}(z) = P_{X_{C_m+W}}(z) = P_{C_m} * P_W(z) = P_{C_0+C_m} * P_W(z) = P_{C_0} * P_W(z+c_m)
$$

Lemma: Under Wyner's coding scheme, if

 $D(T_{\delta_e} f_{\mathcal{C}_0} || U_n) < \epsilon$, then $I(M; Z) < \epsilon$.

If a code attains BEC capacity, then its dual is smoothed by Bernoulli noise

 \Rightarrow Duals of good codes for the BEC support strong security on the BSC wiretap channel

Transmission rates for the wiretap channel

Achievable rates in BSC wiretap channel with BEC capacity-achieving codes.

For instance, take $\delta_m = 0.05$; $\delta_e = 0.3$. Then

$$
\mathcal{C}_s = H(0.3) - H(0.05) = 0.5949
$$

For Reed-Muller codes,

Open problem about RM codes

Do nested sequences of RM codes attain secrecy capacity of the BSC wiretap channel under strong security? This does not follow directly from either

- ▷ Abbe-Sandon's proof of the BSC capacity result for RM codes
- \triangleright The approach via classical-quantum duality (RENES '18; RENGASWAMY E.A. '21)

Remark: MAHDAVIFAR-VARDY ('11) showed that polar codes attain the BSC wiretap capacity with weak secrecy; later GÜLCÜ-B. ('16) showed strong secrecy

Universal hash families

▷ Given a source *Z* ∼ *P^Z* with unknown distribution *P^Z* on F *n q*

 $P \subset \mathscr{F}_{n,m} := \{f: \mathbb{F}_2^n \to \mathbb{F}_2^m\}$ forms a universal hash family (UHF) if

$$
\Pr_{f \sim \mathscr{F}}(f(u) = f(v)) \leq \frac{1}{2^m} \quad \forall u \neq v
$$

LHL (classic): Let $f \sim \mathscr{F}_{n,m}$. If $m \leq H_{\infty}(Z) - 2 \log(1/\epsilon)$, then

$$
d_{\mathrm{TV}}(P_{f(Z),f},P_{U_m}\times P_f)\leq \epsilon/2
$$

 \triangleright Since $d_{\text{TV}}(P,Q) = \frac{q^n}{2}$ $\frac{I}{2}$ $||P - Q||_1$, we can rewrite the LHL as:

$$
\mathbb{E}_{f\sim\mathcal{F}}\|q^mP_{f(Z)}-1\|_1\leq \epsilon
$$

▷ (Strengthened LHL) (^BENNET E.A., '95) If *m* ⩽ *H*2(*Z*) − log(1/ϵ), then

$$
\mathbb{E}_{f\sim\mathscr{F}}[D(P_{f(Z)}\|P_{U_m})]\leq\frac{\epsilon}{\ln2}
$$

 \triangleright We establish similar results using *p*-norms and linear hashing

Linear Hashing

- \rhd Given a source *Z* on \mathbb{F}_q^n , *Z* ∼ P_Z
- ▷ The set of linear codes $\mathcal{C} := \{ \mathcal{C}[n, n-m]_q \};\$
- \triangleright Let H be a parity-check matrix of $\mathcal{C} \in \mathscr{C}$

 $P_Z \rightarrow P_{HZ}$ – smoothing as hashing

Theorem

 L et $\epsilon > 0$ and let $p \geqslant 2$ be an integer. If Z is a random vector from \mathbb{F}_q^n with $Z \sim P_Z$ and $m \leqslant H_p(Z) - p - \log_q(1/\epsilon)$, then

$$
\mathbb{E}_{\mathcal{C}\sim\mathscr{C}}[D_p(P_{\mathsf{HZ}}\|P_{U_m})]\leqslant\frac{p\epsilon}{(p-1)\ln q}
$$

 \triangleright Rewriting the conclusion:

$$
\mathbb{E}_{\mathcal{C}\sim\mathscr{C}}\|q^m P_{\mathsf{HZ}}-1\|_p\leqslant 2^{1-1/p}((1+\epsilon)^p-1)^{1/p}
$$

This says that P_{HZ} is almost independent of the code. Measuring uniformity by l_p rather than d_{TV} is a stronger guarantee.

▷ Previous works (^HAYASHI-TAN, '16-'18) proved *p*-uniformity guarantees for memoryless sources *Z*

Remarks on the proof

The technical claim behind this theorem can be stated as follows.

Theorem

Let *Z* be a random vector in \mathbb{F}_q^n . Let \mathscr{C} be the set of all $[n,k]_q$ linear codes. Then for all natural $p \geqslant 2$,

$$
\mathbb{E}_{\mathcal{C}\sim \mathscr{C}}[\|q^n P_{X_{\mathcal{C}}+Z}\|_p^p] \leq \sum_{d=0}^p \binom{p}{d} q^{(p-d)(d+n-k-H_p(Z))},
$$

where $X_{\mathcal{C}}$ *is a uniform random codeword of* \mathcal{C} *.*

[Introduction](#page-6-0) [Smoothing capacity of codes](#page-29-0) **[Linear hashing](#page-0-0) COM** [Worst-to-average case reduction](#page-0-0)

1999 00000 00000000000 0000000 0000

Bernoulli sources and hashing with Reed-Muller matrices

Theorem

Let $R \in (0, 1)$ *and let* \mathcal{C}_n *be a sequence of RM codes whose rate* R_n *approaches* R *. Let* H_n *be the parity check matrix of* C*ⁿ and let Zⁿ be a binary vector formed of independent Bernoulli*(δ) *random bits.* If $R > 1 - h_p(\delta)$, then

$$
\lim_{n \to \infty} D_p(P_{H_n Z_n} || P_{U_{n(1-R_n)}}) = 0, \quad p \in \{2, ..., \infty\}
$$

If $p = 1$ and $R > (1 - 2\delta)^2$, then

$$
\lim_{n\to\infty}D(P_{\mathsf{H}_nZ_n}\|P_{U_{n(1-R_n)}})=0.
$$

The proof follows from the results on threshold rates for smoothing capacity

Learning Parity with Noise

LPN problem $\text{LPN}(k, \delta, N, \alpha)$ with *noise rate* $\delta \in (0, 1/2)$, *sample complexity* N, and *success probability* α:

 \hat{A} Given a collection of samples $(a_i, a_i^{\mathsf{T}} m + b_i)_{i=1}^N, a_i, m \in \mathbb{F}_2^k, b_i \in \mathbb{F}_2$, where

- (1) *m* ∼ *PU^k* is fixed across all samples
- (2) $(a_i, b_i) \sim P_{U_k} P_{\text{Ber}(\delta)}$ are chosen independently for each sample,

find \hat{m} with $Pr(\hat{m} = m) \ge \alpha$.

LPN underlies several cryptographic primitives:

- ▷ symmetric encryption ^HOPPER-BLUM '01, JUELS-WEIS '05
- ▷ public key cryptography ^ALEKHNOVICH '03
- ▷ collision-resistant hashing ^BRAKERSKI E.A. '19, YU E.A., '19

Is LPN computationally hard?

WDP-to-LPN reduction

The worst-case decoding problem $WDP(n, k, w)$ is defined as follows: Given

- (1) a matrix $G \in \mathbb{F}_2^{k \times n}$
- (2) a vector $y \in \mathbb{F}_2^n$ of the form $y = GTm' + e'$ for some $m' \in \mathbb{F}_2^k$ and $e' \in \mathbb{F}_2^n$ with $|e'| = w$,

find *m* such that $y = G^Tm + e$ for some $e \in \mathbb{F}_2^n$ with $|e| = w$.

Finding an efficient solver for LPN would amount to constructing an efficient probabilistic decoder for linear codes.

Reduction

An LPN solver A can be converted into a decoder

G is $k \times n$ is a generator matrix of C; noisy codeword $G^Tm + e$, where $|e| = w$

- \triangleright Sample $m' \stackrel{U_k}{\leftarrow} \mathbb{F}_2^k$.
- \triangleright Find P on \mathbb{F}_2^n and $\varepsilon > 0$ such that

$$
d_{\mathrm{TV}}(P_{\mathrm{GZ},e^{\mathsf{T}Z}},P_{U_k}P_{\mathrm{Ber}(\delta)})\leqslant \varepsilon\quad (Z\sim P)
$$

 \rhd { Z_i } $_{i=1}^N$ ← *P*; a_i = G Z_i b_i = $e^{\mathsf{T}}Z_i$, $i = 1, ..., N$

$$
Z_i^{\mathsf{T}}(\mathsf{G}^{\mathsf{T}} m' + \mathsf{G}^{\mathsf{T}} m + e) = a_i^{\mathsf{T}}(m + m') + b_i.
$$

 \triangleright A \leftarrow $(a_i, a_i^{\mathsf{T}}(m+m') + b_i)_{i=1}^N$

 \rhd If *Nε* < α, Algorithm *A* outputs $m + m'$ with success probability at least $\alpha - Nε$ in time *T*.

 \triangleright In conclusion, with probability $\alpha - N\varepsilon$ the message *m* is found in time $T \cdot \text{poly}(n, k)$.

Thus, we need *fast smoothing*: for large *N*, decoding error rate is large

Meaningful reductions

- \rhd For ξ \sim Ber(δ) with $P_{\xi}(1) = \delta$, bias(ξ) := $\frac{1}{2} \delta$
- \triangleright bias(ξ) = $o(1/\text{poly}(k))$ is too small; bias(ξ) = $\Omega(1/\text{poly}(k))$ supports symmetric cryptography
- $\vDash d$ _{TV}(P _{GZ, e}τ $_Z$, P U_k P $\text{Ber}(\delta)$) < ϵ (fast smoothing)

In summary, a meaningful reduction should satisfy

$$
d_{\text{TV}}(P_{\text{GZ}_1}, P_{U_k}) < d_{\text{TV}}(P_{\text{GZ}_2, e^{\mathsf{T}}Z}, P_{U_k} P_{\text{Ber}(\delta)}) < \alpha/N,\tag{1a}
$$

bias
$$
(e^{\mathsf{T}}Z) = \Omega\left(\frac{1}{\text{poly}(k)}\right).
$$
 (1b)

BRAKERSKI E.A. '19 showed that meaningful reductions are possible under the assumption of vanishing code rate *k*/*n*

YU-ZHANG '22 and DEBRIZ-ALAZARD & RESCH, '22 show similar results with additional assumptions on codes and smoothing distributions.

In particular, it was not clear whether meaningful reductions with constant rate were possible

Our results

We show that for constant-rate codes, the necessary conditions are violated, so an efficient reduction is generally not possible.

Theorem: Let $(C_n, n = 1, 2, ...)$ be a sequence of $[n, k]$ linear codes of increasing length and let $\frac{k}{n} \to R > 0$ and $\frac{d^{\perp}}{n} \to \delta^{\perp} > 0$.

For any sequence of random vectors Z defined on \mathbb{F}_2^n , there exists a sequence of vectors e with $|e|/n \rightarrow \omega$ such that the following holds true:

$$
\triangleright \text{ If } d_{\text{TV}}(P_{\text{G}_n Z}, P_{U_k}) = o(\frac{1}{\text{poly}(k)}), \text{ then } \text{bias}(e^{\tau} Z) = o(\frac{1}{\text{poly}(k)})
$$

$$
\triangleright \text{ If } d_{\text{TV}}(P_{\text{G}_n Z}, P_{U_k}) = 2^{-\Omega(k)}, \text{ then } \text{bias}(e^{\tau} Z) = 2^{-\Omega(k)},
$$

where G_n is the generator matrix of C_n .

Remark: Slow smoothing supports reduction

 P reviously we assumed $d_{TV}(P_{GZ,e^{\sf T}Z},P_{U_k}P_{\mathrm{Ber}(\delta)})=o(1/\operatorname{poly}(k)).$ Relaxing this allows reduction, but degrades the decoder's performance.

Theorem:

Let $R \in (0, 1)$, $\omega \in (0, 1/2)$, and $l \in \mathbb{N}$. Let \mathcal{C}_n be a sequence of [*n*, *k*] linear codes of increasing length n such that $k/n \to R$. Let G_n be a generator matrix of \mathcal{C}_n and let $e \in \mathbb{F}_2^n$ be a vector satisfying $|e| = |\omega n|$. Then there exists a sequence of distributions $(P_Z)_n$ satisfying the following conditions:

- $d_{TV}(P_{G_nZ,e^{\top}Z},P_{U_k}P_{e^{\top}Z})=O(k^{-l})$
- (ii) bias($e^{\tau}Z$) = $\Omega(k^{-l})$.

Thank you!