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Uniformly distributed point sets

U.D. point sets approximate random subsets of the metric space

Classical theory of uniform distributions (H. WEYL, 1916) developed to measure errors in
numerical (QMC) integration on X = [0, 1)d

A set ZN = {z1, . . . , zN} ⊂ X is used to approximate
∫
X

f (x)dx ≈ 1
N

∑N
i=1 f (zi)

Uniformly distributed sets of points are studied in multiple contexts. In information theory the most
relevant are:

▷ “uniform” subsets inHn := {0, 1}n

▷ uniformly distributed points on the sphere Sn(R)
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Uniform distributon on the sphere

Spherical cap Cap(x, t) = {y ∈ Sd : (x, y) ⩾ t}; t = cos θ

A spherical code is a finite set ZN ⊂ Sd

A sequence of spherical codes (ZN)N is called uniformly
distributed if

lim
N→∞

1
N

N∑
i=1

1C(x,t)(zi) = σ(C(x, t)) for all x ∈ Sd, t ∈ [−1, 1]

BORODACHOV-HARDIN-SAFF, Discrete energy on rectifiable sets, Springer 2019
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Uniform distribution in Hn := {0, 1}n

▷ Code C ⊂ Hn

▷ View C as a distribution on the space, PC(y) = 1
|C|1C(y)

▷ We could attempt a similar definition in the Hamming space: A subset (code) C ⊂ Hn is
(approximately) uniform if

dTV

(
1C

|C|
,Un

)
⩽ ϵ, where Un(z) = 1/2n for all z

▷ It is useful to think of “smoothed” code distributions. E.g., Bernoulli noise:

(Tβδ
C)(x) :=

1
|C|

∑
y∈Hn

1C(x + y)δ|y|(1− δ)n−|y|
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Uniformity and smoothing

Noise operator onHn := {0, 1}n

▷ Let r : Hn → R be a function

▷ Trf (x) = (r ∗ f )(x) :=
∑

z∈Hn
r(z)f (x− z)

▷ Let C ⊂ Hn be a code, fC :=
1C
|C|

▷ If r is a pmf, then TrfC is also a pmf

▷ Examples:

▷ Bernoulli noise (Tβδ
C)(x) := 1

|C|
∑

y∈Hn
1C(x + y)δ|y|(1− δ)n−|y|

▷ Ball noise (TbtC)(x) :=
1

V(t)

∑
y:|y|⩽t 1C(x + y)

▷ Clearly if C is of small size, TrfC cannot be close to uniform Un,Un(x) = 2−n

▷ Let |C| = 2Rn. We are interested in conditions on C or R for TrfC to be close to Un and
applications of this property

A. SAMORODNITSKY 2016, O. ORDENTLICH–Y. POLYANSKIY 2018, T. DEBRIS-ALAZARD E.A., 2023
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Related work in Information theory and Cryptography

▷ Channel resolvability
Given Pn

Y|X : Xn → Yn, what is min |C| such that dTV(
1

|C|1C ◦ Pn
Y|X ,Qn

Y) is small?

HAN-VERDÚ ’94, HAYASHI ’06, YU-TAN ’18, PATHEGAMA-B. ’23, YU ’23

▷ Strong coordination
BLOCH-LANEMAN ’13, CHOU E.A. ’18, COVER-PERMUTER ’07, CUFF E.A., ’10-’13

▷ Entropy of noisy functions and BSC decoding
SAMORODNITSKY ’16, ORDENTLICH-POLYANSKIY ’18

Decoding: HĄZŁA E.A. ’21, SPRUMONT-RAO ’23, PATHEGAMA-B. ’23

▷ Wiretap Channels
Discrete: HAYASHI ’06, YU-TAN ’19, PATHEGAMA-B. ’23

Gaussian: BELFIORE-OGGIER ’10, LUZZI E.A. ’23

▷ Linear hashing
General results: IMPAGLIAZZO E.A. ’89, HAYASHI-TAN ’16-’18

Linear hashing: PATHEGAMA-B. ’24, YAN-LING ’24

▷ WDP-to-LPN (worst-to-average) case reductions
BRAKERSKY ’19, DEBRIS-ALAZARD E.A. ’22, DEBRIS-ALAZARD–RESCH ’22, PATHEGAMA-B. ’24
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Application of uniformity: The Wiretap Channel

X Y W

Z

N N

N

W
^

Goals:
(1) Main receiver B can recover W with high probability,
(2) I(ZN ,W) ⩽ ϵ

▷ Strong secrecy I(ZN , W) → 0

▷ Weak secrecy 1
N I(ZN , W) → 0

Capacity of the BSC wiretap channel C = H(δe)− H(δb)
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Smoothing of binary codes

Definition: A sequence of codes (Cn)n is asymptotically perfectly Dp-smoothable with respect to
kernels (rn)n if

lim
n→∞

Dp(Trn fCn∥Un) = 0, 0 ⩽ p ⩽∞.

Here Dp(P∥Q) is the Rényi divergence of order p :

Dp(P∥Q) =
1

p− 1
log

(
EP

dP
dQ

)p−1
=

1
p− 1

log
∑

i

Pp
i Q−(p−1)

i

For p = 1 this is the KL divergence.

If Q is uniform, Dp is related to the Rényi entropy:

Dp(P∥Un) = n− Hp(P)

Hp(P) =
1

1− p
log

(∑
i

P p
i

)
For P ∼ Ber(δ), Hp(P) = Hp(δ, 1 − δ) = 1

1−p log(δp + (1 − δ)p)



Introduction Smoothing capacity of codes Linear hashing Worst-to-average case reduction

Rényi entropy
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Our results

▷ Finding the threshold rates for binary codes to achieve asymptotically perfect smoothing
under Bernoulli noise

▷ Threshold rates for ball noise

▷ Bounds on the achievable rate of Reed-Muller codes on the wiretap channel

Remark: Recent results established that Reed-Muller codes achieve capacity of the binary-input symmetric
channels

▷ BEC: KUDEKAR, KUMAR, MONDELLI, PFISTER, ŞAŞŎGLU, URBANKE, ’17

▷ BMS: ABBE-SANDON, ’23

The property of achieving BEC capacity is the reason that RM codes figure in our examples
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Threshold for perfect smoothing

Definition: Let (rn)n be a sequence of noise kernels. Rate R is achievable for perfect
Dp-smoothing if there exists a sequence of codes (Cn)n such that R(Cn)→ R as n→∞ and
(Cn)n is perfectly Dp-smoothable.

Define the capacity of perfect smoothing Sr
p as inf(achievable rates) for Dp smoothing w.r.t. (rn)n.

This is a particular case of the general problem of channel resolvability (T.-S. HAN AND S. VERDÚ,

1983)

The current state of the art for Bernoulli kernels is given in the next theorem.

Theorem
Sβδ

p =


0 if p = 0

1− H(δ) if p ∈ (0, 1]

1− Hp(δ) if p ∈ (1,∞],

where Hp(δ) =
1

1−p log(δp + (1− δ)p) is the Rényi entropy of order p.

Here the results for p ∈ [0, 2] ∪ {∞} are due to L.YU AND V.Y.F. TAN, 2018, while the cases
2 < p <∞ are new.
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Smoothing capacity plots

Threshold rates for perfect asymptotic smoothing (top to bottom)

▷ Sβδ∞

▷ Sβδ
2

▷ D1 smoothing threshold for (duals of) codes achieving BEC capacity
▷ Dp smoothing capacity, p ∈ (0, 1] = Shannon capacity of BSC(δ)
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Remarks on the proof

To show that this rate is attainable, we use random coding.

For the lower bound on R we use the equality

Dp(fC∥Un) =
p

p− 1
log ∥2nfC∥p.

Then use induction to establish the bound for all rational p and a density argument to prove it for
all real p.
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Which (explicit) codes achieve perfect smoothing?

▷ Achieving BSC capacity does not imply perfect smoothing

▷ Polar codes achieve perfect smoothing at smoothing capacity

▷ RM codes (and other BEC capacity achieving codes) achieve a certain rate R > S1
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Good codes for the erasure channel and perfect smoothing

▷ A. SAMORODNITSKY 2016-’21 proved general bounds for the entropy of noisy functions onHn

▷ Using these results, HĄZŁA-SAMORODNITSKY-SBERLO ’21 connected performance of codes on
the BEC and on the BSC

▷ Extending these ideas, we derive smoothing properties from erasure correction properties of
codes

▷ Key statement: Bernoulli smoothing is “bounded above” by BEC performance.
Take a linear code C, let XC⊥ be a random codeword of C⊥. Let YX⊥

C
,λ be the output of

BEC(λ) for the input XC⊥ . Then

Dp(Tδ fC∥Un) ⩽ H(X⊥
C |YX⊥

C
,λ),

where λ = (1− 2δ)2 for p = 1 and λ = 1− Hp(δ) for p ⩾ 2



Introduction Smoothing capacity of codes Linear hashing Worst-to-average case reduction

Good codes for the erasure channel and perfect smoothing

Using this lemma, we show that certain explicit code families attain perfect smoothing

Theorem
Let (Cn)n be a sequence of linear codes with rate Rn → R. Suppose that the dual sequence
(C⊥

n )n achieves capacity of the BEC(λ) with λ = R. Assume that d(C⊥
n ) = ω(log(n)) and

R > (1− 2δ)2, then

D(Tδ fCn∥Un)→ 0 as n→∞.

Let p ∈ {2, 3, . . . ,∞}. If R > 1− hp(δ), then

Dp(Tδ fCn∥Un)→ 0 as n→∞

In particular, the sequence Cn achieves Dp-smoothing capacity Sβδ
p for p ∈ {2, 3, . . . ,∞}.

Example: Reed-Muller codes
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Smoothing for the wiretap channel: Main ideas

A. Wyner (’75) suggested the following scheme for transmission over the wiretap channel:

Let C0 ⊂ C1 ⊂ Hn be linear codes. Encode messages into cosets C1/C0; transmit a random
vector from the coset.

Reliability: P(Ŵ ̸= W)→ 0; Secrecy: Tδe fC0 approaches Un

PZ|M=m(z) = PXCm+W (z) = PCm ∗ PW(z) = PC0+cm ∗ PW(z) = PC0 ∗ PW(z + cm)

Lemma: Under Wyner’s coding scheme, if

D(Tδe fC0∥Un) < ϵ, then I(M; Z) < ϵ.

If a code attains BEC capacity, then its dual is smoothed by Bernoulli noise

⇒ Duals of good codes for the BEC support strong security on the BSC wiretap channel
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Transmission rates for the wiretap channel
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Achievable rates in BSC wiretap channel with BEC capacity-achieving codes.

For instance, take δm = 0.05; δe = 0.3. Then

Cs = H(0.3) − H(0.05) = 0.5949

For Reed-Muller codes,
R′′

= 0.5536
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Open problem about RM codes

Do nested sequences of RM codes attain secrecy capacity of the BSC wiretap channel under
strong security? This does not follow directly from either

▷ Abbe-Sandon’s proof of the BSC capacity result for RM codes

▷ The approach via classical-quantum duality ( RENES ’18; RENGASWAMY E.A. ’21)

Remark: MAHDAVIFAR-VARDY (’11) showed that polar codes attain the BSC wiretap capacity with weak

secrecy; later GÜLCÜ-B. (’16) showed strong secrecy
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Universal hash families

▷ Given a source Z ∼ PZ with unknown distribution PZ on Fn
q

▷ Fn,m := {f : Fn
2 → Fm

2 } forms a universal hash family (UHF) if

Pr
f∼F

(f (u) = f (v)) ⩽
1

2m
∀u ̸= v

LHL (classic): Let f ∼ Fn,m. If m ⩽ H∞(Z)− 2 log(1/ϵ), then

dTV(Pf (Z),f ,PUm × Pf ) ⩽ ϵ/2

▷ Since dTV(P,Q) = qn

2 ∥P− Q∥1, we can rewrite the LHL as:

Ef∼F∥qmPf (Z) − 1∥1 ⩽ ϵ

▷ (Strengthened LHL) ( BENNET E.A., ’95) If m ⩽ H2(Z)− log(1/ϵ), then

Ef∼F [D(Pf (Z)∥PUm )] ⩽
ϵ

ln 2

▷ We establish similar results using p-norms and linear hashing
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Linear Hashing
▷ Given a source Z on Fn

q, Z ∼ PZ

▷ The set of linear codes C := {C[n, n− m]q};
▷ Let H be a parity-check matrix of C ∈ C

PZ ⇝ PHZ – smoothing as hashing

Theorem
Let ϵ > 0 and let p ⩾ 2 be an integer. If Z is a random vector from Fn

q with Z ∼ PZ and
m ⩽ Hp(Z)− p− logq(1/ϵ), then

EC∼C [Dp(PHZ∥PUm )] ⩽
pϵ

(p− 1) ln q

▷ Rewriting the conclusion:

EC∼C ∥qmPHZ − 1∥p ⩽ 21−1/p((1 + ϵ)p − 1)1/p

This says that PHZ is almost independent of the code. Measuring uniformity by lp rather than
dTV is a stronger guarantee.

▷ Previous works ( HAYASHI-TAN, ’16-’18) proved p-uniformity guarantees for memoryless
sources Z
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Remarks on the proof

The technical claim behind this theorem can be stated as follows.

Theorem
Let Z be a random vector in Fn

q. Let C be the set of all [n, k]q linear codes. Then for all natural
p ⩾ 2,

EC∼C [∥qnPXC+Z∥p
p] ⩽

p∑
d=0

(p
d

)
q(p−d)(d+n−k−Hp(Z)),

where XC is a uniform random codeword of C.
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Bernoulli sources and hashing with Reed-Muller matrices

Theorem
Let R ∈ (0, 1) and let Cn be a sequence of RM codes whose rate Rn approaches R. Let Hn be the
parity check matrix of Cn and let Zn be a binary vector formed of independent Bernoulli(δ) random
bits. If R > 1− hp(δ), then

lim
n→∞

Dp(PHnZn∥PUn(1−Rn)
) = 0, p ∈ {2, . . . ,∞}

If p = 1 and R > (1− 2δ)2, then

lim
n→∞

D(PHnZn∥PUn(1−Rn)
) = 0.

The proof follows from the results on threshold rates for smoothing capacity
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Learning Parity with Noise

LPN problem LPN(k, δ,N, α) with noise rate δ ∈ (0, 1/2), sample complexity N, and success
probability α:
Given a collection of samples (ai, a⊺i m + bi)N

i=1, ai,m ∈ Fk
2, bi ∈ F2, where

(1) m ∼ PUk is fixed across all samples

(2) (ai, bi) ∼ PUk PBer(δ) are chosen independently for each sample,

find m̂ with Pr(m̂ = m) ⩾ α.

LPN underlies several cryptographic primitives:

▷ symmetric encryption HOPPER-BLUM ’01, JUELS-WEIS ’05

▷ public key cryptography ALEKHNOVICH ’03

▷ collision-resistant hashing BRAKERSKI E.A. ’19, YU E.A., ’19

Is LPN computationally hard?
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WDP-to-LPN reduction

The worst-case decoding problem WDP(n, k,w) is defined as follows: Given

(1) a matrix G ∈ Fk×n
2

(2) a vector y ∈ Fn
2 of the form y = G⊺m′ + e′ for some m′ ∈ Fk

2 and e′ ∈ Fn
2 with |e′| = w,

find m such that y = G⊺m + e for some e ∈ Fn
2 with |e| = w.

Finding an efficient solver for LPN would amount to constructing an efficient probabilistic decoder
for linear codes.



Introduction Smoothing capacity of codes Linear hashing Worst-to-average case reduction

Reduction

An LPN solver A can be converted into a decoder

G is k × n is a generator matrix of C; noisy codeword G⊺m + e, where |e| = w

▷ Sample m′ Uk← Fk
2.

▷ Find P on Fn
2 and ε > 0 such that

dTV(PGZ,e⊺Z ,PUk PBer(δ)) ⩽ ε (Z ∼ P)

▷ {Zi}N
i=1 ← P; ai = GZi bi = e⊺Zi, i = 1, . . . ,N

Z⊺
i (G

⊺m′ + G⊺m + e) = a⊺i (m + m′) + bi.

▷ A← (ai, a⊺i (m + m′) + bi)N
i=1

▷ If Nε < α, Algorithm A outputs m + m′ with success probability at least α− Nε in time T.

▷ In conclusion, with probability α− Nε the message m is found in time T · poly(n, k).

Thus, we need fast smoothing: for large N, decoding error rate is large



Introduction Smoothing capacity of codes Linear hashing Worst-to-average case reduction

Meaningful reductions

▷ For ξ ∼ Ber(δ) with Pξ(1) = δ, bias(ξ) := 1
2 − δ

▷ bias(ξ) = o(1/poly(k)) is too small; bias(ξ) = Ω(1/ poly(k)) supports symmetric
cryptography

▷ dTV(PGZ,e⊺Z ,PUk PBer(δ)) < ϵ (fast smoothing)

In summary, a meaningful reduction should satisfy

dTV(PGZ,,PUk ) < dTV(PGZ,e⊺Z ,PUk PBer(δ)) < α/N, (1a)

bias(e⊺Z) = Ω
( 1
poly(k)

)
. (1b)

BRAKERSKI E.A. ’19 showed that meaningful reductions are possible under the assumption of
vanishing code rate k/n
YU-ZHANG ’22 and DEBRIZ-ALAZARD & RESCH, ’22 show similar results with additional assumptions
on codes and smoothing distributions.
In particular, it was not clear whether meaningful reductions with constant rate were possible
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Our results

We show that for constant-rate codes, the necessary conditions are violated, so an efficient
reduction is generally not possible.

Theorem: Let (Cn, n = 1, 2, . . . ) be a sequence of [n, k] linear codes of increasing length and let
k
n → R > 0 and d⊥

n → δ⊥ > 0.

For any sequence of random vectors Z defined on Fn
2, there exists a sequence of vectors e with

|e|/n→ ω such that the following holds true:

▷ If dTV(PGnZ ,PUk ) = o( 1
poly(k) ), then bias(e⊺Z) = o( 1

poly(k) )

▷ If dTV(PGnZ ,PUk ) = 2−Ω(k), then bias(e⊺Z) = 2−Ω(k),

where Gn is the generator matrix of Cn.
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Remark: Slow smoothing supports reduction

Previously we assumed dTV(PGZ,e⊺Z ,PUk PBer(δ)) = o(1/poly(k)). Relaxing this allows
reduction, but degrades the decoder’s performance.

Theorem:
Let R ∈ (0, 1), ω ∈ (0, 1/2), and l ∈ N. Let Cn be a sequence of [n, k] linear codes of increasing
length n such that k/n→ R. Let Gn be a generator matrix of Cn and let e ∈ Fn

2 be a vector
satisfying |e| = ⌊ωn⌋. Then there exists a sequence of distributions (PZ)n satisfying the following
conditions:

(i) dTV(PGnZ,e⊺Z ,PUk Pe⊺Z) = O(k−l)

(ii) bias(e⊺Z) = Ω(k−l).

Thank you!
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