Technical papers published
50. Nanostructured Silicon-Carbon 3D Electrode Architectures for High-Performance Lithium-Ion Batteries, S. Krishna Kumar, Sourav Ghosh, S. K. Malladi, Jagjit Nanda, S. K. Martha*, ACS Omega, 3, 9598-9606 (2018).
49. Nitrogen-doped Graphene-like Carbon Nanosheets from Commercial Glue: Morphology, Phase Evolution and Li-ion Battery Performance, D. Devarakonda, S. K. Kumar, S. K. Martha* and A. S. Deshpande, Dalton Trans., 2018, DOI: 10.1039/C8DT01787E.
48. Binder and Conductive Additive Free Silicon Electrode Architectures for Advanced Lithium- Ion Batteries, S. Krishna Kumar, Rini Choudhury, S. K. Martha*, J. Energy Storage , 17 417-422 (2018).
47. Li1.2Ni0.15Mn0.55Co0.1O2 (LMR-NMC)-Carbon Coated-LiMnPO4 Blended Electrodes for High Performance Lithium Ion Batteries, S. Krishna Kumar, S. K. Martha*, J. Electrochem. Soc., 165 (3) A463-A468 (2018).
46. Na2EDTA chelating agent as an electrolyte additive for high performance lead-acid Batteries, N. Vangapally, S.A. Gaffoor, S. K. Martha*, Electrochim. Acta, 258 (2017)1493-1501.
45. Synergistic effect of 3D electrode architecture and fluorine doping of Li1.2Ni0.15Mn0.55Co0.1O2 for high energy density lithium-ion batteries, S. Krishna Kumar, S. Ghosh, P. Ghoshal, S. K. Martha*, J. Power Sources, 356, 115-123 (2017).
44. Synergistic effect of magnesium and fluorine doping on the electrochemical performance of lithium-manganese rich (LMR)-based Ni-Mn-Co-oxide (NMC) cathodes for lithium-ion batteries, S. Krishna Kumar, S. Ghosh, S. K. Martha*, Ionics, 23:1655–1662 ((2017).
43. State of the Art and Future Research Needs for Multiscale Analysis of Li-Ion Cells, K. Shah, N. Balsara, S. Banerjee, M. Chintapalli, A. P. Cocco, W. K. S. Chiu, I. Lahiri, S. K. Martha, A. Mistry et al. J. Electrochem. Energy Conversion and Storage, 14, 020801-1 (2017).
42. Probing Multiscale Transport and Inhomogeneity in a Lithium-Ion Pouch Cell Using In Situ Neutron Methods, H. Zhou, K. An, S. Allu, S. Pannala, J. Li, H. Z. Bilheux, S. K. Martha, and Jagjit Nanda, ACS Energy Lett., 1, 981 (2016).
41. High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects, J. Nanda, S. K. Martha, K. Ramki, Pramana –J. Phys., 84, 1073 (2015).
40. Raman Microscopy of Lithium-Manganese-Rich Transition Metal Oxide Cathodes, R. E. Ruther, A. F. Callender, H. Zhou, S. K. Martha, J. Nanda, J. Electrochem. Soc. 162A1 (2015).
39. Nanoscale Morphological and Chemical Changes of High Voltage Lithium–Manganese Rich NMC Composite Cathodes with Cycling, F. Yang, Y. Liu, S. K. Martha, Z. Wu, J. C. Andrews, G. E. Ice, P. Pianetta, J. Nanda, Nano Lett., 14, 4334 (2014)
38. Monolithic Composite Electrodes Comprising Silicon Nanoparticles Embedded in Lignin-derived Carbon Fibers for Lithium-Ion Batteries,O. Rios, S. K. Martha, M.A. McGuire, W. Tenhaeff, K. More, C. Daniel, J. Nanda, Energy Techn., 2, 773 (2014).
37. Role of Surface Functionality in the Electrochemical Performance of Silicon Nanowire Anodes for Rechargeable Lithium Batteries, H. Zhu, J. Nanda, S. K. Martha, R. R. Unocic, H. M. Meyer, Y. Sahoo, P. Miskiewicz, and T. F. Albrecht, ACS Appl. Mater. Interfaces, 6, 7607 (2014).
36. Electrode architectures for high capacity multivalent conversion compounds: Iron (II) & (III) Fluorides, S. K. Martha, J. Nanda, N. J. Dudney, H. Zhou, J. C. Idrobo, N. J. Dudney, S. Pannala, J. Wang & P. V. Braun, RSC Advances, 4 (2014) 6730-6737.
35. Thermophysical properties of LiFePO4 cathodes with carbonized pitch coatings and organic Binders: Experiments and first-principles modeling, J. Nanda, S. K. Martha, W. D. Porter, H. Wang, N. J. Dudney, M. D. Radin and D. J. Siegel, J. Power Sources, 251, (2014) 8-13.
34. Formation of Iron oxyfluoride phase on the surface of nano-Fe3O4 conversion compound for electrochemical energy storage, H. Zhou, J. Nanda, S. K. Martha, J. Adcock, J. C. Idrobo, L. Baggetto, G. M. Veith, S. Dai, S. Pannala, and N. J. Dudney, J. Phys. Chem. Lett., 4 (2013) (21), 3798-3805.
33. An artificial solid electrolyte interphase enables the use of a LiNi0.5Mn1.5O4 5 V cathode with conventional electrolytes, J. Li, L. Baggetto, S. K. Martha, G. M. Veith, J. Nanda, C. Liang, N. J. Dudney, Adv. Energy Mater., 3 (2013) 1275-1278.
32. Solid electrolyte coated high voltage layered-layered Lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2, S. K. Martha, J. Nanda, Y. Kim, R. Unocic, S. Pannala, N. J. Dudney, J. Mater. Chem. A.,1 (2013) 5587-5595.
31. A Perspective on coatings to stabilize high-voltage cathodes: LiMn1.5Ni0.5O4 with sub-nanometer LIPON cycled with LiPF6 electrolyte, Y. Kim, N. J. Dudney, M. Chi, S. K. Martha, J. Nanda, G. Veith, C. Liang,J. Electrochem. Soc., 160, 5 (2013) A3113-A3125.
30. Electrochemical stability of carbon fiber current collectors compared to metal foil current collectors for lithium batteries,S. K. Martha*, N. J. Dudney, J. O. Kiggans, J. Nanda,J. Electrochem. Soc., 159, 10 (2012) A1652-A1658.
29. High cyclability of ionic liquid-produced TiO2 nanotube arrays as an anode material for lithium-ion batteries,H. Li,S. K. Martha, R. R. Unocic, H. Luo, S Dai, J. Qu,J. Power Sources,218 (2012) 8892.
28. Surface studies of high voltage Li-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2, S. K. Martha, J. Nanda, G. M. Veith, N. J. Dudney,J. Power Sources, 216 (2012) 179-186.
27. Self-aligned Cu-Si core-shell nanowire array as a high-performance anode for Li-ion batteries, J. Qu, H. Li, J. Henry,S. K. Martha, N. J. Dudney, T.M.Besmann, S. Dai, M.Lance,J. Power Sources, 198, 15, (2012) 312-317.
26. Electrochemical and rate performance studies of high voltage lithium rich composition:Li1.2Mn0.525Ni0.175Co0.1O2, S. K. Martha, J. Nanda, G. M. Veith, N. J. Dudney, J. Power Sources, 199, 1, (2012) 220-226.
25. On the thermal stability of olivine cathodes in standard electrolyte systems,S. K. Martha*,O. Haik, E. Zinigrad, I. Exnar, T. Drezen, J. H. Miners, D. Aurbach,J. Electrochem. Soc., 158 (10) (2011) A1115-A1122.
24. Advanced lithium battery cathodes using dispersed carbon fibers as current collector, S. K. Martha*, J. O. Kiggans, J. Nanda, N. J. Dudney, J. Electrochem.Soc., 158 (9) (2011) A1060-A1066.
23. Li4Ti5O12/ LiMnPO4 lithium-ion battery systems for load leveling applications,S. K.Martha, O. Haik, V. Borgel, E. Zinigrad, I. Exnar, T. Drezen, J. H. Miners, D. AurbachJ. Electrochem. Soc., 158 (2011) A790-A797.
22. On the electrochemical behavior of aluminum electrodes in non-aqueous electrolyte solutions of lithium salts, B. Markovsky, F. S. Amalraj, H. E. Gottlieb, Y. Gofer,S. K. Martha, D. Aurbach, J. Electrochem. Soc., 157 (2010) A423-A429.
21. LiMn0.8Fe0.2PO4: an advanced cathode material for rechargeable lithium batteries,S. K. Martha, J. Grinbat, O. Haik, E. Zinigrad, T. Drezen, J. H. Miners, I. Exnar, A. Kay, B.Markovsky, D. Aurbach,Angew. Chem. Int. Ed., 48 (2009) 8559-8563.20. Characterizations of self-combustion reactions (SCR) for the production of nanomaterials used as advanced cathodes in Li-ion batteries, O. Haik, S. K. Martha,H. Sclar, Z.S.Fromovich,E. Zinigrad, B. Markovsky, D. Kovacheva, N. Saliyski,D. Aurbach,Thermochim. Acta, 493 (2009) 96-104.
19. LiMnPO4 as an advanced cathode material for rechargeable lithium batteries,S. K. Martha, B. Markovsky, J. Grinblat, Y. Gofer, O. Haik, E. Zinigrad,D. Aurbach, T.Drezen, D. Wang, G. Denghenghi, I. Exnar,J. Electrochem. Soc., 156 (2009) A541-A552.
18. A simplified mathematical model for effects of freezing on low-temperature performance of the lead-acid battery, K. S.Gandhi, A. K. Shukla,S. K. Martha, S. A. Gaffoor,J.Electrochem. Soc., 156 (2009) A238-A245.
17. A short review on surface chemical aspects of Li batteries: A key for a good performance, S. K. Martha, E. Markevich, V. Burgel, G. Salitra, E. Zinigrad, B.Markovsky, H. Sclar,Z. Pramovich , O. Haik, D. Aurbach et al., J. Power Sources, 189 (2009) 288-296.
16. A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.5Mn0.5O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.4Mn0.4Co0.2O2 layered compounds, S. K. Martha, H. Sclar, Z. Samuk-Fromovich, D. Kovacheva, N. Saliyski, Y. Gofer, P. Sharon,E. Golik, B. Markovsky, D. Aurbach, J. Power Sources, 189 (2009) 248-255.
15. Comparative study of lead-acid batteries for photovoltaic stand-alone lighting systems, B.Hariprakash,S. K. Martha, S. Ambalavanan, S. A. Gaffoor, A. K. Shukla,J. Appl.Electrochem., 38 (2008) 77-82.
14. Lead-acid cells with polyaniline coated negative plates,S. K. Martha,B. Hariprakash, S.A. Gaffoor and A. K. Shukla,J. Appl. Electrochem., 36 (2006) 711-722.
13. A low-cost lead-acid battery with high specific-energy,S. K. Martha,B. Hariprakash, S.A. Gaffoor, D. C. Trivedi and A. K. Shukla,J. Chem. Sci.,118 (2006) 93-98.
12. High specific energy lead-acid batteries through organic metals, S. K. Martha,B.Hariprakash, S. A. Gaffoor, D.C. Trivedi, and A. K. Shukla,Electrochem. Solid-State Lett., 8 (2005) A353-A356.
11. Assembly and performance of hybrid-VRLA cells and batteries, S. K. Martha,B.Hariprakash, S. A. Gaffoor, S. Ambalavanan and A. K. Shukla,J. Power Sources,144(2005)560-567.
10. A sealed, starved-electrolyte nickel-iron battery, B. Hariprakash,S. K. Martha, M. S.Hegde and A. K. Shukla,J. Appl. Electrochem., 35 (2005) 27-32.
9. On-line monitoring of lead-acid batteries by galvanostatic non-destructive technique,B.Hariprakash,S. K. Martha, A. Jaikumar and A. K. Shukla,J. Power Sources,137 (2004)128-133.
8. Improved lead-acid cells employing tin oxide coated Dynel fibres with positive active-material, B. Hariprakash, A. U. Mane,S. K. Martha, S. A. Gaffoor, S. A. Shivashankarand A. K. Shukla,J. Appl. Electrochem., 34 (2004) 1039-1044.
7. A low-cost, high energy-density lead-acid battery, B. Hariprakash, A. U. Mane,S. K. Martha, S. A. Gaffoor, S. A. Shivashankar and A. K. Shukla,Electrochem. Solid-StateLett., 7 (2004) A66-A69.
6. Monitoring sealed automotive lead-acid batteries by sparse-impedance spectroscopy, B.Hariprakash,S. K. Marthaand A. K. Shukla,Proc. Indian Acad. Sci. (Chem. Sci.)115(2003) 465-472.
5. Performance characteristics of a gelled-electrolyte valve-regulated lead-acid battery, S. K. Martha,B. Hariprakash, A. K. Shukla and S. A. Gaffoor,Bull. Mater. Sci.,26 (2003)465-469.
4. Galvanostatic non-destructive characterization of alkaline silver-zinc cells with varying capacities, B. Hariprakash,S. K. Marthaand A. K. Shukla,J. Power Sources,117 (2003)242-248.
3. Effect of copper additive on Zr0.9Ti0.1V0.2Mn0.6Cr0.05Co0.05Ni1.2alloy anode for nickel-metal hydride batteries, B. Hariprakash,S. K. Marthaand A. K. Shukla,J. Appl.Electrochem., 33 (2003) 497-504.
2. Electrochemical power sources, A. K. Shukla, and S. K. Martha, Resonance, 6 (2001)52-63.
1. Ceria-supported platinum as hydrogen-oxygen recombinant catalyst for sealed lead-acid batteries, B. Hariprakash, P. Bera,S. K. Martha, S. A. Gaffoor, M. S. Hegde and A. K.Shukla,Electrochem. Solid-State Lett., 4 (2001) A23-A26.