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Preface

This is a draft manuscript. To quote Oliver Goldsmith, “There are a hundred faults in this Thing and a
hundred things might be said to prove them beauties.” I hope that, as time passes, the faults will decrease
while the “beauties” will increase. In the meantime, “caveat emptor” is the watchword for the reader.

These notes are updated regularly. Please check the date of last update to ensure that you have the
latest version, which is available at

https://people.iith.ac.in/m vidyasagar/RL-Notes.pdf
Feedback of all kinds would be gratefully received at m.vidyasagar@iith.ac.in
These notes address some aspects of two somewhat disparate disciplines, namely: Nonconvex Optimiza-

tion, and Reinforcement Learning (RL). Each of these disciplines ha a long history and s a vast literature.
Thus the choice of topics covered in this book is dictated by the fact that the solution is obtained by stochas-
tic algorithms. Within optimization, the techniques presented here can be used to minimize not only convex
objective functions, but also some classes of nonconvex functions. Within Reinforcement Learning (RL), we
discuss all of the standard topics such as value computation, Temporal Difference learning, and Q-Learning.
However, within this subareas, the focus is on problems that can be solved using stochastic algorithms.

The topic of optimization dates back a few centuries, but the analysis was mostly confined to finding
“closed-form” solutions. The main constraint was the unavailability of tools to carry out numerical computa-
tions at a large scale. The subject really picked up steam in the 1960s with the advent of digital computation,
when the emphasis shifted to iterative methods that did not even attempt to find the solution “in closed
form.” Rather, the emphasis was on constructing a sequence of approximate solutions that converged to the
true solution. Advances in computing (both in terms of increasing capability and decreasing cost) made the
scientific community aspire to solve ever larger problems. In this setting, it is noticeably easier to deal with
convex optimization problems than with nonconvex problems. However, the present-day widespread use of
deep neural networks has led to greater emphasis on nonconvex optimization.

Stochastic algorithms are natural when the information about the problem to be solved is uncertain,
or prone to measurement errors. In optimization problems, if the measurements of the objective function
at each iteration, and/or its gradient, are subject to measurement, then it is imperative to use stochastic
algorithms that are guaranteed to converge even in the presence of such uncertainties. Even without uncertain
measurements, some problems become more tractable when some element of randomness is introduced into
the algorithm. The framework presented in this paper is rich enough to handle such randomized algorithms
as well, though those are not the main focus.

Reinforcement Learning (RL) is one of the most active areas of research in AI (Artificial Intellligence), or
Artificial General Intelligence (AGI), and Machine Learning (ML). One can think of AI or AGI as a desire to
enable computers to mimic various aspects of human intelligence, and ML as a set of tools and/or algorithms
to achieve AI/AGI. Thus AI (AGI) is the destination, and ML is the path to that destination.

As mentioned above, the literature in both areas is vast. Therefore the aim of these notes is to provide
a treatment of some aspects of nonconvex optimization as well as RL. The unifying theme in the treatment
of various problems is a well-established technque known as Stochastic Approximation (SA). Stochastic
Approximation was introduced in 1951 as a method for solving equations of the form f(θ∗) = 0 when only
noisy measurements of f(·) are available. Since then the theory has expanded substantially. One of the
objectives of these notes is to show how SA can be used to prove the convergence of iterative algorithms in
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nonconvex optimization, and in RL. While the use of SA to analyze RL algorithms is well-established, going
back to the late 1980s, the method has begun to be applied to nonconvex optimization relatively recently.

A useful feature of SA is that it is relatively easy to prove that various algorithms converge almost
surely. This is in contrast to other proof techniques that lead to weaker conclusions such as convergence in
probability, or in expectation. Since iterative stochastic algorithms generate one sample path of a stochastic
process, it is worthwhile to know that almost all sample paths converge to the desired limit.

These notes are an outcome of having taught this material three times. Previously, I had offered courses
at UC Berkeley (remotely) during the Fall semester of 2020, and at IIT Hyderabad during the First Semester
of 2022-23. On both occasions, the focus of the course was solely on RL. I taught the course for the third
time during the First Semester of 2024-25, this time with as added focus on optimization.

Over time, the nature of the notes underwent some changes. I had originally envisaged a textbook that
covered most of the widely studied ideas in RL, even if the material did not contain any original research.
However, subsequently I decided to narrow the scope to material that either represented original research, or
streamlining and/or unification of existing proofs. Thus, in their current version, the notes are much more
like a research monograph than a textbook. In the process, I trust that the breadth of coverage has not been
unduly sacrificed, and that most of the relevant topics in RL are still included.

These notes are organized as follows:
Given that the notes are written in the style of a research monograph, very few “exercises” are included.

Instead, the reader is advised to work out all the proofs in detail. This is the best way to master the content,
and not via accepting various theorems at face value.
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Chapter 1

Introducton

1.1 Introduction to Optimization

In this chapter, we give a brief overview of the type of optimization problems studied in this book. Further
details can be found in subsequent chapters, specifically Chapter 4.

1.1.1 Introduction to Optimization

Suppose J : Rd → R is some function; we will add more assumptions on J(·) as we go along. The core problem
of optimization is to find one or more vectors θ∗ ∈ Rd that minimize J(·). It is clear that, by replacing
J(·) by −J(·), the problem of maximizing a function can be readily reformulated as one of minimizing its
negative. Hence in this book we shall study only problems of minimization. It is customary to refer to J(·)
as the ojbective function. With this convention, we next distinguish between two different problems.

� Unconstrained vs. constrained minimization

� Global vs. local minimization

Let us begin with the first item. In unconstrained minimization, we study a problem of the form

min
θ
J(θ),

whereas in constrained minimization, we study a problem of the form

min
θ
J(θ) s.t. θ ∈ S,

where S ⊆ Rd is a specified region of Rd, usually referred to as the “feasible” region. Clearly, if S = Rd,
there is no difference between the two. In this book, we restrict our attention to unconstrained minimiza-
tion problems, even though many of the techniques presented here can be made to apply to constrained
minimization with suitable modifications. Next, a vector θ∗ is a local minimizer of J(·) if there exists a
neighborhood S of θ∗ such that

J(θ∗) ≤ J(θ) ∀θ ∈ S, (1.1.1)

while θ∗ is a unique local minimizer of J(·) if

J(θ∗) < J(θ) ∀θ ∈ S \ {θ∗}. (1.1.2)

A vector θ∗ is said to be a global minimizer of J(·) if (1.1.1) holds with S replaced by Rd, while θ∗ is said
to be a unique global minimizer of J(·) if (1.1.2) holds with S replaced by Rd. In optimization problems,
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θ
ϕ

Figure 1.1: Examples of Convex and Nonconvex Sets

clearly everyone would like to find global minimizers, but often one has to settle for local minimizers. To the
extent possible, in this book we strive to find global minimizers.

Before proceeding further, we clarify our usage of the terms “minimum” and “minimizer,” something
about which not every author is careful. If θ∗ is a satisfies (1.1.1), then we refer to θ∗ as the minimizer,
and to J(θ∗) as the minimum. Thus, the minimizer is the argument, while the minimum is the function
value at the minimizer.

1.1.2 Classes of Functions

In order to make the problem of function minimization more tractable, it is necessary to introduce more
“structure” into the problem, that is, to make some assumptions about J(·). Throughout the book, it is
assumed that J(·) is C1, and that the gradient ∇J(·) is globally L-Lipschitz continuous. This means that

∥∇J(θ) −∇J(ϕ)∥2 ≤ L∥θ − ϕ∥2, ∀θ,ϕ ∈ Rd. (1.1.3)

Thus, we do not study “non-smooth” objective functions such as J(θ) = ∥θ∥1, nor functions of the form
J(θ) = ∥θ∥42.

With these assumptions, there are several classes of functions that are studied in this book. We introduce
convex functions here, but as the title indicates, the focus of the book is on nonconvex objective functions.
The reader is referred to Section 4.1 for several classes of nonconvex functions studied in the book.

We begin with the notion of a convex set, and then move to the notion of a convex function.
If θ,ϕ ∈ Rd, and λ ∈ [0, 1], then the vector λθ + (1 − λ)ϕ is called a convex combination of θ and ϕ.

If λ ∈ (0, 1) and θ ̸= ϕ, then the vector λθ + (1 − λ)ϕ is called a strict convex combination of θ and ϕ.
Some authors also call this a “nontrivial” convex combination.

Definition 1.1. A subset S ⊆ Rd is said to be a convex set if

λθ + (1 − λ)ϕ ∈ S ∀λ ∈ [0, 1], ∀θ,ϕ ∈ S. (1.1.4)

Thus a set S is convex if every convex combination of two elements of S once again belongs to S. In two
dimensions we can visualize a convex set very simply. If θ,ϕ ∈ R2, then the set {λθ + (1 − λ)ϕ : λ ∈ [0, 1]}
is the line segment joining the two vectors θ and ϕ. Thus a set S ⊆ R2 is convex if and only if the line
segment joining any two points in the set S once again belongs to the set S. Therefore in Figure 1.1, the set
on the left is not convex, because the line segment connecting θ and ϕ does not lie entirely in S; in contrast,
the set on the right is convex. A similar interpretation also applies in higher dimensions, except that the
“line” has to be imagined and cannot be drawn on a page.

Definition 1.1 is stated for a convex combination of two vectors, but can be easily extended to a convex
combination of any finite number of vectors. Suppose S ⊆ Rd and θ1, . . . ,θk ∈ S. Then a vector of the form

ϕ =

k∑
i=1

λiθi, λi ≥ 0 ∀i,
k∑

i=1

λi = 1
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(θ, J(θ))

(ϕ, J(ϕ))

Figure 1.2: Graph Below Chord Interpretation of a Convex Function

is called a convex combination of the vectors θ1, . . . ,θk. It is easy to show, by recursively applying Definition
1.1, that if S ⊆ Rd is a convex set then every convex combination of any finite number of vectors in S again
belongs to S.

Example 1.1. The n-dimensional simplex Sn, which can be identified with the set of probability distri-
butions on a finite alphabet of cardinality n, is a convex set. Thus if µ,ν are n-dimensional probability
distributions, then so is the convex combination λµ+ (1 − λ)ν for every λ in [0, 1].

Definition 1.2. Suppose S ⊆ Rd is a convex set and J : S → R. We say that the function J is convex if

J [λθ + (1 − λ)ϕ] ≤ λJ(θ) + (1 − λ)J(ϕ), ∀λ ∈ [0, 1], ∀θ,ϕ ∈ S. (1.1.5)

We say that the function J is strictly convex if

J [λθ + (1 − λ)ϕ] < λJ(θ) + (1 − λ)J(ϕ), ∀λ ∈ (0, 1), ∀θ,ϕ ∈ S,θ ̸= ϕ. (1.1.6)

Equations (1.1.5) and (1.1.6) are stated for a convex combination of two vectors θ and ϕ. But we can
make repeated use of these equations and prove the following facts. If J is a convex function mapping a
convex set S into R, and θ1, . . . ,θk ∈ S, then

J

(
k∑

i=1

λiθi

)
≤

k∑
i=1

λiJ(θi), whenever [λ1 . . . λk] =: λ ∈ Sk.

The above definitions are all algebraic. But in the case where S is an interval [a, b] in the real line (finite
or infinite), the various inequalities can be given a simple pictorial interpretation. Suppose we plot the graph
of the function J . This consists of all pairs (θ, J(θ))) as θ varies over the interval [a, b]. Suppose (θ, J(θ)) and
(ϕ, J(ϕ)) are two points on the graph. Then the straight line joining these two points is called the “chord”
of the graph. We can assume that the two points are distinct, because otherwise the inequalities (1.1.5) and
(1.1.6) become trivial.) Equation (1.1.5) states that for any two points θ, ϕ ∈ [a, b], the chord joining the
two points (θ, J(θ)) and (ϕ, J(ϕ)) lies above the graph of the function (z, J(z)) whenever z lies between θ
and ϕ. Equation (1.1.6) says that, not only does the chord joining the two points (θ, J(θ)) and (ϕ, J(ϕ)) lie
above the graph of the function (z, J(z)) whenever z lies between x and y, but in fact the chord does not
even touch the graph, except at the two end points (θ, J(θ)) and (ϕ, J(ϕ)).

It can be shown that, for all practical purposes, a convex function has to be continuous; see [125, Theorem
10.1]. But if a function is not merely continuous but also differentiable, then it is possible to give alternate
characterizations of convexity that is more useful.

Lemma 1.1. Suppose that J : Rd → R is continuously differentiable everywhere. If J is convex, then

J(θ + ϕ) ≥ J(θ) + ⟨∇J(θ),ϕ⟩, ∀θ,ϕ ∈ Rd. (1.1.7)
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(θ, J(θ))

Figure 1.3: The Graph Above Tangent Property of a Convex Function

If J is strictly convex, then

J(θ + ϕ) > J(θ) + ⟨∇J(θ),ϕ⟩, ∀θ, ∀ϕ ̸= 0 ∈ Rd. (1.1.8)

For a proof of Lemma 1.1, see [125, Theorem 25.1].
Now we give interpretations of the various inequalities above in the case where d = 1, so that J : R → R.

Suppose J is continuously differentiable on some interval (a, b). Then for every θ ∈ (a, b), the function
ϕ 7→ J(θ) + J ′(θ)(ϕ − θ) is the tangent to the graph of f at the point (θ, J(θ)). Thus (1.1.7) says that for
a convex function, the tangent lies below the graph. This is to be contrasted with (1.1.5), which says that
the chord lies above the graph. Equation (1.1.8) says that if the function is strictly convex, then not only
does the tangent lie below the graph, but the tangent touches the graph only at the single point (θ, J(θ)).
Figure 1.3 depicts the “graph above the tangent” property of a convex function, which is to be contrasted
with the “graph below the chord” property depicted in Figure 1.2.

The above discussion allows us to introduce another relevant concept.

Definition 1.3. A C1 function J : Rd → R is said to be R-strongly convex if

J(θ + ϕ) ≥ J(θ) + ⟨∇J(θ),ϕ⟩ +
R

2
∥ϕ∥22, ∀θ,ϕ ∈ Rd. (1.1.9)

The above concept is taken from [109, section 2.1.3], which also contains several consequences of strong-
convexity.

If the function is in fact twice continuously differentiable, then we can give yet another set of character-
izations of the various forms of convexity.

Lemma 1.2. Suppose S is an open convex subset of Rd, and that J : S → R is twice continuously differen-
tiable on S. Denote Q := ∇2J(·) : S → Rd×d. Then

1. J is convex if and only if Q(θ) is positive semidefinite for all θ ∈ S.

2. J is strictly convex if Q(θ) is positive definite for all θ ∈ S.

For a proof of this result, see [125, Theorem 4.5].

1.1.3 Some Popular Algorithms

In this subsection, we discuss various popular approaches for minimizing a C1 objective function J(·). Again
the contents of this subsection can be thought of as an overview, with more details being found in Chapter
4.

Historically, the oldest method for finding a minimizer of a C1 function J(·) is the Steepest Descent
method, which goes back a few centuries. It can be described as follows:
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1. Start with an initial guess θ0 ∈ Rd.

2. At step t, compute the gradient ∇J(θt), and choose a “step size” αt.

3. Update θt via
θt+1 = θt − αt∇J(θt). (1.1.10)

4. Repeat

Note that the minus sign in front of αt arises because the aim is to minimize the ojbective function. The recipe
for choosing the step size αt (which is also called the “learning rate” in the Machine Learning community)
has varied over time. Initially, αt was chosen via a “one-dimensional search,” to minimize J(btht −α∇J(θt)
as a function of α. However, the current practice is to choose a predetermined “schedule” of step sizes. See
Chapter 4 for details.

During the 1960s, the Steepest Descent method was supplemented by momentum-based methods,
wherein the current search direction ∇J(θt) in (1.1.10) is changed to some function of the current guess θt
and also the preceding guess θt−1. We discuss perhaps the two most popular momentum-based algorithms,
namely the Heavy Ball method, and Nesterov’s Accelerated Gradient method.

The Heavy Ball (HB) method was first introduced in [113]. The update rule in the Heavy Ball method is

θt+1 = θt + µ(θt − θt−1) − αt∇J(θt), (1.1.11)

where αt is the step size, µ is known as the “momentum parameter.” The Nesterov Accelerated Gradient
(NSG) algorithm was introduced in [107], and can be stated as follows (following [143, Eqs. (3)–(4)]):

θt+1 = θt + µt(θt − θt−1) − αt∇J(θt + µt(θt − θt−1)). (1.1.12)

The main difference between the HB method and NAG is that in HB, the search direction to which the step
size is applied is ∇J(θt), whereas in NAG, it is ∇J(θt + µt(θt − θt−1)).

1.1.4 Sources of Stochasticity

It can be seen that all of the algorithms discussed in the previous subsection are deterministic. The same
was true of practically all the algorithms of that era. However, the title of this book is stochastic algorithms.
So wherefrom does the stochasticity arise?

In recent years, the dimension d of the optimization problems has increased enormously. In the design of
contemporary neural networks or Large Language Models (LLMs), values of d up to 1012 are not uncommon.
Thus, even if the learner has the “ability” to compute the gradient ∇J(θt) (which belongs to Rd) “exactly,”
the learner often uses an approximate gradient ht+1 whose computation is far less resource-intensive com-
pared to computing ∇J(θt) exactly. Often, the approximate gradient ht+1 is also random. Thus, in contrast
with deterministic algorithms where the iterations lead to a sequence of deterministic vectors {θt}, in this
situation the output of the algorithms are a sequence of random vectors {θt}, that is, a stochastic pro-
cess. Clearly, the tools required to analyze the behavior of a stochastic process are more involved than those
needed to analyze the behavior of a sequence of vectors. Developing and presenting such tools is one the
main objectives of this book. The same methodology can also be used to analyze the situation where there
are unavoidable “measurement errors” in computing ∇J(θt).

As an illustration of these ideas, we study the problem of training a multi-layer neural network. Each
neural network architecture can be thought of as a map f : Rd × Rn → Rl, where d is the number of
weights or adjustable parameters, n is the number of inputs, and l is the number of outputs. For ease of
presentation, we show in Figure 1.4 a simple neural network with just a handful of neural elements and
a few hidden layers. In reality, today’s neural networks have millions of neurons if not more, and tens of
billions of “weights” if not more. For each choice of weight vector θ ∈ Rd, the neural network leads to an
“input-output” map that associates an output f(θ,x). The “training” of a neural network takes place as
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Figure 1.4: A simple multi-layer neural network

follows: The learner is given a large collection of “labelled” input-output pairs {(xi,yi)}mi=1. The objective
is to minimize the function

J(θ) :=
1

m
L(yi, f(θ,xi)), (1.1.13)

where L : Rl × Rl → R+ is known as the “loss function,” and measures the difference between the actual
output of the network f(θ,xi), and the desired output yi. The most commonly used loss function is the
least-squares error

L(y, z) := ∥y − z∥22. (1.1.14)

As discussed in the preceding subsection, almost all methods for minimizing J(·) require the computation
of ∇J(θt), which clearly equals

∇J(θt) =
1

m
∇θL(yi, f(θ,xi)). (1.1.15)

Computing ∇J(θt) in this manner is known as the batch approach; see [26] for a discussion of such terms,
as well as an excellent survey of optimization methods for large-scale ML problem. In principle, the above
quantity is easy to compute, but for the fact that it requires m different individual gradient computations.
When m is small, this approach is feasible. But in contemporary ML problems it is not uncommon for m,
the number of training samples, to be in the billions or even trillions. To reduce the computational effort,
a commonly used approach is called mini-batch. In this approach, an integer k ≪ m is selected. At each
iteration, k different indices i1, · · · , ik are chosen from the set [m] := {1, · · · ,m}, independently, and with
replacement. (This makes the statistical analysis easier.) Then the approximate gradient ht+1 is defined as

ht+1 :=
m

k

k∑
j=1

∇θL(yij , f(θ,xij )). (1.1.16)

Clearly ht+1 is a random vector. Since we are choosing the samples independently and with replacement,
it is easy to see that the expected value of ht+1 equals the true gradient ∇J(θt). This is the reason for
the term m/k. This is the motivation for referring to ht+1 as a stochastic gradient. In Chapter 4 we
will present quite general conditions for the convergence of the Stochastic Gradient Descent (SGD)
algorithm, where the true gradient ∇J(θt) is replaced by a random approximation to it denoted by ht+1.
We also analyze momentum-based methods when a stochastic gradient is used.
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1.2 Introduction to Reinforcement Learning

1.2.1 Introduction to Reinforcement Learning

As with many phrases in common usage, there is no precise definition of what constitutes “reinforcement
learning,” often abbreviated to just RL. In the present set of notes, this phrase is used to refer to decision-
making with uncertain models, and in addition, current decisions alter the future behavior of the system.
One consequence of this alteration is that, if the same decision is taken at a future time, the outcome might
not be the same. This additional feature, namely that current decisions alter the dynamics of the system
under study, usually though not always by altering the surrounding environment, is what distinguishes RL
from “mere” decision-making under uncertainty.

Figure 1.5 rather arbitrarily divides decision-making problems into four quadrants. Examples from each
quadrant can be given.

� Many if not most decision-making problems fall into the lower-left quadrant of “good model, no alter-
ation.” For example, a well-studied control system such as a fighter aircraft has an excellent model
thanks to aerodynamical modelling and/or wind tunnel tests. To be specific, the dynamical model of
a fighter aircraft depends on the so-called “flight condition,” consisting of the altitude and velocity
(measured as its Mach number). While the dependence of the dynamical model on the flight condition
is nonlinear and somewhat complex, usually sufficient modelling studies are carried out, both before
the aircraft is flown and afterwards, that the dynamical model can be assumed to be “known.” In
turn this permits the control system designers to formulate an optimal (or some other form of) control
problem, which can be solved.

� Controlling a chemical reactor would be an example from the lower-right quadrant. As a traditional
control system, it can be assumed that the dynamical model of such a reactor does not change as a
consequence of the control strategy adopted. However, due to the complexity of a reactor, it is difficult
to obtain a very accurate model, in contrast with a fighter aircraft for example. In such a case, one
can adopt one of two approaches. The first, which is a traditional approach in the theory of control
systems, is to use a nominal model of the system and to treat the deviations from the nominal model
as uncertainties in the model. The second, which would move the problem from the lower right to the
upper right quadrant, is to attempt to “learn” the unknown dynamical model by probing its response
to various inputs. This approach is suggested in [145, Example 3.1]. A similar statement can be made
about robots, where the geometry determines the form of the dynamical equations describing it, but
not the parameters in the equations; see for example [139]. In this case too, it is possible to “learn” the
dynamics through experimentation. In practice, such an approach is far slower than the traditional
control systems approach of using a nominal model and designing a “robust” controller. However,
“learning control” is a popular area in the world of machine learning.

� A classic example of a problem belonging to the upper-left corner is a Markov Decision Process (MDP).
This topic is studied in Chapter 5 and it forms the backbone of one approach to RL. In an MDP, there
is a state space X , and an action space U . While it is possible for the sets to be infinite, in this book
we avoid a lot of technicalities by assuming that both sets are finite. Also, in realistic MDPs, the size
of the action space U is very small. Often it is just two! However, though the state space X can be
finite, its cardinality |X | can be enormous, as shown in some of the examples later in this chapter. In
an MDP, at each time instant the learner (also referred to as actor or agent) decides on the action to
be taken at that time. In turn the action affects the probabilities of the future evolution of the system.
Board games without an element of randomness would also belong to the upper-left quadrant, at least
in principle. Games such as tic-tac-toe belong here, because the rules of the game are clear, and the
number of possible games is manageable. In principle, games such as chess which are “deterministic”
(i.e., there is no throwing of dice as in Backgammon for example) would also belong here. Chess is a
two-person game in which, for each board position, it is possible to assign the likelihood of the three
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Figure 1.5: The four quadrants of decision-making under uncertainty

possible outcomes: White wins, Black wins, or it is a draw. However, due to the enormous number of
possibilities, it is often not possible to determine these likelihoods precisely. It is pointed out explicitly
in [133] that, merely because we cannot explicitly compute this likelihood function, that does not mean
that the likelihood does not exist! However, as a practical matter, it is not a bad idea to treat this
likelihood function as being unknown, and to infer it on the basis of experiment / experience. Thus,
as with chemical reactors, it is not uncommon to move chess-playing from the lower-right corner to
the upper-right corner.

� The upper-right quadrant is the focus of these notes. Any problems where the actions taken by
the learner alter the environment, in ways that are not known to the learner, are referred to as
“reinforcement learning” (RL). Despite the lack of knowledge about the consequences, the learner
has no option but to keep trying out various actions in order to “explore” the environment in which
the unknown system is operating. As time goes on, some amount of knowledge is gained, and it is
therefore possible, at least in principle, to “exploit” the knowledge to improve decision making. The
trade-off between exploration and exploitation is a standard topic in RL. A canonical example is MDPs
where the underlying parameters are not known, and these occupy a major part of these notes. As
mentioned above, often complex problems from the lower-right quadrant (such as chemical reactors),
or the upper-left quadrant (such as Chess), are also treated as RL problems.

Now we will give a general description of the problem. In a RL problem, there is a state space X and
another action space U . At each time t, the learner (also known as the actor or the agent) measures the
state Xt ∈ X . Based on this measurement, the learner chooses an action Ut from a menu of “actions,” which
is denoted by U , and receives a reward R(Xt, Ut). The rule by which the current action Ut is chosen as a
function of the current state Xt is known as a policy. The idea is to find the best policy. Figure 1.6 depicts
the situation.

While it is possible for the state space X and the range of possible actions U to be infinite, in these
notes we simplify our lives by restricting U to be a finite set. In the same way, it is possible to treat “time”
as a continuum, but again we simplify life by treating t as a discrete variable assuming values in the set of
natural numbers N = {0, 1, · · · }. Thus RL requires the agent to take a set of sequential decisions from a
finite menu, at discrete instants of time. When the agent chooses an action Ut ∈ U , two things happen.

1. The agent receives a “reward” Rt. The reward could either be deterministic, or random, and both
possibilities are permitted in these notes. The reward could be a negative number, suggesting a
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Figure 1.6: Depiction of a Reinforcement Learning Problem

penalty instead of a reward, but the phrase “reward” is standard phraseology. In case the reward is
random, it is assumed that the reward lies in a bounded interval in R which is known a priori, in
which case the reward can be translated to belong to an interval [0,M ]. The same transformation can
of course be applied if the reward is deterministic. Note that some authors speak of a “cost” which
is to be minimized, rather than a reward which is to be maximized. The modifications required to
tackle this situation are obvious and we will not comment upon this further. The reward depends not
just on the action chosen Ut, but also the state Xt of the environment at time t. There can be two
sources of uncertainty in the reward. In a Markov Decision Problem (MDP), the reward could be a
random function of Xt and Ut, but with a known probability distribution. In an RL problem, even
the probability distribution of the reward is not necessarily known. However, for technical reasons, it
is assumed that the upper bound M on the reward is known.

2. The action Ut affects the dynamics of the system. A consequence is that the same action taken at a
different time need not lead to the same reward, because in the meantime the “state” of the environment
may have changed.

Over the years, the RL research community has given some “structure” to the above rather vague and
general description. Specifically:

1. The environment is taken as a Markov process (see Section 2.2) with the state space X , in which the
state transition matrix depends on the action taken. So there are |U| state transition matrices, one for
each possible action.

2. If Xt denotes the state of the Markov process at time t and Ut is the action taken at time t, then the
reward R is taken to be a function R(Xt, Ut). This formalism explains why the same action Ut ∈ U
taken at a different time may lead to a different reward, because the state Xt may have changed. It is
also possible for R to be a “random” function of Xt and Ut, so that Xt, Ut only specify the probability
distribution of R(Xt, Ut). In such a case, even if the same state-action pair (Xt, Ut) were to occur at
a different time, the resulting reward need not the same.

3. Yet another variation is that the reward R(Xt, Ut) (whether random or deterministic) is paid at the
next time instant t + 1. This is the case in some books, notably [148, 145]. In other words, if the
Markov process is in state Xt and the action Ut is applied, the reward is Rt+1 = R(Xt, Ut). This
allows those authors to consider the situation where the “next state” Xt+1 and “next reward” Rt+1

can share a joint probability distribution, which depends on Xt and Ut. Some other authors assume
that the reward is immediate, so that Rt = R(Xt, Ut). This is the convention adopted in these notes.

4. There are two distinct types of Markov Decision Processes that are widely studied, namely: Discounted
reward processes and average reward processes. Each of them has rather a distinct behavior from the
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other. In discounted reward processes, there is a “discount factor” γ ∈ (0, 1) that is applied to future
rewards. The objective is to maximize the sum of the future rewards, where the reward at time t is
discounted by the factor γt. Because this future discounted reward is itself random, we maximize the
expected value of this random variable. In the average reward process, the objective is to minimize the
expected value of the average of future rewards over time. Because there is no discounting of future
rewards, a reward paid at any time contributes just as much to the average as a reward paid at any
other time.

5. In the simplest version of the problem, the |U| state transition matrices, one for each possible action,
are assumed to be known, as is the reward function. In the case where the reward is a random function
of Xt and Ut, it is assumed that the probability distribution of R(Xt, Ut) is known. It is also assumed
that the state Xt of the Markov process can be observed by the agent, and can be used to decide the
action Ut. A key concept in RL is that of a “policy” π which is a map from the state space X of
the Markov process to the set of actions U . The objective here is to choose the optimal policy, which
maximizes the expected value of the discounted future reward over all possible policies. This version
of the problem is usually known as a Markov Decision Process (MDP).1 It is usually viewed as
a precursor to RL. In “proper” RL, neither the Markovian dynamics nor the reward are assumed to
be known, and must be learned on the fly so to speak. However, knowing the solution approaches to
the MDP is very useful in solving RL problems. It should be pointed out that some authors also use
the phrase RL to the problem of finding the optimal policy in an MDP where the parameters of the
problem are completely known.

A dominant theme in RL is the trade-off between “exploration” and “exploitation.” By definition, the
agent in an RL problem is operating in an unknown environment. However, after sometime a reasonably good
model of the environment is available, and a set of actions that is reasonably “rewarding” is also identified.
Should the agent then persist with this set of actions, or occasionally attempt something new, just on the
off-chance that there is a better set of actions available? Let us take a concrete example. A successful chess
player would have evolved, over the years, a set of strategies that work well for him/her. Should the player
persist with the time-proven strategies (exploitation) until someone starts beating him/her, or occasionally
try something completely different just to see what happens (exploration)? The answer is not clear, and is
likely to vary from one domain to another. To illustrate the domain dependence of the solution, suppose
a person moves to a new town and wishes to find the best coffee shop. Then it is probably sufficient to
try each nearby coffee shop just once (or just a few times), because most coffee shops have standardized
protocols for preparing coffee, so that the quality is not likely to vary very much from one visit to the next.
Therefore a person can stick to the coffee shop that is most appealing after a few visits, and there is very
little incentive for further “exploration,” only “exploitation.” In contrast, it can be assumed that the course
of a chess match between two players at the highest level almost invariably leads to a previously unexplored
set of positions. Thus persisting with a stock strategy would invariably lead to suboptimal results, and there
must be greater emphasis on exploration than in the coffee shop example.

There are a couple of methods for quantifying the trade-off between exploration and exploitation. We
begin with the observation that almost any “sensible” learning algorithm would converge to a nearly optimal
policy within a finite number of time steps. Here are two ways to measure how good the algorithm is:

1. Given an accuracy ϵ, one can measure how many time steps are required for the policy to be within
ϵ of the optimal policy.2 The faster a policy becomes ϵ-suboptimal, the better it is. Implicit in this
characterization is the assumption that a policy is not penalized for how badly it performs before it
achieves ϵ-suboptimality – just the time it takes to achieve ϵ-suboptimality status.

1There is a variant where the state Xt cannot be observed directly; instead one observes an output Yt which is either a
deterministic or a random function of Xt. This problem is known as a Partial Observed Markov Decision Process (POMDP).
This problem is not discussed at all in these notes.

2This idea is made precise in subsequent chapters.
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2. The other measure is to see what the reward would have been, had the learner somehow magically
implemented the optimal policy right at the outset, and compare it against the actually achieved
performance. This quantity is called the “regret” and is defined precisely later on. The difference
between minimizing the regret and minimizing the time for achieving ϵ-optimality is that in the latter,
the performance of the algorithm before achieving ϵ-optimality is not penalized, whereas it is counted
as a part of the regret.

Clearly, the two criteria are not the same. A learning strategy that converges relatively quicky, but performs
poorly along the way would be rated highly under the first criterion, and poorly under the second criterion.

Within the broad area of Machine Learning (ML) or Artificial Intelligence (AI), RL stands quite distinctly
apart from other popular areas such as supervised learning (which is what many people mean when they
talk about ML), and unsupervised learning. In supervised learning, the main goal is generalization. Thus
the learner is shown an amount of labelled “training data.” The labels could be binary, in which case the
problem is called binary classification. Or the label set could be some finite set, in which case the problem
is called multi-class classification. Finally, the label set could be a continuum, like [0, 1] of the set of real
numbers, in which case the problem is called regression. After the training phase, the learner is then shown
“testing data” for which the correct labels are known to the evaluator, and the learner is asked to predict
these correct labels. The extent to which the learner is able to predict the correct labels serves as a measure of
the quality of the learning algorithm. For instance, detecting whether a credit card transaction is legitimate
or fraudulent, or a growth represents a malignant cancer tumor or just a benign growth, are examples of
supervised learning problems. A well-known recent example is the ImageNet database [65], created as a part
of the LSVRC (Large Scale Visual Recognition Challenge). It consists of roughly 14 million images that
are hand-curated. The full set, or some subset thereof, is presented to some supervised learning algorithm,
whose parameters are then adjusted to achieve good performance on the training inputs. While there are
several mathematical formalisms of this class of problems, the so-called PAC (Probably Approximately
Correct) learning formulation is among the more popular approaches. Deep neural networks are an example
of solving supervised learning problems using the PAC formalism.

At the other end of the spectrum lies unsupervised learning. In this problem, the learner is simply given
a set of data, without any labels of any sort. The task of the learner is to collect the data into various
“clusters” as they are known in the world of statistics. Once the training data is clustered, the learner is
given a set of testing data. Each element of the testing data is then assigned to the cluster to which it most
naturally belong. One way of stating the clustering problem is via the K-means algorithm. In this algorithm,
the clusters are chosen in such a way that. the elements of each cluster are closer to the centroid of the
cluster to which it belongs, than to the centroid of all other clusters. Figure 1.7 illustrates the outcome of one
such clustering. It can be seen that there are five clusters, whose centroids are denoted by stars. In general,
solving the K-means problem exactly is NP-hard. Hence various approximations are used. Unsupervised
learning is not discussed further in these notes.

One can explain the difference between supervised learning and Reinforcement Learning as follows
(though other explanations are also possible). In supervised learning, the learner gets immediate and
(mostly) accurate feedback about the correctness of the label assigned to the testing data. However, in
RL, the feedback to the learner is long-term, and statistical in nature.

1.2.2 Some Examples of Reinforcement Learning

In this section we briefly discuss a few motivating problems that can serve as illustrations of reinforcement
learning. We will return to a couple of these problems again in future chapters.

There are several examples of reinforcement learning available in the literature. The books [119, 145]
contain several examples, while the book [27] is primary devoted to examples of RL in a variety of areas,
including healthcare, transportation, finance etc. Perhaps the most “famous” application of RL is a general-
purpose algorithm that can be taught to play a variety of games, including Chess, Shogi and Go [37, 136].
Robot control, including path-planning in the presence of (possibly unknown) obstacles is another popular
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Figure 1.7: Typical output of a clustering algorithm

application. Some RL texts and papers study the problem of balancing a stick on a moving cart, which is
known in control theory as the “inverse pendulum” problem. This might not be a good application of RL,
because the system can be modelled very precisely, which in turn leads to very efficient control laws. However,
by viewing this well-studied contro-theoretic problem as a problem in RL, the RL research community has
developed several new and interesting learning paradigms. Another application is that of deciding an optimal
strategy for the game of Blackjack, sometimes also called Twenty One. We will study this example, either
in its full form or in a simplified form, in detail at appropriate places in these notes.
Multi-Arm Bandit Problems

This problem is a generalization of the “slot machine” in gambling casinos around the world, whereby
the player pulls a lever and receives a random payoff. In order to pull the lever, the player has to insert some
money, and the expected value of the payoff is less than the amount to be inserted; that is how the casino
makes money. However, in our model, we ignore the fact that a player has to pay to play, and focus strictly
on the payout part of it.

Suppose a player is facing m slot machines, or “bandits,” each of which has random payout. Specifically,
let Xi denote the random payout of the i-th bandit. Then Xi has an unknown expected (mean value) payout,
as well as an unknown probability distribution around this mean value. To avoid unnecessary technicalities,
it is assumed that all returns are nonnegative, and that there is a fixed known upper bound M on the payout
of each machine, which can be taken as 1 without any loss of generality. Therefore the return of each arm
has a probability distribution ϕi is supported on the set [0, 1]. Define

µi =

∫ 1

0

xϕi(x)dx

to be the mean or expected value of Xi. Of course, the player does not know either µi or ϕi(·). But the player
is able to “pull the arm” of each bandit and see what happens. This generates (we assume) statistically
independent samples xi1, · · · , xim of the random variable Xi. Based on the outcome of these experiments,
the player is able to make some estimate of µi for each bandit i. These estimates can be used to determine
future strategies.

Note that if the quantities µ1, · · · , µm are known, then the problem is simple: The player should always
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Figure 1.8: Toy Snakes and Ladders Game

play the machine that has the highest expected payout. But the challenge is to determine which machine
this is, on the basis of experimentation. As stated above, there are many reasonable algorithms that will
asymptotically (as the number of trials increases towards infinity) determine the arm(s) with the best re-
turn(s). Therefore one way to assess the performance of an algorithm is its “regret,” that is, the return
achieved over the course of learning, subtracted from the optimal return of always choosing the arm with the
highest return. Bandit theory is a very well-developed branch of Reinforced Learning, which is somewhat
orthogonal to Markov Decision Problems. So that topic, while central to RL, is not discussed further in this
book.
Snakes and Ladders

We all know the ancient snakes and ladders game, where the objective is for a player to pass from the
start to the end while avoiding the snakes and taking advantage of the ladders. We will modify the game
slightly by adding the possibility of losing if the player overshoots the last square. A toy version of the game
is shown below (it is also studied in Section 2.2).

The rules of the game are as follows:

� Initial state is S.

� A four-sided, fair die is thrown at each stage.

� Player advances as many squares as the outcome of the throw, followed by the impact of the snake or
ladder, if any.

� Player must land exactly on W to win.

� If implementing a move causes the player to hit or to cross L, then the player loses. Landing exactly
on L also loses.

� Hitting the square W leads to a reward of 5 and hitting the square L leads to a reward of −5. The
reward in every other square is 0.

At each stage of the game, the player has two choices: to roll the die and take a chance on the outcome, or
not to roll it. We can ask: What is the best strategy for a player as a function of the square currently being
occupied? Clearly, it depends on whether the expected return from playing exceeds the expected return
from not playing.
Blackjack

Blackjack is a popular game in gambling casinos around the world. The player plays against the “house.”3

The player and the house draw cards in alternation. The objective is to draw cards such that the total of

3Actually, it is possible to have more than one player plus the “house.” However, to simplify the problem, we study only
the case of one player against the “house.”
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(P,H) R
P < H -2
P = H 1

P > H,P ̸= W 2
(P,H) = (W, ∗) 5
(P,H) = (L, ∗) -5

Table 1.1: Reward Table for Simplified Blackjack Game

the cards is as close to 21 as possible without exceeding it. That is why sometimes Blackjack is also called
“Twenty-One.” The formulation of Blackjack as a problem in RL is discussed in [145, Example 5.1]. At each
time instant, the player has ony two possible actions: To ask for one more card, or not. These are known
as “hit” and “stick” respectively. So the set of possible actions U has cardinality two. If the player draws a
card, the outcome is obviously random. Either way, the house also draws a card whose outcome is random.
It is shown in [145, Example 5.1] that the process can be modelled by a Markov process with 200 states, so
that |X | = 200. However, tracing out all possible future evolutions of the game, starting from the current
state, is nearly impossible, and simulations are the only way to analyze the problem.

We now present a simplified version of Blackjack. Obviously, drawing a card leads to the player’s total
increasing by anywhere from 1 to 11.4 So if the player’s current total is 10 or less, the player cannot possibly
lose by drawing, and may get closer to winning. So the optimal strategy from such a position is not in doubt.
With that in mind, we replace the drawing of a card by the rolling of a fair four-sided die, with all four
outcomes being equally probable. It does not matter what the “target” total is, because if the target total
is T , then so long as the player’s total is T − 4 or less, the player should roll the die. With this in mind,
we can think of the player’s states as {0, 1, 2, 3,W,L}, with W and L denoting Win and Lose respectivey.
If the player’s current total plus the outcome of the die exactly equals 4, the player wins, and if the total
exceeds 4, the player loses. But there is an added complication, which is the total of the “House.” Let us
assume that the House policy is to “stick” whenever it gets within 3 of the designated total. Hence it can
be assumed that the House total is in {1, 2, 3}. Now the object of the game is not merely to get as close to
W without going over, but also to beat the House total. Hence the reward for this game can be specified
as shown in Table 1.1. With this reward structure, at each position, the player has the option of rolling the
die, or not. It turns out that this game is more complex than just the player playing snakes and ladders.
We will analyze this game also in later chapters.
Backgammon

Backgammon is a board game played by two players on a board with (essentially) 24 positions, with
each player throwing two six-sided dice at each turn. Figure 1.9 shows a typical board position. The game
combines chance (random outcome of throwing the dice) and strategy (what a player does based on the
outcome of the dice).

Unlike in Blackjack, the range of possible actions available to a player at each turn is quite large. This
game is well-suited to a technique called “temporal difference” or TD-learning, which is studied in Section
4.2. Tesauro has published several articles on how to program a computer to play backgammon, including
[154, 155, 156]. See [145, Section 16.1] for a detailed description of the rules of backgammon and the TD
implementation of Tesauro.
AlphaGo and AlphaZero

It would not be a exaggeration to say that a great deal of the public attention to artificial intelligence
arises from the success of two programs, namely AlphaGo and AlphaZero. In 2016, a UK-based company
called Deep Mind (since acquired by Google) created a program called AlphaGo to play Go, a board game
played on a grid of 19 × 19 places. In a five-game match held in Seoul, Korea between the 9th and 15th
of March, AlphaGo played against Lee Sedol, who was an eighteen-time world champion, though he was

4An Ace can be counted as either 1 or 11 as per the player’s choice.
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Figure 1.9: A typical board position in backgammon

not world champion at that time. AlphaGo won four out of the five games. It was the first instance of a
computer defeating a ranking Go player. A year later, in 2017, AlphaGo defeated the top-ranked player Ke
Jie. In a series of three matches played between 23rd and 27th May, AlphaGo won all three matches.

Twenty years earlier IBM had developed the Deep Blue platform to play chess. Obviously, over such a
long period of time, there would be massive improvements in computing hardware. Indeed, AlphaGo ran
on a collection of Tensor Processing Units (TPUs), which are specially designed to carry out the type of
computations required by AlphaGo (as opposed to general-purpose CPUs, or Central Processing Units).

Even at that time, Deep Mind had in its possession a more advanced program called AlphaZero, but did
not deploy it against Ke Jie. AlphaZero could be programmed to play chess, Go and shogi (Japanese chess).
AlphaZero defeated AlphaGo while playing Go, defeated Stockfish (a popular chess-playing program), and
Elmo (a popular program to play shogi). However, in the eyes of many, the real interest in AlphaZero arose
from the manner in which is trained itself. Recall that the Deep Blue platform developed by IBM relied
on human inputs, and a search technique, in order to analyze board positions and determine its next move.
In contrast, AlphaZero used an entirely different approach, whereby it improved itself through “self-play”,
through a mathematical method known as Monte Carlo tree search (MCTS) algorithm. Thus the same
program is able to “teach itself” to play different games. A popular description how AlphaZero goes about
its self-appointed task can be found in [37]. Those interested in the mathematical details can find them in
[136].

One of the intriguing philosophical aspects of AlphaZero is the fact that, as its name implies, AlphaZero
starts from zero, that is, without any prior knowledge. Its superior performance compared to other programs
that make use of prior knowledge has been interpreted by some AI researchers to claim that “prior knowledge”
is not necessary to achieve top performance. To understand why this is interesting, let us consider the same
question, but changing “chess” to “cooking.” Suppose you wish to become a master chef. Should you first
learn under someone who is already a master chef, and experiment on your own only after you have achieved
some level of proficiency? Or is it better for you to undertake trial and error right from Day One? Most of
us would instinctively answer that learning from a master (i.e., tapping domain knowledge) would be better.
One of the intriguing aspects of the success of AlphaZero is that, when it comes to a computer learning to
play chess, domain knowledge apparently does not confer any advantage. However, at the moment the role
of prior domain knowledge in AI is still a topic for further research. It is not clear whether the success of
AlphaZero is a one-off phenomenon, or a manifestation of a more universally applicable principle.
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1.3 About These Notes

This section will be written last.

Notes and References

The problem of deterministic methods of optimization has been studied for decades, and picked up momen-
tum during the 1960s and the 1970s. Historically, these algorithms assumed that various measurements (such
as function evaluations or gradient evaluations) were noise-free. Some of these deterministic algorithms in
turn inspired various stochastic algorithms that are widely used, many of which are studied in this book.
An excellent book on deterministic optimization algorithms is [47]. In [128], the author briefly discusses the
relationship between the stochastic approximation algorithm and deterministic algorithms, specifically the
Newton-Raphson algorithm, when only noisy measurements are available. This connection is made precise
in the material on Zap Q-learning in Chapter 6.

There are a great many books devoted to both convex analysis and convex optimization. Among the
many excellent books on convex analysis, two noteworthy ones are [125, 62]. These books discuss convex
functions in general, though [62] also has some discussion of convex optimization. Among the bext books
dedicated to convex optimization is [28].

We will discuss the formulation of Reinforcement Learning (RL) in Chapters 5 and 6. For the present,
the reader is directed to the following representative sample of papers that discuss the practical applications
of RL: [157, 1, 105, 67, 164, 78, 54].



Chapter 2

Convergence of Stochastic Processes

As mentioned in Section 1.1.4, when attempting to solve very high-dimensional optimization problems, it is
often desirable to introduce some randomness, to avoid computing gradient vectors of large dimensions. One
consequence of this is that, in contrast with deterministic optimization algorithms that produce a sequence
of vectors, stochastic algorithms produce a stochastic process. A similar statement applies to Reinforcement
Learning problems. The central problem studied in this book is the convergence of various stochastic
processes that arise in nonconvex optimization and Reinforcement Learning. Therefore, in this chapter we
present some “universal” (that is, widely applicable) theorems that can be used to establish the convergence
of stochastic processes. The actual applications of these convergence theorems to specific situations are
deferred to subsequent chapters. Specifically, applications to nonconvex optimization are studied in Chapter
4, and applications to RL are studied from Chapter 5 onwards.

Note that the contents of the chapter are a mixture of “standard” material and “advanced” material.
Secifically, the material contained in Sections 2.1.1 and 2.1.2 is quite basic, and can be found in several texts.
Nevertheless, even a knowledgeable reader may wish to browse these sections in order to become familiar
with the notation used in this book. However, the contents of Section 2.1.3 are at a more advanced level.
Good references for this material are [44, 173]. Similarly, the material in Section 2.2.1 is quite standard.
However, the material in Sections 2.2.2 and 2.2.3 is not so standard. Some of it can be found in [111], but
much of it is stated here for the first time, so far as the author is aware. Finally, while the material in Section
2.3.1 is standard, some of the material in Section 2.3.2 is new and presented in book form for the first time
(though it is contained some publications by the author).

A typical theorem in this domain gives sufficient conditions for convergence. Thus, if the hypotheses
of the theorem hold, then convergence is guaranteed. However, convergence might take place even when
the hypotheses of the theorem do not hold. Constantly expanding the realm of applicability of convergence
theorems is an on-going and vital activity.

2.1 Random Variables and Stochastic Processes

In this first section of the chapter, we introduce various topics related to measure, probability, and random
variables. The contents of the first two subsections are fairly elementary, and the treatment is fairly cursory.
It is suggested that readers who are encountering these topics for the first time should supplement this
material by the references cited here. The concept of the conditional expectation of a random variable with
respect to a σ-algebra is not elementary. It is introduced in this subsection to facilitate a precise definition
of a Markov process in Secton 2.2.

Probability theory is a well-dveloped subject, and there is no dearth of excellent texts. Thus the suggested
reading list is limited to slightly more advanced texts,, wherein the topics of conditional expection (in this
section) and martingales (Section 2.3) are covered in depth.

17
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Axiomatic probability theory can be said to have been started by Kolmogorov, and his very brief mono-
graph [79] gives a good motivation for the subject. While the specific contents of this book have been
superceded by later books, [79] is a valuable resource for shedding light on the origins of probability theory,
and its evolution during its early years. For a thorough treatment of topics from measure theory, the reader
can consult [10]. A very good overview of probability is found in the book (with same name) [29]. Topics
such as conditional expectation and martingales are briefly discussed in [20, 29], and a more detailed treat-
ment can be found in [173, 16, 44]. In particular, [44] has both a large number of examples as well as a lot
of exercises.

2.1.1 Random Variables

Definition 2.1. Suppose Ω is a set and that F is a collection of subsets of X. Then F is said to be a
σ-algebra1 if F satisfies the following axioms:

(S1). Ω ∈ F .

(S2). If A ∈ F , then Ac ∈ F , where Ac denotes the complement of A in Ω.2

(S3). If {Ai}i≥1 is any countable sequence of sets belonging to F , then

∞⋃
i=1

Ai ∈ F . (2.1.1)

The pair (Ω,F) is called a measurable space.

Definition 2.2. Suppose (Ω,F) is a measurable space. A function P : F → [0, 1] is called a probability
measure if it satisfies the following axioms:

P1. P (Ω) = 1.

P2. P is countably additive; that is: Whenever {Ai} are pairwise disjoint sets from F , we have that

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai). (2.1.2)

The triple (Ω,F , P ) is called a probability space.

Note that if Ω is a finite or countable set, it is customary to take F to be the “power set” of Ω, that is,
the collection of all subsets of Ω, often denoted by 2Ω. Suppose {pi} is a sequence of nonnegative numbers,
of the same cardinality as Ω, and that

∑
i pi = 1. Let us enumerate the elements of Ω in some fashion as

{ω1, · · · , }, and assign a nonnegative weight pi to each element ωi ∈ Ω. Now suppose A ⊆ Ω, and define

P (A) =
∑
ωi∈A

pi =
∑
ωi∈Ω

I{ωi∈A}, (2.1.3)

where I{ωi∈A} is the indicator function that equals ω1 if i ∈ A and 0 if ωi ̸∈ A. Then it is easy to verify that
(Ω, 2Ω, P ) is a probability space. However, if Ω is an uncountable set, e.g., the real numbers, then the above
approach of assigning weights to individual elements does not work.

Definition 2.3. Suppose (Ω,F) and (X ,G) are measurable spaces. Then a map f : Ω → X is said to be
measurable if f−1(S) ∈ F for all S ∈ G.

1The term σ-field is more popular, but this terminology is preferred here.
2Note that (S1) and (S2) together imply that ∅ ∈ F .
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Thus a map from Ω into X is measurable if the preimage of every set in G under f belongs to F .

Definition 2.4. Suppose (Ω,F , P ) is a probability space, and (X ,G) is a measurable space. A function
X : Ω → X is said to be a random variable if it is measurable, that is,

X−1(S) ∈ F , ∀S ∈ G. (2.1.4)

In such a case, for each set S ∈ G, the quantity

P (X−1(S)) =: PX(S)

is called the probability that X ∈ S.

In the above definition, (X ,G) is called the “event space,” and the sets belonging to the σ-algebra G are
called “events,” because each such set has a probability associated with it via (2.1.4). The triple (Ω,F , P )
is called the “sample space.”

Example 2.1. Suppose we wish to capture the notion of a two-sided coin that comes up H for heads 60% of
the time, and T for tails 40% of the time. In such a case, the event space (the set of possible outcomes) is just
X = {H,T}. Because the set X is finite, the corresponding σ-algebra G can be just 2X = {∅, {H}, {T},X}.
The sample space (Ω,F , P ) can be anything, as can the map f : Ω → X , provided only that two conditions
hold: First,

f−1({H}) = {ω ∈ Ω : f(ω) = H} ∈ F , f−1({T}) = {ω ∈ Ω : f(ω) = T} ∈ F .

(Actually, either one of the conditions would imply the other.) Second,

P (f−1({H}) = 0.6, P (f−1({T}) = 0.4.

2

Definition 2.5. Suppose X is a random variable defined on the sample space (Ω,F , P ) taking values in
(X ,G). Then the σ-algebra generated by X is defined as the smallest σ-algebra contained in F with
respect to which X is measurable, and is denoted by σ(X).

Example 2.2. Consider again the random variable studied in Example 2.1. Thus X = {H,T} and G =
2X = {∅, {H}, {T},X}. Now suppose X is a measurable map from some (Ω,F , P ) into (X ,G). Then all
possible preimages of sets in G are:

∅ = X−1(∅),Ω = X−1(X ), A := X−1({H}), B := X−1({T}) = Ac = Ω \A.

Thus the smallest possible σ-algebra on Ω with respect to which X is measurable consists of {∅, A,Ac,Ω}.
Therefore this is the σ-algebra of Ω generated by X. Any other sets in F are basically superfluous. We can
carry this argument further and simply take the sample space Ω to be the same as the event space X , and X to
be the identity operator on (Ω,F , P ) into (Ω,F). Thus Ω = X = {H,T}, and F = {∅, {H}, {T},Ω}. Further,
we can define P ({H}) = 0.6, P ({T}) = 0.4. This is sometimes called the canonical representation of the
random variable X. Usually we can do this whenever the event space is finite or countable. 2

Suppose S is a collection of sets, each of which belongs to F . Then σ(S) denotes the smallest σ-algebra
containing all sets in the collection S. Previously we had defined σ(X), the σ-algebra generated by a
random variable X. The two usages are consistent, in the following sense. Suppose X is a random variable
on (Ω,F , P ) mapping Ω into (X ,G), and let S consist of all preimages in Ω of sets in G. Then σ(X) and
σ(S) are the same.

Originally, the phrase “random variable” was used only for the case where the event space X = R, and the
σ-algebra is the so-called Borel σ-algebra denoted by B, which is defined as the smallest σ-algebra of subsets
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of R that contains all closed subsets of R. Random quantities such as the outcomes of coin-toss experiments
were called something else (depending on the author). Subsequently, the phrase “random variable” came
to be used for any situation where the outcome is uncertain, as defined above. Much of Reinforcement
Learning (RL) has to with Markov Decision Processes (MDPs), which are introduced in Chapter 5. In the
context of MDPs, often the Markov process evolves over a finite set, and the action space is also finite. So
a lot of the heavy machinery above is not needed to describe the evolution of an MDP. However, in RL, the
parameters of the MDP need to be estimated, including the reward–and these are real-valued quantities.
Similarly, in optimization problems, the objective is to find a vector θ∗ ∈ Rd that minimizes some objective
function J : Rd → R. This is attempted by generating a sequence {θt}, which, one hopes, will converge to
θ∗. The process of determining θt+1 from the past history θt0 is the “algorithm.” When the algorithm is
statistical in nature, the resulting sequence of iterations {θt} is a stochastic process assuming values in Rd.
So in this book, we introduce the axiomatic foundation to deal with random variables that assume values in
a continuum such as R. When we do that, the event set X equals R or some subset thereof, and F equals
the Borel σ-algebra.

Next we introduce the concept of the “expected value” of a real-valued random variable that assumes
only finitely many values. Suppose X is a real-valued random variable assuming values in some finite set
X = {x1, · · · , xn}, and that f : X → R. Then we can think of f(X) as a real-valued random variable.
Moreover, if X = xi with probability pi, then f(X) = f(xi) with probability pi. Note that the values
{f(x1), · · · , f(xn)} need not all be distinct. We define the expected value of f(X) as

E[f(X),p] :=

n∑
i=1

f(xi)pi. (2.1.5)

Note that the above definition is valid even if the values {f(x1), · · · , f(xn)} are not all distinct. Moreover,
while X can be an abstract random variable, f(X) has to be real-valued; otherwise we cannot talk about its
expected value. In particular, if X is tself a real-valued random variable assuming finitely many real values
{x1, · · · , xn} ⊆ R, then its expected value can be defined as

E[X,p] :=

n∑
i=1

xipi (2.1.6)

if X has only finitely many values. However, if X takes values in a continuum, then the summation has to be
replaced by an integral. Hence we digress to give a very brief introduction to real-valued random variables
that are not restricted to assuming values in a finite set. Here we skirt over many technical issues. For a
proper treatment of the concepts below, the reader is referred to [29, 10].

We begin by introducing the cumulative distribution function, often abbreviated to just cdf. Good
references for this and related topics are [29, Section 2.5], [16, Section 14] and [43, Section 9.1]. Suppose X
is a real-valued random variable, mapping some sample space (Ω,F , P ) into the event space (R,B). Since
every semi-infinite interval (−∞, a] belongs to B, the preimage X−1(−∞, a] ∈ F . Therefore the probability

P (X−1((−∞, a])) =: Pr{X ≤ a}

is well-defined for each a ∈ R.

Definition 2.6. Suppose X is a real-valued random variable, which maps some probability space (Ω,F , P )
into the event space (R,B). Then the function ΦX : R → [0, 1] defined by

ΦX(a) := Pr{X ≤ a} (2.1.7)

is called the cumulative distribution function (cdf) of X.

Some properties of the cdf are given next. Most of these are easy to verify.
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� If a < b then ΦX(a) ≤ ΦX(b). So the cdf is nondecreasing.

� ΦX(a) → 0 as a→ −∞ and ΦX(a) → 1 as a→ +∞.

� ΦX(·) is continuous from the right, and has limits from the left. Thus

lim
a→b+

ΦX(a) = ΦX(b), (2.1.8)

lim
a→b−

ΦX(a) exists and is ≤ ΦX(b), (2.1.9)

� If ΦX(·) is not continuous at b, but has a “jump”, that is

lim
a→b−

ΦX(a) < lim
a→b+

ΦX(a),

then

Pr{X = b} = lim
a→b+

ΦX(a) − lim
a→b−

ΦX(a).

� The set of points at which the cdf is not continuous is either finite or countable.

� If the cdf is continuous at b, then Pr{X = b} = 0.

In case there is a function ϕX : R → R+ such that

ΦX(a) =

∫ a

−∞
ϕX(u) du, (2.1.10)

Where the integration can be with respect to the Lebesgue measure, then ϕ(·) is called the probability
density function (pdf) of X.

For a r.v. with density, the quantity (if it exists)

µ(X) :=

∫ ∞

−∞
uϕX(u) du

is called the mean of X. Similarly, the quantity (if it exists)

V (X) :=

∫ ∞

−∞
[u− µ(X)]2ϕX(u) du

is called the variance of X, and σ(X) :=
√
V (X) is called the standard deviation of X. It can be shown

that if V (X) < ∞, then µ(X) < ∞; see below. If X does not have a density, then the integrals above can
be interpreted as Riemann-Stiltjes integrals with respect to the cdf.

Next we introduce the concept of an Lp real-valued random variable X. Suppose X is a measurable
map from (Ω,F , P ) to (R,B), i.e., X is a real-valued random variable. We can attempt to integrate the
function X(ω), ω ∈ Ω using the measure P . The concept of integration with respect to an arbitrary measure
is somewhat advanced, and we skip lightly over the details. As mentioned above, [10] is an extremely good
reference for such topics.

Definition 2.7. For 1 ≤ p < ∞, we define Lp(Ω,F , P ) as the set of functions whose p-th powers are
absolutely integrable, or

Lp(Ω,F , P ) := {f : Ω → R s.t.

∫
Ω

|f(ω)|p P (dω) <∞}. (2.1.11)
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The Lp-norm of a function f ∈ Lp(Ω,F , P ) is defined as

∥f∥p :=

[∫
Ω

|f(ω)|pP (dω)

]1/p
. (2.1.12)

If p = ∞, we define L∞(Ω,F , P ) to be the set of functions that are essentially bounded, that is, bounded
except on a set of measure zero, and define the corresponding norm as the “essential supremum” of f(·),
that is

∥f∥∞ = inf{c : P{|f(ω)| ≥ c} = 0}. (2.1.13)

In the above formulas, the integration is with respect to the probability measure P on the space (Ω,F). If
X has a density ϕX(·), then we can take (Ω,F) = (R,B), and P (dω) in the above equations can be replaced
by ϕX(ω)dω.

Next we introduce two very useful inequalities. The numbers p, q ∈ [1,∞] are said to be conjugate
indices if

1

p
+

1

q
= 1.

In particular, if p ∈ (1,∞), then q = p/(p− 1). If p = 1, then q = ∞ and vice versa. If p = 2, then q = 2.

Theorem 2.1. (Hölder’s inequality) If f ∈ Lp(Ω,F , P ) and g ∈ Lq(Ω,F , P ) where p and q are conjugate
indices, then the product fg ∈ L1(Ω,F , P ), and∫

Ω

|f(ω)g(ω)|P (dω) ≤
[∫

Ω

|f(ω)|pP (dω)

]1/p
·
[∫

Ω

|g(ω)|qP (dω)

]1/q
, (2.1.14)

or more compactly,

∥fg∥1 ≤ ∥f∥p · ∥g∥q. (2.1.15)

Using Hölder’s Inequality and the fact that P (Ω) = 1, it can be shown that

Lq(Ω,F , P ) ⊆ Lp(Ω,F , P ) whenever q > p,

or equivalently,

q > p, f ∈ Lq(Ω,F , P ) =⇒ f ∈ Lp(Ω,F , P ).

In particular, if a real random variable X is square-integrable, it is also absolutely integrable. Thus if X has
finite variance, it also has a finite mean or expected value.

In particular, choosing p = q = 2 in Hölder’s inequality leads to Schwarz’ inequality:

Theorem 2.2. if f, g ∈ L2(Ω, P ), then fg ∈ L1(Ω, P ), and∫
Ω

|f(ω)g(ω)|P (dω) ≤
[∫

Ω

|f(ω)|2P (dω)

]1/2
·
[∫

Ω

|g(ω)|2P (dω)

]1/2
, (2.1.16)

or, more compactly

∥fg∥1 ≤ ∥f∥2 · ∥g∥2. (2.1.17)

For future use, we introduce definitions of what it means for a sequence of real-valued random variables to
converge. Three commonly used notions of convergence are convergence probability, almost sure convergence,
and convergence in the mean. All are defined here. A good reference for this material is [29, Section 2.8];
see also [10, Section 21].
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Definition 2.8. Suppose {Xn}n≥0 is a sequence of real-valued random variables, and X∗ is a real-valued
random variable, on a common probability space (Ω,F , P ). Then the sequence {Xn}n≥0 is said to converge
to X∗ in probability if

P ({ω ∈ Ω : |Xn(ω) −X∗(ω)| > ϵ}) → 0 as n→ ∞, ∀ϵ > 0. (2.1.18)

The sequence {Xn}n≥0 is said to converge to X∗ almost surely (or almost everywhere) if

P ({ω ∈ Ω : Xn(ω) → X∗(ω) as n→ ∞}) = 1. (2.1.19)

Now suppose that Xn, X
∗ ∈ L1(Ω, P ). Then the sequence {Xn}n≥0 is said to converge to X∗ in the mean

if
∥Xn −X∗∥1 → 0 as n→ ∞. (2.1.20)

More generally, for any p ∈ (1,∞), “convergence in the p-th mean” can be defined in the space Lp(Ω, P ),
as ∥Xn −X∗∥p → 0 as n→ ∞. However, this terminology is rarely used.

The extension of Definition 2.8 to random variables assuming values in a vector space Rd is obvious and
is left to the reader.

The relationship between the various types of convergence is as follows: Again, see [29, Section 2.8], [10,
Section 21].

Theorem 2.3. Suppose {Xn}, X∗ are random variables defined on some probability space (Ω,F , P ). Suppose
Xn → X∗ in probability as n→ ∞. Then every subsequence of {Xn} contains a subsequence that converges
almost surely to X∗.

Theorem 2.4. Suppose {Xn}, X∗ ∈ L1(Ω, P ). Then

1. Xn → X∗ a.s. implies that Xn → X∗ in probability.

2. Xn → X∗ in the mean implies that Xn → X∗ in probability

3. Suppose there is a nonnegative random variable Z ∈ L1(Ω, P ) such that |Xn| ≤ Z a.e., and suppose
that Xn → X∗ a.s.. Then Xn → X∗ in the mean.

These statements also apply to Rd-valued random variables.

2.1.2 Joint and Conditional Probabilities, Independence

Until now we have discussed what might be called “individual” random variables. Now we discuss the
concept of joint random variables, and the associated notion of joint probability. The definition below is
for two joint variables, but it is obvious that a similar definition can be made for any finite number of joint
random variables. In turn this reads to the concept of conditional probability.

Definition 2.9. Suppose (X ,G) and (Y,H) are measurable spaces. Then the product of these two spaces
is (X ×Y,G⊗H) where X ×Y is the usual Cartesian product of X and Y, and G⊗H is the smallest σ-algebra
of subsets of X × Y that contains all products of the form G×H,G ∈ G, H ∈ H.

Note that G ⊗ H is called the “product” σ-algebra, which equals σ(G × H), where σ(S) denotes the
smallest σ-algebra containing all sets in the collection S, and G × H consists of all products G × H for
G ∈ G, H ∈ H. The use of the tensor product symbol ⊗ to denote the product s-algebra is not entirely
standard.

Suppose (Ω,F , P ) is a probability space, and that (X ,G) and (Y,H) are measurable spaces. Let (X ×
Y,G ⊗ H) denote their product. Suppose further that Z : Ω → X × Y is measurable and thus a random
variable taking values in X ×Y. Let PZ denote the probability measure of the random variable Z. Express
Z as (X,Y ) where X,Y are the components of Z, so that X : Ω → X , Y : Ω → Y. Then it can be shown
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that X and Y are themselves measurable and are thus random variables in their own right. The probability
measures associated with these two random variables are as follows:

PX(S) := PZ(S × Y), ∀S ∈ G, PY (T ) := PZ(X × T ), ∀T ∈ H. (2.1.21)

We refer to Z = (X,Y ) as a joint random variable with joint probability measure PZ , and to PX and PY

as the marginal probability measures (or just marginal probabilities) of PZ for X and Y respectively.
A common application of marginal probabilities arises when both X and Y are finite sets. In this case

X,Y, Z are random variables assuming values in finite sets X ,Y,X × Y respectively. Suppose to be specific
that X = {x1, · · · , xn} and Y = {y1, · · · , ym}. Then it is convenient to represent the joint probability
distribution of Z = (X,Y ) as an n×m matrix Θ, where

θij = Pr{Z = (xi, yj)} = Pr{X = xi&Y = yj}.

Let us denote the marginal probabilities as

ϕi = Pr{X = xi}, ψj = Pr{Y = yj}.

Then it is easy to infer that

ϕi =

m∑
j=1

θij , ψj =

n∑
i=1

θij ,

or in vector notation

ϕ⊤ = Θ1n, ψ = 1⊤
n Θ,

where 1k denotes a column vector of k ones. Note that we follow the convention that a probability distribution
is a row vector.

Example 2.3. We illustrate the concept of marginal probability using a simple example where the two sets
X and Y are finite. Suppose X = {x1, x2, x3} and Y = {y1, y2, y3, y4}. Suppose Z = (X,Y ) is a random
variable on the product set X × Y, with the probability distribution Θ given by

Θ =

 0.0200 0.0400 0.0300 0.0100
0.1100 0.1700 0.1300 0.0900
0.0700 0.1200 0.0800 0.1300

 ,
where the rows represent the values of X and the columns represent the values of Y . Thus Pr{Z = (x2, y3)} =
0.13, and so on. To define the marginal probability PX of the random variable X. we simply sum over all
possible values of Y , or sum each row. Since we view probability distributions as row vectors, we see that

pX = ϕ = (Θ14)⊤ = [ 0.1000 0.5000 0.4000 ].

Similarly the marginal probability PY is obtained as

pY = ψ = 1⊤
3 Θ = [ 0.2000 0.3300 0.2400 0.2300 ].

2

Definition 2.10. Suppose (Ω,F , P ) is a probability space. Suppose (X ,G) and (Y,H) are measurable
spaces, and let Z = (X,Z) : Ω → X × Y be a joint random variable. Finally, suppose S ∈ G, T ∈ H are
events involving X and Y respectively. Then the conditional probability Pr{X ∈ S|Y ∈ T} is defined as

Pr{X ∈ S|Y ∈ T} =
Pr{Z = (X,Y ) ∈ S × T}

Pr{Y ∈ T}
=
PZ(S × T )

PY (T )
. (2.1.22)
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In the definition of the conditional probability (2.1.22), it is assumed that PY (T ) > 0. If PY (T ) = 0, by
convention Pr{X ∈ S|Y ∈ T} is taken as PX(S).

Let us fix a set T ∈ H, and define the function P{X|Y ∈T} : G → [0, 1] by

P{X|Y ∈T}(S) := Pr{X ∈ S|Y ∈ T}. (2.1.23)

Then it is easy to verify that P{X|Y ∈T} is a probability measure on (X ,G). We can think of it as the
probability measure conditioned on the event that Y ∈ T . If PY (T ) = 0, then P{X|Y ∈T} = PX .

Example 2.4. Let us return to Example 2.3. First, define the event T as Y = y2. Then the corresponding
conditional probability distribution on X is given by

p{X|Y ∈T} = (1/0.33)[ 0.04 0.17 0.12 ].

Now let us define T = {y1, y3}. Then PY (T ) = 0.2 + 0.24 = 0.44, and

P{X|Y ∈T} =
1

0.20 + 0.24
[ 0.02 + 0.03 0.11 + 0.13 0.07 + 0.08 ]

=
1

0.44
[ 0.05 0.24 0.15 ].

Observe that P{X|Y ∈T} is a convex combination of P{X|Y=y1} and P{X|Y=y3}, namely

P{X|Y ∈T} =
0.20

0.44
× 1

0.20
[ 0.02 0.11 0.07 ] +

0.24

0.44
× 1

0.24
[ 0.03 0.13 0.08 ].

This property holds in general. 2

After defining the concept of a conditional probability, it is straight-forward to define the conditional
expected value. If f : X → R and T ⊆ Y is some event involving Y , then E[f(X )|Y ∈ T ] is just
E[f(X), P{X|Y ∈T}].

Example 2.5. Let us continue Example 2.4. Suppose f : X → R is defined by

[ f(x1) f(x2) f(x3) ] = [ 2 −7 4 ].

Let T = {y1, y3}. Then it is already known that

P{X|Y ∈T} =
1

0.44
[ 0.05 0.24 0.15 ].

Therefore

E[f(X )|Y ∈ T ] =
1

0.44
(0.1 − 1.68 + 0.6) = −0.98

0.44
.

Similar computations can be carried out for other choices of the event T . In particular, since T = {y1, y3},
it follows that E[f(X)|Y ∈ T ] is a convex combination of E[f(X)|Y = y1 and E[f(X)|Y = y3]. 2

All of the above definitions can be extended to more than two random variables.
Next we briefly discuss the concept of independence. Kolmogorov, who laid down the foundations of

probability theory, remarks on [79, p. 8] (in English translation) that

Historically, the independence of experiments and random variables represents the very mathe-
matical concept that has given the theory of probability its peculiar stamp.

This statement, together with the text that precedes it, can be paraphrased as: Without the concept of
independence, there is essentially no difference between measure theory and probability theory. Thus the
concept of independence is fundamental (and unique) to probability theory.
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Definition 2.11. Suppose (Ω,F , P ) is a probability space. Then two events S, T ∈ F are said to be
independent if

P (S ∩ T ) = P (S)P (T ).

Suppose now that F1,F2 are sub-σ-algebras of F . Then F1 and F2 are said to be independent if

P (S ∩ T ) = P (S)P (T ), ∀S ∈ F1, T ∈ F2. (2.1.24)

Two random variables X1, X2 defined on (Ω,F , P ) are said to be independent if the corresponding σ-
algebras σ(X1), σ(X2) are independent. Further, suppose Z = (X,Y ) is a joint random variable defined on
a product space (X × Y,G ⊗H). Then X and Y are said to be independent random variables if

PZ(S × T ) = PX(S) × PY (T ), ∀S ∈ G, T ∈ H. (2.1.25)

The extension of the above definition to any finite number of events, or σ-algebras, or random variables,
is quite obvious. For more details, see [29, Section 3.1] or [173, Chapter 4].

2.1.3 Conditional Expectations

The concept of conditional probability discussed in the preceding subsection can be applied to even “abstract”
random variables, that is, random variables assuming values in some abstract set. In contrast, concepts such
as expected value (both unconditional and conditional) are meant to be used with real-valued random
variables. The ideas extend readily to vector-valued random variables by applying them componentwise.
The objective of this subsection is to introduce another concept known as the “conditional expectation” of
a random variable with respect to a σ-algebra. While the conditional expected value is a real number, the
conditional expectation is a random variable. There is a close relationship between these two concepts, as will
be brought both through the theory as well as an example. The discussion below requires an understanding
of integration with respect to a probability measure. We do not go into too many details regarding the
abstract concept of integration with respect to a measure, because that would be rather tangential to the
main discussion. Instead we refer interested reader to [10] for details.

Throughout this subsection, we deal with real-valued random variables. Thus, when we say that X is a
real random variable on (Ω,F , P ), we mean that X is a measurable map from (Ω,F , P ) to (R,B).

In the discussion below, we often deal with two random variables X and X ′ that differ only on a set of
measure zero, that is,

P{ω : X(ω) ̸= X ′(ω)} = 0.

In such a case, we write X = X ′ a.e., or X = X ′ a.s.

Next, we define the concept of the conditional expectation of a random variable with respect to a σ-
algebra. The precise (and rather abstract) definition is given first, followed by some properties of the
conditional expectation. Then some concrete examples are given. Suppose X,Y are random variables, and
as before, let σ(Y ) denote the σ-algebra generated by Y . Then one can think of the conditional expectation
E(X|σ(Y )) as a natural generalization of the conditional expected value of X, as Y ranges over all its
possible values.

Definition 2.12. (See [29, Definition 4.16], [44, Section 4.1] or [173, Section 9.2].) Suppose (Ω,F , P ) is a
probability space, and that X is a real random variable belonging to L1(Ω,F , P ). Suppose that G ⊆ F is
another σ-algebra on Ω. Then the conditional expectation of X with respect to G, denoted by E(X|G),
is any random variable Y such that (i) Y is measurable with respect to (Ω,G), and (ii)∫

D

X(ω)P (dω) =

∫
D

Y (ω)P (dω), ∀D ∈ G (2.1.26)
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Note that E(X|G) is a (Ω,G)-measurable approximation to X such that, when restricted to sets in G,
E(X|G) is functionally equivalent to X, as stated in (2.1.26). Note that (2.1.26) can also be expressed as∫

Ω

X(ω)ID(ω)P (dω) =

∫
Ω

Y (ω)ID(ω)P (dω), ∀D ∈ G

where ID(·) is the indicator function of the set D.
To make the discussion below easier to follow, we employ the notation Y ∈ M(G) to indicate that Y

maps Ω into R, and is measurable with respect to (Ω,G) and (R,B). Also, since in these notes we deal with
both the conditional expectation (which is a random variable) and the conditional expected value (which is
a real number), we use parenthesis to denote the conditional expectation and square brackets to denote the
expected value, conditional or otherwise.

In the above definition, it is not clear that such a conditional expectation exists. Any Y that satisfies
(2.1.26) is called a “version” in [173, 44]. The next theorem summarizes, without proof, some key properties
of the conditional expectation. These details can be found in [173, Chapter 9] and/or [44, Section 4.1].

Theorem 2.5. Suppose X ∈ L1(Ω,F , P ) and that G ⊆ F is another σ-algebra on Ω. Then

1. (Existence) There is at least one Y ∈ M(G) such that (2.1.26) holds.

2. (Uniqueness) If Y, Y ′ ∈ M(G) both satisfy (2.1.26), then Y (ω) = Y ′(ω) a.s..

3. (Expected Value Preservation) Every conditional expectation Y = E(X|G) belongs to L1(Ω,F , P ).
Moreover X and Y = E(X|G) have the same expected value. Thus

E[Y, P ] = E[X,P ], or

∫
Ω

Y (ω)P (dω) =

∫
Ω

X(ω)P (dω). (2.1.27)

4. (Self-Replication) If X ∈ M(G), then E(X|G) = X a.s..

5. (Iterated Conditioning) If H ⊆ G ⊆ F are σ-algebras, then

E(E(X|G)|H) = E(X|H). (2.1.28)

6. (Idempotency) If p, q are conjugate indices, and Z ∈ Lq(Ω,G, P ), X ∈ Lp(Ω,F , P ), then

E((ZX)|G) = ZE(X|G) a.s.. (2.1.29)

7. (Linearity) If X1, X2 ∈ L1(Ω,F , P ) and a1, a2 ∈ R, then

E((a1X1 + a2X2)|G) = a1E(X1|G) + a2E(X2|G) a.s.. (2.1.30)

8. (Nonnegativity) If X(ω) ≥ 0 a.s., then E(X|G)(ω) ≥ 0 a.s..

9. (Projection Property) If X ∈ L2(Ω,F , P ) (and not just L1(Ω,F , P )), then

E(X|G) = arg min
Y ∈L2(Ω,G,P )

∥Y −X∥22 a.s.. (2.1.31)

Now we interpret some of the statements in the theorem. The obvious ones are not discussed. Item 3
states that the expected value of the conditional expectation is the same as the expected value of the original
random variable. Item 5 states that if we were to first take the conditional expectation of X with respect
to G, and then take the conditional expectation of the resulting random variable with respect to a smaller
σ-algebra H, then the answer would be the same as if we had directly taken the conditional expectation of X
with respect to H. Note that this property is called the “tower property” on [173, p. 88]. Item 6 states that
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X ∈ Lp(Ω,F , P ) is multiplied by a Z ∈ Lq(Ω,G, P ) where p and q are conjugate indices (so that the product
ZX belongs to L1(Ω,F , P )), then the term Z can be moved outside the conditional expectation operation.
Items 6 and 7, taken together, imply the following: If Z1, Z2 ∈ Lq(Ω,G, P ) and X1, X2 ∈ Lp(Ω,Ω, P ), where
p and q are conjugate indices, then

E((Z1X1 + Z2X2)|G) = Z1E(X1|G) + Z2E(X2|G).

A ready consequence of Items 7 and 8 is that, if X1 ≥ X2 almost surely, then E(X1|G) ≥ E(X2|G) almost
surely. Finally, Item 9 states that if X belongs to L2(Ω,F , P ), which is a subspace of L1(Ω,F , P ) and an inner
product space, then its conditional expection E(X|G) belongs to the subspace L2(Ω,G, P ) of L2(Ω,F , P ),
and can be computed as the closest element in L2(Ω,G, P ) to X using the projection theorem.

In the above discussion, the σ-algebra G can be any sub-algebra of F . In some applications, the following
situation arises: Suppose Z ∈ M(F), and G = σ(Z), the σ-algebra generated by Z. In such a case, we
can also use the alternate notation E(X|Z) to denote E(X|G) = E(X|σ(Z)). This notation proves to be
convenient in analyzing problems in RL.

Example 2.6. In this example, we illustrate the concept of a conditional expectation in a very simple case,
namely, that of a random variable assuming only finitely many values. Suppose X = {x1, · · · , xn} and
Y = {y1, · · · , ym} are finite sets, and that Z = (X,Y ) is a joint random variable assuming values in X ×Y.
Let Θ ∈ [0, 1]n×m denote the joint probability distribution of Z written out as a matrix, and let ϕ,ψ denote
the marginal probability distributions of X and Y respectively, written out as row vectors. Finally, suppose
f : X × Y → R is a given function. Then f(Z) is a real-valued random variable assuming values in some
finite set.

Because both X and Y are finite-valued, we can use the canonical representation, and choose Ω = X ×Y,
F = 2Ω, and P = Θ. Now suppose we define G to be the σ-algebra generated by Y alone. Thus G =
{∅,X} ⊗ 2Y . Again, because f(X,Y ) assumes only finitely many values over a finite set, it is a bounded
random variable. Therefore E(f |G) is the best approximation to f(X,Y ) using a function of Y alone. From
Item 9 of Theorem 2.5, this conditional expectation can be determined using projections.

It can be assumed without loss of generality that every component of ψ is positive. If ψj = 0 for some
j, then θij = 0 for all i; therefore the value yj can be omitted from the set Y. Therefore the ratio

θij
ψj

= Pr{X = xi|Y = yj}

is well-defined, though it could be zero.
In order to determine E(f |G), we should find a function g : Y → R such that the error E[(f − g)2,Θ] is

minimized. Let g1, · · · , gm denote the values of g(·), and define the objective function

J =
1

2

m∑
j=1

n∑
i=1

(gj − fij)
2θij .

Note that J is the sum of m terms, where the j-th term depends only on gj . Then the objective is to choose
the constants g1, · · · , gm so as to minimize J . This happens when

0 =
∂J

∂gj
=

n∑
i=1

(gj − fij)θiji, ∀j ∈ [m].

This expression can be rewritten as

0 = gj

n∑
i=1

θij −
n∑

i=1

fijθij = gjψj −
n∑

i=1

fijθij ,
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or

gj =

n∑
i=1

fij
θij
ψj

= E[f(X,Y )|Y = yj ].

This formula explains the terminology “conditional expectation.” For each outcome Y = yj , the conditional
expectation E(f |G) = gj equals the expected value of f conditioned on the event that Y = vj . However,
since Y is itself random, so is the conditional expected value E[X|Y = yj ]. This is precisely the conditional
expectation E(f |G). Since Y = yj with probability ψj , the conditional expectation E(f |G) equals E[f |Y =
yj ] with probability ψj . The same expression also shows that

E[E(f |G),ψ] =

m∑
j=1

gjψj =

m∑
j=1

n∑
i=1

fijθij = E[f,Θ].

2

Though simple in appearance, the derivation in Example 2.6 will be used repeatedly in applications to
Reinforcement Learning, when the underlying MDP evolves over finite state and action spaces.

2.2 Markov processes

In this section, we introduce the concept of a Markov process that assumes values in a finite set X =
{x1, · · · , xn}, where the elements xi could represent abstract symbols, and the “time index” of the process
is the set of natural numbers. It is possible to define Markov processes where both the state space and the
time index set are a continuum; but such generality is not needed in this book.

2.2.1 Markov Processes: Basic Properties

Suppose X is a set of finite cardinality, say X = {x1, · · · , xn}, and suppose that {Xt}t≥0 is a stochastic
process assuming values in X , that is, {Xt}t≥0 is a sequence of random variables assuming values in X . Let
the symbol Xt

0 denote the (finite) collection of random variables (X0, · · · , Xt).

Definition 2.13. The process {Xt}t≥0 is said to possess the Markov property, or to be a Markov
process, if

E(Xt+1|Xt
0) = E(Xt+1|Xt), ∀t ≥ 0. (2.2.1)

The above abstract definition states simply that the conditional expectation of the “state” Xt+1 condi-
tioned on the entire past Xt

0 is the same as the conditional expectation given only the most recent “state”
Xt. This abstract definition can be “operationalized” as follows: For every y ∈ X and every ut

o ∈ X t+1, it
is true that

Pr{Xt+1 = y|Xt
0 = ut

0} = Pr{Xt+1 = y|Xt = ut}. (2.2.2)

In other words, the conditional probability of the state Xt+1 depends only on the most recent value of Xt;
adding information about the past values of Xτ for τ < t does not change the conditional probability. One
can also say that Xt+1 is independent of Xt−1

0 given Xt. This property is sometimes paraphrased as “the
future is conditionally independent of the past, given the present.”

A Markov process over a finite set X is completely characterized by the probability distribution ϕ0 of
the initial state X0, and its sequence of state transition matrices A(t) ∈ [0, 1]n×n, where

atij := Pr{Xt+1 = xj |Xt = xi}, ∀xi, xj ∈ X .

Thus in atij , i denotes the current state and j the future state. The reader is cautioned that some authors
interchange the roles of i and j in the above definition. If the transition probability does not depend on
t, then the Markov process is said to be stationary; otherwise it is said to be nonstationary. We do
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not deal with nonstationary Markov processes in these notes. A stationary Markov process is completely
characterized by its state transition matrix A ∈ [0, 1]n×n, and the probability distribution ϕ0 of its initial
state.

Note that aij ∈ [0, 1] for all i, j. Also, at any time t + 1, it must be the case that Xt+1 ∈ X , no matter
what Xt is. Therefore, the sum of each row of A equals one, i.e.,

n∑
j=1

aij = 1, i = 1, . . . n. (2.2.3)

The above equation can be expressed compactly as

A1n = 1n, (2.2.4)

where 1n denotes the column vector consisting of n ones. For future purposes, let us refer to a matrix
A ∈ [0, 1]n×n that satisfies (2.2.3) as a row-stochastic matrix, and denote by Sn×n the set of all row-
stochastic matrices of dimension n× n.

The matrix A is often called the “one-step” transition matrix, because row i of A gives the probablity
distribution of Xt+1 if Xt = xi. So we can ask: What is the k-step transition matrix? In other words, what
is the probability distribution of Xt+k if Xt = xi? It is not difficult to show that this conditional probability
is just the i-th row of Ak. Thus the k-step transition matrix is just Ak. Therefore, if X0 has the probability
distribution ϕ (denoted by X0 ∼ ϕ), then Xt ∼ ϕAt. Note that the probability distributions are viewed as
row vectors.

Example 2.7. A familiar example of a Markov process is the “snakes and ladders” game. Take for example
the board shown in Figure 2.1. Suppose the player throws a four-sided die with each of the outcomes
(1, 2, 3, 4) being equally probable. Then the resulting sequence of positions {Xt}t≥0 is a stochastic process.
Suppose for example that the player is on square 60. Then with probability of 1/4, the position at time t+ 1
will be 61, 19 (snake on 62), 81 (ladder on 63) and 60 (snake on 64). Note that what happens next after a
player has reached square 60 (or any other square) does not depend on how the player reached that square.
That is why the sequence of positions is a Markov process. Moreover, the states corresponding to any square
that has either a snake or a ladder can be deleted from the state space. Thus the true state space is not
{1, · · · , 100} but some subset thereof. In this case, there are eight snakes and eight ladders, so the state
space consists of 84 elements, namely {1, 2, 3, 5, 6, · · · }. The element 4 is missing because it is the starting
point of a ladder. Thus, in row corresponding to square 60 of the 84 × 84 state transition matrix, there are
elements of 1/4 in columns 19, 60, 61, 81 and zeros in the remaining 80 columns. In the same manner, the
entire 84 × 84 state transition matrix can be determined.

Let us suppose that the snakes and ladders game always starts with the player being in square 1. Thus
X0 is not random, but is deterministic, and the “probability distribution” of X0, viewed as a row vector,
has a 1 in column 1 and zeros elsewhere. If we multiply this row vector by Ak for any integer k, we get the
probability distribution of the player’s position after k moves.

2

An application of the Gerschgorin circle theorem [63, Theorem 6.1.1] shows that, whenever A is row-
stochastic, the spectral radius ρ(A) ≤ 1. Moreover, the relationship (2.2.3) shows that λ = 1 is an eigenvalue
of A with column eigenvector 1n, so that in fact ρ(A) = 1. Thus one can ask: What does the row eigenvector
corresponding to λ = 1 look like? If there is a nonnegative row eigenvector µ ∈ Rn

+, then it can be scaled
so that µ1n = 1. Such a µ is called a stationary distribution of the Markov process, because if Xt has
the probability distribution µ, then so does Xt+1. More generally, if X0 has the probability distribution µ,
then so does Xt for all t ≥ 0.

Theorem 2.6. (See [11, Theorem 3.2, p. 8].) Every row-stochastic matrix A has a nonnegative row eigen-
vector corresponding to the eigenvalue λ = 1.
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Figure 2.1: Snakes and Ladders Game

Note that Theorem 2.6 is a very weak statement. It states only that there exists a stationary distribution;
nothing is said about whether this is unique or not. However, by making some assumptions about A, it is
possible to derive stronger conclusions. The ideas discussed in the remainder of this subsection are discussed
in far greater detail in [11, Chapter 6], [131] and [167, Chapter 3].

Definition 2.14. A row-stochastic matrix A is said to be irreducible if it is not possible to partition the
permute the rows and columns symmetrically (via a permutation matrix Π) such that

Π−1AΠ =

[
B11 0
B21 B22

]
.

Thus a row-stochastic matrix is irreducible if it is not possible to turn it into a block-triangular matrix
through symmetric row and column permutations. The notion of irreducibility plays a crucial role in the
theory of Markov processes. So it is worthwhile to give an alternate characterization of irreducibility.

Lemma 2.1. A row-stochastic matrix A is irreducible if and only if, for any pair of states ys, yf ∈ X , there
exists a sequence of states y1, · · · yl ∈ X such that, with y0 = ys and yl+1 = yf , we have that

aykyk+1
> 0, k = 0, . . . , l.

Thus the matrix A is irreducible if and only if, for every pair of states ys and yf , there is a path from
ys to yf such that every step in the path has a positive probability. In such a case we can say that yf is
reachable from ys.

Example 2.8. The Markov process corresponding to the Snakes and Ladders game of Example 2.7 is not
irreducible. To illustrate just a few combinations, there is no path from 3 to 2, nor from 6 to 5. (However,
there is a path from 8 to 7 by travelling from 8 to 17 which has a “snake” leading back to 7.)

There are several equivalent characterizations of irreducibility, and for nonnegative matrices in general,
not necessarily satisfying (2.2.3). In fact, the discussion in the references [11, Chater 6], [131] and [167,
Chapter 3] deal with nonnegative matrices in general, and are not restricted to stochastic matrices alone.
One such characterization of irreducibility is given next.
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Theorem 2.7. (See [167, Corollary 3.8].) A row-stochastic matrix A is irreducible if and only if

Mn−1 :=

n−1∑
l=0

Al > 0, (2.2.5)

where A0 = I and the inequality is componentwise.

So we can start with M0 = I and define recursively Ml+1 = I + AMl. Then Ml is the partial sum up
to the Al term in (2.2.5). If Ml > 0 for any l, then (2.2.5) is satisfied, because higher powers of A are
nonnegative; hence A is irreducible. If we get up to Mn−1 and this matrix is not strictly positive, then A is
not irreducible.

Theorem 2.8. (See [167, Theorem 3.25].) Suppose A is an irreducible row-stochastic matrix. Then

1. λ = 1 is a simple eigenvalue of A.

2. The corresponding row eigenvector of A has all positive elements.

3. Thus A has a unique stationary distribution, whose elements are all positive.

4. There is an integer p, called the period of A, such that the spectrum of A is invariant under rotation
by exp(i2π/p).

5. In particular, exp(i2lπ/p), l = 0, · · · , p− 1 are all eigenvalues of A.

Now we introduce a concept that is stronger than irreducibility.

Definition 2.15. A row-stochastic matrix A is said to be primitive if there exists an integer l such that
Al > 0.

To connect the two notions of irreducibility and primitivity, we introduce another important concept
called the period of an irreducible Markov process. An aperiodic Markov process is one whose period equals
one.

Suppose A corresponds to an irreducible Markov process. Then, by Lemma 2.1, there is a path between
every pair of states. Now let xi be any state. Then there is always at least one “cycle,” that is, a path
starting at xi back to itself. To see this, pick any other state xj ̸= xi. Then by irreducibility, there exists a
path from xi to xj , and also a path from xj to xi. Taken together, they form a cycle from xi back to itself.
There can of course be multiple cycles from a state back to itself.

Definition 2.16. Fix a state xi. The period of the state xi is defined as the greatest common divisor
(g.c.d.) of the lengths of all cycles from xi back to itself. As shown in [167, Theorem 3.12], every state in
an irreducible Markov process has the same period, which is defined to be the period of the process. A
Markov process is said to be aperiodic if its period equals one.

Theorem 2.9. If a row-stochastic matrix A is irreducible and aperiodic, then λ = 1 is the only eigenvalue
of A with magnitude one.

Theorem 2.10. (See [167, Theorem 3.15].) A row-stochastic matrix A is primitive if and only if it is
irreducible and aperiodic.

Example 2.9. Suppose

A1 =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

 , A2 =

 0 1 0
0 0 1
1 0 0

 .
Then A1 is primitive, while A2 is irreducible but not primitive; it has a period p = 3. 2
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x1 x2

x3 x4

x1 x2

x3 x4

(a) (b)

Figure 2.2: Irreducible vs. aperiodic Markov processs

Example 2.10. In this example, we illustrate the concept of aperiodicity using just the graphical features
of a Markov process, without having to specify the transition probabilities.

In Figure 2.2, we deliberately do not specify the values of the transition probabilities; rather, the presence
of an arrow indicates that the corresponding transition probability is positive, while the absence of an
arrow indicates that the corresponding transition probability is zero. The objective is to highlight that the
properties of a Markov process depend only on the pattern of the values (zero or nonzero), and not on the
actual values.

From the diagram, it is clear that the Markov process consists of two “cyclical” processes, one with the
transitions x1 → x3 → x4 → x2 → x1, and other one being x1 → x2 → x4 → x3 → x1. Therefore there is a
path from every vertex to every other vertex, so that the Markov process is irreducible. Moreover, there are
cycles of length 4 as well as of length 2, but no cycles whose length is an odd number. So the period of the
Markov process is two.

Now suppose we add just one transition, say from x1 to x4. Then there are two cycles from x1 to itself: one
of length four, namely x1 → x3 → x4 → x2 → x1, and another of length three, namely x1 → x4 → x2 → x1,
Since 3 and 4 have no common divisors (other than 1), the process is now aperiodic, and thus primitive. 2

In some situations, the following result is useful.

Theorem 2.11. (See [167, Lemma 4.12].) Suppose A is an irreducible row-stochastic matrix, and let µ
denote the corresponding stationary distribution. Then

lim
T→∞

1

T

T−1∑
t=0

At = 1nµ. (2.2.6)

Therefore, the average of I,A, · · · , AT−1 approaches the rank one matrix 1nµ. Recall that, if ϕ is any
probability distribution on X , and the Markov process is started off with the initial distribution ϕ, then
the distribution of the state Xt is ϕAt. Note that, because ϕ is a probability distribution, we have that
ϕ1n = 1. Therefore (2.2.6) implies that

lim
T→∞

1

T

T−1∑
t=0

ϕAt = ϕ1nµ = µ, ∀ϕ. (2.2.7)
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The above relationship holds for every ϕ and forms the basis for the so-called Markov chain Monte
Carlo (MCMC) algorithm. Suppose {Xt}t≥0 is a Markov process evolving over the state space X , with
an irredcible state transition matrix A and stationary distribution µ. Suppose further that f : X → R is a
real-valued function defined on the state space X . We wish to compute the expected value of the random
variable f(Xt) with respect to the stationary distribution µ, namely

E[f(X),µ] =
∑
xi∈X

f(xi)µi. (2.2.8)

While we may know A, often we may not know µ or may not wish to spend the effort to compute it due to
the high dimension of A. In such a case, we start off the Markov process with an arbitrary initial probability
distribution ϕ, let it run for some time t0, and then compute the quantity

f̂T =
1

T

t0+T∑
t=t0+1

f(Xt). (2.2.9)

Because this quantity is based on the observed state Xt which is random, f̂T is also random. However, the
expected value of f̂T is precisely E[f(X),µ]. Moreover, its sample-path average f̂T converges to E[f(X),µ]
as T → ∞, and is a good approximation for the expected value for finite T .

The next result is analogous to Theorem 2.11 for primitive matrices.

Theorem 2.12. (See [167, Corollary 4.13].) Suppose A is a primitive row-stochastic matrix, and let µ
denote the corresponding stationary distribution. Then

Al → 1⊤
nµ as l → ∞. (2.2.10)

Now we prove a couple of useful lemmas about irreducible and primitive matrices respectively. These are
useful when we study so-called Markov Decision Processes.

Theorem 2.13. Suppose A is a nontrivial convex combination of row stochastic matrices A1, · · · , Ak, and
that at least one Ai is irreducible. Then A is irreducible.

Proof. Without loss of generality, renumber the matrices such that A1 is irreducible. Write

A =

k∑
i=1

γiAi,

and note that γ1 > 0 while A1 is irreducible. Then

Al ≥ γl1A
l
1 ∀l,

where the inequality holds componentwise, because all other “cross-product” terms in the expansion of Al

are nonnegative matrices. Because A1 is irreducible, it follows from Theorem 2.7 that

n−1∑
l=0

Al
1 > 0,

where again the inequality is componentwise. Combining this with the above inequality shows that

n−1∑
l=0

Al ≥
n−1∑
l=0

γl1A
l
1 ≥ γn−1

1

n−1∑
l=0

Al
1 > 0.

Therefore A is irreducible.
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Corollary 2.1. The set of irreducible matrices is convex.

Theorem 2.14. Suppose A is a nontrivial convex combination of row stochastic matrices A1, · · · , Ak, and
that at least one Ai is primitive. Then A is primitive.

The proof is similar to that of Theorem 2.12, except that Theorem 2.7 is replaced by Definition 2.15.

Corollary 2.2. The set of primitive matrices is convex.

2.2.2 Stopping Times and Hitting Probabilities

The contents of this subsection are very useful when we study reinforcement learning using “episodes.” These
results are presented, but without using vector notation, in [111, Section 1.3] and [167, Section 4.2.2]. The
derivations given here are cleaner.

Definition 2.17. A state xi ∈ X is said to be an absorbing state if Xt = xi implies that Xt+1 = xi, or
equivalently, that Xτ = xi for all τ ≥ t. Another equivalent defintion is that row i of the state transtion
matrix A consists of a 1 in column i and zeros elsewhere. More generally, a subset S ⊆ X is said to be a set
of absorbing states if Xt ∈ S =⇒ Xτ ∈ S for all τ > t.

Now we illustrate the concepts of absorbing states, and of absorbing sets. For convenience, we change
notation slightly. Assume that the state space X of a Markov process can be partitioned as T ∪ S, where
T denotes the set of “transient” states, and S is an absorbing set. Suppose further that T = {x1, · · · , xm},
and S = {a1, . . . , as}. The logic behind the phrases “transient” and “absorbing” is brought in [131, 167]. It
is a ready consequence of Definition 2.17 that the state transition matrix M of the Markov process has the
form (note the change in notation):

M =

[
A B
0 C

]
, (2.2.11)

where C ∈ Ss×s is a row stochastic matrix in itself, and the matrix B has at least one nonzero element. Note
too that the set S can be absorbing, even if no individual state in S is absorbing. For example, suppose C
is a permutation matrix over s indices. However, if C = Is, the identity matrix, then not only is the set S
absorbing, but every individual state in S is absorbing. In this case the matrix M looks like

M =

[
A B
0 Is

]
. (2.2.12)

An illustration of an absorbing state is provided by the snakes and ladders game. If the player’s position
hits 100, then the game is over. So 100 is an absorbing state. In other games like Blackjack, there are two
absorbing states, namely W and L (for win and lose). In the Markov process literature, any sample path
X l

0 such that Xl is an absorbing state is called an episode.

It can be shown that if the state Xt of the Markov process enters the absorbing set S with probability
one as t → ∞, then B ̸= 0, that is, B contains at least one nonzero element, and further, ρ(A) < 1. See
specifically Items 3 and 6 of [167, Theorem 4.7]. More details can be found in [167, Section 4.2.2]. (Note
that notation in [167] is different.) For the purposes of RL, it is useful to go beyond these facts, and to
compute the probability distribution of the time at which the state trajectory enters S. In turn this gives
the average number of time steps needed to reach the absorbing set. In case there are multiple absorbing
states, it is also possible to compute the probability of hitting an individual absorbing state ai within the
overall absorbing set S. To be specific, define θiS to be the first time that a sample path {X∞

0 } hits the set
S, starting at X0 = xi. Further, if M is of the form (2.2.12) so that each set in S is absorbing, define θik to
be the first time that a sample path {X∞

0 } hits the absorbing state ak, starting at X0 = xi. Note that both
θiS and θik are integer-valued random variables. Then we have the following result:
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Theorem 2.15. With the above notation, we have that

Pr{θiS = l} = e⊤i A
l−1B1s ∀l ≥ 1, (2.2.13)

where ei denotes the i-th elementary column vector with a 1 in row i and zeros elsewhere. If M has the form
(2.2.12), the for each k ∈ [s], we have

Pr{θik = l} = e⊤i A
l−1bk ∀l ≥ 1 (2.2.14)

where bk denotes the k-th column of B. The probability that a sample path X∞
0 with X0 = xi terminates in

the absorbing state ak is given by
pik = e⊤i (I −A)−1bk. (2.2.15)

Moreover,
s∑

k=1

pik = 1, ∀i ∈ [m].

The vector of probabilities that a sample path X∞
0 terminates in the absorbing state ak is given by

pk = (I −A)−1bk. (2.2.16)

For each transient initial state xi ∈ T , define the average hitting time to reach the absorbing set S starting
from the initial state xi to be the expected value of θiS, that is

θ̄iS =

∞∑
l=1

lPr{θiS = l},

and the vector of average hitting times as θ̄S ∈ Rm. Then

θ̄S = (I −A)−11n. (2.2.17)

Proof. We begin by deriving the expressions for the probability distributions. Note that θiS = l if and only
if (i) the states X1, · · · , Xl−1 belong to T , and (ii) Xl ∈ S. For each pair of indices i, j ∈ [m] and each
integer l, the value (Al)ij is the probability that, starting in state xi at time t = 0, the state Xl at time l
equals xj , while staying within the set T . Thus the probability that θiS = l is given by

Pr{θiS = l} =

m∑
j=1

(Al−1)ij(B1s)j = e⊤i A
l−1B1s.

Here the summation is over all states j ∈ T . This is (2.2.13). If S consists of individual absorbing states, and
we wish to determine the probability distribution that Xl = ak given that X0 = xi, then we simply replace
B1s by the corresponding k-th column of B. This is (2.2.14). Equation (2.2.15) is obtained by observing
that, since ρ(A) < 1, we have that

∞∑
l=1

Al−1 = (I −A)−1.

Therefore the probability that a trajectory starting at xi terminates in state ak is given by

∞∑
l=1

e⊤i A
l−1bk = ei

[ ∞∑
l=1

Al−1

]
bk = ei(I −A)−1bk.

This is (2.2.15). Stacking these probabilities as i varies over [m] gives (2.2.16).
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Next we deal with the hitting times. Define the vector b = B1s, and consider the modified Markov
process with the state transition matrix

M =

[
A b
0 1

]
.

In effect, we have aggregated the set of absorbing states into one “virtual state.” From the standpoint of
computing θ̄, this is permissible, because once the trajectory hits the set S, or the virtual “last state” in the
modified formulation, the time counter stops. To prove (2.2.17), suppose the Markov process starts in state
xi. Then there are two possibilities: First, with probability bi, the trajectory hits the last virtual state. In
this case the counter stops, and we can say that the hitting time is 1. Second, with probability aij for each
j, the trajectory hits the state xj . In this case, the hitting time is now 1 + θ̄j . Therefore we have

θ̄i = bi +

n∑
j=1

aij(1 + θ̄j).

Observe however that

bi = 1 −
n∑

j=1

aij .

Substituting in the previous equation gives

θ̄i = 1 +

n∑
j=1

aij θ̄j ,

or in matrix form
(I −A)θ̄ = 1m.

Clearly this is equivalent to (2.2.17).

Example 2.11. Consider the “toy” snakes and ladders game with two extra states, called W and L for win
and lose respectively. The rules of the game are as follows:

� Initial state is S.

� A four-sided, fair die is thrown at each stage.

� Player must land exactly on W to win and exactly on L to lose.

� If implementing a move causes crossing of W and L, then the move is not implemented.

There are twelve possible states in all: S, 1, . . . , 9 , W , L. However, 2, 3, 9 can be omitted, leaving nine
states, namely S, 1, 4, 5, 6, 7, 8, W , L. At each step, there are at most four possible outcomes. For example,
from the state S, the four outcomes are 1, 7, 5, 4. From state 6, the four outcomes are 7, 8, 1, and W. From
state 7, the four outcomes are 8, 1, W, 7. From state 8, there four possible outcomes are 1, W , L and 8
with probability 1/4 each, because if the die comes up with 4, then the move cannot be implemented. It is
time-consuming but straight-forward to compute the state transition matrix as

S 1 4 5 6 7 8 W L
S 0 0.25 0.25 0.25 0 0.25 0 0 0
1 0 0 0.25 0.50 0 0.25 0 0 0
4 0 0 0 0.25 0.25 0.25 0.25 0 0
5 0 0.25 0 0 0.25 0.25 0.25 0 0
6 0 0.25 0 0 0 0.25 0.25 0.25 0
7 0 0.25 0 0 0 0 0.25 0.25 0.25
8 0 0.25 0 0 0 0 0.25 0.25 0.25
W 0 0 0 0 0 0 0 1 0
L 0 0 0 0 0 0 0 0 1



38 CHAPTER 2. CONVERGENCE OF STOCHASTIC PROCESSES

S 1 2 3 4 5 6 7 8 9 W L

Figure 2.3: Toy Snakes and Ladders Game

The average duration of a game, which is the expected time before hitting one of the two absorbing states
W or L, is given by (2.2.17), and is

θ =



5.5738
5.4426
4.7869
4.9180
3.9344
3.1475
3.1475


.

To compute the probabilities of reaching the absorbing states W or L from any nonabsorbing state, define
A to be the 7 × 7 submatrix on the top left, and B to be the 7 × 2 submatrix on the top right. Then the
probabilities of hitting W and L are given by (2.2.16), and are given by

[PW PL] = (I −A)−1B =



0.5433 0.4567
0.5457 0.4543
0.5574 0.4426
0.5550 0.4450
0.6440 0.3560
0.5152 0.4848
0.5152 0.4848


.

Not surprisingly, the two columns add up to one in each row, showing that, irrespective of the starting
state, the sample path with surely hit either W or L. Also not surprisngly, the probability of hitting W
is maximum in state 6, because it is possible to win in one throw of the die, but impossible to lose in one
throw.

2

2.2.3 Maximum Likelihood Estimation of Markov Processes

Suppose {Xt}t≥0 is a Markov process evolving over a finite state space (or alphabet) X = {x1, . . . , xn}, with
an unknown state transition matrix A. We are able to observe a sample path yl0 := {y0, y1, . . . , yl} of the
process, where each yi ∈ X . From this observation, we wish to determine the most likely state transition
matrix Â, that is, the matrix Â that maximizes the likelihood of the observed sample path. As it turns out,
the solution is very simple.
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Theorem 2.16. Suppose we are given a sample path yl0, For each pair (xi, xj) ∈ X 2, let νij denote the
number of times that the string xixj occurs (in that order) in the sample path yl0. Next, define

ν̄i :=

n∑
j=1

νij . (2.2.18)

Then the maximum likelihood estimate of A is given by

âij =
νij
ν̄i
. (2.2.19)

Proof. For a given sample path yl0, the likelihood that this sample path is generated by a Markov process
with state transition matrix A is given by

L(yl0|A) = Pr{y0}
l∏

t=1

Pr{Xt = yt|Xt−1 = yt−1, A}

= Pr{y0}
l∏

t=1

ayt−1yt
. (2.2.20)

The formula becomes simpler if we take the logarithm of the above. Clearly, maximizing the log-likelihood
of observing yl0 is equivalent to maximizing the likelihood of observing yl0. Thus

LL(yl0|A) = log Pr{y0} +

l∑
t=1

log ayt−1yt
. (2.2.21)

A further simplification is possible. For each pair (xi, xj) ∈ X 2, let νij denote the number of times that the
string xixj occurs (in that order) in the sample path yl0. Next, define ν̄i as in (2.2.18). Note that ν̄i is the
number of times that the state xi occurs in the sample path yl−1

0 . The last symbol yl does not affect ν̄i. It is
easy to see that, instead of summing over strings yt−1yt, we can sum over strings xixj . Thus yt−1yt = xixj
precisely νij times. Therefore

LL(yl0|A) = log Pr{y0} +

n∑
i=1

n∑
j=1

νij log aij . (2.2.22)

We can ignore the first term as it does not depend on A. Now, A needs to satisfy the stochasticity constraint

n∑
j=1

aij = 1, i = 1, . . . , n. (2.2.23)

So we want to maximize the right side of (2.2.22) (without the term log Pr{y0}) subject to (2.2.23). For this
purpose we form the Lagrangian

J =

n∑
i=1

n∑
j=1

νij log aij +

n∑
i=1

λi

1 −
n∑

j=1

aij

 ,

where λ1, . . . , λn are the Lagrange multipliers. Next, observe that

∂J

∂aij
=
νij
aij

− λi.
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Setting the partial derivatives to zero gives

λi =
νij
aij

, or aij =
νij
λi
.

The value of λi can be determined from (2.2.23), which gives

n∑
j=1

aij =
1

λi

n∑
j=1

νij =
ν̄i
λi

= 1 =⇒ λi = ν̄i.

Therefore the maximum likelihood estimate for the state transition matrix of a Markov process, based on
the sample path yl0, is given by (2.2.19).

Here the caret over a indicates that it is only an estimate of the true but unknown value aij . The only
issue that remains to be settled is: What happens if a particular state xi does not appear at all in the
sample path yl0? In this case, ν̄i = 0, which perforce implies that νij = 0 for all j. Therefore (2.2.19)
becomes indeterminate. The answer is that in this case, we can assign any vector in Sn as the i-th row of
Â, and every such matrix is a maximum likelihood estimate of A.

Example 2.12. As a toy example to illustrate ML estimation, suppose X = {0, 1}. Suppose we observe a
sample path of length 21, so that l = 20, as follows:

y200 = 011011000110111010111.

Then
ν00 = 2, ν01 = 6, ν10 = 5, ν11 = 7, ν̄0 = 8, ν̄1 = 12.

Observe that the last element of 1 adds to ν11 but not to ν̄1. Therefore the maximum likelihood estimate of
the state transition matrix is

Â =

[
2/8 6/8
5/12 7/12

]
.

Next we study a situation that arises frequently in applications, namely: Instead of having one long
sample path, we have several sample paths, which are statistically independent of each other.

Theorem 2.17. Suppose we are given N different sample paths (ylk0 )k, k ∈ [N ], of a Markov process over
X = {x1, · · · , xn}, with an unknown state transition matrix A. Suppose further that these sample paths are
pairwise independent. Then the maximum likelihood estimate of A, denoted by Â is obtained as follows: For

each index k ∈ [N ], define the corresponding coefficients ν
(k)
ij , ν̄

(k)
i as in (2.2.18) and (2.2.19) respectively.

Then the maximum likelihood estimate of A is given by

âij =

∑N
k=1 ν

(k)
ij∑N

k=1 ν̄
(k)
i

(2.2.24)

Remark: The expression (2.2.24) can be made clearer by fixing k ∈ [N ]. Let us define

â
(k)
ij =

ν
(k)
ij

ν̄
(k)
i

, (2.2.25)

which is the ij-th element of the maximum likelihood estimate based on only the k-th sample path. Then

âij =

N∑
k=1

ν̄
(k)
i∑N

k′=1 ν̄
(k′)
i

â
(k)
ij . (2.2.26)

Thus each element of Â is a convex combination of the corresponding k maximum likelihood estimates, based
on each of the k sample paths. Moreover, the weights depend only on the row index i, but not on the column
index j.
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Proof. To reduce notational clutter, we will study the case of just two independent sample paths, and also
change notation to yl0 and zm0 . Then, for a given state transition matrix, the independence of the sample
paths implies that

L(yl0&zm0 |A) = L(y0|A) · L(zm0 |A).

Therefore

LL(yl0&zm0 |A) = LL(y0|A) + LL(zm0 |A)

= log(y0) +

l∑
t=1

log(ayt−1,yt
) + log(z0) +

m∑
t=1

log(azt−1,zt)

= log(y0) + log(z0) +

n∑
i=1

n∑
j=1

[ν
(y)
ij + ν

(z)
ij ] log aij .

Now we can apply the same reasoning as in the proof of Theorem 2.16, and deduce that

âij =
ν
(y)
ij + ν

(z)
ij

ν̄
(y)
i + ν̄

(z)
i

.

Finally, the above sum can be rewritten as

âij =
ν̄
(y)
i

ν̄
(y)
i + ν̄

(z)
i

ν
(y)
ij

ν̄
(y)
i

+
ν̄
(z)
i

ν̄
(y)
i + ν̄

(z)
i

ν
(z)
ij

ν̄
(z)
i

=
ν̄
(y)
i

ν̄
(y)
i + ν̄

(z)
i

â
(y)
ij +

ν̄
(z)
i

ν̄
(y)
i + ν̄

(z)
i

â
(z)
ij .

Thus âij is a convex combination of â
(y)
ij and â

(z)
ij . The reasoning can be readily extended to more than two

independent sample paths.

2.3 Some Convergence Theorems

In this section, we introduce the concepts of a martingale, supermartingale, and submartingale. Then we
state and prove some convergence theorems that are based on these concepts.

2.3.1 Introduction to Martingales

Originally, martingales represented an abstract representation of a “fair game.” In the context of optimization
algorithms, martingales enter the picture to capture the notion that successive noise-corrupted measurements
are unbiased. Therefore martingale difference sequences play a central role in analyzing the convergence of
stochastic processes. In this subsection we briefly summarize some of the basic results. In turn, these lead to
contemporary results on the convergence of the kind of stochastic processes arising in optimization and/or
Reinforcement Learning,

Further details about this topic can be found in [173, 29, 20, 44]. In particular, [173, Part B] is a very
good source of theorems and examples, while the corresponding exercises in [173, Part E] provide additional
useful material. Similarly, [44, Chapter 4] has a wealth of material, including several examples and problems,
that is relevant to the material below.

Before proceeding to a general discussion of martingales, let us recall the concepts of joint random
variables, but with the twist that now we need to deal with infinitely many random variables, rather than
just a finite number of them. Suppose we are interested in stochastic processes assuming values in the space
Rd for fixed integer d. In this situation, the σ-algebra of subsets of Rd is the Borel σ-algebra, defined as the
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smallest σ-algebra that contains all open subsets of Rd. For convenience, this collection is denoted
hereafter by Bd. Note that we could also have used closed subsets instead of open subsets, and this would
lead to the same σ-algebra. This is because a set is open if and only if its complement is closed, and a
σ-algebra is closed under complementation.

One can think of a stochastic process {Xt} evolving over the set Rd as a sequence of random variables,
indexed by t ≥ 0. Note that the sequence {Xt} belongs to the product space

∏∞
t=0 Rd, which can also be

denoted by (Rd)N where N = {0, 1, · · · } denotes the set of natural numbers. Since our objective in these
notes is to study the convergence of such a sequence as t→ ∞, we need to specify the associated σ-algebra.
Specifically: What are the sample space and the event space, as defined in Definition 2.4. For this purpose,
we need to define the infinite product measurable space (

∏∞
t=0 Rd,S), where S is some suitable σ-algebra of

subsets of
∏∞

t=0 Rd. Recall that in Definition 2.9, we have defined the product of two measurable spaces,
which can be readily extended to any finite product. To extend this definition to an infinite product of
measurable spaces, we proceed as follows.

Definition 2.18. A subset

S =

∞∏
t=0

Si

is called a cylinder set if (i) each Si ∈ Bd for all i, and (ii) Si = Rd for all but finitely many indices i.
The smallest σ-algebra of subsets of

∏∞
t=0 Rd that contains all cylinder sets is denoted by ⊗∞

t=0Bd. The pair
(
∏∞

t=0 Rd,⊗∞
t=0Bd) is the product measurable space.

Thus, for an Rd-valued stochastic process, the event space is the measurable space (
∏∞

t=0 Rd,⊗∞
t=0Bd).

We use the “canonical representation,” whereby the underlying sample space is also (
∏∞

t=0 Rd,⊗∞
t=0Bd).

However, we still need to specify the probability measure P on (
∏∞

t=0 Rd,⊗∞
t=0Bd), which governs the behavior

of the stochastic process.
We will use this definition and convention in various examples. However, in the iterests of completeness,

we define filtrations and martingales in a general situation.

Definition 2.19. Suppose that (Ω,F , P ) is a probability space, as described in Section 2.1. A sequence of
σ-algebras {Ft}t≥0 on Ω is called a filtration if

Ft ⊆ Ft+1 ⊆ F , ∀t ≥ 0. (2.3.1)

Now suppose that {Zt}t≥0 is an Rd-valued stochastic process on (Ω,F , P ). We say that {Zt} is adapted
to the filtration {Ft}, or that the pair ({Zt}, {Ft}) is adapted, if Zt is measurable with respect to (Ω,Ft),
(i.e., with F replaced by Ft).

Clearly (2.3.1) implies that

F0 ⊆ F1 ⊆ · · · ⊆ Ft ⊆ Ft+1 ⊆ F , ∀t ≥ 0. (2.3.2)

Since the underlying set Ω and probability measure P are fixed, and the only thing varying is Ft, we denote
this by Zt ∈ M(Ft). In view of (2.3.1), we can make the following observations:

1. Zt ∈ M(Fτ ) whenever τ ≥ t.

2. Let Zt
0 ∈ Rd(t+1) denote (Z0, Z1, · · · , Zt). Then Zt

0 ∈ M(Ft).

If {Zt}t≥0 is an Rd-valued stochastic process on (Ω,F , P ), then we can define the “natural filtration” by

Ft = σ(Zt
0),

where σ(Zt
0) ⊆ F is the σ-algebra generated by Zt

0. However, much of the discussion below applies even if
we do not use the natural filtration, but use a larger filtration.
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Definition 2.20. Suppose {Ft} is a filtration on (Ω,F), and that {Zt}t≥0 is an Rd-valued stochastic process
on (Ω,F , P ) wherein Zt ∈ L1(Ω,Ft, P ) for all t. (In other words, {(Zt,Ft)} is adapted.) Then the pair
({Zt}, {Ft}) is said to be a martingale if

E(Zt+1|Ft) = Zt, a.s., ∀t ≥ 0. (2.3.3)

If (2.3.3) is replaced by
E(Zt+1|Ft) ≤ Zt, a.s., ∀t ≥ 0, (2.3.4)

then {Zt}t≥0 is called a supermartingale, whereas if (2.3.6) is replaced by

E(Zt+1|Ft) ≥ Zt, a.s., ∀t ≥ 0, (2.3.5)

then {Zt}t≥0 is called a submartingale.

If we use the natural filtration Ft = σ(Zt
0), then (2.3.3) can be replaced by

E(Zt+1|Zt
0) = Zt, a.s., ∀t ≥ 0. (2.3.6)

Similar remarks apply to supermartingales and submartingales.
Several useful consequences of the definition are obtained by applying Theorem 2.5. If {Zt} is a martin-

gale, then by the iterated conditioning property (Item 6 of Theorem 2.5), it follows that

E(Zτ |Ft) = Zt, a.s., ∀τ ≥ t+ 1, ∀t ≥ 0. (2.3.7)

The equality is replaced by ≤ for a supermartingale, and by ≥ for a submartingale. Next, by the expected
value preservation property (Item 3 of Theorem 2.5), it follows that3

E[Zt, P ] = E[Z0, P ], ∀t ≥ 0. (2.3.8)

It similarly follows that if {Zt} is a supermartingale, then

E[Zt, P ] ≤ E[Z0, P ], ∀t ≥ 0, (2.3.9)

where as if {Zt} is a submartingale, then

E[Zt, P ] ≥ E[Z0, P ], ∀t ≥ 0. (2.3.10)

Thus, in a supermartingale, {E[Zt, P ]} is a nonincreasing sequence of real numbers, while in a submartingale,
{E[Zt, P ]} is a nondecreasing sequence of real numbers.

Next, let {ξt}t≥0 be a stochastic process adaptated to a filtration {Ft}, such that E[|ξt|, P ] < ∞ for all
t, and define

Zt =

t∑
τ=0

ξτ . (2.3.11)

Then it is obvious that {Zt} is also adapted to {Ft}. The sequence ({ξt}, {Ft}) is said to be a martingale
difference sequence if ({Zt}, {Ft}) is a martingale. It is easy to show using (2.3.3) that, if {ξt} is a
martingale difference sequence, then

E(ξt+1|Ft) = 0, a.s., ∀t ≥ 0. (2.3.12)

If, in addition, ξ0 = 0 almost surely, then it follows that E[ξt, P ] = 0 for all t ≥ 1. The picture is clearer if
each ξt belongs to L2(Ω,Ft). Then, by the projection property (Item 9) of Theorem 2.5, (2.3.12) is equivalent
to the statement that ξt+1 is orthogonal to every element of L2(Ω,Ft).

3The reader is reminded that, wherever possible, we use parentheses for the conditional expectation, which is a random
variable, and square brackets for the expected value, which is a real number.
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Example 2.13. Suppose {ξt} is a sequence of random variables such that ξt ∈ L1(Ω,F , P ) for each t, and
in addition,

E(ξt+1|Ft) = 0 a.s. ∀t.

Then {ξt} is a martingale difference sequence, and the sequence {Zt} defined in (2.3.11)is a martingale. 2

Example 2.14. In this example we study a coin-tossing game as an illustration of a martingale. The game
starts at time t = 0 with the person having a prespecified amount of money, which can be taken as X0 = 0
without loss of generality. At each time t ≥ 0, a fair coin is tossed. If the coin turns up “heads,” then the
person receives 10 units of money, whereas if the coin turns “tails,” then the person must pay up 10 units of
money. To keep the notation consistent, let us suppose that the reward for the coin toss at time t (positive
or negative) is paid at time t+ 1. Let X0 = 0, and let Xt, t ≥ 1 denote the payoff at time t (corresponding
to the coin toss at time t− 1). Define

Zt =

t∑
τ=0

Xt.

Note that we can also start the summation from time 1, because X0 = 0.
To study this situation formally, we use the structure introduced in Definition 2.18. Thus the stochastic

process {Xt} evolves on the measurable space (RN,⊗∞
t=0B). Let Xt

0 denote the tuple of random variables
(X0, ·, Xt), and define Ft = σ(Xt

0). Then each Ft is a sub-σ-algebra of ⊗∞
t=0B. Moreover, Ft ⊆ Ft+1, which

means that {Ft} is a filtration. To complete the specification of the stochastic process, we need to define the
probability law of the sequence X∞

0 . To keep the discussion simple, it is assumed that each Xt is independent
of Xt−1

0 . Moreover, Xt = ±10 with equal probability.
Let us analyze the stochastic process {Zt}. Observe that Zt+1 = Zt + Xt+1, and that E(Xt+1|Ft) = 0,

because Xt+1 is independent of previous tosses, and because the coin is fair. Therefore

E(Zt+1|Ft) = E(Zt|Ft) + E(Xt+1|Ft) = Zt,

because Zt ∈ M(Ft), and E(Xt+1|Ft) = 0. Thus {Zt} is a martingale.
Next, let us change the problem specification so that E(Xt+1|Ft) is no longer zero. This can be done

in either of two ways, which are mathematically equivalent: First, the coin can remain fair, but the payoffs
for Heads and Tails are not equal. Second, the payoffs can remain equal, but the coin is not fair (it has a
bias in favour of Heads or Tails). If the coin is fair but the payoff for Heads is larger in magnitude than the
penalty for Tails, then E(Xt+1|Ft) > 0, and as a result

E(Zt+1|Ft) = E(Zt|Ft) + E(Xt+1|Ft) > Zt,

and the process is now a submartingale. Reversing the magnitudes so that E(Xt+1|Ft) < 0 causes the
process to be a supermartingale. 2

Example 2.15. Now we continue the previous example by introducing the concept of “marginal utility”
from economics. If an individual has a quantum of money M , its “utility” is defined as U(M). Usually U is
taken as map from R+ to R+, but since the coin toss can result in both a loss as well as a profit, we take U
as a map from R to R such that U(0) = 0. Two key attributes of U(·) are:

1. U(.) is strictly increasing. Thus

x1 > x2 =⇒ U(x1) > U(x2).

2. U(·) is strictly concave. Thus

x1 ̸= x2, λ ∈ (0, 1) =⇒ U [λx1 + (1 − λ)x2] > λU(x1) + (1 − λ)U(x2).
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The second property is also referred to as “diminishing marginal utility” or something similar.
Now let us return to the coin-flipping game. Suppose the outcomes H and T has probabilities p and

1− p, and the payoffs are a and −b (the latter being a penalty). Suppose further that the coin toss is “fair”
in the sense that the expected value of the payoff is zero, that is

pa− (1 − p)b = 0.

Let Xt denote the accumulated payoffs at time t, starting at Xt = 0. Now let us examine the utility U(Xt).
Both {Xt} and {Ut} are stochastic processes on (RN,⊗∞

0 B). We know that

Xt+1 =

{
Xt + a w.p. p,
Xt − b w.p. 1 − p.

Also
p(Xt + a) + (1 − p)(Xt − b) = Xt.

Therefore {Xt} is a martingale. This relationship also shows that Xt is a convex combination of Xt + a and
Xt − b. Hence

E[U(Xt+1|Xt] = pU(Xt + a) + (1 − p)U(Xt − b) < U(Xt).

Hence {Ut} is a supermartingale. 2

Now we present some important results related to martingales, which are useful in themselves, though
they are not directly used in this book. The material is taken from [173, Chapter 12] and/or [44, Chapter
4] and is stated without proof. Citations from these sources are given for individual results stated below.

The first result we present is the Doob decomposition theorem. To state this theorem, we introduce a
new concept. Suppose {Ft}t≥0 is a filtration, and {At}t≥1 is a stochastic process that is adapted to Ft,
that is, At ∈ M(Ft) for all t ≥ 1. We say that {(At,Ft)} is predictable if At+1 ∈ M(Ft) for all t ≥ 0.
Note that there is no A0 for a predictable process. Also, note that in [173], such processes are said to be
“previsible.” However, the phrase “predictable” is used in [44] and appears to be more commonly used. We
say that a martingale {Zt} (adapted to Ft) is null at zero if Z0 = 0 a.s., and that a predictable process
{At} is null at zero (because there is no A0).

Theorem 2.18. (Doob decomposition theorem.) See [173, Theorem 12.11] or [44, Theorem 4.3.2].) Suppose
{Ft} is a filtration and {Yt} is a stochastic process adapted to {Ft}. Then Yt can be expressed as

Yt = Zt +At + Y0, (2.3.13)

where {Zt}t≥0 is a martingale null at zero, and {At} is a predictable process null at zero. If {Z ′
t} and {A′

t}
also satisfy the above conditions, then

P{ω : Zt(ω) = Z ′
t(ω)&At(ω) = A′

t(ω), ∀t} = 1. (2.3.14)

(In other words, the decomposition is essentially unique.) Moreover, {Yt} is a submartingale if and only if
{At} is an increasing process, that is

P{ω : At+1(ω) ≥ At(ω), ∀t} = 1. (2.3.15)

Similarly, {Yt} is a supermartingale if and only if {At} is a decreasing process, that is

P{ω : At+1(ω) ≤ At(ω), ∀t} = 1. (2.3.16)

Proof. Define

At+1 =

t∑
τ=0

E((Yτ+1 − Yτ )|Fτ ) =

t∑
τ=0

[E(Yτ+1|Fτ ) − Yτ ]. (2.3.17)
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Then it is obvious that At+1 ∈ M(Ft); hence {At} is a predictable process. Also, At satisfies the recursion

At+1 = E(Yτ+1|Fτ ) − Yτ +At. (2.3.18)

Now define a stochastic process {Zt} by Z0 = 0, and

Zt+1 = Yt+1 −At+1 − Y0, or Yt+1 = Zt+1 +At+1 + Y0, ∀t ≥ 0. (2.3.19)

It is now shown that {Zt} is a martingale, which would prove the first statement. Observe that

E(Zt+1|Ft) = E(Yt+1|Ft) −At+1 − Y0

= E(Yt+1|Ft) − [E(Yτ+1|Ft) − Yt +At] + Y0

= Yt −At + Y0 = Zt,

where in the first step we use the fact that At+1 ∈ M(Ft), and in the second step we use the (2.3.18).
To prove the uniqueness of the decomposition, we essentially reverse the above steps. Suppose

Yt+1 = Z ′
t+1 +A′

t+1 + Y0, (2.3.20)

where {Z ′
t} is a martingale null at t = 0, and {A′

t} is predictable. Then

E(Yt+1|Ft) = E(Z ′
t+1|Ft) +A′

t+1 + Y0

= Z ′
t +A′

t+1 + Yo

= Z ′
t +A′

t + Y0 + (A′
t+1 −A′

t)

= Yt + (A′
t+1 −A′

t)

Therefore

A′
t+1 −A′

t = E(Yt+1|Ft) − Yt, or A′
t+1 =

t∑
τ=0

[E(Yτ+1|Fτ ) − Yτ ].

Since this is the same summation as in (2.3.17), it follows that A′
t = At almost surely. Substituting this into

(2.3.19) leads to
Z ′
t+1 = Yt+1 −A′

t+1 − Y0 = Yt+1 −At+1 − Y0 = Zt+1 a.s.

This shows that the decomposition is unique modulo differing on a set of measure zero.
To prove the last part of the theorem, rewrite (2.3.18) as

At+1 −At =

t∑
τ=0

[E(Yτ+1|Fτ ) − Yτ ].

So At+1 ≥ At for all t if and only if {Yt} is a submartingale, and So At+1 ≤ At for all t if and only if {Yt}
is a supermartingale.

Next, suppose Yt = M2
t , where {Mt} is a martingale in L2(Ω, P ) null at zero. Then it is easy to show using

the conditional Jensen’s inequality (not covered here) that {Yt} is a submartingale null at zero. Therefore
the Doob decomposition of Yt = M2

t is
M2

t = Zt +At, (2.3.21)

where {Zt} is a martingale and {At} is an increasing predictable process, both null at zero. It is customary
to refer to {At} as the quadratic variation process and to denote it by ⟨Mt⟩. Note that

At+1 −At = E((M2
t+1 −M2

t )|Ft) = E((Mt+1 −Mt)
2|Ft). (2.3.22)

Define A∞(ω) = limt→∞At(ω) for (almost all) ω ∈ Ω. Then we have the following:
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Theorem 2.19. (See [173, Theorem 12.13].) If A∞(·) is bounded almost everywhere as a function of ω,
then {Mt(ω)} converges almost everywhere at t→ ∞.

Actually [173, Theorem 12.13] is more powerful and gives “almost necessary and sufficient” conditions
for convergence. We have simply extracted what is needed for present purposes.

We will use several versions of the next theorem repeatedly when analyzing the convergence of various
stochastic algorithms.

Theorem 2.20. (See [44, Theorem 4.2.12].) If {Zt} is nonnegative (i.e., Zt ≥ 0 a.s.) supermartingale,
then there exists a ζ ∈ L1(Ω, P ) such that Zt → ζ almost surely, and E[ζ, P ] ≤ E[Z0, P ].

Note what the theorem does not say: There is no guarantee that Zt converges to ζ in the mean as t→ ∞.
However, if Zt ∈ Lp(Ω, P ) for some p > 1, we can make a stronger statement.

A slight variation of the above theorem is also useful.

Corollary 2.3. Suppose {Zt} is a supermartingale, and that there exists a fixed constant c, independent of
ω, such that

Zt(ω) ≥ −c a.s. (2.3.23)

Then there exists a ζ ∈ L1(Ω, P ) such that Zt → ζ almost surely, and E[ζ, P ] ≤ E[Z0, P ].

Proof. Observe that, since c is a fixed constant independent of ω, the process {Zt− c} is also a supermartin-
gale. Moreover, this process is nonnegative. Now apply Theorem 2.20.

Theorem 2.21. Suppose {Zt} is a martingale wherein Zt ∈ Lp(Ω, P ) for some p > 1, and suppose further
that the martingale is bounded in ∥ · ∥p, that is

sup
t
E[Zp

t , P ] <∞. (2.3.24)

Then there exists a ζ ∈ Lp(Ω, P ) such that Zt → ζ as t→ ∞, almost surely and in the p-th mean.

The above theorem is false if p = 1. The convergence is almost sure but need not be in the mean. See
[44, Example 4.2.13].

2.3.2 Some Convergence Theorems

Recall that, throughout, we are dealing with stochastic processes defined on some probability space (Ω,F , P ),
even if we do not always display this probability space explicitly. Thus when we write, for example, {zt},
we really mean {zt(ω)}. For the most part, it is not necessary to display this dependence on ω. Wherever it
is necessary, we display it. But the ω is implicitly present throughout. Also, when we say zt ≥ 0, we mean
that zt(ω) ≥ 0 for almost all ω.

The theorems presented in this subsection are the basis of all the proofs of convergence, and estimates
of the rate of convergence, presented in these notes.

Theorem 2.22 below, originally due to [124], can be said to be the “workhorse” in this area, in the sense
that practically every convergence theorem in this book can be traced back to this theorem, in one way or
another. It is referred to as the “Robbins-Siegmund Theorem,” or the “almost supermartingale convergence
theorem.” We prefer the former name. This result refines an earlier argument from [52], but was discovered
independently. The proof given below is pretty much the same as in the original paper. Another proof,
based on “stopping times” (not discussed in this book) can be found in [9, Section 5.2.1]. Yet another proof
can be found in the survey paper [48].

Theorem 2.22. (Robbins-Siegmund Theorem) Suppose {zt}, {ft}, {gt}, {ht} are nonnegative stochastic
processes adapted to some filtration {Ft}, that satisfy

E(zt+1|Ft) ≤ (1 + ft)zt + gt − ht a.s., ∀t. (2.3.25)
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Define the set Ω0 ⊆ Ω by

Ω0 := {ω :

∞∑
t=0

ft(ω) <∞} ∩ {ω :

∞∑
t=0

gt(ω) <∞}, (2.3.26)

Then, for all4 ω ∈ Ω0, we have that (i) limt→∞ zt(ω) exists and is finite, and (ii)

∞∑
t=0

ht(ω) <∞, ∀ω ∈ Ω0. (2.3.27)

In particular, if P (Ω0) = 1, then {zt} is bounded almost surely, in the sense that

P{ω ∈ Ω : sup
t
zt(ω) <∞} = 1, (2.3.28)

and
∞∑
t=0

ht(ω) <∞ a.s. (2.3.29)

Proof. We begin with a simple observation. For each ω ∈ Ω0,

∞∑
t=0

ft(ω) <∞ =⇒
∞∏
t=0

[1 + ft(ω)] <∞.

Therefore, for each ω ∈ Ω0,

t∏
t=0

[1 + ft(ω)]−1 ↓
∞∏
t=0

[1 + ft(ω)]−1 =: b(ω) > 0, (2.3.30)

where the limit b(ω) could depend on ω. Now define new processes (note the difference in the upper limits
of the products)

z′t =

t−1∏
t=0

[1 + ft(ω)]−1zt, g′t =

t∏
t=0

[1 + ft(ω)]−1gt, h′t =

t∏
t=0

[1 + ft(ω)]−1ht,

and observe that
t∏

t=0

[1 + ft(ω)]−1 ∈ M(Ft).

With these definitions, we can compute from (2.3.25) that

E(z′t+1|Ft) =

t∏
t=0

[1 + ft(ω)]−1E(zt+1|Ft)

≤
t−1∏
t=0

[1 + ft(ω)]−1zt +

t∏
t=0

[1 + ft(ω)]−1gt −
t∏

t=0

[1 + ft(ω)]−1ht

= z′t + g′t − h′t. (2.3.31)

Next, define

ut = z′t −
t−1∑
τ=0

(g′τ − h′t). (2.3.32)

4Here and elsewhere, “for all” really means “for almost all.”
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Fix some arbitrary constant a > 0, and define

T (a, ω) := inf{t :

t∑
τ=0

g′t > a},

with the understanding that if
∑∞

τ=0 g
′
t ≤ a, then T (a, ω) = ∞. Suppose now that t < T (a, ω). Then

E(ut+1|Ft) = E(z′t+1 −
t∑

τ=0

(g′τ − h′t)|Ft)

≤ z′t + g′t − h′t −
t∑

τ=0

(g′τ − h′t)

= z′t −
t−1∑
τ=0

(g′τ − h′t) = ut. (2.3.33)

Let us use the notation t ∧ τ to denote min{t, τ}, and define a new stochastic process {vt(ω)} by

vt(ω) = uT (a,ω)∧(t+1)(ω).

Thus

vt(ω) =

{
ut(ω), if t < T (a, ω),
uT (a,ω)(ω), if t ≥ T (a, ω).

It is now shown that {vt} is a supermartingale. If t ≤ T (a, ω), (2.3.33) implies that

E(vt+1|Ft) ≤ vt,

whereas if t ≥ T (a, ω), then t+ 1 ≥ T (a, ω). Hence

vt+1(ω) = uT (a,ω) = vt(ω).

So {vt} is a supermartingale. Now, because both {z′t} and {g′t} are nonnegative processes, it follows that

uT (a,ω)∧t(ω) ≥ −
T (a,ω)∧t∑

τ=0

g′τ (ω) ≥ −
∞∑
τ=0

g′τ (ω) ≥ −a.

Therefore it follows from Corollary 2.3 that

lim
t→∞

uT (a,ω)∧t(ω)

exists and is finite for all ω such that
∞∑
τ=0

g′τ (ω) ≤ a. (2.3.34)

Now define

Ω1 := {ω :

∞∑
τ=0

g′τ (ω) <∞}.

However, for all ω ∈ Ω0, it follows from (2.3.30) that

b(ω)gt(ω) ≤ g′t(ω) ≤ gt(ω).
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And since
∞∑
τ=0

gτ (ω) <∞ ∀ω ∈ Ω,

it follows that we can take Ω1 = Ω0. Since a is arbitrary, it follows that for all ω ∈ Ω0, (2.3.33) holds
for sufficiently large a (which could depend on ω), so that T (a, ω) = ∞, and uT (a,ω)∧t(ω) for all t. Hence
limt→∞ ut(ω) exists and is finite (almost surely) for all ω ∈ Ω0. In turn this implies that ut(ω) is bounded
for all ω ∈ Ω.

Next we study the consequences of ut(ω) being bounded (though the bound could depend on ω). Rewrite
(2.3.32) as

ut = z′t +

t−1∑
τ=0

h′τ −
t−1∑
τ=0

gt.

For ω ∈ Ω0, the last term is bounded from below, while ut(ω) is bounded. Hence there is a bound c̄(ω) such
that

z′t +

t−1∑
τ=0

ψ′
τ ≤ c̄(ω), ∀t.

Since both terms are nonnegative, this in turn implies that

z′t ≤ c̄(ω),

∞∑
t=0

ψ′
τ ≤ c̄(ω). (2.3.35)

Also, since ut(ω) converges as t→ ∞, and

t−1∑
τ=0

ψ′
τ (ω) ↑

∞∑
τ=0

ψ′
τ (ω),

it follows that z′t(ω) has a limit as t → ∞, and the limit is finite, for all ω ∈ Ω0. To complete the proof, all
that remains is to replace z′t, ψ

′
t by zt, ψt respectively. But this is straight-forward, because

t∏
τ=0

[1 + fτ (ω)]−1 ↓ b(w) as t→ ∞,

as shown in (2.3.30).

The above proof is taken from [124]. The same theorem is also proved in a very terse form on [9, page
343]. Because that proof involves the use of “stopping times,” a concept that is not needed elsewhere in this
book, we choose to give the original proof.

Now we present two convergence theorems, which are extensions of Theorem 2.22. The first one allows
us to infer the convergence of a stochastic process to zero, while the second one provides bounds on the rate
of convergence to zero. Both theorems are taken from [70, 71].

Theorem 2.23 below builds upon Theorem 2.22 by providing sufficient conditions to ensure that zt → 0
as t→ ∞. It draws upon the concept of a function of Class B, defined in Definition 7.6. For the convenience
of the reader, the definition is repeated below.

Definition 2.21. A function ϕ : R+ → R+ is said to belong to Class B if ϕ(0) = 0, and in addition, for
arbitrary real numbers 0 < ϵ ≤M , it is true that

inf
ϵ≤r≤M

ϕ(r) > 0.
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Theorem 2.23. Suppose {zt}, {ft}, {gt}, {ht}, {αt} are [0,∞)-valued stochastic processes defined on some
probability space (Ω,F , P ), and adapted to some filtration {Ft}. Suppose further that

Et(zt+1) ≤ (1 + ft)zt + gt − αtht a.s., ∀t. (2.3.36)

Define

Ω0 := {ω ∈ Ω :

∞∑
t=0

ft(ω) <∞ and

∞∑
t=0

gt(ω) <∞}, (2.3.37)

Ω1 := {ω ∈ Ω :

∞∑
t=0

αt(ω) = ∞}. (2.3.38)

Then

1. Suppose that P (Ω0) = 1. Then the sequence {zt} is bounded almost surely, and there exists a random
variable W defined on (Ω,F , P ) such that zt(ω) →W (ω) almost surely.

2. Suppose that, in addition to P (Ω0) = 1, it is also true that P (Ω1) = 1. Then

lim inf
t→∞

ht(ω) = 0 ∀ω ∈ Ω0 ∩ Ω1. (2.3.39)

3. Further, suppose there exists a function η(·) of Class B such that ht(ω) ≥ η(zt(ω)) for all ω ∈ Ω0.
Then zt(ω) → 0 as t→ ∞ for all ω ∈ Ω0.

Proof. By Theorem 2.22, there exists a random variable W such that zt(ω) → W (ω) as t → ∞ for almost
all ω ∈ Ω0. This implies that zt is bounded almost surely. This is Item 1.

Next we prove item 2. Again from Lemma 2.22,

∞∑
t=0

αt(ω)ht(ω) <∞, ∀ω ∈ Ω0.

Now, by definition
∞∑
t=0

αt(ω) = ∞, ∀ω ∈ Ω0 ∩ Ω1.

Therefore (2.3.39) follows. To prove Item 3, suppose that, for some ω ∈ Ω0 ∩ Ω1, we have that W (ω) > 0,
say W (ω) =: 2ϵ > 0. Choose a time T such that zt(ω) ≥ ϵ for all t ≥ T . Also, by Item 1,

M := sup
t≥T

zt(ω) <∞.

Since zt(ω) → 2ϵ as t→ ∞, it is clear that M ≥ 2ϵ. Next, since η(·) belongs to Class B, it follows that

c := inf
ϵ≤r≤M

η(r) > 0.

So, for t ≥ T , we have that
ht(ω) ≥ η(zt(ω)) ≥ c.

Now, if we discard all terms for t < T , we get

∞∑
t=T

αt(ω)ht(ω) <∞, ∀ω ∈ Ω0,

∞∑
t=T

αt(ω) = ∞, ht(ω) ≥ c > 0,

which is clearly a contradiction. Therefore the set of ω ∈ Ω0 ∩ Ω1 for which W (ω) > 0 has zero measure
within Ω0 ∩ Ω1. In other words, zt(ω) → 0 for (almost) all ω ∈ Ω0 ∩ Ω1. This is Item 3.
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Theorem 2.23 above shows only that zt converges to 0 almost surely on sample paths in Ω0 ∩ Ω1. In
these notes, we are interested not only in the convergence of various algorithms, but also on the rate of
convergence. With this in mind, we now state and prove an extension of Theorem 2.23 that provides such
an estimate on rates.

But before that, we need to define what “rate of convergence” means for a stochastic process converges
almost surely. Unlike convergence in the mean and convergence in probability, which readily lend themselves
to the concept of “rate,” the concept of the rate is somewhat tricky in the case of almost-sure convergence.
Suppose θt → θ∗ in the quadratic mean. Then we can study E[∥θt − θ∗∥22, P ], and say that θt → θ∗ at the
rate λ if E[∥θt − θ∗∥22, P ] = O(t−λ). Prior to the contents of Chapters 3 and 4 were discovered in recent
years, the above notion of the rate was the most widely-studied form. Similarly, if θt → θ∗ in probability,
we can define the quantity

q(t, ϵ) := Pr{∥θt − θ∗∥2 > ϵ}.

Convergence in probability implies that q(t, ϵ) → 0 as t → ∞, for each fixed ϵ > 0. One can then study
the rate at which this convergence takes place. Note that some authors refer to bounds on q(t, ϵ) as “high
confidence” bounds. However, for the purposes of this book, we use the following definition, which is inspired
by [93].

Definition 2.22. Suppose {Yt} is a stochastic process, and {ft} is a sequence of positive numbers. We say
that

1. Yt = O(ft) if {Yt/ft} is bounded almost surely.

2. Yt = Ω(ft) if Yt is positive almost surely, and {ft/Yt} is bounded almost surely.

3. Yt = Θ(ft) if Yt is both O(ft) and Ω(ft).

4. Yt = o(ft) if Yt/ft → 0 almost surely as t→ ∞.

The next theorem is a modification of Theorem 2.23 that provides bounds on the rate of convergence.

Theorem 2.24. Suppose {zt}, {ft}, {gt}, {αt} are stochastic processes defined on some probability space
(Ω,F , P ), taking values in [0,∞), adapted to some filtration {Ft}. Suppose further that

Et(zt+1) ≤ (1 + ft)zt + gt − αtzt ∀t, (2.3.40)

where
∞∑
t=0

ft(ω) <∞,

∞∑
t=0

gt(ω) <∞,

∞∑
t=0

αt(ω) = ∞.

Then zt = o(t−λ) for every λ ∈ (0, 1] such that there exists a finite T > 0 such that

αt(ω) − λt−1 ≥ 0 ∀t ≥ T, (2.3.41)

and in addition
∞∑

T=0

(t+ 1)λgt(ω) <∞,

∞∑
T=0

[αt(ω) − λt−1] = ∞, (2.3.42)

where T is defined in (2.3.41)

The proof makes use of some ideas from [93].

Proof. Over the interval (0,∞), the map t 7→ tλ is concave for λ ∈ (0, 1). It follows from the “graph below
the tangent” property of a concave function that

(t+ 1)λ ≤ tλ + λtλ−1. (2.3.43)
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Now a ready consequence of (2.3.43) is

1 ≤
(
t+ 1

t

)λ

≤ 1 + λt−1, ∀t ≥ T.

Now we follow the suggestion of [93, Lemma 1] by recasting (2.3.41) in terms of tλzt.
5 If we multiply

both sides of (2.3.41) by (t+ 1)λ, and divide by tλ where appropriate, we get

Et((t+ 1)λzt+1) ≤ (1 + ft)

(
t+ 1

t

)λ

tλzt + (t+ 1)λgt − αt

(
t+ 1

t

)λ

tλzt, ∀t ≥ T.

Now we observe that

−αt

(
t+ 1

t

)λ

≤ −αt, ∀t ≥ T,

(1 + ft)

(
t+ 1

t

)λ

≤ (1 + ft)(1 + λt−1) = 1 + ft(1 + λt−1) + λt−1, ∀t ≥ T.

If we now define the modified quantity z̄t = tλzt, then the above bound can be rewritten as

Et(z̄t+1) ≤ [1 + ft(1 + λt−1)]z̄t + (t+ 1)λgt − (αt − λt−1)z̄t, ∀t ≥ T. (2.3.44)

Since 1 + λt−1 is bounded over t ≥ T , it is obvious that

∞∑
t=T

ft <∞ =⇒
∞∑
t=T

ft(1 + λt−1) <∞.

Moreover, by assumption, there exists a finite T such that

αt − λt−1 ≥ 0, ∀t ≥ T.

Since it is always permissible to analyze the inequality (2.3.41) starting at time T , we can apply Theorem
2.22 to (2.3.41), with η(r) = r, and deduce that z̄t → 0 as t→ ∞. This is equivalent to zt = o(t−λ).

Notes and References

The topic of the convergence of stochastic processes is vast, and clearly what is presented here is just a
tiny sliver of the subject. Our choice of topics is dictated by their applicability to problems of nonconvex
optimization and to Reinforcement Learning.

The main references cited for probability and stochastic processes are [10, 44, 173]. For general topics in
measure theory and/or real analysis, the reader is directed to [16, 43, 127].

Theorem 2.22, the Robbins-Siegmund theorem, is an extension of the standard result that a nonnegative
supermartingale converges almost surely. For this reason, it is known as the “almost supermartingale” theo-
rem. This theorem represents a refinement of an earlier theorem from [52], but was discovered independently.
Theorem 2.23 makes use of the concept of a function of class B. This concept is introduced in [52], but
it had no name. The concept is defined precisely, and given a name, in [168]. Theorem 2.23 as presented
here is stated in this form in [71], as is Theorem 2.24. The definition of the “rate of convergence,” and its
application to the problem at hand, is motivated by [93].

5Since t−1 is undefined when t = 0, the bounds below apply when t ≥ 1.
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Chapter 3

Stochastic Approximation:
Algorithms and Convergence

In this chapter we formulate and analyze several versions of Stochastic Approximation (SA), which is the
common thread that binds the two distinct topics studied in this book, namely nonconex optimization,
and Reinforcement Learning. We first state the problem under study; then we analyze the solution to the
problem using a variety of methods.

3.1 An Overview of Stochastic Approximation

In this section, we state the core problem in Stochastic Approximation (SA). Suppose f : Rd → Rd is some
function. For the moment, no assumptions are made about the nature of f(·). Assumptions about f(·) are
added as and when they are needed. The objective is to find a solution to the equation f(θ∗) = 0.1 The
phrase “Stochastic approximation,” as well as the first results, were introduced in a seminal paper by Robbins
and Monro [123]. SA was introduced as an iterative technique for finding a solution θ∗ when only noisy
measurements f(·) are available. It is not necessary for the function to be “known” (e.g., in closed form).
All that is required is that, given an argument θ ∈ Rd, an “oracle” gives us a noise-corrupted measurement
in the form

yt+1 = f(θt) + ξt+1, (3.1.1)

where {ξt}t≥1 is a noise sequence. Assumptions about the nature of the noise sequence are introduced at
appropriate places. For the moment, we focus on how the noisy measurements could be used to construct a
sequence of approximations {θt} that we hope would converge to a θ∗ ∈ Rd such that f(θ∗) = 0.

The standard implementation of the SA algorithm is as follows: One begins with an initial guess θ0
which could either be deterministic or random. This guess is updated according to the rule

θt+1 = θt + αtyt+1 = θt + αt[f(θt) + ξt+1], (3.1.2)

where {αt} is either a prespecified sequence of real numbers, or a prespecified sequence of random variables.
It is customary to assume that αt ∈ (0,∞) for all t. If αt is random, then it is assumed that αt > 0 almost
surely. In the optimization literature, αt is referred to as the “step size,” and could vary as a function of
t, the iteration counter (also referred to as “time”). In the Machine Learning literature, it is common to
choose a fixed value of αt ≡ α, which is then referred to as the “learning rate.”

In their original paper, Robbins and Monro made very restrictive assumptions regarding the nature of
the function f(·) and the noise sequence {ξt+1}. These assumptions have been substantially relaxed by later

1Obviously, 0 can be replaced by any arbitrary element of Rd.
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researchers; hence we need not recapitulate the original assumptions. However, one fact that has remained
(more or less) unchanged over the decades is the set of sufficient conditions for the algorithm to converge,
given in the original paper. These are rightly known as the “Robbins-Monro conditions,” and are stated as

∞∑
t=0

α2
t <∞, (3.1.3)

and
∞∑
t=0

αt = ∞. (3.1.4)

Usually both conditions are written together; but there is a reason for displaying them separately in this
book. Specifically, in [52], it is shown that (3.1.3) alone is sufficient to ensure that the iterations {θt} are
bounded almost surely.2 The addition of (3.1.4) to (3.1.3) then leads to the stronger conclusion that θt → θ∗

almost surely.
At this point one might ask: Why shouldn’t the update formula be

θt+1 = θt − αtyt+1,

because any zero of f(·) is also a zero of −f(·)? As we shall see below, the choice of the plus sign or the
minus sign depends on the behavior of the function f(·). Specifically, some convergence proofs of SA are
based on the solution θ∗ being a globally asymptotically stable (GAS) equilibrium of the associated ODE

θ̇ = f(θ). (3.1.5)

Clearly, replacing f(·) by −f(·) destroys the GAS property. If the GAS property holds, then the formulation
in (3.1.2) is the approrpiate one, as we shall see below.

While the SA algorithm as described above is intended to find a zero of a function, SA can also be used
to address some related problems. Two of them are mentioned here, namely: Finding a fixed point, and
finding a stationary point.

Suppose g : Rd → Rd is some function. It is desired to find a fixed point of the map g, that is, a vector θ∗

such that g(θ∗) = θ∗, when only noisy measurements of g(·) are available. Thus, at time t, given a θ ∈ Rd,
an oracle returns the noise-corrupted measurement g(θt) + ξt+1. As shown in Chapter 5, computing the
value of a Markov reward problem, or the value of a policy in a Markov Decision Problem (MDP), both fall
into this category. This problem can be formulated as that finding a zero of the function f(θ) = g(θ) − θ.
If we were to substitute this expression into (3.1.2), we get what might be called the “fixed point version”
of SA, namely

θt+1 = θt + αt[g(θt) − θt + ξt+1] = (1 − αt)θt + αt[g(θt) + ξt+1]. (3.1.6)

In this situation, the step size αt is restricted to lie in (0, 1), as opposed to (0,∞) as in (3.1.2). An advantage
of this formulation is that θt+1 is a convex combination of the current guess θt and the noisy measurement
g(θt) + ξt+1.

Another application is that of finding a stationary point of a C1 function J : Rd → R, that is, finding
a θ∗ ∈ Rd such that ∇J(θ∗) = 0. This application is studied in detail in Chapter 4. Since the objective
is to solve ∇J(θ∗) = 0, we can replace yt+1 in (3.1.1) by a stochastic gradient ht+1, which is a noisy
approximation to ∇J(θt). With this definition, the stochastic approximation step becomes

θt+1 = θt − αtht+1. (3.1.7)

This is a generalization of the familiar gradient descent method of (1.1.10), with the true gradient replaced
by the stochastic gradient. For this reason, (3.1.7) is often referred to as Stochastic Gradient Descent

2This means that almost all sample paths of the stochastic process are bounded, though the bound would depend on the
sample path.
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(SGD). It might be mentioned that SGD is the workhorse of contemporary optimization, and neural network
training.

At this point it might appear that we are using Stochastic Approximation to address three distinct
problems, namely: Finding a zero of a function, finding a fixed point of a map, and finding a stationary
point of a function. In reality, these three problems are closely related. We have already seen that finding a
fixed point of a map g is equivalent to finding a zero of a function f(θ) = g(θ) − θ. Now it is shown that,
under suitable conditions, finding a stationary point of a C2 map J(·) is equivalent to finding the fixed point
of an associated contraction map.

Specifically, suppose J(·) is C2, and suppose further that there exist constants 0 < a ≤ b <∞ such that

aId ≤ ∇2J(θ) ≤ bId, ∀θ ∈ Rd, (3.1.8)

where for symmetric matrices A and B, the notation A ≤ B denotes that B − A is positive semidefinite.
Note that any function J(·) satisfying (3.1.8) is strictly convex, though the converse is not always true. Now
define

r =
b+ a

2
, ρ =

b− a

b+ a
, (3.1.9)

and note that ρ < 1. With these definitions, it is now shown that the map θ 7→ θ − (1/r)∇J(θ) is a
contraction, with constant ρ. To see this, observe that a ready consequence of (3.1.8) is(

1 − b

r

)
Id ≤ Id − (1/r)∇2J(θ) ≤

(
1 − a

r

)
Id.

However, it is easy to verify that

1 − b

r
= −ρ, 1 − a

r
= ρ.

In turn this implies that
∥Id − (1/r)∇2J(θ)∥S ≤ ρ, (3.1.10)

where ∥M∥S denotes the largest singular value of M , which is also the the ℓ2-induced matrix norm of the
matrix M , that is

∥M∥S = max
∥v∥2≤1

∥Mv∥2.

Next, observe that

∇J(θ) = ∇J(ϕ) +

∫ 1

0

∇2J(ϕ+ λ(θ − ϕ))(θ − ϕ) dλ.

Hence

(θ − (1/r)∇J(θ)) − [ϕ− (1/r)∇J(ϕ)] =

∫ 1

0

(Id − (1/r)∇2J(ϕ+ λ(θ − ϕ)))(θ − ϕ) dλ.

Now we can invoke (3.1.10) to conclude that∥∥∥∥∫ 1

0

(Id − (1/r)∇2J(ϕ+ λ(θ − ϕ)))(θ − ϕ) dλ

∥∥∥∥
2

≤ ρ∥θ − ϕ∥2.

In turn this implies that

∥(θ − (1/r)∇J(θ)) − [ϕ− ((1/r)∇J(ϕ))]∥2 ≤ ρ∥θ − ϕ∥2.

This is the desired conclusion.
Now observe that solving ∇J(θ) = 0 is the same as solving (1/r)∇J(θ) = 0. Clearly

(1/r)∇J(θ) = 0 ⇐⇒ θ = θ − (1/r)∇J(θ).
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From the above discussion, we know that the map on the right side is a contraction. Hence finding a stationary
point of a J(·) that satisfies (3.1.8) is equivalent to solving the above fixed-point problem. To complete the
discussion, let us see what the iteration looks like, for finding a fixed point of the map θ 7→ θ− (1/r)∇J(θ).
We start with an initial guess θ0, and then update it via

θt+1 = θt − (1/r)∇J(θt).

This is called “fixed step size” gradient descent. Note that, in order to compute r, it is necessary only to
have a lower bound for a, and an upper bound for b, in (3.1.8).

After the SA algorithm was introduced in [123], some generalizations and/or simplifications followed very
quickly; see [174, 77, 45, 39]. An excellent survey can be found in [87]. Book-length treatments of SA can
be found in [85, 9, 86, 23].

In (3.1.2), it is noteworthy that every component of θt is updated at time t. For this reason, in this
book we refer to the approach in (3.1.2) as Synchronous Stochastic Approximation (SSA), though
the terminology is not very standard. SSA can be contrasted with a situation whereby, at each step t, only
one component of θt is updated. This is known as Asynchronous Stochastic Approximation( ASA),
a term that was introduced in [159, 158, 22], and is by now standard terminology. An intermediate approach
is to update, at each step t, some but not necessarily all components of θt. In this book, this is referred to
a Block Asynchronous Stochastic Approximation (BASA). Again, this terminology is not standard.
We derive sufficient conditions for the convergence of SSA in Section 3.2, and for BASA in Section 3.3. ASA
need not be studiede separately as it is a special case of BASA.

3.2 Convergence of Synchronous Stochastic Approximation

In this section, we study the convergence of the “synchronous” Stochastic Approximation (SA) algorithm
(3.1.1) under a variety of conditions. Variants of the standard SA algorithm are studied in Section 3.3 and
3.4.

Some of the theorems in this section only establish the convergence of the SA algorithm, whereas other
theorems also establish the rate of convergence. All of these theorems make use of the theorems proved in
Section 2.3.

This section is organized as follows: Some theorems also make use of Lyapunov stability theory, introduced
in Section 7.2, as well as a new result in “converse” Lyapunov theory, which is presented later in this section.

Note that the assumptions on the function f(·) and on the noise sequence {ξt+1} are far more general than
those in the original Robbins-Monro paper. Also, the conclusions are stronger. For example, the original
paper studies only the scalar case (d = 1). Moreover, the convergence of the iterations to the desired limit
is only in the quadratic mean, and hence in probability. The current “best practice” is to strive to prove
almost sure convergence, which is stronger. The reason for desiring almost sure convergence is obvious: The
application of any stochastic algorithm results in a single sample path of a stochastic process. It is therefore
worthwhile to know that almost all sample paths reach the correct answer.

3.2.1 Convergence Theorems for SA via Lyapunov Theory

Now let us return to the problem at hand, namely to establish the convergence of the SA algorithm, aims to
find a zero of a C1 function f : Rd → Rd. One begins with a (possibly random) initial guess θ0, after which
the update rule is

θt+1 = θt + αt[f(θt) + ξt+1], (3.2.1)

where αt is a nonnegative-valued and possibly random step size, and ξt+1 is the measurement error. We
begin with the assumptions on the function f(·) in (3.2.1).

(F1) The equation f(θ∗) = 0 has a unique solution, which is assumed to be θ∗ = 0, by shifting coordinates
if necessary.
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(F2) There is a constant S such that
∥f(θ)∥2 ≤ S∥θ∥2, ∀θ ∈ Rd.

Note that (F2) is weaker than assuming that f(·) is globally Lipschitz-continuous with constant S, which
would be

∥f(θ) − f(ϕ)∥2 ≤ S∥θ − ϕ∥2, ∀θ,ϕ ∈ Rd.

In effect, (F2) is the above relation with ϕ set equal to 0 (or θ∗ in the general case). In particular, the
function f(·) need not even be continuous in order to satisy (F2). For example, the function f : R → R
defined by

f(θ) =

 3θ, θ ∈ [0, 1),
1 + exp(θ − 1), θ ∈ [1,∞),
−f(−θ), θ < 0.

Then f(·) is discontinuous at θ = ±1, but still satisfies (F2).
Next we state the assumptions on the measurement error ξt+1. Let us define

zt = Et(ξt+1), ζt+1 = ξt+1 − zt. (3.2.2)

Then it follows from Theorem 2.5 that

Et(ζt+1) = 0, CVt(ξt+1) = CVt(ζt+1), Et(∥ξt+1∥22) = ∥zt∥22 + CVt(ζt+1). (3.2.3)

One can think of zt as the the predictable part of the measurement error, and ζt+1 as the unpredictable
part. So if zt = 0 for all t, then the noisy measurement yt+1 = f(θt) + ξt+1 can be said to be “unbiased,”
because Et(yt+1) = f(θt). However, any convergence theory cannot be restricted to this situation. As we
shall see later, there are so-called “zeroth-order” or “derivative-free” methods for implementing SA, in which
case the bias zt need not equal zero. Our theory needs to be versatile enough to cater to this situation as
well.

With this notation, we state the assumptions on the measurement error ξt+1.

(N1) There exists a sequence of constants {Bt} such that

∥Et(ξt+1)∥2 = ∥zt∥2 ≤ Bt(1 + ∥θt∥2), ∀t ≥ 0, (3.2.4)

(N2) There exists a sequence of constants , {Mt} such that

CVt(ζt+1) = Et(∥ζt+1∥22) ≤M2
t (1 + ∥θt∥22), ∀t ≥ 0. (3.2.5)

We begin our study with a bound that is very useful in its own right. The bound is taken from [12, Eq.
(2.4)].

Theorem 3.1. Suppose J : Rd → R is C1, and suppose further that ∇J(·) is L-Lipschitz continuous, that
is,

∥∇J(θ) −∇J(ϕ)∥2 ≤ L∥θ − ϕ∥2, ∀θ,ϕ ∈ Rd. (3.2.6)

Then

J(θ + ϕ) ≤ J(θ) + ⟨∇J(θ),ϕ⟩ +
L

2
∥ϕ∥22. (3.2.7)

Proof. Define h : R → R via
h(λ) := h(θ + λϕ).

Then h(·) is in C1, and

h(0) = J(θ), h(1) = J(ϕ), h′(λ) = ⟨∇J(θ + λϕ),ϕ⟩, ∀λ ∈ R.
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Now observe that h(0) = J(θ) and h(1) = J(θ + ϕ). Therefore

h(1) = h(0) +

∫ 1

0

h′(λ) dλ

= h(0) +

∫ 1

0

⟨∇J(θ + λϕ),ϕ⟩ dλ

= h(0) +

∫ 1

0

⟨∇J(θ,ϕ⟩ dλ+

∫ 1

0

⟨[∇J(θ + λϕ) −∇J(θ)],ϕ⟩ dλ. (3.2.8)

By the Liptschitz continuity of ∇J(·), it follows that

∥∇J(θ + λϕ) −∇J(θ)∥2 ≤ L∥ϕ∥2.

Further, by Scwharz’ inequality,∫ 1

0

⟨[∇J(θ + λϕ) −∇J(θ)],ϕ⟩ dλ ≤ L∥ϕ∥22
∫ 1

0

λ dλ =
L

2
∥ϕ∥22.

Substituting this into (3.2.8) gives

h(1) ≤ h(0) + ⟨∇J(θ),ϕ⟩ +
L

2
∥ϕ∥22.

This is the same as (3.2.7).

Remarks:

1. The inequality (3.2.7) is well-known in convex analysis. For example the right inequality in [109, Eq.
2.1.9] becomes (3.2.7) after changing f to J , x to θ and y to θ + ϕ. Thus Theorem 3.1 does away
with the assumption that the function J(·) is convex, which is a huge improvement. However, it is
important to note that [109, Eq. 2.1.9] has two parts. The left inequality implies that the function J(·)
is convex, as shown there. In the present case, there is no analog of the left inequality.

2. The theorem follows readily from Taylor’s theorem if J(·) is C2 and not just C1. This can be seen
as follows: The assumption that ∇J(·) is L-Lipschitz-continuous implies that ∇J(·) is absolutely
continuous, in the sense defined in [127]; see in particular the Remark at the bottom of page of 122.
By the contents of [127, Section 6.4], it follows that ∇J(·) is differentiable almost everywhere (i.e.,
everywhere except on a set of Lebesgue measure zero). Moreover, wherever ∇J(·) is differentiable, it
follows readily that ∥∇2J(·)∥S ≤ L. Here ∥A∥S denotes the largest singular value of a matrix A. Note
that ∥A∥S also equals ∥A∥2→2, which is the matrix norm induced by the ℓ2-norm on vectors. Hence
if were to strengthen the hypothesis of Theorem 3.1 to: J ∈ C2 (instead of J ∈ C1), and ∇J(·) is
L-Lipschitz continuous, then it would follow that ∥∇2J(θ)∥S ≤ L for all θ. In such a case, Taylor’s
theorem would imply that, for each θ,ϕ ∈ Rd, there exists a λ ∈ (0, 1) such that

J(θ + ϕ) = J(θ) + ⟨∇J(θ),ϕ⟩ +
1

2
ϕ⊤∇2J(θ + λϕ)ϕ.

This would in turn imply (3.2.7). a the contribution of [12] is to weaken the hypothesis from J ∈ C2

to J ∈ C1.

Now we present a sufficient condition for the convergence of the SA algorithm of (3.2.1), which involves
the existence of a “Lyapunov function” V : Rd → R that satisfies some conditions. The concept of a
Lyapunov function is introduced in Section 7.2 in the context of the stability of ODEs. In particular, let us
associate an ODE

θ̇ = f(θ)
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with the function f(·) whose zero we are trying to find. Now suppose V : Rd → R+ is an C1 function with
gradient ∇V . Then the function V̇ : Rd → R associated with V and the ODE above is defined by (cf.
(7.2.9)):

V̇ (θ) := ⟨∇V (θ), f(θ)⟩.

Now we state the standard assumptions on the Lyapunov function.

(L1) ∇V is C1 and L-Lipschitz continuous, and ∇V (0) = 0.

(L2) There exist positive constants a, b such that

a∥θ∥22 ≤ V (θ) ≤ b∥θ∥22, ∀θ ∈ Rd. (3.2.9)

To avoid a lot of repetition, we state a standing assumption:

(S) Assumptions (F1), (F2), (N1), (N2), (L1), (L2) hold.

Now we state our results on the convergence of the SA algorithm of (3.2.1). The first theorem gives
sufficient conditions for the almost sure convergence of θt to 0, but does not give any information on the
rate of convergence. By strengthening the assumptions on V̇ (·), we derive bounds on the rate of convergence
in the next theorem and its corollary.

Theorem 3.2. Suppose that Assumptions (S) hold.

1. Suppose that V̇ (θ) ≤ 0 for all θ, and that

∞∑
t=0

α2
t <∞,

∞∑
t=0

αtBt <∞,

∞∑
t=0

α2
tM

2
t <∞, (3.2.10)

Then {V (θt)} and {∥θt∥2} are bounded, and in addition, V (θt) converges to some random variable as
t→ ∞.

2. Suppose that, in addition to (3.2.10), it is also the case that

∞∑
t=0

αt = ∞, (3.2.11)

and in addition, there exists a function ψ : R+ → R+ belonging to Class B such that

V̇ (θ) ≤ −ψ(∥θ∥22), ∀θ ∈ Rd. (3.2.12)

Then V (θt) → 0 and θt → 0 as t→ ∞.

Proof. Applying Theorem 3.1 to the function V (·), and making use of the updating formula (3.2.1) leads to

V (θt+1) ≤ V (θt) + αt⟨∇V (θt), f(θt)⟩ + αt⟨∇V (θt), ξt+1⟩ + α2
t

L

2
∥f(θt) + ξt+1∥22.

Applying Et(·) to both sides, using (3.2.2) and (3.2.3), and applying the definition of V̇ (·), gives

Et(V (θt+1)) ≤ V (θt) + αtV̇ (θt) + αt⟨∇V (θt), zt⟩

+ α2
t

L

2
[∥f(θt)∥22 + 2⟨f(θt), zt⟩ + ∥zt∥22 + Et(∥ζt+1∥22)]. (3.2.13)

Now we observe that
∥f(θt)∥2 ≤ S∥θt∥2, ∥∇V (θt)∥2 ≤ L∥θt∥2.
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Substituting these bounds into (3.2.13), and invoking the assumptions (N1) and (N2), gives a bound in the
form

Et(V (θt+1)) ≤ V (θt) + αtBtL∥θ∥2(1 + ∥θ∥2) + α2
t

L

2
[S2∥θ∥22 + 2SBt∥θ∥2(1 + ∥θ∥2)]

+ α2
t

L

2
[B2

t (1 + ∥θ∥22) +M2
t (1 + ∥θ∥22)] + αtV̇ (θt).

We proceed to simplify the above inequality in stages. The first step is to incorporate the bound

∥θ∥2 ≤ 1 + ∥θ∥22
2

.

This gives

Et(V (θt+1)) ≤ V (θt) + αtBtL(0.5 + 1.5∥θ∥22) + α2
t

L

2
[S2∥θ∥22 + SBt(1 + 3∥θ∥22)]

+ α2
t

L

2
[B2

t (1 + ∥θ∥22) +M2
t (1 + ∥θ∥22)] + αtV̇ (θt).

The last step is to bound ∥θ∥22 by (1/a)V (θt). Ths leads to the final form of the bound

Et(V (θt+1)) ≤ (1 + ft)V (θt) + gt + αtV̇ (θt). (3.2.14)

where

ft =
1.5

a
αtBtL+ α2

t

L

2a
[S2 + 3SBt +B2

t +M2
t ],

gt =
0.5

a
αtBtL+ α2

t

L

2a
[SBt +B2

t +M2
t ].

This bound is in the form to which we can apply Theorem 2.23, if it can be established that the two sequences
{ft} (not to be confused with f) and {gt} are summable. Leaving aside various constant terms, both ft and
gt involve these five terms:

α2
t , αtBt, α

2
tBt, α

2
tB

2
t , α

2
tM

2
t .

From (3.2.10), we know that the sequences {α2
t }, {αtBt}, and {α2

tM
2
t } are all summable. Now, any summable

sequence is also square-summable. Hence {α2
tB

2
t } is summable. Finally, since {α2

t } is summable, it is evident
that αt is bounded. This, coupled with the summability of {αtBt}, shows that {α2

tBt} is also summable.
Thus, if V̇ (θt) ≤ 0 for all θt, then Item 1 of Theorem 2.23 applies, and Item 1 of the conclusions follows.

Now we come to Item 2 of the conclusions. For this purpose, define η : R+ → R+ via

η(r) := inf
(r/b)≤x≤(r/a)

ψ(x).

Now (3.2.9) implies that
(1/b)V (θt) ≤ ∥θ∥2 ≤ (1/a)V (θt).

Therefore it is immediate that
−αtψ(∥θ∥2) ≤ −αtη(V (θt)).

Moreover, since ψ(·) is a function of Class B, so is η(·), as is easy to verify. Hence, in (3.2.14), we can
replace the term +αtV̇ (θt) by −αtη(V (θt)), and apply Item 2 of Theorem 2.23. This leads to Item 2 of the
conclusions.

Theorem 3.3. Suppose that Assumptions (S), and (3.2.10) and (3.2.11) hold. Suppose further that there
exists a constant c > 0 such that

V̇ (θ) ≤ −c∥θ∥22, ∀θ ∈ Rd. (3.2.15)
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Further, suppose there exist constants γ > 0 and δ ≥ 0 such that

Bt = O(t−γ), Mt = O(tδ),

where we take γ = 1 if Bt = 0 for all sufficiently large t, and δ = 0 if Mt is bounded. Choose the step-size
sequence {αt} as O(t−(1−ϕ)) and Ω(t−(1−C)) where ϕ is chosen to satisfy

0 < ϕ < min{0.5 − δ, γ}, (3.2.16)

and C ∈ (0, ϕ]. Define
ν := min{1 − 2(ϕ+ δ), γ − ϕ}. (3.2.17)

Then ∥θt∥22 = o(t−λ) for every λ ∈ (0, ν). In particular, by choosing ϕ very small, it follows that ∥θt∥22 =
o(t−λ)

λ < min{1 − 2δ, γ}. (3.2.18)

Proof. Since most of the hard work is already done in proving Theorem 3.2, the proof is only sketched.
Since (3.2.15) is assumed to hold, in (3.2.14), the term −αtV̇ (θt) can be replaced by −αtc∥θ∥22, and then
by −αt(c/b)V (θt). Now one can apply Theorem 2.24 to obtain the result.

Corollary 3.1. Suppose that Assumptions (S), and (3.2.10) and (3.2.11) hold. Suppose further that there
exists a constant c > 0 such that (3.2.15) holds. Finally, suppose zt = 0 almost surely, and there exists a
finite constant M such that

CVt ≤M2(1 + ∥θt∥22), ∀t. (3.2.19)

Then, by choosing ϕ = O(t−(1−ϵ)) with ϵ > 0 arbitrarily small, we can ensure that V (θt), ∥θt∥22 are o(t−λ)
for all λ < 1.

The proof is omitted as it is easy.

3.2.2 Some Applications

In this subsection, we apply Theorems 3.2 and 3.3 to establish the convergencd of the SA algoritm in two
specific problems, namely:

� When f(·) is “passive,” and

� When it is desired to compute the fixed point of a contraction g(·).
In each case, it is assumed that only noisy measurements are available.

The first application, namely to find a solution of f(θ∗) = 0 even when f(·) is not necessarily continuous
(except at 0), was one of the motivations in the seminal paper [52]. Note that, if f(·) is discontinuous (except
at 0), the ODE approach requires some modifications, because the ODE θ̇ = f(θ) has solutions only in the
Fillippov sense in general. The martingale approach pursued here does not become more complex when f(·)
is discontinuous.

The second application is to find a fixed point of a contractive map g(·), when only noisy measurements
of the function are available. In this situation, the “natural” iteration

θt+1 = g(θt) + ξt+1,

where ξt+1 is the measurement error, does not work in general.
There is yet another application, which is to find a stationary point of a C1 map J : Rd → R. In other

words, it is desired to find a solution to ∇J(θ∗) = 0. In principle this is the same as the first application,
with f(·) = ∇J(·). However, there are some special wrinkles. Hence this problem is studied separately in
Chapter 4.

First, we show that the SA algorithm of (3.1.2) converges when the function f(·) is “passive,” which is
made precise in Definition 3.1 below. This approach was pioneered in [52]. The reader is cautioned that
in [52], the SA algorithm uses a minus sign in front of αt, that is, it uses the formulation (3.1.5), and the
definition of passivity is adjusted commensuretly.
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Definition 3.1. Suppose f : Rd → Rd, and that θ∗ ∈ Rd. Then f is said to be passive at θ∗ if (i) f(θ∗) = 0,
and (ii) for all 0 < ϵ < M <∞, we have that

inf
ϵ≤∥θ−θ∗∥2≤M

−⟨θ − θ∗, f(θ)⟩ > 0, ∀ϵ > 0. (3.2.20)

Remark: If we define a function η(·) : R+ → R+ by

η(r) := inf
∥θ−θ∗∥2=r

−⟨θ − θ∗, f(θ)⟩, (3.2.21)

then f(·) is passive at θ∗ if and only if η(·) is a function of Class B. Note that if f(·) is continuous, then
(3.2.20) can be replaced by

⟨θ − θ∗, f(θ)⟩ < 0 ∀θ ̸= θ∗. (3.2.22)

In circuit theory, a nonlinear characteristic that satisfies (3.2.20) with θ∗ = 0 would be called “passive,” so
we borrow that terminology. Also, (3.2.20) does not rule out the possibility that f(θ) → 0 as ∥θ∥ → ∞. For
instance, the function f : R → R defined by

−f(θ) =

 θ, if θ ∈ [0, 1],
1 − exp(θ − 1), if θ ≥ 1,
−f(−θ), if θ < 0.

Then f(·) is passive at zero, even though f(θ) → 0 when |θ| → ∞.
Equation (3.2.20) implies that ⟨θ − θ∗, f(θ)⟩ < 0 for all θ ̸= θ∗ ∈ Rd. This in turn implies that θ∗ = θ∗

is the only solution to f(θ) = 0. To find θ∗, suppose we have available only noisy measurements of f(·).
Specifically, suppose we can measure

yt+1 = f(θt) + ξt+1,

where the measurement error satisfies assumptions (N1) and (N2). To determine θ∗, we use the SA iterations
defined by (3.1.2). Suppose now that the step sizes αt are positive, and satisfy the standard Robbins-Monro
conditions hold, namely:

∞∑
t=1

α2
t <∞. (3.2.23)

∞∑
t=1

αt = ∞, (3.2.24)

It is shown now that θt → θ∗ almost surely as t→ ∞.

Theorem 3.4. Suppose that Assumptions (F2), (N1) and (N2) hold, and in addition, f(·) is passive at θ∗.
Under these assumptions, we have the following conclusions:

1. If (3.2.10) holds, then the sequence {θt} is bounded almost surely.

2. If (3.2.11) holds in addition to (3.2.10), then θt → 0 almost surely as t→ ∞.

Proof. The proof follows readily by applying Theorem 3.2 with the Lyapunov function V (θ) = ∥θ∥22. In this
case,

V̇ (θ) = ⟨θ, f(θ⟩.

Thus

V̇ (θ) ≤ −η(∥θ∥2),

where η(·) is defined in (3.2.21).
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Next, we study the use of SA to find a fixed point of a contractive map when only noisy measurements
are available. Specifically, suppose P ∈ Rd×d is a positive definite matrix, set M = P⊤P , and define the
vector norm

∥v∥M := (v⊤Mv)1/2 = ∥Pv∥2, (3.2.25)

Now suppose g : Rd → Rd is a map such that (i) there is a unique θ∗ such that g(θ∗) = θ∗, and (ii) there
exists a constant ρ < 1 such that

∥g(θ) − θ∗∥M ≤ ρ∥θ − θ∗∥M , ∀θ ∈ Rd. (3.2.26)

An easy way to ensure that (3.2.26) holds is to assume that g is a contraction with respect to ∥ · ∥M , i.e.,
that

∥g(θ) − g(ϕ)∥M ≤ ρ∥θ − ϕ∥M , ∀θ,ϕ ∈ Rd.

Observe that (3.2.26) is just the above contraction condition with ϕ set to the fixed point θ∗.
To find θ∗, we apply the fixed point version of the SA algorithm, namely

θt+1 = (1 − αt)θt + αt[g(θt) + ξt+1]. (3.2.27)

This is the standard fixed point iteration with measurement errors.

Theorem 3.5. Suppose g : Rd → Rd has a unique fixed point θ∗ = 0, and that (3.2.26) holds for some
ρ < 1. Suppose further that Assumptions (N1) and (N2) hold. Under these conditions, Finally, suppose that
(3.2.10) and (3.2.11) hold. Suppose there exist constants γ > 0 and δ ≥ 0 such that

Bt = O(t−γ), Mt = O(tδ),

where we take γ = 1 if Bt = 0 for all sufficiently large t, and δ = 0 if Mt is bounded. Choose the step-size
sequence {αt} as O(t−(1−ϕ)) and Ω(t−(1−C)) where ϕ is chosen to satisfy

0 < ϕ < min{0.5 − δ, γ}, (3.2.28)

and C ∈ (0, ϕ]. Define
ν := min{1 − 2(ϕ+ δ), γ − ϕ}. (3.2.29)

Then ∥θt∥22 = o(t−λ) for every λ ∈ (0, ν). In particular, by choosing ϕ very small, it follows that ∥θt∥22 =
o(t−λ) whenever

λ < min{1 − 2δ, γ}. (3.2.30)

Proof. The proof is based on Theorem 3.3. Let us define the Lyapunov function

V (θ) :=
1

2
∥θ∥2M =

1

2
θ⊤Mθ.

Observe that
f(θ) = −θ + g(θ).

Therefore
V̇ (θ) = θ⊤M f(θ) = −∥θ∥2M + θ⊤Mg(θ).

However
θ⊤Mg(θ) = θ⊤P⊤Pg(θ) ≤ ∥Pθ∥2 · ∥Pg(θ)∥2 ≤ ρ∥θ∥2M .

Therefore
V̇ ≤ −(1 − ρ)∥θ∥2M = −2(1 − ρ)V (θ)

The rest of the details are as in Theorem 3.3, and the conclusions partain to ∥θt∥2M . However, since M is
positive definite, the same bounds also apply to ∥θt∥22.
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3.2.3 Existence of Suitable Lyapunov Functions

Theorems 3.2 and 3.3 are quite powerful, provided there exists a suitable Lyapunov function that satisfies
Assumptions (L1) and (L2). So-called “converse” Lyapunov theory gives conditions under which a suitable
Lyapunov exists. In this subsection, we state and prove one such theorem for global exponential stability,
which can be used in conjunction with Theorem 3.3.

There is a part of Lyapunov stability theory known as “converse” theory. The idea here is to show that,
under suitable conditions of the function f in (3.1.5), if θ∗ is Globally Exponentially Stable (GES), then there
exists a Lyapunov function V satisfying the conditions of Theorem 3.3. Many standard books on Lyapunov
stability theory do not include these theorems. The contents of this subsection are taken from [168].

As a prelude, we state and prove an inequality known as Gronwall’s inequality, which turns an implicit
inequality into an explicit inequality

Lemma 3.1. (Gronwall’s Inequality) Suppose a : R+ → R+ is continuous, and that b, c ≥ 0 are
constants. Under these conditions,

a(t) ≤ b+ c

∫ t

0

a(τ) dτ, ∀t ≥ 0 (3.2.31)

implies that
a(t) ≤ b exp(ct), ∀t ≥ 0. (3.2.32)

Proof. Define

d(t) = b+ c

∫ t

0

a(τ) dτ,

and observe that d(t) ≥ 0 for all t. Now (3.2.31) states that a(t) ≤ d(t) for all t. Next

ḋ(t) = ca(t) ≤ cd(t), ∀t ≥ 0, (3.2.33)

d

dt
[d(t) exp(−ct)] = ḋ(t) exp(−ct) − cd(t) exp(−ct)

= exp(−ct)[ḋ(t) − cd(t)] ≤ 0, ∀t ≥ 0,

from (3.2.33). Hence
d(t) exp(−ct) ≤ d(0) = b, or d(t) ≤ b exp(ct) ∀t ≥ 0.

Now the bound (3.2.32) follows from a(t) ≤ d(t) for all t.

Now we state the new converse theorem. First we state the assumptions on the function f : Rd → Rd.

(F1) The equation f(θ) = 0 has a unique solution θ∗.

(F2) The function f is twice continuously differentiable, and is globally Lipschitz-continuous with constant
L. Thus

∥f(θ) − f(ϕ)∥2 ≤ L∥θ − ϕ∥2, ∀θ,ϕ ∈ Rd. (3.2.34)

Note that, as a consequence of this assumption, for each θ ∈ Rd there is a unique function s(·,θ) that
satisfies the ODE

ds(t,θ)

dt
= f(s(t,θ)), s(0,θ) = θ. (3.2.35)

(F3) The equilibrium θ∗ of the ODE θ̇ = f(θ) is globally exponentially stable. Thus there exist constants
µ ≥ 1, γ > 0 such that

∥s(t,θ) − θ∗∥2 ≤ µ∥θ − θ∗∥2 exp(−γt), ∀t ≥ 0, ∀θ ∈ Rd. (3.2.36)
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(F4) There is a finite constant K such that

∥∇2fi(θ)∥S · ∥θ − θ∗∥2 ≤ K, ∀i ∈ [d], ∀θ ∈ Rd, (3.2.37)

where [d] denotes the set {1, . . . , d}, and ∥ · ∥S denotes the spectral norm of a matrix, i.e., its largest
singular value. A consequence of (3.2.37) is that∣∣∣∣∂2fi(θ)

∂θj∂θk

∣∣∣∣ · ∥θ − θ∗∥2 ≤ K, ∀i, j, k ∈ [d], ∀θ ∈ Rd. (3.2.38)

Theorem 3.6. Suppose Assumptions (F1)–(F4) hold. Under these hypotheses, there exists a C2 function
V : Rd → R+ such that V and its “derivative” V̇ : Rd → R together satisfy the following conditions: There
exist positive constants a, b, c and a finite constant M such that

c1∥θ − θ∗∥22 ≤ V (θ) ≤ c2∥θ − θ∗∥22, V̇ (θ) ≤ −c3∥θ − θ∗∥22, ∀θ ∈ Rd. (3.2.39)

∥∇2V (θ)∥S ≤ 2M, ∀θ ∈ Rd. (3.2.40)

Remark: The existence of a Lyapunov function V that satisfies (3.2.39) is quite standard. Indeed, the
usual choice is

V (θ) :=

∫ ∞

0

∥s(t,θ)∥22dt. (3.2.41)

However, for this choice of V , no conclusions can be drawn about the behavior of the gradient ∇V nor the
Hessian ∇2V . In [34], the authors introduce a completely different Lyapunov function of the form

V (θ) :=

∫ T

0

e2κτ∥s(τ,θ) − θ∗∥22 dτ, (3.2.42)

where 0 < κ < γ is arbitrary, and T is any finite number such that

lnµ

γ − κ
≤ T <∞,

where µ, γ are defined in (3.2.36). For this choice of Lyapunov function, it is shown in [34] that there exists
a finite constant L′ such that

∥∇V (θ)∥2 ≤ L′∥θ − θ∗∥2. (3.2.43)

Therefore, the Lyapunov function V of (3.2.41) “looks quadratic,” while the Lyapunov function V of (3.2.42)
and its gradient both “look quadratic.” Now Theorem 3.6 extends the theory further by showing that, if
(F4) holds, then the Lyapunov function V , gradient ∇V , and Hessian ∇2V , all “look quadratic.” As we
shall see, (F4) is the key assumption that allows us to extend the converse Lyapunov theory of [34]. In turn
this leads to a simple proof of Theorem 3.6.

Proof. Following in [34], define the Lyapunov function candidate V as in (3.2.42). Then, as shown in [34],
V satisfies (3.2.39) and (3.2.43). The latter is not of any concern to us. So we focus on proving (3.2.40).

Note that the solution function s(·,θ) satisfies

s(t,θ) = θ +

∫ t

0

f(s(τ,θ)) dτ. (3.2.44)

Therefore

∇θs(t,θ) = I +

∫ t

0

∇θf(s(τ,θ)) dτ. (3.2.45)

Next, the chain rule gives
∇θf(s(τ,θ)) = ∇ϕf(ϕ)|ϕ=s(τ,θ) ∇θs(τ,θ).
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Now the global Lipschitz continuity of f implies that

∥∇ϕf(s(τ,ϕ))∥S ≤ L, ∀ϕ, ∀τ.

Therefore (3.2.45) leads to (after dropping the subscript θ)

∥∇s(t,θ)∥S ≤ 1 +

∫ t

0

L∥∇s(τ,θ)∥S dτ.

Now Gronwall’s inequality of Lemma 3.1 leads to the bound

∥∇s(t,θ)∥S ≤ exp(Lt), ∀t, ∀θ. (3.2.46)

Next we proceed to find a bound on the second partial derivatives. It follows from (3.2.44) that

∂si(t,θ)

∂θj
= δij +

∫ t

0

∂fi(s(τ,θ))

∂θj
dτ,

where δij is the Kronecker delta. Next,

∂2si(t,θ)

∂θj∂θk
=

∫ t

0

∂2fi(s(τ,θ))

∂θj∂θk
dτ. (3.2.47)

We will use (3.2.47) later. Next, expand V (θ) as

V (θ) =

∫ T

0

e2κτ
d∑

i=1

[si(τ,θ) − θ∗i ]2 dτ.

Thus

∂V (θ)

∂θj
=

∫ T

0

2e2κτ
d∑

i=1

[si(τ,θ) − θ∗i ]
∂si(τ,θ)

∂θj
dτ,

∂2V (θ)

∂θj∂θk
=

∫ T

0

2e2κτ
d∑

i=1

∂si(τ,θ)

∂θk

∂si(τ,θ)

∂θj
dτ

+

∫ T

0

2e2κτ
d∑

i=1

[si(τ,θ) − θ∗i ]
∂2si(τ,θ)

∂θj∂θk
dτ

= I1 + I2,

where

I1 =

∫ T

0

2e2κτ
d∑

i=1

∂si(τ,θ)

∂θk

∂si(τ,θ)

∂θj
dτ, (3.2.48)

I2 =

∫ T

0

2e2κτ
d∑

i=1

[si(τ,θ) − θ∗i ]
∂2si(τ,θ)

∂θj∂θk
dτ. (3.2.49)

We will prove the boundedness of each integral separately. Note that, as a consequence of (3.2.49), we have∣∣∣∣∂si(τ,θ)

∂θk

∣∣∣∣ , ∣∣∣∣∂si(τ,θ)

∂θj

∣∣∣∣ ≤ ∥∇s(τ,θ)∥S ≤ expLτ, ∀τ, i, j, k.
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So the first integral is bounded by

|I1| ≤
∫ T

0

2de2κτe2Lτ dτ =: C1 <∞

for some constant C1, whose precise value need not concern us. So we concentrate on showing that, under
Assumption (F4), I2 is also bounded globally.

Towards this end, we begin by observing that

∥s(t,θ)∥2 ≥ e−Lt∥θ − θ∗∥2, ∀t ≥ 0.

The proof is elementary and is omitted. In particular

∥s(t,θ)∥2 ≥ e−LT ∥θ − θ∗∥2, ∀t ∈ [0, T ]. (3.2.50)

Now we estimate the entity ∂2fi(s(τ,θ))/∂θj∂θk in (3.2.47). Note that

∂fi
∂θj

(s(τ,θ)) =

d∑
l=1

∂fi(ϕ)

∂ϕl

∣∣∣∣
ϕ=s(τ,θ)

∂sl(τ,θ)

∂θj
,

∂2fi(s(τ,θ))

∂θj∂θk
=

d∑
l=1

∂fi(ϕ)

∂ϕl

∣∣∣∣
ϕ=s(τ,θ)

∂2sl(τ,θ)

∂θj∂θk

+

d∑
l=1

∂

∂θk

[
∂fi(ϕ)

∂ϕl

∣∣∣∣
ϕ=s(τ,θ)

]
∂sl(τ,θ)

∂θj
. (3.2.51)

The second term can be expanded as

d∑
l=1

[
d∑

r=1

∂2fi(ϕ)

∂ϕl∂ϕr

∣∣∣∣
ϕ=s(τ,θ)

∂sr(τ,θ)

∂θk

]
∂sl(τ,θ)

∂θj

Now Assumption (F4) and the bound (3.2.50) together imply that∣∣∣∣∣ ∂2fi(ϕ)

∂ϕl∂ϕr

∣∣∣∣
ϕ=s(τ,θ)

∣∣∣∣∣ ≤ ∥∇2fi(s(τ,θ))∥S ≤ K

∥s(τ,θ) − θ∗∥2
≤ KeLT

∥θ − θ∗∥2
, ∀τ ∈ [0, T ].

Also, as shown in (3.2.46),∣∣∣∣∂sr(τ,θ)

∂θk

∣∣∣∣ , ∣∣∣∣∂sl(τ,θ)

∂θj

∣∣∣∣ ≤ ∥∇s(τ,θ)∥S ≤ eLτ ≤ eLT , ∀τ ∈ [0, T ].

Next, the global Lipschitz continuity of f implies that∣∣∣∣∂fi(ϕ)

∂ϕl

∣∣∣∣ ≤ L.

Substituting all of these bounds into (3.2.47) gives∣∣∣∣∂2si(t,θ)

∂θj∂θl

∣∣∣∣ ≤
∫ t

0

L

d∑
l=1

∣∣∣∣∂2sl(τ,θ)

∂θj∂θk

∣∣∣∣ dτ +

∫ t

0

d∑
l=1

d∑
r=1

KeLT eLτeLτ

∥θ − θ∗∥2
dt

≤ C2 +

∫ t

0

L

d∑
l=1

∣∣∣∣∂2sl(τ,θ)

∂θj∂θk

∣∣∣∣ dτ, (3.2.52)
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where

C2 =
d2TKe3LT

∥θ − θ∗∥2
is inversely proportional to ∥θ − θ∗∥2. Now define

hjk(t,θ) :=

d∑
i=1

∣∣∣∣∂2si(t,θ)

∂θj∂θk

∣∣∣∣ .
Note that the right side of (3.2.52) does not depend on i. Therefore (3.2.52) implies that

hjk(t,θ) ≤
d∑

i=1

[
C2 +

∫ t

0

L

∣∣∣∣∣
d∑

l=1

∂2si(τ,θ)

∂θj∂θk

∣∣∣∣∣
]

≤ C2d+

∫ t

0

Ldhjk(τ,θ) dτ.

So by Gronwall’s inequality
hjk(t,θ) ≤ C2de

LdT , ∀t ∈ [0, T ].

Since hjk is a sum, each individual component must also be smaller than hjk in magnitude. Thus∣∣∣∣∂2si(t,θ)

∂θj∂θl

∣∣∣∣ ≤ C2de
LdT ≤ C3

∥θ − θ∗∥2

for a suitable constant C3. Therefore we have established that the Hessian of each si decays as θ gets farther
away from θ∗. Now we return to I2 as defined in (3.2.49), and observe that, as a consequence of Assumption
(F3) of global exponential stability, we have

|si(t,θ) − θ∗i | ≤ ∥s(t,θ) − θ∗∥2 ≤ µ∥θ − θ∗∥2, ∀t ≥ 0.

Now in the definition of I2, we get the bound

|si(t,θ) − θ∗i | ·
∣∣∣∣∂2si(τ,θ)

∂θj∂θk

∣∣∣∣ ≤ µ∥θ − θ∗∥2 ·
C3

∥θ − θ∗∥2
= µC3.

Since the integrand in (3.2.49) is bounded and T is finite, it follows that I2 is also bounded. This finally
leads to the desired conclusion that ∥∇2V ∥S is globally bounded.

Note that in the above proof, the finiteness of the constant T is crucial. The traditional Lyapunov
function of the form (3.2.41) may not be suitable for the present purposes.

3.3 Block Asynchronous Stochastic Approximation

In this section, we study the problem of finding a fixed point of a map g : Rd → Rd which is a contraction
with respect to the ℓ∞-norm. As shown in Chapter 5, this problem arises when it is desired to determine
the value of a Markov Reward Process. Now, Theorem 3.5 establishes the convergence of the SA algorithm
when the function g is a contraction wih respect to an inner product norm; however this theorem does not
apply to the ℓ∞-norm. Hence a distinct approach is needed.

The stochastic approximation algorithm studied in Section 3.2 can perhaps be termed as “fully syn-
chronous” (or just “synchronous”) because every component of the current guess θt is updated at time t+1.
At the other extreme lie “asynchronous” SA algorithms, wherein exactly one component of θt is updated
at time t. This is the approach used in temporal difference learning, and Q-learning, which are discussed
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in subsequent chapters. In-between lies “Block Asynchronous Stochastic Approximation (BASA),” wherein,
at each instant t, the indices belonging to a subset S(t) ⊆ [d] of the components of θt are updated. By
choosing S(t) = [d] we revert to fully synchronous SA, whereas if S(t) is a singleton set at each t, then
BASA becomes ASA (asynchronous SA). The elements of the set S(t) can be chosen at random, and the
cardinality of S(t) (that is, the number of coordinates of θt that are updated at time t + 1) can vary from
one time to another. Also, the step sizes need not be the same for each element of S(t). To highlight this
point, we switch notation and use {βt} for a fixed sequence of step sizes, while {αt,i} denotes the sequence
of step sizes for component i at time t.

The contents of this section are based on [72].

3.3.1 Problem Formulation

If g : Rd → Rd is a map and it is desired to find a fixed point of g(·), then we can use the fixed-point version
of SA, which is

θt+1 = (1d −αt) ◦ θt +αt ◦ [g(θt) + ξt+1]. (3.3.1)

Here 1d denotes the column vector of d ones, and ◦ denotes the Hadamard product.3 In this case, it is
customary to restrict αt to belong to (0, 1)d instead of (0,∞)d. Then each component of θt+1 is a convex
combination of the corresponding components of θt and the noisy measurement of g(θt).

Next we discuss various options for the step size vector αt, which is allowed to be random. In all cases,
it is assumed that there is a scalar deterministic sequence {βt} taking values in (0, 1). We now discuss three
commonly used variants of SA, namely: synchronous (also called fully synchronous), asynchronous, and
block asynchronous. In synchronous SA, one chooses αt = βt1d. Thus, in (3.3.1), the same step size βt is
applied to every component of θt. In block asynchronous SA (or BASA), there are d different {0, 1}-valued
stochastic processes, denoted by κit, i ∈ [d], called the “update” processes. Then the i-th component of θt is
updated only if κit = 1. To put it another way, define the “update set” as

St := {i ∈ [d] : κit = 1}.

Then αi
t = 0 if i ̸∈ St. However, this raises the question as to what αi

t is for i ∈ St. Two options are
suggested in the literature, known as the “global” clock and the “local” clock respectively. This distinction
was first suggested in [22]. If a global clock is used, then αi

t = βt. To define the step size when a local clock
is used, first define

νit :=

t∑
τ=0

κit. (3.3.2)

Thus νit counts the number of times that θit is updated, and is referred to as the “counter” process. Then
the step size is defined as

αi
t := βνi

t
. (3.3.3)

The distinction between global and local clocks can be briefly summarized as follows: When a global clock
is used, every component of θt that gets updated has exactly the same step size, namely βt, while the other
components have a step size of zero. When a local clock is used, among the components of θt that get updated
at time t, different components may have different step sizes. An important variant of BASA is asynchronous
SA (ASA). This phrase was apparently first used in [158], in the context of proving the convergence of the
Q-learning algorithm from Reinforcement Learning (RL). In ASA, exactly one component of θt is updated
at each t. This can be represented as follows: Let {Nt} be an integer-valued stochastic process taking values
in [d]. Then, at time t, the update set St is the singleton {Nt}. The counter process νit is now defined via

νit =

t∑
τ=0

I{Nτ=i},

3Recall that if a,b are vectors of equal dimension, then their Hadamard product c = a ◦b is defined by ci := aibi for all
i.
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where I denotes the indicator process. The step size can either be βt if a global clock is used, or βνi
t

if a
local clock is used. In [22], the author analyzes the convergence of ASA with both global as well as local
clocks. In the Q-learning algorithm introduced in [172], the update is asynchronous (one component at a
time) and a global clock is used. In [158], where the phrase ASA was first introduced, the convergence of
ASA is proved under some assumptions which include Q-learning as a special case. Accordingly, the author
uses a global clock in the formulation of ASA. In [46], the authors use a local clock to study the rate of
convergence of Q-learning.

Next we discuss the assumptions made on the error vector ξt+1. It is assumed that there exist sequences
of constants Bt and Mt such that

∥Et(ξt+1)∥2 ≤ Bt(1 + ∥θt∥2), ∀t. (3.3.4)

CVt(ξt+1) ≤Mt(1 + ∥θt∥22), ∀t. (3.3.5)

These are the same as the assumptions in Section 3.2, and Theorems 3.2 and 3.3 establish the convergence
of synchronous (or full-coordinate update) SA under these assumptions.

3.3.2 Intermittent Updating: Convergence and Rates

The key distinguishing feature of BASA is that each component of θt gets updated in an “intermittent”
fashion. In other words, a component gets updated at some steps, but not at other steps. Before tackling
the convergence of BASA in Rd, in the present subsection we state and prove results analogous to Theorems
3.2 and 3.3 for the scalar case with intermittent updating.

The problem setup is as follows: The recurrence relationship is

wt+1 = (1 − αtκt)wt + αtκtξt+1, (3.3.6)

where {wt} is an R-valued stochastic process of interest, {ξt} is the measurement error (or “noise”), {αt} is
a (0, 1)-valued stochastic process called the “step size” process, and {κt} is a {0, 1}-valued stochastic process
called the “update” process. Clearly, if κt = 0, then wt+1 = wt, irrespective of the value of αt; therefore
wt+1 is updated only at those t for which κt = 1. This is the rationale for the name. With the update
process {κt}, as before we associate a “counter” process {νt}, defined by

νt =

t∑
s=0

κs. (3.3.7)

Thus νt is the number of times up to and including time t at which wt is updated. We also define

ν−1(τ) := min{t ∈ N : νt = τ}, ∀τ ≥ 1. (3.3.8)

Then ν−1(·) is well-defined, and

ν(ν−1(τ)) = τ, ν−1(νt) ≤ t, ν−1(τ) ≤ τ − 1. (3.3.9)

The last inequality arises from the fact that there are t + 1 terms in (3.3.7). Also, κt = 1 only when
t = ν−1(τ) for some τ , and is zero for other values of t. Hence, in (3.3.6), if t = ν−1(τ) for some τ , then wt

gets updated to wt+1, and

wt+1 = wt+2 = · · · = wν−1(τ+1), (3.3.10)

at which time w gets updated again. Thus wt is a “piecewise-constant” process, remaining constant between
updates. This suggests that we can transform the independent variable from t to τ . Define

xτ := wν−1(τ), ζτ+1 := ξν−1(τ)+1, ∀τ ≥ 1, (3.3.11)
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with the convention that x1 = w0. Note that the convention is consistent whether ν0 = 1 or not (as can be
easily verified). Also we define

bτ := αtκt,

whenever t = ν−1(τ) for some τ . With these definitions, (3.3.6) is equivalent to

xτ+1 = (1 − bτ )xτ + bτζτ+1, ∀τ ≥ 1, (3.3.12)

Note that, in (3.3.12), bτ is a random variable for all τ ≥ 1, and that there is no b0. To analyze
the behavior of (3.3.12), we introduce some preliminary concepts. Let Ft be the σ-algebra generated by
w0, κ

t
0, ξ

t
1. With the change in time indices, define {Gτ}, where Gτ = Fν−1(τ), whenever t = ν−1(τ) for some

τ . Then it is easy to see that {Gτ} is also a filtration, and that

E(xτ |Gτ ) = Et(wt|Ft)

whenever t = ν−1(τ) for some τ . Hence we can mimic the earlier notation and denote E(X|Gτ ) by Eτ (X).
Also, if it is assumed that original step size αt belongs to M(Ft), then bτ ∈ M(Ft) = M(Fν−1(τ)) = M(Gτ ).
The assumption implies that, while the step αt may be random, it only makes use of the information available
up to and including step t.

Now we present a general convergence result for (3.3.12). Observe that {wt} is a “piecewise-constant
version” of {xτ}. Hence if some conclusions are established for the x-process, they are also established for
the w-process, after adjusting for the time change from t to τ .

Theorem 3.7. Consider the recursion (3.3.12). Suppose there exist constants Bt,Mt such that

|Et(ξt+1)| ≤ Bt(1 + |wt|) ∀t ≥ 0, (3.3.13)

CVt(ξt+1) ≤M2
t (1 + w2

t ), ∀t ≥ 0. (3.3.14)

Define
fτ = b2τ (1 + 2µ2

ν−1(τ) +M2
ν−1(τ)) + 3bτµν−1(τ), (3.3.15)

gτ = b2τ (2µ2
ν−1(τ) +M2

ν−1(τ)) + bτµν−1(τ). (3.3.16)

Then we have the following conclusions:

1. If
∞∑
τ=1

fτ <∞,

∞∑
τ=1

gτ <∞, (3.3.17)

then xτ is bounded almost surely.

2. If, in addition to (3.3.17), we also have
∞∑
τ=1

bτ = ∞, (3.3.18)

then xτ → 0 as τ → ∞.

3. If both (3.3.17) and (3.3.18) hold, then xτ = o(τ−λ) for every λ < 1 such that

∞∑
τ=1

(τ + 1)λgτ <∞, (3.3.19)

∞∑
τ=1

[bτ − λτ−1] = ∞, (3.3.20)

and in addition, there exists a T <∞ such that

bτ − λτ−1 ≥ 0 ∀τ ≥ T. (3.3.21)
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Proof. The proof consists of reformulating the bounds on the error ξt+1 in such a way that Theorems 3.2
and 3.3 apply. By assumption, we have that

|Et(ξt+1)| ≤ Bt(1 + |wt|) ∀t.

In particular, when t = ν−1(τ), we have that ζτ+1 = ξt+1, and

|Eτ (ζτ+1)| = |Et(ξt+1)| ≤ Bt(1 + |wt|) = µν−1(τ)(1 + |xτ |).

It follows in an entirely analogous manner that

CVτ (ζτ+1) ≤Mν−1(τ)(1 + x2τ ).

With these observations, we see that Theorems 3.2 and 3.3 apply to (3.3.12), with the only changes being
that (i) the stochastic process is scalar-valued and not vector-valued, (ii) the time index is denoted by τ and
not t, and (iii) Bt,Mt are replaced by µν−1(τ),Mν−1(τ) respectively. Now the conclusions of the theorem
follow from Theorems 3.2 and 3.3.

Now we reprise the two commonly used approaches for choosing the step size, known as a “global clock”
and a “local clock” respectively. This distinction was apparently first introduced in [22]. In each case, there
is a deterministic sequence {βt}t≥0 of step sizes. If a global clock is used, then αt = βt at each update, so
that bτ = βν−1(τ). If a local clock is used, then αt = βνt

, so that then bτ = βτ−1 . The extra −1 in the
subscript is to ensure consistency in notation. To illustrate, suppose κt = 1 for all t. Then νt = t + 1, and
ν−1(τ) = τ − 1.

Now we begin our analysis of (3.3.12) with the two types of clocks. Now that Theorem 3.7 is established,
the challenge is to determine when (3.3.18) through (3.3.21) (as appropriate) hold for the two choices of step
sizes, namely global vs. local clocks.

Towards this end, we introduce a few assumptions regarding the update process.

(U1) νt → ∞ as t→ ∞ almost surely.

(U2) There exists a random variable r such that

νt
t

→ r as t→ ∞, a.s.. (3.3.22)

Observe that both assumptions are sample-pathwise. Thus (U2) implies (U1).
We begin by stating the convergence results when a local clock is used.

Theorem 3.8. Suppose a local clock is used, so that αt = βνt , so that bτ = βτ−1. Suppose further that
Assumption (U1) holds, and moreover

(a) {Bt} is nonincreasing; that is, µt+1 ≤ Bt, ∀t.

(b) Mt is uniformly bounded, say by M .

With these assumptions,

1. If
∞∑
t=0

β2
t <∞,

∞∑
t=0

βtBt <∞, (3.3.23)

then {xτ} is bounded almost surely, and {wt} is bounded almost surely.

2. If, in addition
∞∑
t=0

βt = ∞, (3.3.24)

then xτ → 0 as t→ ∞ almost surely, and wt → 0 as t→ ∞ almost surely.
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3. Suppose βt = O(t−(1−ϕ)), for some ϕ > 0, and βt = Ω(t−(1−C)) for some C ∈ (0, ϕ]. Suppose that
Bt = O(t−ϵ) for some ϵ > 0. Then xτ → 0 as τ → ∞, and wt → 0 as t→ ∞, for all ϕ < min{0.5, ϵ}.
Further, xτ = o(τ−λ), and wt = o((νt)

−λ) for all λ < ϵ − ϕ. In particular, if Bt = 0 for all t, then
xτ = o(τ−λ), and wt = o((νt)

−λ) for all λ < 1.

4. If Assumption (U2) holds instead of (U1), then in the previous item, wt = o((νt)
−λ) can be replaced

by wt = o(t−λ).

Proof. The proof consists of showing that, under the stated hypotheses, the appropriate conditions in (3.3.17)
through (3.3.21) hold.

Recall that bτ = βτ−1. Also, by Assumption (U1), νt → ∞ as t → ∞, almost surely. Hence ν−1(τ) is
well-defined for all τ ≥ 1.

Henceforth all arguments are along a particular sample path, and we omit the phrase “almost surely,”
and also do not display the argument ω ∈ Ω.

We first prove Item 1 of the theorem. Recall the definitions of fτ and gτ from (3.3.15) and (3.3.16)
respectively. Item 1 is established if t is shown that (3.3.17) holds. For this purpose, note that µs ≤ Bt if
s > t, and Mt ≤M for all t. We analyze each of the three terms comprising fτ . First,

∞∑
τ=1

b2τ =

∞∑
τ=1

β2
τ−1 =

∞∑
t=0

β2
t <∞.

Next, since Mt ≤M for all t, we have that

∞∑
τ=1

b2τM
2
ν−1(τ) ≤M2

∞∑
τ=1

b2τ <∞.

Finally,
∞∑
τ=1

bτµν−1(τ) ≤
∞∑
τ=1

βτ−1µτ−1 =

∞∑
t=0

βtBt <∞.

Here we use the fact that ν−1(τ) ≥ τ − 1, so that µν−1(τ) ≤ µτ−1. Thus it follows from (3.3.15) that
{fτ} ∈ ℓ1, which is the first half of (3.3.17). Next, since {bτµν−1(τ)} ∈ ℓ1, so is {b2τµ2

ν−1(τ)}. Hence it follows

from (3.3.16) that {gτ} ∈ ℓ1, which is the second half of (3.3.17). This establishes that {xτ} is bounded,
which in turn implies that {wt} is bounded.

To prove Item 2, note that
∞∑
τ=1

bτ =

∞∑
τ=0

βτ = ∞.

Hence (3.3.18) holds, and xτ → 0 as τ → ∞, which in turn implies that wt → 0 as t→ ∞.
Finally we come to the rates of convergence. Recall that Bt = O(t−ϵ) while Mt is bounded by M . Also,

βt is chosen to be O(t−(1−ϕ)) and Ω(t−(1−C)). From the above, it is clear that

fτ = O(τ−2+2ϕ) +O(τ−1+ϕ−ϵ).

Hence (3.3.17) holds if

−2 + 2ϕ < −1 and − 1 + ϕ− ϵ < −1, or ϕ < min{0.5, ϵ}.

Next, from the definition of gτ in (3.3.16), it follows that

(ν−1(τ) + 1))λgτ ≤ (ν−1(τ + 1))λgτ = O(τ−1+ϕ−ϵ+λ).

Hence (3.3.19) holds if
−1 + ϕ− ϵ+ λ < −1 =⇒ λ < ϵ− ϕ.
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Combining everything shows that xτ = o(τ−λ) whenever

ϕ < min{0.5, ϵ}, λ < ϵ− ϕ.

If Bt = 0 for all t, then ϵ can be chosen to be arbitrarily large. However, the limiting factor is that the
argument in Theorem 3.3 holds only for λ ≤ 1. Hence xτ = o(τ−λ) whenever

ϕ < 0.5, λ < 1.

Now suppose Assumption (U2) holds, and fix some ϵ > 0. Then along almost all sample paths, for sufficiently
large T we have that νt/t ≥ r − ϵ for all t ≥ T . Thus, whenever t ≥ T , we have that

νt ≥ rt =⇒ o((νt)
−λ) ≤ o((rt)−λ) = o(t−λ).

Thus wt has the same rate of convergence as xτ .

Since the analysis can commence after a finite number of iterations, it is easy to see that Assumption
(a) above can be replaced by the following: {Bt} is eventually nonincreasing; that is, there exists a T < ∞
such that

µt+1 ≤ Bt, ∀t ≥ T.

Next we state a result when a global clocks is used. Theorem 3.9 below is not directly comparable to
Theorem 3.8 above. Specifically, in Theorem 3.8, the bias coefficient Bt is assumed to be non increasing,
and the variance bound M2

t is assumed to bounded uniformly with respect to t. However, the step sizes are
constrained only by the requirement that various summations are finite. In contrast, in Theorem 3.9, there
are no assumptions regarding Bt and Mt, but the step size sequence {βt} is assumed to be nonincreasing.

Theorem 3.9. Suppose a global clock is used, so that αt = βt whenever t = ν−1(τ) for some τ and as a
result bτ = βν−1(τ). Suppose further that Assumption (U2) holds. Finally, suppose that βt is nonincreasing,
so that βt+1 ≤ βt for all t. Under these assumptions,

1. If (3.3.23) holds, and in addition
∞∑
t=0

β2
tM

2
t <∞, (3.3.25)

then {wt} is bounded almost surely.

2. If, in addition, (3.3.24) holds, then wt → 0 as t→ ∞ almost surely.

3. Suppose in addition that βt = O(t−(1−ϕ)), for some ϕ > 0, and βt = Ω(t−(1−C)) for some C ∈ (0, ϕ].
Suppose that Bt = O(t−ϵ) for some ϵ > 0, and Mt = O(tδ) for some δ ≥ 0. Then wt → 0 as t → ∞
whenever

ϕ < min{0.5 − δ, ϵ}.

Moreover, wt = o(t−λ) for all λ < ϵ − ϕ. In particular, if Bt = 0 for all t, then wt = o(t−λ) for all
λ < 1.

The proof of Theorem 3.9 makes use of the following auxiliary lemma.

Lemma 3.2. Suppose the update process {κt} satisfies Assumption (U2). Suppose {βt} is an R+-valued
sequence of deterministic constants such that βt+1 ≤ βt for all t, and in addition, (3.3.24) holds. Then

∞∑
τ=1

βν−1(τ) =

∞∑
t=0

βtκt = ∞. (3.3.26)
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Proof. We begin by showing that there exists an integer M such that, whenever 2k > M , we have

1

2k

 2k+1∑
t=2k+1

κt

 ≥ r

2
. (3.3.27)

By assumption, the ratio νt/t → r as t → ∞, where r could depend on the sample path (though the
dependence on ω is not displayed). So we can define ϵ = r/2, and choose an integer M such that∣∣∣∣∣ 1

T

T−1∑
t=0

κt − r

∣∣∣∣∣ =

∣∣∣∣∣ 1

T

T−1∑
t=0

(κt − r)

∣∣∣∣∣ < ϵ

3
, ∀T ≥M.

Thus, if 2k > M , we have that∣∣∣∣∣∣ 1

2k

2k+1∑
t=2k+1

(κt − r)

∣∣∣∣∣∣ ≤

∣∣∣∣∣∣ 1

2k

2k+1∑
t=1

(κt − r)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

2k

2k∑
t=1

(κt − r)

∣∣∣∣∣∣
<

2

3
ϵ+

1

3
ϵ = ϵ =

r

2
.

Next, suppose that βt+1 ≤ βt for all t. (If this holds only for all sufficiently large t, we just start all the
summations from the time when the above holds.)

∞∑
t=0

βtκt ≥
∞∑
k=1

 2k+1∑
t=2k+1

βtκt

 ≥
∞∑
k=1

 2k+1∑
t=2k+1

β2k+1κt


=

∞∑
k=1

β2k+1

 2k+1∑
t=2k+1

κt

 ≥
∞∑
k=1

β2k+12k
r

2
=
r

4

∞∑
k=1

β2k+12k+1

=
r

4

∞∑
k=1

2k+2∑
t=2k+1+1

β2k+1 ≥ r

4

∞∑
k=1

2k+2∑
t=2k+1+1

βt =
r

4

∞∑
k=5

βt = ∞.

This is the desired conclusion.

Proof. Of Theorem 3.9: Recall that a global clock is used, so that bτ = βν−1(τ). Hence

∞∑
τ=1

fτ =

∞∑
τ=1

[β2
ν−1(τ) + β2

ν−1(τ)M
2
ν−1(τ) + βν−1(τ)µν−1(τ)]

=

∞∑
t=0

[β2
t + βtM

2
t + βtBt] <∞

Via entirely similar reasoning, it follows that {gτ} ∈ ℓ1. Hence (3.3.17) holds, and Item 1 follows.
To prove Item 2, it is necessary to establish (3.3.18), which in this case becomes

∞∑
τ=1

βν−1(τ) =

∞∑
τ=0

bτ = ∞.

This is (3.3.18). Hence Item 2 follows.
Finally we come to the rates of convergence. The only difference is that now Mt = O(tδ) whereas it was

bounded in Theorem 3.8. To avoid tedious repetition, we indicate only the changed steps. The only change
is that now

fτ = O(τ−2+2ϕ) +O(τ−2+2ϕ+2δ) +O(τ−1+ϕ−ϵ).
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Hence (3.3.17) holds if

−2 + 2ϕ < −1,−2 + 2ϕ+ 2δ < −1, and − 1 + ϕ− ϵ < −1,

or
ϕ < min{0.5 − δ, ϵ}.

Next, from the definition of gτ in (3.3.16), it follows that

(ν−1(τ) + 1))λgτ ≤ (ν−1(τ + 1))λgτ = O(τ−1+ϕ−ϵ+λ).

Hence (3.3.19) holds if
−1 + ϕ− ϵ+ λ < −1 =⇒ λ < ϵ− ϕ.

Hence xτ = o(τ−λ) and wt = o(t−λ) whenever

ϕ < min{0.5 − δ, ϵ}, λ < ϵ− ϕ.

If Bt = 0 for all t, then we can choose ϵ to be arbitrarily large, and we are left with

ϕ < 0.5 − δ, λ < 1.

3.3.3 Boundedness of Iterations

Next, we give a precise statement of the class of fixed point problems to be studied. In this subsection, it
is shown that the iterations are bounded (almost surely), while in the next subsection, the convergence of
the iterations is established, together with the rate of convergence. The boundedness of the iterations is
established under far more general conditions than the convergence. More details are given at the appropriate
place.

Let N denote the set of natural numbers including zero, and let h : N × (Rd)N → (Rd)N denote a
measurement function. Thus h maps Rd-valued sequences into Rd-valued sequences. The objective is
to determine a fixed point of this map when only noisy measurements of h are available at each time t.
Specifically, define

ηt = h(t,θt0). (3.3.28)

Suppose that, at time t+1, the learner has access to a vector ηt+ξt+1, where ξt+1 denotes the measurement
error. The objective is to determine a sequence π∗ ∈ (Rd)N (if it exists) such that

h(π∗) = π∗,

using only the noise-corrupted measurements of ηt.
To facilitate this, a few assumptions are made regarding the map h. First, the map h is assumed to be

nonanticipative4 and to have finite memory. The nonanticipativeness of h means that

θ∞0 ,ϕ
∞
0 ∈ (Rd)N,θt0 = ϕt

0 =⇒ h(τ,θ∞0 ) = h(τ,ϕ∞
0 ), 0 ≤ τ ≤ t. (3.3.29)

In other words, h(t,θ∞0 ) depends only on θt0. The finite memory of h means that there exists a finite
constant ∆ which does not depend on t, such that h(t,θt0) further depends only on θtt−∆+1. With slightly
sloppy notation, this can be written as

h(t,θt0) = h(t,θtt−∆+1), ∀t ≥ ∆, ∀θ∞0 ∈ (Rd)N. (3.3.30)

4In control and system theory, such a function is also referred to as “causal.”
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This formulation incorporates the possibility of “delayed information” of the form

ηt,i = gi(θ1(t− ∆1(t)), · · · , θd(t− ∆d(t))), (3.3.31)

where ∆1(t), · · · ,∆d(t) are delays that could depend on t. The only requirement is that each ∆j(t) ≤ ∆
for some finite ∆. This formulation is analogous to [158, Eq. (2)] and [22, Eq. (1.4)], which is slightly more
general in that they require only that t− ∆i(t) → ∞ as t→ ∞, for each index i ∈ [d]. In particular, if h is
“memoryless” in the sense that, for some function g : Rd → Rd, we have

h(t,θt0) = g(θt), (3.3.32)

then we can take ∆ = 1. Note that, if h is of the form (3.3.32), then the problem at hand becomes one of
finding a fixed point in Rd of the map g, gives noisy measurements of g at eath time step.

To proceed further, it is assumed that the measurement function satisfies the following assumption:

(F1) There exist an integer ∆ ≥ 1 and a constant γ ∈ (0, 1) such that

∥h(t,ψt
t−∆+1) − h(t,ϕt

t−∆+1)∥∞ ≤ γ∥ψt
t−∆+1 − ϕ

t
t−∆+1∥∞, ∀t ≥ ∆, ∀ψ∞

0 ,ϕ
∞
0 ∈ (Rd)N. (3.3.33)

This assumption means that the map θtt−∆+1 7→ h(t,θtt−∆+1) is a contraction with respect to ∥ · ∥∞.
In case ∆ = 1 and h is of the form (3.3.32), Assumption (F1) says that the map g is a contraction.

Now we discuss a few implications of Assumption (F1).

(F2) By repeatedly applying (3.3.33) over blocks of width ∆, one can conclude that

∥h(t,ψt
t−∆+1) − h(t,ϕt

t−∆+1)∥∞ ≤ γ⌊t/∆⌋∥ψ∆−1
0 − ϕ∆−1

0 ∥∞, ∀ψ∞
0 ,ϕ

∞
0 ∈ (Rd)N. (3.3.34)

Therefore, for every sequence ϕ∞
0 , the iterations h(t,ϕt

0) converge to a unique fixed point π∗. In
particular, if we let (π∗)∞0 denote the sequence whose value is π∗ for every t, then it follows that

∥h(t, (π∗)t0) − π∗∥∞ ≤ C0γ
⌊t/∆⌋, ∀t, (3.3.35)

for some constant C0.

(F3) The following also follows from Assumption (F1): There exist constants ρ < 1 and c′1 > 0 such that

∥h(t,ϕt
0)∥∞ ≤ ρmax{c′1, ∥ϕ

t
0∥∞}, ∀ϕ ∈ (Rd)N, t ≥ 0. (3.3.36)

In order to determine π∗ in (F2), we use BASA. Specifically, we choose θ0 as we wish (either determin-
istically or at random). At time t, we update θt to θt+1 according to

θt+1 = θt +αt ◦ [ηt + ξt+1], (3.3.37)

where αt is the vector of step sizes belonging to [0, 1)d, ξt+1 is the measurement noise vector belonging to
Rd, and ◦ denotes the Hadamard product. We are interested in studying two questions:

(Q1) Under what conditions is the sequence of iterations {θt} bounded almost surely?

(Q2) Under what conditions does the sequence of iterations {θt} converge to π∗ as t→ ∞?

Question (Q1) is addressed in this subsection, whereas Question (Q2) is addressed in the next.
In order to study the above two questions, we make some assumptions about various entities in (3.3.37).

Let Ft denote the σ-algebra generated by the random variables θ0, ξt1, and αt,i
0,i for i ∈ [d]. Then it is clear

that {Ft} is a filtration. As before, we denote E(X|Ft) by Et(X).
The first set of assumptions is on the noise.
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(N1) There exists a finite constant c′1 and a sequence of constants {Bt} such that

∥Et(ξt+1)∥2 ≤ c′1Bt(1 + ∥θt0∥∞), ∀t ≥ 0. (3.3.38)

(N2) There exists a finite constant c′2 and a sequence of constants {Mt} such that

CVt(ξt+1) ≤ c′2M
2
t (1 + ∥θt0∥2∞), ∀t ≥ 0, (3.3.39)

where, as before,
CVt(ξt+1) = Et(∥ξt+1 − Et(ξt+1)∥22)

Before proceeding further, let us compare the conditions (3.3.38) and (3.3.39) with their counterparts (3.2.4)
and (3.2.5) in Theorem 3.2. It can be seen that the above two requirements are more liberal (i.e., less
restrictive) than in Theorem 3.2, because the quantity ∥θt∥2 is replaced by ∥θt0∥∞. Hence, in (3.3.38) and
(3.3.39), the bounds are more loose. However, Theorems 3.10 and 3.11 in the next subsection apply only to
contractive mappings. Hence Theorems 3.10 and 3.11 complement Theorem 3.2, and do not subsume it.

The next set of assumptions is on the step size sequence.

(S1) The random step size sequences {αt,i} and the sequences {Bt}, {M2
t } and satisfy (almost surely)

∞∑
t=0

α2
t,i <∞,

∞∑
t=0

M2
t α

2
t,i <∞,

∞∑
t=0

Btαt,i <∞, ∀i ∈ [d]. (3.3.40)

(S2) The random step size sequence {αt,i} satisfies (almost surely)

∞∑
t=0

αt,i = ∞, a.s., ∀i ∈ [d]. (3.3.41)

With these assumptions in place, we state the main result of this subsection, namely, the almost sure
boundedness of the iterations. In the next subsection, we state and prove the convergence of the iterations,
under more restrictive assumptions.

Theorem 3.10. Suppose that Assumptions (N1) and (N2) about the noise sequence, (S1) and (S2) about
the step size sequence, and (F1) about the function h hold, and that θt+1 is defined via (3.3.37). Then
supt ∥θt∥∞ <∞ almost surely.

The proof of the theorem is fairly long and involves several preliminary results and observations.
To aid in proving the results, we introduce a sequence of “renormalizing constants.” This is similar to

the technique used in [158]. For t ≥ 0, define

Λt := max{∥θt0∥∞, c′1}, (3.3.42)

where c′1 is defined in (3.3.28). With this definition, it follows from (3.3.36) that ηt = h(t,θt0) satisfies

∥ηt∥∞ ≤ ρΛt, ∀t. (3.3.43)

Define ζt+1 =  L−1
t ξt+1 for all t ≥ 0. Now observe that  L−1

t ≤ c−1
1 , and  L−1

t ≤ (∥θt0∥∞)−1. Hence

∥Et(ζt+1,i)∥∞ ≤ c′1Bt(c
−1
1 + 1) =: c2Bt, (3.3.44)

where c2 = c′1(c−1
1 + 1). In particular, the above implies that

|Et(ζt+1,i)| ≤ c2Bt, ∀t ≥ 0. (3.3.45)
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Similarly
CVt(ζt+1,i) ≤ c3M

2
t , ∀t ≥ 0, (3.3.46)

for some constant c3.
If we compare (3.3.44) with (3.3.38), and (3.3.45) with (3.3.39), we see that the bounds for the “modified”

error ζt+1 are simpler than those for ξt+1. Specifically, the right side of both (3.3.44) and (3.3.45) are bounded

with respect to θt0 for each t, though they may be unbounded as functions of t. In contrast, the right sides
of (3.3.38) an (3.3.39) are permitted to be functions of ∥θt0∥∞.

Though the next result is quite obvious, we state it separately, because it is used repeatedly in the sequel.

Lemma 3.3. For i ∈ [d] and 0 ≤ s ≤ k <∞, define the doubly-indexed stochastic process

Di(s, k + 1) =

k∑
t=s

[ k∏
r=t+1

(1 − αr,i)
]
αt,iζt+1,i, (3.3.47)

where an empty product is taken as 1. Then {Di(s, k)} satisfies the recursion

Di(s, k + 1) = (1 − αk,i)Di(s, k) + αk,iζk+1,i, Di(s, s) = 0. (3.3.48)

In the other direction, (3.3.47) gives a closed-form solution for the recursion (3.3.48).

Recall that N denotes the set of non-negative integers {0, 1, 2, . . . , }. The next lemma is basically the
same as [158, Lemma 2].

Lemma 3.4. There exists Ω1 ⊂ Ω with P (Ω1) = 1 and r∗1 : Ω1 × (0, 1) → N such that

|Di(s, k + 1)(ω)| ≤ ϵ, ∀k ≥ s ≥ r∗1(ω, ϵ). (3.3.49)

Proof. Let ϵ > 0 be given. It follows from Lemma 3.3 that Di satisfies the recursion

Di(0, t+ 1) = (1 − αt,i)Di(0, t) + αt,iζt+1,i

with Di(0, 0) = 0. Let us fix an index i ∈ [d], and invoke (3.3.45) and (3.3.46). Then it follows from (3.3.46)
that

CVt(ζt+1,i) ≤ c3M
2
t ,

and (3.3.45) also holds. Now, if Assumptions (S1) and (S2) also hold, then all the hypotheses needed to
apply Theorem 3.7 are in place. Therefore Di(0, k + 1) converges to zero almost surely. This holds for each
i ∈ [d] Therefore, if we define

Ω1 = {ω ∈ Ω1 : Di(0, k + 1)(ω) → 0 as t→ ∞ ∀i ∈ [d]},

then P (Ω1) = 1. We can see that for ω ∈ Ω1 we can choose r∗1(ω, ϵ) such that ∀k ≥ r∗1(ω, ϵ), i ∈ [d] we have

|Di(0, k + 1)(ω)| ≤ 1
2ϵ.

To proceed further, we suppress the argument ω in the interests of clarity. Observe from (3.3.47) that,
whenever s ≤ k we have

Di(s, k + 1) =

k∑
t=s

[ k∏
r=t+1

(1 − αr,i)
]
αt,iζt+1,i (3.3.50)

=

k∑
t=0

[ k∏
r=t+1

(1 − αr,i)
]
αt,iζt+1,i −

s−1∑
t=0

[ k∏
r=t+1

(1 − αr,i)
]
αt,iζt+1,i (3.3.51)

= Di(0, k + 1) −

[
k∏

r=s

(1 − αr,i)

]
s−1∑
t=0

[ s−1∏
r=t+1

(1 − αr,i)
]
αt,iζt+1,i (3.3.52)

= Di(0, k + 1) −

[
k∏

r=s

(1 − αr,i)

]
Di(0, s). (3.3.53)
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Since 1 − αr,i ∈ (0, 1) for all r, i, it follows that the product also belongs to (0, 1). Therefore

|Di(s, k + 1)| ≤ |Di(0, k + 1)| + |Di(0, s)| ≤
ϵ

2
+
ϵ

2
= ϵ.

This is the desired conclusion.

Lemma 3.5. There exists Ω2 ⊂ Ω with P (Ω2) = 1 and r∗2 : Ω1 × N× (0, 1) → N such that

k∏
s=j

(1 − αs,i(ω)) ≤ ϵ, ∀ k ≥ r∗2(ω, j, ϵ), i ∈ [d], ω ∈ Ω2. (3.3.54)

Proof. In view of the assumption (S2), if we define

Ω2 =

ω ∈ Ω :

∞∑
s=j

αt,i(ω) = ∞ ∀i ∈ [d]

 ,

then P (Ω2) = 1. For all ω ∈ Ω2, we have
∞∑
s=j

αt,i(ω) = ∞.

Using the elementary inequality (1 − x) ≤ exp{−x} for all x ∈ [0,∞), it follows that

k∏
s=j

(1 − αt,i(ω)) ≤ exp

−
k∑

s=j

αt,i(ω)

 .

Hence for ω ∈ Ω2,
∏k

s=j(1 − αt,i(ω)) converges to zero as k → ∞. Thus we can choose r∗2(ω, j, ϵ) with the
required property.

In the rest of this section, we will fix ω ∈ Ω1∩Ω2, the functions r∗1 , r∗2 obtained in Lemma 3.4 and Lemma
3.5 respectively and prove that if (F1) holds, then ∥θt(ω)∥∞ is bounded, which proves Theorem 3.7.

Let us rewrite the updating rule (3.3.37) as

θt+1,i = (1 − αt,i)θt,i + αt,i(ηt,i + Λtζt+1,i), i ∈ [d], t ≥ 0, (3.3.55)

By recursively invoking (3.3.55) for k ∈ [0, t], we get

θt+1,i = At+1,i +Bt+1,i + Ct+1,i (3.3.56)

where

At+1,i =
[ t∏
k=0

(1 − αk,i)
]
θ0,i, (3.3.57)

Bt+1,i =

t∑
k=0

[ t∏
r=k+1

(1 − αr,i)
]
αk,iηk,i, (3.3.58)

Ct+1,i =

t∑
k=0

[ t∏
r=k+1

(1 − αr,i)
]
αk,iΛkζk+1,i. (3.3.59)

Lemma 3.6. For i ∈ [d] ,
|Ct+1,i| ≤ Λt sup

0≤r≤t
|Di(r, t+ 1)|. (3.3.60)
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Proof. We begin by establishing an alternate expression for Ck,i, namely

Ct+1,i =  L0Di(0, t+ 1) +

t∑
k=1

( Lk −  Lk−1)Di(k, t+ 1), (3.3.61)

where Di(·, ·) is defined in (3.3.47). For this purpose, observe from Lemma 3.3 that Ct+1,i satisfies

Ct+1,i =  Ltαt,iζt+1,i + (1 − αt,i)Ct,i =  LtDi(t, t+ 1) + (1 − αt,i)Ct,i, (3.3.62)

because αt,iζt+1,i = Di(t, t+1) due to (3.3.48) with s = t. The proof of (3.3.61) is by induction. It is evident
from (3.3.59) that

C1,i =  L0α0,1ζ1,i =  L0Di(0, 1).

Thus (3.3.61) holds when t = 0. Now suppose by way of induction that

Ct,i =  L0Di(0, t) +

t−1∑
k=1

( Lk −  Lk−1)Di(k, t). (3.3.63)

Using this assumption, and the recursion (3.3.62), we establish (3.3.61).
Substituting from (3.3.63) into (3.3.62) gives

Ct+1,i =  LtDi(t, t+ 1) +  L0(1 − αt,i)Di(0, t) + (1 − αt,i)

t−1∑
k=1

( Lk −  Lk−1)Di(k, t). (3.3.64)

Now (3.3.47) implies that

(1 − αt,i)Di(k, t) = Di(k, t+ 1) − αt,iζt+1,i = Di(k, t+ 1) −Di(t, t+ 1).

Therefore the summation in (3.3.64) becomes

t−1∑
k=1

( Lk −  Lk−1)(1 − αt,i)Di(k, t) =

t−1∑
k=1

( Lk −  Lk−1)Di(k, t)

− Di(t, t+ 1)

t−1∑
k=1

( Lk −  Lk−1) = S1 + S2 say.

Then S2 is just a telescoping sum and equals

S2 = − Lt−1Di(t, t+ 1) +  L0Di(t, t+ 1).

The second term in (3.3.64) equals

 L0(1 − αt,i)Di(0, t) =  L0[Di(0, t+ 1) − αt,iζt+1,i] =  L0Di(0, t+ 1) −  L0Di(t, t+ 1).

Putting everything together and observing that the term  L0Di(t, t+ 1) cancels out gives

Ct+1,i =  L0Di(0, t+ 1) + ( Lt −  Lt−1)Di(t, t+ 1) +

t−1∑
k=1

( Lk −  Lk−1)Di(k, t).

This is the same as (3.3.64) with t+1 replacing t. This completes the induction step and thus (3.3.61) holds.
Using the fact that  Lt ≥  Lt−1, the desired bound (3.3.60) follows readily.
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Proof. (Of Theorem 3.7) As per the statement of the theorem, we assume that (F1) holds. We need to prove
that

sup
t≥0

 Lt <∞.

Define

δ = min{1 − ρ

2ρ
,

1

2
},

and observe that, as a consequence, we have that ρ(1 + 2δ) ≤ 1. Choose r∗1 = r∗1(δ) as in Lemma 3.4 such
that

|Di(s, k + 1)| ≤ δ ∀k ≥ s ≥ r∗1 , ∀i ∈ [d].

It is now shown that
 Lt ≤ (1 + 2δ) Lr∗1

∀t, ∀i ∈ [d]. (3.3.65)

By the monotonicity of { Lt}, it is already known that  Lt ≤  Lr∗1
for t ≤ r∗1 . Hence, once (3.3.65) is established,

it will follow that
sup

0≤t<∞
Λt ≤ (1 + 2δ)Λr∗1

.

The proof of (3.3.65) is by induction on t. Accordingly, suppose (3.3.65) holds for t ≤ k. Using (3.3.60),
we have

|Ck+1,i| ≤ δ Lk ≤  Lr∗1
δ(1 + 2δ). (3.3.66)

It is easy to see from its definition that

|Ak+1,i| ≤  Lr∗1

[ k∏
s=0

(1 − αs,i)
]

Using the induction hypothesis that  Lt ≤ (1 + 2δ) Lr∗1
for t ≤ k, we have

|Bk+1,i| ≤
k∑

s=0

[ k∏
r=s+1

(1 − αr,i)
]
αs,i|ηs,i|

≤
k∑

s=0

[ k∏
r=s+1

(1 − αr,i)
]
αs,iρ Ls

≤ ρ(1 + 2δ) Lr∗1

k∑
s=0

[ k∏
r=s+1

(1 − αr,i)
]
αs,i

≤  Lr∗1

k∑
s=0

[ k∏
r=s+1

(1 − αr,i)
]
αs,i,

because ρ(1 + 2δ) ≤ 1. Also, the following identity is easy to prove by induction.[ k∏
s=0

(1 − αs,i)
]

+

k∑
s=0

[ k∏
r=s+1

(1 − αr,i)
]
αs,i = 1 ∀k <∞ (3.3.67)

Combining these bounds gives
|Ak+1,i| + |Bk+1,i| ≤  Lr∗1

.

Combining this with (3.3.56) and (3.3.66) leads to

θk+1,i ≤  Lr∗1
(1 + δ(1 + 2δ)) ≤  Lr∗1

(1 + 2δ).

Therefore ∥θk+1∥∞ ≤  Lr∗1
(1 + 2δ), and

 Lk+1 = max{∥θk+1∥∞,  Lk} ≤  Lr∗1
(1 + 2δ).

This proves the induction hypothesis and completes the proof of Theorem 3.7.
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3.3.4 Convergence of Iterations with Rates

In this subsection, we further study the iteration sequence (3.3.37), under a variety of Block (or Batch)
updating schemes, corresponding to various choices of the step sizes. Whereas the almost sure boundedness
of the iterations is established in the previous subsection, in this subsection we prove that the iterations
converge to the desired fixed point π∗. Then we also find bounds on the rate of convergence.

We study three specific methods for choosing the step size vector αt in (3.3.37). Within the first two
methods, we further divide into local clocks and global clocks. However, in the third method, we permit
only the use of a global clock, for reasons to be specified.

Convergence Theorem

The overall plan is to follow up Theorem 3.10, which establishes the almost sure boundedness of the iterations,
with a stronger result showing that the iterations converge almost surely to π∗, the fixed point of the map
h. This convergence is established under the same assumptions as in Theorem 3.10. In particular, the step
size sequence is assumed to satisfy (S1) and (S2). Having done this, we then study conditions under which
(S1) and (S2) hold for each of the three methods for choosing the step sizes.

Theorem 3.11. Suppose that Assumptions (N1) and (N2) about the noise sequence, (S1) and (S2) about the
step size sequence, and (F1) about the function h hold, and that θt+1 is defined via (3.3.37). Then θt → π∗

as t→ ∞ almost surely, where π∗ is defined in (F2).

Proof. From (3.3.56), we have an expression for θt+1,i, where At+1,i, Bt+1,i and Ct+1,i are given by (3.3.57),
(3.3.58) and (3.3.59) respectively. Also, by changing notation from k to t and s to k in (3.3.67), and
multiplying both sides by π∗

i , we can write

π∗
i =

[ t∏
k=0

(1 − αk,i)
]
π∗
i +

{
t∑

k=0

[ t∏
r=k+1

(1 − αr,i)
]
αk,i

}
π∗
i , ∀t.

Substituting from these formulas gives

θt+1,i − π∗
i = Āt+1,i + B̄t+1,i + Ct+1,i, (3.3.68)

where

Āt+1,i =

t∏
k=0

(1 − αk,i)(θ0,i − π∗
i ), (3.3.69)

B̄t+1,i =
[ t∏
r=k+1

(1 − αr,i)
]
αk,i(ηk,i − π∗

i ), (3.3.70)

and Ct+1,i is as in (3.3.59). It is shown in turn that each of these quantities approaches zero as t→ ∞.
First, from Assumption (S2), it follows that5

t∏
k=0

(1 − αk,i) → 0 as t→ ∞.

Since θ0,i − π∗
i is a constant along each sample path, Āt+1,i approaches zero.

Second, by combining (3.3.34) and (3.3.35) in Property (F2), it follows that

|ηt,i − π∗
i | ≤ γ⌊t/∆⌋∥θ∆0 − (π∗)∆∥∞ ≤ C1γ

⌊t/∆⌋

5We omit the phrase “almost surely” in these arguments.
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for some constant C1 (which depends on the sample path). Thus

∞∑
r=0

|ηt,i − π∗
i | <∞

along almost all sample paths. Now it follows from (3.3.70) that

|B̄t+1,i| ≤
[ t∏
r=k+1

(1 − αr,i)
]
αk,i|ηk,i − π∗

i |

≤
[ t∏
r=k+1

(1 − αr,i)
]
αk,iC1γ

⌊t/∆⌋ =: Lt+1,i. (3.3.71)

Let Lt+1,i denote the right side of this inequality. Then it follows from Lemma 3.3 that Lt+1,i satisfies the
recursion

Lt+1,i = (1 − αt,i)Lt,i + αt,iC1γ
⌊t/∆⌋. (3.3.72)

The convergence of Lt+1,i to zero can be proved using Theorem 3.7. Since the quantity C1γ
⌊t/∆⌋ is deter-

ministic, its mean is itself and its variance is zero. So in (3.3.13) and (3.3.14), we can define

BL
t := C1γ

⌊t/∆⌋,ML
t := 0 ∀t.

We can substitute these definitions into (3.3.15) and (3.3.16), and define

fLτ = b2τ (1 + 2µ2
ν−1(τ)) + 3bτµν−1(τ), (3.3.73)

gLτ = b2τ (2µ2
ν−1(τ)) + bτµν−1(τ). (3.3.74)

Since αt ∈ [0, 1] and the sequence {BL
t } is summable (because γ < 1), and ML

t ≡ 0, (3.3.17) is satisfied.
Also, by Assumption (S2), (3.3.18) is satisfied. Hence Lt+1,i → 0 as t → ∞, which in turn implies that
B̄t+1,i → 0 as t→ ∞.

Finally, we come to Ct+1,i. It is evident from (3.3.59) and Lemma 3.3 that Ct+1,i satisfies the recursion

Ct+1,i = (1 − αt,i)Ct,i + αt,i  Ltζt,i. (3.3.75)

Now observe that  Lt is bounded, and the rescaled error signal ζt+1,i satisfies (3.3.45) and (3.3.46). Hence, if
 L∗ is a bound for  Lt, then it follows from (3.3.45) and (3.3.46) that

|Et( Ltζt+1,i)| ≤ c2  L∗Bt, ∀t ≥ 0, CVt( Ltζt+1,i) ≤ c3  L∗M2
t , ∀t ≥ 0, (3.3.76)

Hence, when Assumptions (S1) and (S2) hold, it follows from Theorem 3.7 that Ct+1,i → 0 as t→ ∞.

Next, we describe three different ways of choosing the update processes {κt,i}.
Bernoulli Updating: For each i ∈ [d], choose a rate bi ∈ (0, 1], and let {κt,i} be a Bernoulli process

such that
Pr{κt,i = 1} = bi, ∀t.

Moreover, the processes {κt,i} and {κt,j} are independent whenever i ̸= j. Let νt,i, the counter process for
coordinate i, be defined as usual. Then it is easy to see that νt,i/t → bi as t → ∞, for each i ∈ [d]. Thus
Assumption (U2) is satisfied for each i ∈ [d].

Markovian Updating: Suppose {Yt} is a sample path of an irreducible Markov process on the state
space [d]. Define the update process {κt,i} by

κt,i = I{Yt=i} =

{
1, if Yt = i,
0, if Yt ̸= i.
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Let µ denote the stationary distribution of the Markov process. Then the ratio νt,i/t → µi as t → ∞, for
each i ∈ [d]. Hence once again Assumption (U2) holds.

Batch Markovian Updating: This is an extension of the above. Instead of a single Markovian sample
path, there are N different sample paths, denoted by {Y n

t } where n ∈ [N ]. Each sample path {Y n
t } comes

an irreducible Markov process over the state space [d], and the dynamics of different Markov processes could
be different (though there does not seem to be any advantage to doing this). The update process is now
given by

κt,i =
∑

n∈[N ]

I{Y n
t =i}.

Define the counter process νt,i as before, and let µn denote the stationary distribution of the n-th Markov
process. Then

νt,i
t

→
∑

n∈[N ]

µn
i .

Hence once again Assumption (U2) holds.
Now we establish convergence rates under each of the above updating methods (and indeed, any method

such that Assumption (U2) is satisfied). The proof of Theorem 3.11 gives us a hint on how this can be done.
Specifically, each of the entities Āt+1,i, Lt+1,i, Ct+1,i satisfies a stochastic recursion, whose rate of convergence
can be established using Theorems 3.8 and 3.9. These theorems apply to scalar-valued stochastic processes
with intermittent updating. In principle, when updating θt, we could use a mixture of global and local
clocks for different components. However, in our view, this would be quite unnatural. Instead, it is assumed
that for every component, either a global clock or a local clock is used. Recall also the bounds (3.3.38) and
(3.3.39) on the error ξt+1.

Theorem 3.12. Suppose a local clock is used, so that αt,i = βνt,i for each i that is updated at time t. Suppose
that {Bt} is nonincreasing; that is, µt+1 ≤ Bt, ∀t, and Mt is uniformly bounded, say by M . Suppose in
addition that βt = O(t−(1−ϕ)), for some ϕ > 0, and βt = Ω(t−(1−C)) for some C ∈ (0, ϕ]. Suppose that
Bt = O(t−ϵ) for some ϵ > 0. Then θτ → 0 as τ → ∞ for all ϕ < min{0.5, ϵ}. Further, θτ = o(τ−λ) for all
λ < ϵ− ϕ. In particular, if Bt = 0 for all t, then θτ = o(τ−λ) for all λ < 1.

The proof of the rate of convergence uses Item (3) of Theorem 3.7. In the proof, let us ignore the index
i wherever possible, because the subsequent analysis applies to each index i. Recall that Āt+1,i is defined in
(3.3.69). Since ln(1 − x) ≤ −x for all x ∈ (0, 1), it follows that

ln

t∏
k=0

(1 − αk,i) ≤ −
t∑

k=0

αk,i,

where αk,i = 0 unless there is an update at time k. Now, since a local clock is used, we have that αk,i = βνk,i

whenever there is an update at time k. Therefore

t∑
k=0

αk,i =

νt,i∑
s=0

βs

Now, if Assumption (U2) holds (which it does for each of the three types of updating considered), it follows
that νt,i ≈ t/r for large t. Thus, if βτ = Ω(τ−(1−C)), then we can reason as follows:

νt∑
s=0

βs ≈
t/r∑
s=0

s−(1−C) ≈ (t/r)C .

Therefore, for large enough t, we have that

t∏
k=0

(1 − αk) ≤ exp(−(t/r)C).
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It follows from (3.3.69) that Āt+1,i → 0 geometrically fast.
Next we come to B̄t+1,i, which is bounded by Lt+1,i, as defined in (3.3.72). Recall the definitions (3.3.73)

and (3.3.74) for the sequences {fLτ } and {gLτ }. Then (3.3.17) and (3.3.18) will hold whenever C > 0. Since
Assumption (U2) holds, we have that

µL
ν−1(τ) = C1γ

⌊ν−1(τ)/∆⌋ ≤ C2γ
r′τ

for suitable constants C2 and r′. The point to note is that the sequence {C2γ
r′τ} is a geometrically convergent

sequence because γ < 1. Therefore (3.3.19) holds for every λ > 0. Also, (3.3.20) holds for all C > 0. Hence
it follows from Item (3) of Theorem 3.7 that Lt+1,i = o(t−λ) for every λ > 0.

This leaves only Ct+1,i. We already know that Ct+1,i satisfies the recursion (3.3.75). Moreover, the
modified error sequence { Ltζt,i} satisfies (3.3.76). The estimates for the rate of convergence now follow from
Item (3) of Theorem 3.7, and need not be discussed again.

Theorem 3.13. Suppose a global clock is used, so that αt,i = βt,i whenever the i-th component of θt is
updated. Suppose that βt is nonincreasing, so that βt+1 ≤ βt for all t. Suppose in addition that βt =
O(t−(1−ϕ)), for some ϕ > 0, and βt = Ω(t−(1−C)) for some C ∈ (0, ϕ]. Suppose that Bt = O(t−ϵ) for some
ϵ > 0, and Mt = O(tδ) for some δ ≥ 0. Then θt → 0 as t→ ∞ whenever

ϕ < min{0.5 − δ, ϵ}.

Moreover, θt = o(t−λ) for all λ < ϵ− ϕ. In particular, if Bt = 0 for all t, then θt = o(t−λ) for all λ < 1.

The proof is omitted as it is very similar to that of Theorem 3.12.

3.4 Variants of Standard Stochastic Approximation

3.4.1 Averaged Stochastic Approximation

Papers by Ruppert [128], Polyak [116], Polyak and Juditsky [117] and Nemirovski et al. [106].
An important variant of standard SA is the so-called “averaged” SA, pioneered in [128, 116] and developed

further in [117, 106]. The idea is simply to average the iterations of a standard SA algorithm. Specifically,
let {θt} denote the sequence produced by an SA algorithm (the specific nature of which is not important
for the moment), and define

θ̄t =
1

t

t∑
τ=1

θτ .

Note that θ̄t can be computed iteratively from θt via

θ̄t+1 =
t

t+ 1
θ̄t +

1

t+ 1
θt+1.

Hence “averaging” can also be viewed as a two-step iterative algorithm: The first step is to generate θt+1

from θt, and the second step is to generate θ̄t+1 from θ̄t and θt+1 as above. In [128, 116], the asymptotic
covariance of the matrix t−1(θt − θ∗)(θt − θ∗)⊤ ∈ Rd×d is computed. For linear stochastic approximation
problems, it is shown that this quantity converges to the “lowest possible” covariance matrix, which depends
on the (unknown) parameters of the problem. The key point is that the iterative algorithm does not assume
knowledge of these parameters, but achieves “asymptotically optimal” scaled covariance as t→ ∞. In [117],
it is shown that the quantity t−1(θt − θ∗)(θt − θ∗)⊤ is asymptotically multivariate normal, and of course,
the covariance matrix is again “optimal.” In [106], the analysis is extended to convex objective functions,
thus relaxing the assumption of strong convexity assumed in [117] and its predecessors.
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3.4.2 Two Time Scale Stochastic Approximation

Papers by Borkar [21], and by Lakshminarayanan and Bhatnagar [88]

3.4.3 Finite-Time Stochastic Approximation

Some relevant papers are [170, 141, 13, 32, 120, 56, 57]. Forthcoming survey paper by Chen and Maguluri.

3.4.4 Markovian Stochastic Approximation

Some relevant references are [90, 33, 120, 19, 140].

Notes and References

The Stochastic Approximation method is introduced in a seminal paper by Robbins and Monro [123] with
that same title, for finding a solution to a scalar equation f(x) = 0, where f : R → R, when only noisy
measurements of f(·) are available.

While [123] is seminal, the results are quite restrictive by today’s standards:

� The function f(·) is globally bounded; see [123, Eq. (5)].

� The measurement error ξt is assumed to have zero conditional mean; see [123, Eq. (3)].

� The measurement error ξt is assumed to be bounded; see [123, Eq. (4)].

� The convergence is only in probability, and not almost sure.

Despite all of these restrictions, the paper can be credited with having started a new area of research. Inter-
estingly, the paper does not have a single reference, suggesting that there was very little by way of precedent
for the method. The phrase “Stochastic Approximation” comes from this paper, as to the conditions (3.1.3)
and (3.1.4).

Shortly after the publication of [123], Kiefer and Wolfowitz [77] extended the results of Robbins-Monro
for finding a stationary point of a smooth function J : R → R. For this purpose, they replaced the true
gradiend J ′(·) by a first-order approximation of the form (4.2.10) (in the next chapter). They realized two
technical challenges posed by their formulation, namely: The measurement error ξt is “biased” in that its
conditional expectation is not zero, and its conditional variance grows without bound as t increased. In
[17], Blum extended the approach of Kiefer-Wolfowitz to maps J : Rd → Rd. His formulation also had
the same technical difficulties as Kiefer-Wolfowitz. In [45], Dvoretzky presents a formulation of stochastic
approximation that contains both the Robbins-Monro and Kiefer-Wolfowitz formulations as special cases.

In all these cases, the authors suggest various workarounds, but not a general theory. Moreover, the
convergence is only in probability, and not almost sure (with the exception of [17]). In the opinion of the
present author, the first approach that was capable of being generalized further is given gy Gladyshev [52].
His approach consisted of carrying out an affine transformation of the stochastic process {θt} in such a
way that the transformed process is a nonnegative supermartingale, and hence converged almost surely to
a limit. By inverting the affine transformation, it followed that θt also converged almost surely to a limit.
Some further analysis established that the limit was indeed the desired solution. In the original paper, the
function f(·) is assumed to be “passive,” that is, there exists a function c(·) belonging to Class B such that

⟨f(θ),θ − θ∗⟩ ≥ c(∥θ − θ∗∥2), ∀θ ∈ Rd,

where θ∗ is the unique solution of f(θ) = 0. Subsequent analysis in [168] showed that the key attribute of
f(·) is not passivity, but the global asymptotic stability of the associated ODE θ̇ = f(θ). If f(·) is passive,
then V (θ) = ∥θ∥22 is a suitable Lyapunov function. In addition to this, Gladyshev was the first to establish
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a “division of labor” whereby the square summability of the step sizes is sufficient to ensure the almost
sure boundedness of the iterations, while the additional assumption that the sum of the step sizes diverges
ensures convergence to the desired limit.

A slightly later, but independent, development is the Robbins-Siegmund theorem [124]. It partially sub-
sumes the results of Gladyshev; moreover, the theory applies even to the situation where the step sizes αt are
random, whereas the theory of Gladyshev does not. In the opinion of the present author, Gladyshev’s work
is not sufficiently well-known in the Western research community, and that most contemporary researchers
cite the Robbins-Siegmund theorem. Interestingly, in [9, pp. 343–344], the authors give a simple proof of the
Robbins-Siegmund theorem, and use it to prove the almost sure convergence of the SA algorithm under the
passivity condition used in [52]. However, since the proof in [9] uses the notion of a stopping time process,
which is not used in this book, we give the original (and longer) proof for the Robbins-Siegmund theorem.

The convergence theorems for standard SA are taken from [70, 71]. Some recent results on Stochastic
approximation can be found in [69, 99].

The next stage in the evolution of Stochastic Approximation theory is the formulation of the so-called
ODE approach. This approach began in the early 1970s in the erstwhile Soviet Union and in the Western
world. In the USSR, among the first papers were [101, 102], in which the author derived sufficient conditions
under which the solutions of a stochastic difference equation can be approximated by the solution of an
associated deterministic difference equation. In the general case, the approximation is uniformly good over
a finite interval. If it is assumed that solution of the original stochastic difference equation is bounded over
time, then the approximation is uniformly good over an infinite time interval. In these references, the step
size is fixed, and successive measurement errors are assumed to be independent. In [38], Derevitskii and
Fradkov bound the error between the trajectories of the stochastic process {θt} and the solutions of the
associated ODE θ̇ = f(θ), (as opposed to another difference equation as in Meerkov’s work). They assume
that the noise sequence {ξt+1} is i.i.d., but permit time-varying step sizes. Their theory works whether
or not the step sizes approach zero. In [84], Kushner analyzes the Kiefer-Wolfowitz version of Stochastic
Approximation; that is, he tackles the fact that the error is biased and has variance that grows without
bound as t increases. He permits the errors to be correlated (unlike [38]), and derives an expression for
the limiting behavior in terms of an integral equation.6 However, Kushner establishes only convergence
in probability. This work is followed by Ljung in [94, 95]. In these references, as in [84], the noise ξt+1

is allowed both to be biased and also to have unbounded variance. But unlike in Kushner’s paper, Ljung
establishes almost sure convergence. Ljung explicitly mentions the limit ODE in [94]. In [95], he shows that
the square summability of the step size sequence can be relaxed, if the noise sequence has finite moments of
order greater than two.

In Section 3.3, we have analyzed Asynchronous SA as well as Block Asynchronous SA (BASA). Perhaps
the first paper to analyze the behavior of stochastic algorithms when the vector θt is updated in an asyn-
chronous fashion is [159]. The first papers to study Stochastic Approximation when only one component of
θt is updated at each t (that is, ASA) are [158] and [66]. In [158], the emphasis is on proving the conver-
gence of the Q-learning algorithm, which is introduced here in Chapter 6, while in [66], the emphasis is on
proving the convergence of a version of the TD(λ) algorithm for computing the value of a Markov Reward
Process. This algorithm is also introduced in Chapter 6. In the present Section 3.3, we have abstracted the
essence of the proof in [158], and have also permitted Block updating. The material in Section 3.3 on Block
Asynchronous Stochastic Approximation (BASA) is taken from [73, 72].

Notes and References for the material in Section 3.4 will be added once the section is written.

The approach taken here for proving the convergence of the SA algorithm is based on the Robbins-
Siegmund theorem (Theorem 2.22), and might be referred to as the “martingale approach.” Note that there
is another very popular technique for analyzing the convergence of the SA algorithm, known popularly as
the “ODE method.” Since the ODE approach is also widely used, we give a very brief summary of some of
the key aspects of this approach.

6Obviously, the integral equation can be equivalently expressed as an ODE, and vice versa. But every other paper mentions
a limit ODE, and not a limit integral equation.
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In the ODE method, the key step is to show that, as time progresses, the sample path of the iterations
{θt} begins to resemble the deterministic solution trajectory of an associated ODE

θ̇ = f(θ).

Some relevant references for the ODE approach are [38, 94, 95, 85, 103, 9, 86, 7, 22, 24]. If the SA iterations
{θt} are bounded almost surely (a property called “stability”), and a few technical assumptions hold, then
the iterations θt converge to the set of solutions of the equations f(θ) = 0. In particular, if θ∗ is the unique
globally attractive equilibrium of this associated ODE, then it can be shown that θt → θ∗ almost surely as
t → ∞, again under suitable technical assumptions. The books [7, 22, 24] describe the ODE approach in
full generality, and the interested reader may consult these authoritative resources.

The ODE approach is more general than the “martingale” approach put forward here, in that the ODE
approach is applicable even when the equation f(θ) = 0 has multiple solutions. However, much of the
theory is based on the assumption that the SA iterations {θt} are bounded almost surely. Often this latter
assumption can b e validated using different methods.

A major breakthrough in the ODE approach is contained in the paper [25], in which the almost sure
boundedness of the iterations is a conclusion and not a part of the hypotheses. Specifically, the authors define
another vector field f∞ as follows:

f∞(θ) := lim
r→∞

f(rθ)

r
, ∀θ ∈ Rd.

It is assumed that 0 is a globally asymptotically stable equilibrium of the associated ODE

θ̇ = f∞(θ).

If this assumption holds, then the authors prove that θt converges to the (unique) solution θ∗ almost surely
as t→ ∞.

While it is undoubtedly a major improvement to make the almost sure boundedness of the iterations
as a conclusion and not a hypothesis, the above assumption contains a subtle limitation of the approach.
Specifically, if the function f(·) grows sublinearly in the sense that

lim
r→∞

f(rθ)

r
≡ 0, ∀θ ∈ Rd,

then it is clear that f∞(θ) ≡ 0 for all θ, and the associated ODE cannot have 0 as a globally asymptotically
stable equilibrium. In particular, if the function f(·) is globally bounded, then the results of [25] do not
apply. In contrast, the martingale approach can cope with sublinearly growing functions f(·) without any
difficulties.

To summarize, the martingale approach and the ODE approach have complementary strengths and
weaknesses. Much of the time, both approaches are applicable to the problem at hand. But there are some
situations where one approach is applicable but not the other.
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Chapter 4

Applications to Optimization

In this chapter, we apply the ideas introduced in the preceding chapters to:

� Identify some important classes of nonconvex functions to which these ideas are applicable.

� State several commonly-used algorithms for both convex and nonconvex optimization.

� State and prove theorems on the convergence of these algorithms, as well as their rates of convergence
to a solution.

4.1 Some Invex Functions

The reader is reminded that in this book, we study only unconstrained optimization; see Section 1.1.1. Also,
throughout this chapter, we make two “standing” assumptions, which are standard in the literature. Note
that J(·) denotes the objective function.

(J1) J(·) is C1, and ∇J(·) is globally Lipschitz-continuous with constant L.

(J2) J(·) is bounded below. Thus
J∗ := inf

θ∈Rd
J(θ) > −∞.

However, it is not assumed that the infimum J∗ is attained. For instance, the function J(θ) = exp(−θ)
satisfies the standing assumptions. Hereafter, to simplify notation, we replace J(·) by J(·) − J∗, which
enables us to assume that J∗ = 0, without any loss of generality. When the infimum is indeed attained, we
define the set

SJ := {θ ∈ Rd : J(θ) = 0}, (4.1.1)

and observe that it is a closed, nonempty set. Moreover, the quantity

ρJ(θ) := inf
ϕ∈SJ

∥ϕ− θ∥2 (4.1.2)

is well-defined, and is referred as the “distance” to SJ .
The algorithms studied in this chapter are stochastic versions of the gradient descent algorithm, and

various versions of momentum-based algorithms. The deterministic versions of these algorithms are very
briefly discussed in Section 1.1.3. Indeed, Stochastic Gradient Descent (SGD) is the most widely used method
for training very large neural networks. The material in Section 4.2.1 is motivated by this application.

The topic of this chapter is nonconvex optimization. Specifically, we are interested in finding (if possible)
global mimizers of an objective function J(·). As stated in Lemma 1.1, if J(·) is convex, then every stationary
point (i.e., a θ∗ such that ∇J(θ∗) = 0) is a global minimizer. The converse is always true, for any C1 objective
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function, convex or nonconvex. That is, if θ∗ is a global (or even local) minimizer of J(·), then ∇J(θ∗) = 0.
Thus, for smooth convex objective functions J(·), we have that ∇J(θ∗) = 0 is both a necessary as well as a
sufficient condition for θ∗ to be a global minimizer.

Over the decades, several attempts have been made to find classes of functions that satisfy the property
that every stationary point is also a global minimumizer. Obviously the intent is to go beyond just convex
functions. Among many such classes of functions, we will focus on one specific class, known as “invex”
functions.

Definition 4.1. A C1 function J : Rd → R is said to be invex if there exists a map η : Rd ×Rd → Rd such
that

J(ϕ) ≥ J(θ) + ⟨η(θ,ϕ),∇J(θ)⟩, ∀θ,ϕ ∈ Rd. (4.1.3)

One can also say that J(·) is invex with respect to a particular function η(·) if (4.1.3) holds, because the
bound might hold for one choice of η(·) but not another. It is also possible to modify the definition slightly
and say that J(·) is invex on S ⊆ Rd if (i) η : S×S → Rd, and (ii) (4.1.4) holds only for all (θ,ϕ) ∈ S×S.

Observe that if J1 and J2 are invex with the same function η(·), then so is c1J1+c2J2 for any nonnegative
constants c1, c2. Thus, for a fixed function η(·), the set of functions that are invex with respect to η(·) is a
convex cone. Since we won’t use the concept of a convex cone in this book, we do not pursue this matter
further.

The above definition is introduced in [59]. However, the phrase “invex” is not used therein, but is
introduced in [35]. Note that if J(·) is convex, then we can take

η(θ,ϕ) := ϕ− θ.

However, we shall see below several examples of invex functions that are not convex.
It is obvious from (4.1.3) that if J(·) is invex, and if ∇J(θ∗) = 0, then J(θ) ≥ J(θ∗) for all θ ∈ Rd. Thus

θ∗ is a global minimizer of J(·). Note that the nature of the function η(·) plays no role in this observation.
More generally, if J(·) is invex on S, and if θ∗ ∈ S satisfies ∇J(θ∗) = 0, then θ∗ is a minimizer of J(·)
over the set S. A remarkable result from [36] states that the converse is also true: If every stationary point
of J(·) is also a global minimizer, then there exists a function η(·) such that J(·) is an invex function with
respect to η(·). See [36, Eq. (9)] and the text thereafter. These results derive η(·) in terms of a Lagrangian
dual problem, and thus do not readily lead to “explicit” formulas for η(·).

This result suggests that we should be studying the minimization of invex functions. However, in the
present context, the invexity property alone is not sufficient. This is because we wish to establish not merely
that every stationary point is also a global minimizer, but something more, namely that the SGD algorithm
converges for all functions of a particular class. For this purpose, we introduce two other classes of functions,
denoted by (PL) and (KL’). Both classes are subsets of the class of invex functions. Thus, by the results
of [36], for each such function there exists a corresponding function η(·) such that (4.1.3) holds. However,
it is not straightforward to actually compute η(·). For the theory below, this is not a limitation, because
the function η(·) does not play any role. Thus, at least for the purposes of this book, the results of [36]
are strictly of academic interest. For functions of Class (KL’), we establish the convergence of SGD, but
without any rates. For functions of Class (PL), we not only establish the convergence of SGD, but also
derive estimates on the rate of convergence.

For a comprehensive discussion of invexity, Class (PL), and Class (KL) (a forerunner of Class (KL’)),
the reader is directed to [74]. For applications to the convergence of SGD, the reader may consult [70, 71].

Definition 4.2. Suppose J : Rd → R is C1 and satisfies the standing assumptions (J1) and (J2). Assume
without loss of generality that J∗, the infimum of J(·), equals zero.

(PL) The function J(·) is said to belong to the class (PL) if there exists a constant K such that

∥∇J(θ)∥22 ≥ KJ(θ), ∀θ ∈ Rd. (4.1.4)
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(KL’) The function J(·) is said to belong to the class (PL) if there exists a function ψ(·) of Class B such that

∥∇J(θ)∥2 ≥ ψ(J(θ)), ∀θ ∈ Rd. (4.1.5)

Now we discuss the origin and the significance of these concepts.
PL stands for the Polyak- Lojasiewicz condition. In [114], Polyak introduced (4.1.4), and showed that it

is sufficient to ensure that iterations converge at a “linear” (or geometric) rate to a global minimum, whether
or not J(·) is convex. Note that (4.1.4) can also be rewritten as

∥∇J(θ)∥2 ≥ K1/2[J(θ)]1/2, ∀θ ∈ Rd.

To place the (PL) property in context, let us recall the definition of strong convexity. The function J(·) is
said to be R-strongly convex if there exists a constant R > 0 such that

J(ϕ) ≥ J(θ) + ⟨∇J(θ),ϕ− θ⟩ +
R

2
∥ϕ− θ∥22.

See for example [109, Section 2.1.3]. In this case, J(·) has a unique global minimizer, call it θ∗. Again, let
us assume that J∗ = J(θ∗) = 0. Then we can apply [108, Eq. (2.1.24)] with f = J , x = θ∗, y = θ, and
µ = R, which gives

J(θ) ≤ 1

2R
∥∇J(θ)∥22.

Thus an R-strongly convex function satisfies (PL) with K = 2R. Therefore one can think of the (PL)
property as a generalization of this particular property of strongly convex functions.

As shown in Lemma 4.1 below, whenever J(·) is C1, ∇J(·) is L-Lipschitz continuous, and J∗ is a lower
bound for J(·), it is the case that

∥∇J(θ)∥22 ≤ 2L(J(θ) − J∗).

In particular, by redefining J(·) if necessary, we can take J∗ = 0, in which case we have ∥∇J(θ)∥22 ≤ 2LJ(θ).
The PL condition is the inverse of the above observation, in the sense that ∥∇J(θ)∥22 is bounded below by
a constant multiple of J(θ).

On the other hand, the class (PL) is strictly larger than the class of strongly convex functions; it also
contains some nonconvex functions.

Example 4.1. Define
J(θ) = θ2 + 3 sin2 θ.

A plot of θ versus J(θ) is shown in Figure 4.1. The figure shows both J(θ) as well as the ratio (∇J(θ))2/J(θ)
as functions of θ.1 Since J(·) is an even function, the plot is shown only for θ ≥ 0. It can be verified
numerically that J(·) is not convex, but satisfies the (PL) property with K = 0.3511.

In [96],  Lojasiewicz introduced a more general condition

∥J(θ)∥2 ≥ C[J(θ)]r, ∀θ ∈ Rd, (4.1.6)

for some constant C and some exponent r ∈ [1/2, 1). He also showed that (4.1.6) holds for real algebraic
varieties in a neighborhood of critical points.

In [83], Kurdyka proposed a more general inequality than (4.1.6), namely: There exist a constant c > 0
and a function v : [0, c) → R which is C1 on (0, c), such that v′(x) > 0 for all x ∈ (0, c), and

∥∇(v ◦ J)(θ)∥2 ≥ 1, ∀θ ∈ J−1(0, c), (4.1.7)

where (only on this occasion) ◦ denotes the composition of two functions. By applying the chain rule, one
can rewrite (4.1.7) as

∥∇J(θ)∥2 ≥ [v′(J(θ)]−1. (4.1.8)

1Since d = 1, we can use J ′(θ) instead of ∇J(θ). But we use ∇J(θ) to be consistent.
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Figure 4.1: An Example of a function in the Class (PL): J(θ) = θ2 + 3 sin2 θ

In particular, if v(x) = x1−r for some r ∈ (0, 1), then (4.1.8) becomes (4.1.6) with C = 1/(1 − r). For this
reason, (4.1.8) is sometimes referred to as the Kurdyka- Lojasiewicz (KL) inequality. See for example [18].
In our case, we don’t require the right side to be a differentiable function; rather we require only that it be
a function of Class B of J(θ). Hence we choose to call this condition as (KL’), to suggest that it is similar
to, but weaker than, the KL condition.

Example 4.2. Consider an even function J : R → R defined by

J ∗ θ) =

 θ2 + 4 sin2 θ, 0 ≤ θ ≤ 5,
J(5) + 0.5J ′(5)(1 − exp(−2(θ − 5))), θ > 5,
J(−θ), θ < 0.

A plot of J(θ) and of (∇J(θ))2/J(θ) are shown in Figure 4.2. Again, since J(·) is an even function, the
plot is shown only for θ ≥ 0. From this it can be seen (and it is also readily verified) that, though the ratio
(∇J(θ))2/J(θ) → 0 as θ → ∞, the ratio is never actually zero. Thus (∇J(θ))2/J(θ) is a function of Class
B. As a result, this function satisfies the property (KL’).

It is clear from the definition of both (PL) and (KL’) classes that, if ∇J(θ) = 0, then J(θ) = 0, which
is the global minimum. Hence, by the result of [36], every Class (PL) function and every (KL’) function is
invex. This proof is rather indirect, and it would be desirable to have a more direct proof of this fact.

4.2 Review of Some Standard Algorithms

In this section, we briefly survey a few standard algorithms for convex optimization. The convergence of
these algorithms is not discussed, as (for the most part) the convergence can be inferred from the results for
nonconvex optimization in Section 4.3 The reader is directed to an excellent survey paper [26] that discusses
many issues not covered here, with an emphasis on applications to machine learning.

4.2.1 Stochastic Gradient Descent

Recall the Gradient Descent algorithm, also known as steepest descent, described in (1.1.10). In the Stochas-
tic Gradient Descent (SGD) algorithm, the true gradient ∇J(θt) is replaced by a random vector ht+1,
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Figure 4.2: An example of a function of Class (KL’)

which is supposed to approximate ∇J(θt). Thus (1.1.10) gets replaced by

θt+1 = θt − αtht+1. (4.2.1)

Usually the step size sequence is deterministic and predetermined. However, some variations are possible,
which we discuss next. It is noteworthy that the phrase “stochastic gradient” is used with two different
meanings in the literature. Both of them are discussed here.

Much of the literature addresses the following specific type of optimization problem: Suppose X is some
set, and π is some probability measure on X . Suppose further that f : X × Rd → R is a C1 function, and
define the objective function

J(θ) := Ex∼π[f(x,θ)] =

∫
X
f(x,θ) π(dx). (4.2.2)

One can ensure that the above integral is well-defined by imposing some reasonable assumptions on the
function f and/or the probability measure π. In order to minimize J(·), it becomes necessary to compute
the gradient ∇J(θ). This raises the question as to when

∇J(θ) = Ex∼π[∇θf(x,θ)]? (4.2.3)

In other words, when it is permissible to interchange differentiation and integration in (4.2.3)? If X is a
finite set, then this is automatic, because the expectation with respect to x is just a finite summation. If
X is an infinite set, this is not automatic. However, in the practically important case where f(x,θ) is a
convex function of θ for almost all x, (4.2.3) holds with a few additional technical assumptions. The reader
is directed to [126, Eq. (11)] and [134, Eq. (7.1270], which give the required equality. These results are not
stated here, as that would take us too far afield.

A typical application where J(·) has the form (4.2.2) would be neural network training. Suppose x ∈ Rn

is the input to the network, y ∈ R the desired output with input x (the label), and θ is the set of “weights” or
adjustable parameters in the network. A neural network “architecture” defines family of maps H(·,θ) : Rn →
R for each θ ∈ Rd. Finally, there is a “loss function” L : R × R → R+; quite often L(y, z) = |y − z|2. The
training data consists of labelled pairs {(xi, yi)}mi=1. To choose the weight vector optimally, one minimizes

J(θ) :=
1

m

m∑
i=1

L(yi, H(xi,θ)).
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To put this problem within the framework of (4.2.2), we can define X to be the finite set {(x1, y1), · · · , (xm, ym)},
and choose π to be the uniform distribution on X .

Next we discuss three approaches to approximating ∇J(θ) when J(·) is as in (4.2.2). As a part of this,
we introduce three phrases that are widely used in the world of optimization and ML. Further details can
be found in [26, Section 3.3]. As a part of this, we introduce one of the two usages of the phrase Stochastic
Gradient: the other usage is introduced in Section 4.3.
Stochastic Gradient: At step t, choose a random element xt+1 ∈ X with distribution π. To permit
adaptive sampling, it is not assumed that xt+1 is independent of the preceding samples (x1, · · · , xt). Then
the search direction ht+1 is set equal to

ht+1 = ∇θf(xt+1,θt). (4.2.4)

Since xt+1 follows the distribution π, the expected value of the above quantity is

Ext+1∼π[ht+1] = Ext+1∼π[∇θf(xt+1,θt)].

If the sufficient conditions from [126, 134] hold, then the above expected value is indeed the true gradient
∇J(θt). This is the justification for this approach.
Batch Update: In this case,

ht+1 = ∇J(θt)

as computed in (4.2.3). If X is finite, say |X | = n, then the above computation involves adding n different
individual gradients ∇J(xi,θt) over xi ∈ X . If n is large, the computation can be quite expensive. However,
there is no approximation involved.
Minibatch Update: This approach is intermediate between the above two approaches. At step t, an
integer Nt (possibly random) is chosen, and Nt samples xj , j ∈ [Nt] are chosen from X . The analysis is
simplest if these samples are drawn independently with distribution π, after replacement. Then

ht+1 =
1

Nt

Nt∑
j=1

∇θf(xj ,θt). (4.2.5)

If there are repeated samples, then the corresponding terms are summed more than once in the above
equation. As with the stochastic gradient approach, we have that

Ext+1∼π[ht+1] = ∇J(θt)

under suitable conditions.
Until now, we have focused on objective functions of the form (4.2.2), and ways to approximate its

gradient by random sampling. We have also not catered to the possibility of errors in the computation of
the gradients, which can be modelled as additive noise. Next we discuss approximation methods that apply
to general C1 objective functions, with possibly noisy computations of the gradients. There are two parts
to this: (i) Constructing approximations to the true gradient, and (ii) selecting which components of the
current guess θt are to be updated at step t. We discuss these two topics in the opposite order. That is, we
begin by discussing some popular methods of choosing coordinates to be updated, assuming that the true
gradient, corrupted by additive noise, is available. It will be obvious that the same selection strategies can
also be applied to any stochastic gradient as well.

The first of these methods is referred to as “Coordinate Gradient Descent” as in [175] and elsewhere, but
also sometimes as “stochastic gradient,” thus possibly leading to confusion with (4.2.4).
Coordinate Gradient Descent: Suppose that, at step t, the current guess is θt, and suppose that the
learner has access to a (possibly noise-corrupted) measurement ∇J(θ) + ξt+1. An index i ∈ [d] is chosen at
random with a uniform probability, and the search direction is defined as

ht+1 = dei ◦ [∇J(θt) + ξt+1], (4.2.6)
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where ei denotes the i-elementary unit vector, and ◦ denotes the Hadamard or componentwise product.2

Even if ξt+1 ≡ 0, ht+1 is still random due to the choice of i. The factor of d is to ensure that the conditional
expectation with respect to θt of ht+1 equals the true gradient ∇J(θt) plus the expectation of ξt+1. If this
ht+1 is substituted into (4.2.1), it is obvious that only the i-th component of θt is updated at time t, and
all other components remain the same.

An excellent survey of coordinate gradient descent for convex objective functions is found in [175], and
some results for nonconvex objective functions are found in [165]. It is worth pointing out that, in these
references and many others, the error term ξt+1 is assumed to be zero. Thus the only source of randomness
is the coordinate to be updated. Much of the detailed analysis carried out in these papers would not be
applicable in the presence of measurement errors.

One can also apply this philosophy of updating only one (possibly randomly chosen) coordinate at a time
to stochastic approximation as in (4.2.1). Note that the ability to cope with noisy measurements is a key
strength of SA. This leads to the update formula

θt+1 = θt + αtei ◦ [f(θt) + ξt+1]. (4.2.7)

In such a case, it is common to refer to this approach as Asynchronous SA or ASA. This terminology was
apparently introduced in [158]. The approach is studied further in [22]. In particular, a distinction between
using a “global clock” and a “local clock” for componentwise updating is introduced in that reference.

Block Coordinate Gradient Descent: A variant of the above is to carry out “block” updating. At each
time, a possibly random subset St ⊆ [d] is selected. Define

eSt :=
∑
i∈St

ei.

Then the vector ht+1 is defined as

ht+1 :=
d

|St|
eSt

◦ [∇J(θt) + ξt+1]. (4.2.8)

This implies that, at time t, only the components of θt, i ∈ St are updated, and the rest are unchanged. As
above, block updating can also be incorporated in the SA algorithm of (4.2.1), as follows:

θt+1 = θt +αt ◦ eSt
◦ [f(θt) + ξt+1], (4.2.9)

where αt is now a vector of step sizes. Thus, while only those components i ∈ St are updated, different
updated components could have different step sizes. This topic is discussed in Section 3.3. The reader is
referred to [73, 72] for a detailed treatment.

Gradients Using Only Function Evaluations: Next we discuss some approaches to generating approx-
imate gradients that make use of only function evaluations. The first such approach is in [77], which is for
the case d = 1, and requires two function evaluations per iteration. Subsequently Blum [17] presented an
approach for the case d > 1, which requires d+ 1 evaluations per iteration. When d is large, this approach
is clearly impractical. A significant improvement came in[138], in which a method called “simultaneous per-
turbation stochastic approximation” (SPSA) was introduced, which requires only two function evaluations,
irrespective of the dimension d. However, the proof of convergence of SPSA given in [138] requires many
assumptions. These are simplified in [31]. An “optimal” version of SPSA is introduced in [129], and is
described below.

For each index t + 1, suppose ∆t+1,i, i ∈ [d] are d different and pairwise independent Rademacher
variables.3 Moreover, suppose that ∆t+1,i, i ∈ [d] are all independent (not just conditionally independent)

2If a,b ∈ Rd, then c = a ◦ b belongs to Rd and is defined via ci = aibi for all i.
3Recall that Rademacher random variables assume values in {−1, 1} and are independent of each other.
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of the σ-algebra Ft for each t. Let ∆t+1 ∈ {−1, 1}d denote the vector of Rademacher variables at time t+ 1.
Then the search direction ht+1 in (4.2.1) is defined componentwise, via

ht+1,i =
[J(θt + ct∆t+1) + ξ+t+1,i] − [J(θt − ct∆t+1) − ξ−t+1,i]

2ct∆t+1,i
, (4.2.10)

where ξ+t+1,1, · · · , ξ
+
t+1,d, ξ−t+1,1, · · · , ξ

−
t+1,d represent the measurement errors. A similar idea is used in [110],

except that the bipolar vector ∆t+1 is replaced by a random Gaussian vector ηt+1 in Rd. As can be seen
from the literature, one of the key steps in analyzing SPSA is to find tail probability estimates of the quantity
∥ηt+1∥2/|ηt+1,i|. If ηt+1 is Gaussian, then this ratio can be arbitrarily large, albeit with small probability.

However, with Rademacher perturbations, the ratio ∥∆t+1∥2/|∆t+1,i| always equals
√
d. This observation

considerably simplifies the analysis. An excellent survey of this topic can be found in [91], which discusses
other approaches not mentioned here.

The original SPSA envisages only two measurements per iteration, and the resulting estimate of ∇J(θt)
has bias O(ct) and conditional variance O(1/c2t ). However, it is possible to take more measurements and
reduce the bias of the estimate, while retaining the same bound on the conditional variance. Specifically,
if k + 1 measurements are taken, then the bias is O(ckt ) (which converges to zero more quickly), while the
conditional variance remains as O(1/c2t ). See [112] and the references therein.

The framework discussed until now addresses additive measurement errors. Now we present a more
general framework is proposed that is capable of handling not only additive measurement errors, but also
multiplicative errors, and others. This treatment is taken from [53]. In that paper, three (closely related)
algorithms are proposed in this paper, out of which only the second one is detailed here, in the interests of
brevity.

The set-up is as follows: Suppose f : Rn × Rd → R is a C1 function, and π is a (possibly unknown)
probability measure on Rp. The objective function is as in (4.2.2), namely

J(θ) =

∫
Rn

f(w,θ) π(dw) = Ew∼π[f(w,θ)].

There is also a probability distribution P on Rd, chosen by the learner, whose role is to generate an i.i.d.
sequence of perturbations {∆t}t≥1. In addition, there two i.i.d. sequences {w+

t }t≥0, and {w−
t }t≥0, with

distribution π. To update the current guess θt, one undertakes the following steps. As with the other
derivative-free methods, there are two sequences: {αt} of step sizes, and {ct} of increments. At time t, the
perturbation vector ∆t+1 is known, so one can define

x+
t+1 = θt + ct∆t+1, x−

t+1 = θt − ct∆t+1.

The measurements available to the learner at time t consist of the pair

y+t+1 = f(w+
t ,x

+
t+1) + ξ+t+1, y−t+1 = f(w−

t ,x
−
t+1) + ξ−t+1,

where ξ+t+1, ξ
−
t+1 are measurement errors. The last step is to define the stochastic gradient ht+1. This is

stated in terms of a sequence of “kernel functions” Kt : Rd → Rd that satisfy, for each t∫
Rd

Kt(z) P (dz) = 0,

∫
Rd

Kt(z)z⊤ P (dz) = Id,

∫
Rd

∥Kt(z)∥22 P (dz) <∞.

With this notation, the stochastic gradient ht+1 is defined as

ht+1 =
y+t+1 − y−t+1

2ct
Kt(∆t+1),

with the update rule as in (4.2.1), namely

θt+1 = θt − αtht+1,
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Note that the choice
Kt(z) = (1/z1, · · · , 1/zd)

gives the standard Kiefer-Wolfowitz-Blum approach, presented here as (4.2.10). However, it is clear that the
present scheme offers considerably more flexibility.

In order to analyze the behavior of the algorithm, it is assumed in [53] that

1. J(·) is a strongly convex function of θ, and

2. There is a constant L such that ∇θf(w,θ) is L-Lipschitz continuous for each w ∈ Rn.

In particular, Item 1 means that J(·) has a unique global minimizer θ∗. Under these assumptions, [53,
Theorem 1] gives sufficient conditions for θt to converge to θ∗ in the mean-squared sense, and almost surely.
The reader is directed to [53] for more details.

We conclude this subsection by discussing some universal lower bounds on the achievable performance of
gradient-based optimization methods. These results are taken from [4], but stated in the present notation.
The authors study an objective function J : Rd → R with a globally Lipschitz-continuous gradient [4, Eq.
(3)]. Further, it is assumed that

Et(ht+1) = ∇J(θt),

and that there is a finite constant M such that

CVt(ht+1) ≤M2.

See [4, Eq. (2)]. Thus the stochastic gradient is assumed to provide an unbiased estimate of the true gradient.
Moreover, the conditional variance of the stochastic gradient is assumed to be bounded, both as a function
of t and as a function of θt. These assumptions are the same as (3.2.4) and (3.2.5) with µt = 0 for all t, and
M2

t ≤M2 for all t. Hence they are more restrictive than the assumptions made in this book, namely (3.2.4)
and (3.2.5). Even under these restrictive assumptions, it is shown that, in the case where J(·) is convex,
achieving ∥∇J(θt)∥2 ≤ ϵ requires Ω(ϵ−2) iterations in the worst case; see [4, Section 1.1]. For an arbitrary
nonconvex function, the bound goes up to Ω(ϵ−4).4 Therefore, if we wish to find a T such that

∥∇J(θt)∥2 ≤ ϵ, ∀t ≥ T,

then T = Ω(ϵ−2) for convex functions, and T = Ω(ϵ−4) for nonconvex functions. We can turn this around to
get a bound on the best achievable rate of convergence. If T = Ω(ϵ−k), then ϵ = Ω(T−1/k) in the worst case.
Hence ∥∇J(θt)∥2 = Ω(t−1/2) if J(·) is convex, and ∥∇J(θt)∥2 = Ω(t−1/4) if J(·) is a general nonconvex
function. The assumptions in [4] are the same as (3.2.4) and (3.2.5) with µt = 0 for all t, and M2

t ≤ M2

for all t. One of the contributions of the paper [70] is to show that when the function J(·) belongs to class
(PL), then ∥∇J(θt)∥22 = o(t−λ) and J(θt) = o(t−λ) for all λ < 1. These bounds are practically the same
as the lower bounds in [4]. The details are presented in Section 4.3. It is important to remind the reader
that the “universal” lower bound ∥∇J(θt)∥2 = Ω(t−1/4) applies for arbitrary nonconvex functions. But if
J(·) is restricted to satisfy Property (PL), then, as mentioned above, the achievable performance improves
to ∥∇J(θt)∥22 = o(t−λ) and J(θt) = o(t−λ) for all λ < 1.

4.2.2 Momentum-Based Methods

The phrase “momentum-based” is somewhat vague, but refers to methods wherein the search direction at
step t depends not only on the current guess θt, but also on the previous guess θt−1.

It should be mentioned that, in the early 1960s, a class of optimization algorithms were introduced,
known as “conjugate gradient” methods. There were purely deterministic in nature, and were distinguished
by the fact that the “search direction” (basically ht+1 in (4.2.1), but deterministic) is a linear combination

4There are some additional technical assumptions which are not repeated here.
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of the current gradient ∇J(θt) and the previous gradient ∇J(θt−1). Momentum-based based are different
in that “past” iterations enter through θt−1 and not ∇J(θt−1). A good summary of classical conjugate
gradient methods can be found in [51, Section 5.3] and in [115, Section 3.2]. Moreover, in Polyak’s book,
the relationships between two types of methods are explored.

The Heavy Ball (HB) method, introduced in [113], is one of earliest “momentum-based” methods for
optimization. The algorithm introduced in [113] is

θt+1 = θt − α∇J(θt) + µ(θt − θt−1). (4.2.11)

It is shown by Polyak that, if J(θ) is quadratic of the form (1/2)θ⊤Aθ+ ⟨v,θ⟩+ c for some positive definite
matrix A, vector v and constant c, then the HB method requires 1/

√
R fewer iterations compared to the

gradient descent method, provided µ is chosen as (
√
R−1)/(

√
R+1), where R denotes the condition number

of A.
A subsequent and widely-used momentum-based method is Nesterov’s Accelerated Gradient (NAG)

method [107]. In [143], NAG is reformulated in a manner that brings out the similarities as well as the
differences with HB. Specifically, the NAG algorithm can be written as

vN
t+1 = µtv

N
t − αt∇J [θt + µtv

N
t ], (4.2.12)

θt+1 = θt + vN
t+1. (4.2.13)

These two equations can be combined into the single equation

θt+1 = θt − αt∇J [θt + µt(θt − θt−1)] + µt(θt − θt−1). (4.2.14)

This can be compared with the HB formulation (4.2.11), namely

θt+1 = θt − αt∇J(θt) + µt(θt − θt−1). (4.2.15)

In other words, in NAG the gradient is computed after the momentum correction term µt(θt − θt−1) is
added to θt. It is shown in [109, Section 2.2] that when J(·) is a smooth convex function with a Lipschitz-
continuous gradient, NAG converges to the minimum at the rate of O(t−2). Moreover, no gradient-based
algorithm can achieve a faster rate. A more precise statement and references are needed. More details can
be found in [26, Section 7]. The paper [143] also shows that NAG can be deployed successfully for training
deep neural networks.

Another relevant reference is [8], in which an alternate momentum-based method is proposed, namely

vB
t+1 = µtv

B
t − αt∇J(Θt), , (4.2.16)

Θt+1 = Θt + (1 + µt)v
B
t+1 − µt−1v

B
t

= Θt + µtµt−1v
B
t + (1 + µt)αt∇J(Θt). (4.2.17)

If started with the initial guess θ0 = 0, the trajectory of this algorithm matches that in [143] (which is just
a reformulation of NAG) both at the start and in the final phase of local convergence to the solution. But
the formulation in [8] is closer to Polyak’s HB compared to NAG, because the gradient ∇J(·) is computed
at the current guess Θt, and not a shifted version of it.

It has been mentioned in previous chapters that the behavior of the SA algorithm can be analyzed by
studying the stability properties of an associated ODE. The same is true of momentum-based methods as
well. In the case of momentum-based methods, the associated ODEs are second order in θ. Also, the analysis
based on ODEs does not always apply when the measurements are noisy. With those caveats, we briefly
summarize a few relevant papers. The behavior of NAG is analyzed in [142], when the step size αt is held
constant, while the momentum coefficient µt varies with time. It is shown that the “optimal” schedule for
µt is µt = (t+ 2)/(t+ 5). Another paper along the same lines is [5]. Similarly, the papers [2, 6] analyze the
Heavy Ball algorithm from an ODE standpoint. Note that there is no measurement error in these papers.
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4.3 Stochastic Gradient Descent

In the previous section, we discussed (but did not really analyze) several standard gradient-based methods
for finding a stationary point of a given function. In all of the formulations, there was no provision for
mdasuremsent errors. In the the remainder of this chapter, we analyze the more general situation where
measurement errors are permitted, and establish both the convergence as well as the rates of convergence of
various algorithms, under suitable hypothesses.

In this section we carry out our analysis of the SGD algorithm of (4.2.1), which is repeated here for the
reader’s convenience:

θt+1 = θt − αtht+1, (4.3.1)

The main tools we use to carry out this analysis are Theorems 2.23 and 2.24.

In order to analyze the convergence of (4.3.1), we recall the standing assumptions on J(·), namely:

(J1) J(·) is C1, and ∇J(·) is globally Lipschitz-continuous with constant L.

(J2) J(·) is bounded below. Thus

J∗ := inf
θ∈Rd

J(θ) > −∞.

Note that it is not assumed that the infimum is actually attained, nor that the minimizer is unique if the
minimum is attained.

Before proceeding further, we present a very useful consequence of of Assumptions (J1) and (J2).

Lemma 4.1. Suppose (J1) and (J2) hold. Then

∥∇J(θ)∥22 ≤ 2L[J(θ) − J∗]. (4.3.2)

Proof. By applying [12, Eq. (2.4)], stated here as Theorem 3.1, to J(θ), it follows that, for every ϕ,θ ∈ Rd,
we have

J∗ ≤ J(ϕ) ≤ J(θ) + ⟨∇J(θ),ϕ− θ⟩ +
L

2
∥ϕ− θ∥22.

Now choose ϕ = θ − (1/L)∇J(θ). This leads to

J∗ ≤ J(θ) − 1

L
∥∇J(θ)∥22 +

1

2L
∥∇J(θ)∥22 = J(θ) − 1

2L
∥∇J(θ)∥22.

This is the same as (4.3.2).

As pointed out in the first Remark after Theorem 3.1, the bound (3.2.7) is well-known for convex functions;
however, Theorem 3.1 extends the bound to nonconvex functions. Similarly, in the present setting, (4.3.2)
is also well-known for convex functions; but the contribution of Lemma 4.1 is to show that convexity is not
needed.

Also, we introduce one more property, named (NSC), that the function J(·) is expected to satisfy. This
property consists of the following assumptions, taken together.

1. The function J(·) attains its infimum. Therefore the set SJ defined in (4.1.1) is nonempty.

2. The function J(·) has compact level sets. For every constant c ∈ (0,∞), the level set

LJ(c) := {θ ∈ Rd : J(θ) ≤ c}

is compact.
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3. There exists a number r > 0 and a continuous function η : [0, r] → R+ such that η(0) = 0, and

ρ(θ) ≤ η(J(θ) − J∗), ∀θ ∈ LJ(r), (4.3.3)

where ρ(θ) is defined as

ρ(θ) := inf
ϕ∈SJ

∥θ − ϕ∥2.

and equals the distance from θ to the set SJ .

The acronym (NSC) stands for “near strong convexity,” or “nearly strongly convex,” depending on the
syntax. Recall from Definition 1.3 that J(·) is said to be R-strongly convex if

J(θ) ≥ J(ϕ) + ⟨∇J(ϕ),θ − ϕ⟩ +
R

2
∥θ − ϕ∥22, ∀θ,ϕ ∈ Rd.

Note that the equation above is slightly different from (1.1.9), but is equivalent to it. Now, if J(·) is R-
strongly convex, it has a unique global minimizer, which can be denoted as θ∗. Next, if we substitute ϕ = θ∗

in the above equation, we get

J(θ) ≥ J∗ − R

2
∥θ − θ∗∥22.

If we now observe that ρ(θ) = ∥θ − θ∗∥2, the above inequality can be rewritten as

ρ(θ) ≤
√

2(J(θ) − J∗)

R
.

Thus every strongly convex function satisfies (NSC), but the converse is not true in general.

It is obvious that, if (NSC) is satisfied, then J(θt) → 0 as t → ∞ implies that ρ(θt) → 0 as t → ∞.
Thus, whenever J(·) satisfies (NSC), and we are able to establish that J(θt) → J∗ as t → ∞, it follows
automatically that ρ(θt) → 0 as t → ∞. In other words, the convergence of J(θt) to its minimum value,
coupled with (NSC), implies that θt converges to the set SJ .

With these preliminaries out of the way, we can begin to analyze the Stochastic Gradient Descent al-
gorithm described in (4.2.1). Recall that ht+1 in (4.2.1) is the stochastic gradient. To characterize it,
define

zt = Et(ht+1), xt = zt −∇J(θt), ζt+1 = ht+1 − zt. (4.3.4)

One can think of zt as the ‘predictable” part of the stochastic gradient ht+1, that is, the best approximation
at time t of ht+1. In view of this interpretation, it ready follows that xt can be thought of as the bias of
the stochastic gradient. The rationale is that, ideally, we would want the search direction to be the true
gradient ∇J(θt); therefore the difference zt and ∇J(θt) is the bias.

The last equation in (4.3.4) implies that Et(ζt+1) = 0. Therefore

Et(∥ht+1∥22) = ∥zt∥22 + Et∥ζt+1∥22. (4.3.5)

Now we state our assumptions on the quantities xt and ζt+1. The assumptions on these quantities are
similar to the assumptions (3.2.4) and (3.2.5) on the additive noise in Stochastic Approximation. Specifically,
it is assumed that there exist sequences of constants {Bt} and {Mt} such that

∥xt∥2 ≤ Bt[1 + ∥∇J(θt)∥2], ∀θt ∈ Rd, ∀t, (4.3.6)

Et(∥ζt+1∥22) ≤M2
t [1 + J(θt)], ∀θt ∈ Rd, ∀t. (4.3.7)

Now we briefly discuss the significance of these assumptions.
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1. Note that (4.3.6) permits the stochastic gradient to be a biased estimate of ∇J(θt). This by itself is
not unusual. In several papers, assumptions of the form (4.3.6) occur, but without the ∥θt∥2 term.
We now give an example of a situation where the presence of this term arises naturally. Consider
the “Coordinate Gradient Descent” algorithm described in (4.2.8). In the traditional approach, every
coordinate is sampled uniformly at random, which explains the presence of the factor d in the equation.
Now consider an “off-policy” type of coordinate sampling, in which, at time t, the coordinates are
sampled with a probability distribution ϕt, which need not equal the uniform distribution. However,
ϕt → ud as t→ ∞, where ud is the uniform distribution on a set of d elements. To analyze this case,
let It denote the coordinate chosen to be updated at time t. Then

It = i w.p. ϕt,i.

Hence the stochastic gradient can be computed as

ht+1 = d[∇J(θt)] ◦ eIt w.p. ϕt,i,

To estimate the quantity ∥xt∥2 where xt = Et(ht+1) −∇J(θt), we use the notation gi for [∇J(θt)]i,
for brevity. Then

[ht+1 −∇J(θt)]i =

{
(d− 1)gi, w.p. ϕt,i,
−gi, w.p. ϕt,j , j ̸= i.

Therefore, with xt = Et(ht+1 −∇J(θt)) as earlier, we have that

xt,i = (d− 1)giϕt,i −
∑
j ̸=i

giϕt,j = dgiϕt,i − gi

d∑
j=1

ϕt,j

= (dϕt,i − 1)gi = d(ϕt,i − ui)gi,

where ui = 1/d is the i-th component of the uniform distribution (for each i). Summing over i leads
to

∥xt∥1 = d

d∑
i=1

|(ϕt,i − ui)| · |gi|

≤ d∥ϕt − ud∥1∥∇J(θt)∥∞,

where ∥ϕt − ud∥1 denotes the ℓ1 distance between ϕt and ud. Next, after observing that ∥v∥∞ ≤
∥v∥2 ≤ ∥v∥1, we arrive finally at

∥xt∥2 ≤ d∥ϕt − u∥1∥∇J(θt)∥2,

which is a special case of (4.3.6). Note that, when the “off-policy” sampling probability distribution
is not the uniform distribution, the presence of the term ∥∇J(θt)∥2 in (4.3.6) is unavoidable.

2. Next we discuss (4.3.7). One can compare (4.3.7) with the so-called Expected Smoothness condition
proposed as Assumption 2 in [75], namely

Et(∥ht+1∥22) ≤ 2AJ(θt) +B∥∇J(θt)∥22 + C, (4.3.8)

for suitable constants A,B,C. This is proposed as “the weakest assumption” for analyzing the conver-
gence of SGD for nonconvex functions. If J(·) satisfies Assumptions (J1) and (J2), then we can apply
Lemma 4.1. As a result, the term B∥∇J(θt)∥22 can be bounded by 2BLJ(θt), resulting in

Et(∥ht+1∥22) ≤ 2(A+BL)J(θt) + C ≤M(1 + J(θt)), (4.3.9)
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where
M = max{2(A+BL), C}.

Thus, for functions J(·) satisfying Assumptions (J1) and (J2), the present assumption (4.3.7) is weaker
than (4.3.8). Also, the various constants in (4.3.8) are bounded with respect to t, whereas in (4.3.7),
the bound Mt is allowed to be unbounded with respect to t. As shown long ago in [77], permitting
the variance to be unbounded with time is an essential feature in analyzing SGD based on function
evaluations alone.

With this background, we state the first convergence result, which does not have any conclusions about
the rate of convergence. As always, these bounds and conclusions hold almost surely. Not surprisingly, the
statement of the theorem bears a strong resemblance to Theorem 3.2, as does the proof. However, in the
interests of making each chapter self-contained, the proof is given in its entirety.

Theorem 4.1. Suppose the objective function J(·) satisfies the standing assumptions (J1) and (J2), and
that the stochastic gradient ht+1 satisfies (4.3.6) and (4.3.7). With these assumptions, we have the following
conclusions;

1. Suppose
∞∑
t=0

α2
t <∞,

∞∑
t=0

αtBt <∞,

∞∑
t=0

α2
tM

2
t <∞. (4.3.10)

Then {∇J(θt)} and {J(θt)} are bounded, and in addition, J(θt) converges to some random variable
as t→ ∞.

2. If in addition
∞∑
t=0

αt = ∞, (4.3.11)

then
lim inf
t→∞

∥∇J(θt)∥2 = 0. (4.3.12)

3. If in addition J(·) satisfies (KL’), then J(θt) → 0 and ∇J(θt) → 0 as t→ ∞.

4. Suppose that in addition to (KL’), J(·) also satisfies (NSC), and that (4.3.10) and (4.3.11) both hold.
Then ρ(θt) → 0 as t→ ∞.

Proof. The proof is based on Theorem 2.23. It follows from applying Theorem 3.1 to (4.3.1) that

J(θt+1) ≤ J(θt) − αt⟨∇J(θt),ht+1⟩ +
α2
tL

2
∥ht+1∥22. (4.3.13)

Applying the operator Et to both sides, using the definitions in (4.3.4), and applying (4.3.5), gives

Et(J(θt+1)) ≤ J(θt) − αt⟨∇J(θt), zt⟩ +
α2
tL

2
[∥zt∥22 + Et(∥ζt+1∥22). (4.3.14)

We will bound each term separately, repeatedly using (4.3.6), (4.3.7), Schwarz’ inequality, and the obvious
inequality

2a ≤ 1 + a2, ∀a ∈ R.

First,

⟨∇J(θt), zt⟩ = ∥∇J(θt)∥22 + ⟨∇J(θt),xt⟩
≥ ∥∇J(θt)∥22 − ∥∇J(θt)∥2 · ∥xt∥2.
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Now

∥∇J(θt)∥2 · ∥xt∥2 ≤ Bt∥∇J(θt)∥2[1 + ∥∇J(θt)∥2]

= Bt∥∇J(θt)∥2 +Bt∥∇J(θt)∥22
≤ 0.5Bt + 1.5Bt∥∇J(θt)∥22] (4.3.15)

≤ Bt + 2Bt∥∇J(θt)∥22 ≤ Bt + 4BtLJ(θt). (4.3.16)

In the last equation we have replaced 0.5 by 1 just to avoid dealing with fractions, and have also used (4.3.2).
Hence

−αt⟨∇J(θt), zt⟩ ≤ −αt∥∇J(θt)∥22 + αt∥∇J(θt)∥2 · ∥xt∥2
≤ −αt∥∇J(θt)∥22 + αtBt + 4αtBtLJ(θt).

Next,

∥zt∥22 ≤ ∥∇J(θt)∥22 + 2∥∇J(θt)∥2 · ∥xt∥2 + ∥xt∥22
≤ ∥∇J(θt)∥22 +Bt + 3Bt∥∇J(θt)∥22 + ∥xt∥22
≤ Bt + 2L(1 + 3Bt)J(θt) + ∥xt∥22.

Note that here we use the tighter estimate from (4.3.15). Next,

∥xt∥22 ≤ B2
t [1 + ∥∇J(θt)∥2]2 = B2

t [1 + 2∥∇J(θt)∥2 + ∥∇J(θt)∥22]

≤ 2B2
t [1 + ∥∇J(θt)∥22] ≤ 2B2

t [1 + 2LJ(θt)].

Substituting into the above gives the bound

∥zt∥22 ≤ Bt + 2B2
t + 2L(1 + 3Bt + 2B2

t )J(θt).

Finally, by assumption (4.3.7),
Et(∥ζt+1∥22) ≤M2

t [1 + 2LJ(θt)].

Substituting these bounds into (4.3.14) gives a bound to which Theorem 2.23 can be applied, namely:

Et(J(θt+1)) ≤ (1 + ft)J(θt) + gt − αt∥∇J(θt)∥22, (4.3.17)

where

ft = 2L[2αtBt +
L

2
α2
t (1 + 3Bt + 2B2

t ) + α2
tM

2
t ], (4.3.18)

gt = αtBt +
L

2
α2
t (Bt + 2B2

t +M2
t ). (4.3.19)

Now it is straight-forward to verify that the conditions in (4.3.10) suffice to establish that both sequences
{ft} and {gt} are summable. There are five different terms occuring in (4.3.18) and (4.3.19), namely

α2
t , αtBt, α

2
tBt, α

2
tB

2
t , α

2
tM

2
t .

Now (4.3.10) states that {α2
t }, {αtBt} and {α2

tM
2
t } are summable. The first condition implies that αt

is bounded, which implies that {α2
tBt} is also summable. Finally, since every summable sequence is also

square-summable (ℓ1 is a subset of ℓ2), {α2
tB

2
t } is also summable. Since all the conditions needed to apply

Item 1 of Theorem 2.23 hold, it follows that {J(θt)} is bounded and converges to some random variable.
Now (4.3.2) implies that ∇J(θt) is also bounded. This establishes the Item 1 of the theorem.

To prove Item 2, note that if property (KL’) holds, then Item 2 of Theorem 2.23 applies, and J(θt) → 0
as t→ ∞.

Finally, Item 3 is a ready consequence of J(θt) → 0 and property (NSC).
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Next we strengthen Assumption (KL’) to (PL), and prove an estimate for the rate of convergence.

Theorem 4.2. Let various symbols be as in Theorem 4.1. Suppose J(·) satisfies the standing assumptions
(J1) and (J2), and also property (PL), and that (4.3.10) and (4.3.11) hold. Further, suppose there exist
constants γ > 0 and δ ≥ 0 such that

Bt = O(t−γ), Mt = O(tδ), ∀t ≥ 1,

where we take γ = 1 if Bt = 0 for all sufficiently large t, and δ = 0 if Mt is bounded. Choose the step-size
sequence {αt} as O(t−(1−ϕ)) and Ω(t−(1−C)) where ϕ and C are chosen to satisfy

0 < ϕ < min{0.5 − δ, γ}, C ∈ (0, ϕ].

Define
ν := min{1 − 2(ϕ+ δ), γ − ϕ}. (4.3.20)

Then ∥∇J(θt)∥22 = o(t−λ) and J(θt) = o(t−λ) for every λ ∈ (0, ν). In particular, by choosing ϕ very small,
it follows that ∥∇J(θt)∥22 = o(t−λ) and J(θt) = o(t−λ) whenever

λ < min{1 − 2δ, γ}. (4.3.21)

Proof. Recall the bound (4.3.17) and the definitions of ft, gt from (4.3.18) and (4.3.19) respectively. Replacing
the property (KL’) by property (PL) allows us to replace the term −αt∥∇J(θt)∥22 in (4.3.17) by −αtKJ(θt).
This makes Theorem 2.24 applicable to the resulting bound. Under the stated hypotheses, it readily follows
that

α2
t = O(t−2+2ϕ), α2

tM
2
t = O(t−2+2(ϕ+δ)), αtBt = O(t−1+ϕ−γ).

Now define ν as in (4.3.20). Then each of the above three terms is O(t−(1+ν)), while both {α2
tB

2
t } and

{α2
tBt} decay even faster. Hence, with ν defined as in (4.3.20),

ft, gt = O(t−(1+ν)),

and both sequences are summable.
Now we are in a position to apply Theorem 2.24. We can conclude that J(θt) = o(t−λ) whenever

2αt − λt−1 ≥ 0 for sufficiently large t, and

{(t+ 1)λgt} ∈ ℓ1,

∞∑
t=1

[2αt − λt−1] = ∞. (4.3.22)

Now observe that 2αt = Ω(t−(1−C)), and C > 0. Choose a contant D such that 2αt ≥ Dt−(1−C) for
sufficiently large t. Then, whatever be the value of λ, it is clear that

Dt−(1−C) − λt−1 ≥ 0

for sufficiently large t. Also, since C > 0, it is evident that αt decays more slowly than λt−1. Hence (4.3.22)
is satisfied. Thus the last step of the proof is to determine conditions under which {(t+ 1)λgt} ∈ ℓ1. Since
gt = O(t−(1+ν)), it follows that (t + 1)λgt = O(t−(1+ν−λ)), which is summable if λ < ν. Hence it follows
that J(θt) = o(t−λ) whenever λ < ν.

To prove the last statement, observe that, while there is an upper bound on ϕ, namely min{0.5 − δ, γ},
there is no lower bound. So we can choose ϕ = ϵ, a very small number. This leads to

λ < ν = min{1 − 2δ − 2ϵ, γ − ϵ}.

But since ϵ can be made arbitrarily small, this translates to (4.3.21).
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Corollary 4.1. Suppose all hypotheses of Theorem 4.2 hold. In particular, if Bt = 0 for all large enough t
in (4.3.6), and Mt in (4.3.7) is bounded with respect to t, then ∥∇J(θt)∥22 = o(t−λ) and J(θt) = o(t−λ) for
all λ < 1.

The proof is immediate from Theorem 4.2. With Bt = 0, one can take γ = 1, and with Mt being bounded,
one can take δ = 0. Substituting these into (4.3.21) leads to the desired conclusion.

Remark: It is worthwhile to compare the content of Corollary 4.1 with the bounds from [4], as sum-
marized in Section 4.2.1. In that paper, it is assumed that zt = ∇J(θt), and that there is a finite constant
M such that CVt(ht+1) ≤ M2; see [4, Eq. (2)]. In the present notation, this is the same as saying that
Bt = 0 for all t, and that Mt = M for all t. With these assumptions on the stochastic gradient, it is
shown that for an arbitrary convex function, the best achievable rate for a convex objective function is that
∥∇J(θt)∥2 = O(t−1/2). Now suppose a function J(·) satisfies both Standing Assumptions (J1), (J2) and the
(PL) property. Thus there exists a constant K such that

KJ(θt) ≤ ∥∇J(θt)∥22 ≤ 2LJ(θt).

Then, as per Corollary 4.1, it follows that J(θt) = o(t−λ) and ∥∇J(θt)∥22 = o(t−λ) for every λ < 1. There
is virtually no difference between O(t−1) and o(t−λ) for all λ < 1. Thus our results extend the bounds from
[4] from convex functions to a somewhat larger class, namely those that satisfy Assumption (S3) as well as
the Polyak- Lojasiewicz condition.

Next, we study stochastic gradient methods based on function evaluations alone. The Simultaneous
Perturbation SA (SPSA), described in (4.2.10), is typical of this approach. In this equation, two function
evaluations are used at each step; however, there exist approaches that use only one function evaluation at
each step. For the stochastic gradient of (4.2.10), the quantities Bt and Mt satisfy

Bt = O(ct), M2
t = (1/c2t ). (4.3.23)

A more general approach, somewhat reminiscent of the Runge-Kutta method, is proposed in [112], wherein
k + 1 function evaluations are used at each step, leading to

Bt = O(ckt ), M2
t = (1/c2t ), (4.3.24)

which reduces to the above when k = 1. This observation raises the question as to whether there is an
“optimal” choice of the “increment” ct, so as to achieve the fastest convergence. Specifically, suppose we
choose ct = Θ(ts) for some exponent s. What is the choice of s that maximizes the bound ν in (3.1.2)?

Corollary 4.2. Suppose all hypotheses of Theorem 4.2 hold. Suppose Bt, Mt satisfy (4.3.23) for arbitrary
increment ct, and that ct = Θ(t−1). Then the optimal choice for the exponent s is 1/3. Then, with αt =
O(t−(1−ϕ)), by choosing ϕ = ϵ > 0 arbitrarily small, and s = (1 − ϵ)/3, we get

J(θt), ∥∇J(θt)∥22 = o(t−λ), ∀λ < 1/3. (4.3.25)

More generally, suppose Bt, Mt satisfy (4.3.24) for arbitrary increment ct. Then, with αt = O(t−(1−ϕ)), by
choosing ϕ = ϵ> 0 arbitrarily small, and s = (1 − ϵ)/(k + 2), we get

J(θt), ∥∇J(θt)∥22 = o(t−λ), ∀λ < k/(k + 2). (4.3.26)

Proof. With ct = O(t−s), it is already known from [77] that

Bt = O(ct) = O(t−s), M2
t = O(1/c2t ) = O(t2s).

Hence we can apply Theorem 4.2 with γ = s, δ = 2s. Then the rate of convergence becomes o(t−λ) whenever
λ ∈ (0, ν), and

ν = min{1 − 2(ϕ+ s), s− ϕ}.
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To motivate the proof, we depict these two inequalities and the “optimal” choice of s for the case k = 1.
Figure 4.3 depicts the two inequalities

1 − 2(ϕ+ s) ≥ 0, s− ϕ ≥ 0,

or
ϕ+ s ≤ 0.5, ϕ ≤ s.

The blue line depicts when both parts of the minimum defining ν are equal, namely 3s+ ϕ = 1. Along this
line, µ is maximum when s = 1/3 and ϕ = 0, where µ = 1/3. In reality the inequalities should be strict.
Hence, for arbitrarily small ϵ > 0, we can choose

ϕ = ϵ, s =
1 − ϵ

3
, µ =

1

3
− 4ϵ

3
.

But since ϵ is arbitrary, this works out to µ < 1/3. Hence (4.3.25) follows. In the case of general k, we have

1 − 2(ϕ+ s) = ks− ϕ, or (k + 2)s+ ϕ = 1.

So by choosing ϕ = ϵ, we get

s =
1 − ϵ

k + 2
, µ =

k(1 − ϵ)

k + 2
− ϵ =

k

k + 2
− ϵ

2k + 2

k + 2
.

Again, since ϵ is arbitrary, (4.3.26) follows.

It is worth noting that, when k+ 1 function evaluations are carried out, not only is the convergence rate
faster, but the step sizes also become larger (O(tk/(k+2))).

ϕ

s

1/2

1/3
1/4

1/4

Figure 4.3: Feasible combinations of (ϕ, s)

Remarks: Now we discuss the significance of Corollary 4.2 and its relationship to previously known
results.

1. The analysis in [4] on the achievable rates of convergence applies only when the stochastic gradient is
unbiased (Bt = 0 for all t), and its conditional variance is bounded. When only function evaluations
are used to construct a stochastic gradient, these assumptions do not hold. Corollary 4.2 partially fills
this gap.

2. In [110], the authors study what would be called Simultaneous Perturbation SA with two measurements
(but with a Gaussian perturbation vector instead of Rademacher perturbations). It is shown that the
iterations converge at the rate J(θt) = O(t−1/2). However, there is no error in the measurements,
and the objective function is restricted to be convex. In contrast, in the present situation, a rate of
o(t−λ) is achieved for λ < 1/3 even in the presence of measurement errors, and for a class of nonconvex
objective funtions. Moreover, by choosing k = 2 in the approach of [112], that is, by carrying out three
function evaluations at each step, the rate goes up to λ < 1/2, the same as in [110]. By letting k → ∞,
one can make λ arbitrarily close to one. In the view of the author, this last observation is only of
theoretical interest.
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4.4 A Unified Theory for Momentum-Based Methods

In this section, we set up a general class of momentum-based algorithms that includes both the Stochastic
Heavy Ball (SHB) and the Stochastic Nesterov Accelerated Gradient (SNAG) algorithms as special cases,
with suitable choices of the parameters. Then we state and prove sufficient conditions for the convergence
of the general algorithm. Obviously, these sufficient conditions would then guarantee the SHB algorithm.
However, the theory does not apply to the standard version of SNAG, in which the momentum parameter
approaches one. Rather, it applies to a variant of SNAG.

Recall that the problem is to minimize a C1 objective function J : Rd → R. As before, it is assumed that
J(·) satisfies assumptions (J1) and (J2) stated earlier.

4.4.1 A Unified Momentum-Based Algorithm

The iterative algorithm is not based on updating θt directly. Rather, it is defined in terms of two auxiliary
vectors, denoted here by wt and vt. The relationship between wt and θt is given by

wt = θt + ϵtvt. (4.4.1)

The general algorithm consists of updating formulas for wt and vt, as follows:

wt+1 = wt + atvt − btαtht+1, (4.4.2)

vt+1 = µtvt − αtht+1, (4.4.3)

where, as always, αt is the step size, while µt is known as the momentum parameter. In addition,
{at}, {bt}, {ϵt} are sequences of real constants that can be adjusted to make (4.4.2)–(4.4.3) mimic various
standard algorithms. Usually they are viewed differently from the sequences {µt} and {αt}. Further, ht+1

is a random vector that is an approximation to ∇J(wt) (note, not necessarily to ∇J(θt)), known as the
stochastic gradient. All of our analysis pertains to the behavior of wt and vt. However, the conclusions
can be translated back to the behavior of the original argument variable θt, using (4.4.1).

Now it is shown that both SHB and SNAG are special cases of (4.4.2) and (4.4.3) for suitable choices of
the various constants. Since Stochastic Gradient Descent (SGD) is a special case of SHB, it too is a special
case of the above algorithm. However, SGD is not a momentum-based algorithm.

In the present context, the objective is to solve the equation ∇J(θ) = 0 using noisy measurements of the
gradient. Recall from (4.2.11) that the general formulation of SHB studied here is

θt+1 = θt + µt(θt − θt−1) − αtht+1, (4.4.4)

where αt is the step size, µt is the momentum parameter, and ht+1 is a random approximation to ∇J(θt).
The Heavy Ball method was first introduced in [113], where both αt and µt are fixed constants.

To put (4.4.4) in the form (4.4.2)–(4.4.3), define

vt := θt − θt−1,wt = θt. (4.4.5)

With these definitions, it is easy to show that the update equations for wt and vt are

wt+1 = wt + µtvt − αtht+1, (4.4.6)

vt+1 = µtvt − αtht+1. (4.4.7)

These equations are of the form (4.4.2)–(4.4.3) if we define

ϵt = 0, at = µt, bt = 1.

Moreover, since wt = θt, the stochastic gradient ht+1 is a random approximation to ∇J(θt).
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The Nesterov Accelerated Gradient (NSG) algorithm was introduced in [107]. In the current notation,
with the possibility of the gradient being stochastic, and the momentum coefficient being allowed to vary
with t, it can be stated as follows (following [143, Eqs. (3)–(4)]):

θt+1 = θt + µt(θt − θt−1) − αtht+1, (4.4.8)

where ht+1 is a random approximation of ∇J(θt +µt(θt−θt−1)), and not ∇J(θt). We analyze (4.4.8) using
the reformulation in [8, Eqs. (6)–(7)], stated here as (4.2.16) and (4.2.17). To accommodate the shift in the
argument of ∇J(·), we proceed as follows: Define

vt = θt − θt−1,wt = θt + µtvt. (4.4.9)

Then the updating formulas are given by [8, Eqs. (6)–(7)] as

vt+1 = µtvt − αtht+1, (4.4.10)

which is the same as (4.4.7), and

wt+1 = wt + µt+1µtvt − (1 + µt+1)αtht+1. (4.4.11)

These equations are of the form (4.4.2) and (4.4.3) with

ϵt = 1 ∀t, at = µt+1µt, bt = 1 + µt+1. (4.4.12)

Once again, as can be seen from (4.2.17), the random search direction ht+1 is an approximation to ∇J(wt).
Finally, since SGD is a special case of SHB with µt ≡ 0 for all t, it too is a special case of the general

algorithm (4.4.2)–(4.4.3).
In this context we mention [92] and its predecessors [135, 177] which present a “Stochastic Unified

Momentum (SUM)” algorithm. In the paper [92], the objective function is of the form

J(θ) = Ew∼PF (θ,w).

The SUM algorithm consists of two coupled equations (in their notation):

mt = µmt−1 − ηtgt, xt+1 = xt − ληtgt + (1 − λ)mt.

Other than the fact that the momentum coefficient µ is constant, the only difference between the above,
and (4.4.3)–(4.4.1), is that the above has a “convex combination” of two terms, which is absent in our
formulation. But this is a minor detail. Hence it is not claimed that our unified algorithm itself is more
general. Rather, the generality is in the conclusions. We can prove a stronger form of convergence, under
conditions that are analogous to the standard Robbins-Monro conditions.

4.4.2 Literature Review

Next, we present a very brief review of the relevant results from the literature on SHB and SNAG, to
provide a point of departure to compare the results in this sectio against those. A more detailed review of
momentum-based algorithms is given in [121, Section 1.1].

After the publication of the two seminal papers [113] and [107], a great deal of analysis has been carried out
on these algorithms. The approach adopted in this section is to analyze momentum-based algorithms using
the contents of Section 2.3, what might be called the “almost supermartingale” approach. However, there
is considerable literature on the asymptotic behavior of the ODEs on Rd associated with these algorithms.
Whereas the ODE associated with SGD (described in (4.3.1)) is of first-order, the ODEs associated with the
SHB and SNAG methods are of second-order, due to the presence of the “delay” terms. The ODE associated
with NAG is analyzed in detail in [142], when the step size α is held constant, while the momentum coefficient
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µt → 1 as t→ ∞. This is consistent with the standard formulation of SNAG, whereas in SHB, the momentum
parameter is constant while the step size varies with time. In [142], it is shown that the “optimal” schedule
is µt = (t+ 2)/(t+ 5). In [5], the rate of convergence of this ODE is analyzed further by imposing additional
structure on J(·), such as the Kurdyka- Lojasiewicz property. It is shown that, in certain situations, it is
possible for classical steepest descent method to outperform NAG. The second-order ODE associated with
HB is analyzed in [2, 6], when J(·) satisfies the Polyak- Lojasiewicz property. In all of the above formulations,
it is assumed that the “stochastic gradient” ht+1 equals the true gradient ∇J(θt); thus these models do not
allow for measurement errors. Hence the analysis applies only to HB or NAG, not SHB or SNAG.

Now we come to more recent papers on SHB, which do permit measurement errors. In much of the
literature, it is assumed that J(·) is convex ; here we replace convexity by the weaker properties (PL) and
(KL’). Moreover, in many papers, attention is focused in the convergence in expectation, or convrgence in
probability of various algorithms. In the review paper [26], the emphasis is almost exclusively on convergence
in expectation. SHB and SNAG are discussed in [26, Section 7]. In other papers, the conclusions are even
weaker: It is shown only that

lim
t→∞

min
1≤τ≤t

E[∥∇J(θτ )∥22 = 0. (4.4.13)

The above conclusion is weaker than

lim inf
t→∞

E[∥∇J(θt)∥22] = 0. (4.4.14)

This is because, if E[∥∇J(θt)∥22] = 0 for some t, then (4.4.13) holds, but not necessarily (4.4.14). Basically
(4.4.13) is forward-looking, while (4.4.14) is backward-looking. Similarly, the conclusion that

min
1≤τ≤t

∥∇J(θt)∥22 → 0

in probability is a weaker conclusion that

lim inf
t→∞

∥∇J(θt)∥22 = 0,

where again the convergence is in probability.

Other research on the convergence of HB (without establishing almost sure convergence) is summarized
very well on page 3 of [130] and Section 1.1 of [93].

In [50], the authors analyze the HB algorithm where ht+1 = ∇J(θt); thus there is no provision for
measurement noise, so that the algorithm being analyzed is HB and not SHB. The function J(·) is assumed
to be convex, and to have a globally Lipschitz-continuous gradient. The authors do not show that J(θt)
converges to the global minimum of J(·). Rather, they show that the average of the first t iterations converges
to the minimum value of the function J(·). This is somewhat in the same spirit as the papers [117, 68], in
which the authors show that the average of the first t iterations of θt converges to the minimizer of J(·). In
[49], the authors study the SHB for some classes of nonconvex functions. It is assumed that the stochastic
gradient is unbiased, i.e., that Et(ht+1) = ∇J(θt). The iterations are shown to converge to a minimum, but
at the cost of “uniformly elliptic bounds” on the measurement error ζt+1, which are very restrictive.

Now we discuss in detail a couple of papers that are most closely related to the present subsection. In
this context, it is very useful to know that the algorithm converges to the desired limit almost surely. This
is because any stochastic algorithm generates one sample path of a stochastic process, and it is therefore
essential to know that almost all sample paths converge to the desired answer. However, there are only a
handful of papers that establish the almost-sure convergence of SHB and/or SNAG. These are discussed in
detail in this subsection.

In [130], the objective function is an expected value, of the form ([130, Eq. (1)])

J(θ) = Ew∼PF (θ,w).
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The function F (·,w) is convex for each w, and its gradient is Lipschitz-continuous with constant Lw ≤ L
for all w. Thus the same holds for J(·) as well. The stochastic gradient is chosen as ([130, Eq. (SHB)])

ht+1 = ∇θt
F (wt+1,θt),

where wt+1 is chosen i.i.d. with distribution P . Effectively this means that the stochastic gradient is unbiased.
Also, it is assumed that, for some constant σ2, the conditional variance CVt(ht+1) of the stochastic gradient
is bounded by ([130, Eq. (5)])

CVt(ht+1) ≤ 4L(J(θt) − J∗) + σ2,

where J∗ is the infimum of J(·). In [130] the authors study the SHB with time-varying parameter µt, namely

θt+1 = θt − αtht+1 + µt(θt − θt−1), (4.4.15)

It is suggested how to convert (4.4.15) above into two equations, which do not contain any “delayed” terms.
Specifically, the authors iteratively define

λt+1 =
λt
µt

− 1, ηt = (1 + λt+1)αt (4.4.16)

In the above, the quantity λ0 is not specified and is chosen by the user. They then define5

wt+1 = wt − ηtht+1, (4.4.17)

θt+1 =
λt+1

1 + λt+1
θt +

1

1 + λt+1
wt+1. (4.4.18)

Then θt+1 satisfies (4.4.15).
The convergence of (4.4.17)–(4.4.18) is established under [130, Condition 1], namely the sequence {ηt}

is decreasing, and moreover

∞∑
t=0

ηt = ∞,

∞∑
t=0

η2t σ
2 <∞,

∞∑
t=1

ηt∑t−1
τ=0 ητ

= ∞. (4.4.19)

Thus in [130] the original step size sequence {αt} and momentum sequence {µt} are replaced by the “syn-
thetic” step size sequence {ηt}, and the convergence conditions are stated in terms of ηt. It is shown that, in
general, J(θt) → J∗ where J∗ is the minimum value of J(·), at a rate of O(t−1/2). In the “over-parametrized”
case, the rate improves to O(t−1). Moreover, the iterations θt converge to a minimizer of J(·).

Now we give our interpretation of the results in [130]. There are two restrictive features of these results.
First, the conditions (4.4.19) are more stringent than the standard Robbins-Monro conditions, namely

∞∑
t=0

η2t <∞,

∞∑
t=0

ηt = ∞, (4.4.20)

Compared to (4.4.20), there are two extra assumptions in (4.4.19), namely: (i) the synthetic step size ηt
is decreasing, and (ii) the summation of ηt/

∑t−1
τ=0 ητ is divergent. Since St is an increasing sequence, the

divergence of this summation is a more restrictive assumption than the second Robbins-Monro condition in
(4.4.20)

The second challenge in this approach is that, given the original step size and momentum sequences,
there is no easy way to verify whether (4.4.19) is satisfied. This is why, in [130, Theorem 8], the authors

5To facilitate a comparison with the original paper, we use the same symbol wt. However, their quantity wt is closer to our
ut defined in Section 3.3.2.
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begin with the sequence {ηt}, which appears to us to be somewhat unnatural. If µt = µ, a fixed constant,
for all t, then a possible solution to (4.4.16) is

λt = λ0 =
µ

1 − µ
, ∀t, ηt =

1

1 − µ
αt, ∀t.

Since ηt is a constant multiple of αt, if {αt} satisfies (4.4.20), then so does {ηt}. However, if µt varies as a
function of t, this approach will not work. Specifically, it is shown in Section 4.5.3 that, if the momentum
coefficient µt is monotonically decreasing, then λt → ∞ as t → ∞. Consequently, a Robbins-Monro like
assumpion such as

∑∞
t=0 α

2
t < ∞ need not imply that

∑∞
t=0 η

2
t < ∞. In the other direction, if µt is

monotonically increasing but bounded away from 1, them there exsts a finite T such that 1 + λt+1 < 0 for
all t ≥ T , thus causing the “step size” ηt to become negative, which is absurd.

In contrast, the approach proposed here can handle the case where not just the momentum parameter
µt is time-varying, but all parameters vary with t. Moreover, the conditions for convergence reduce to the
familiar Robbins-Monro conditions if the stochastic gradient is unbiased and has finite variance (even if
the parameters vary with t). In the more general case where the stochastic gradient is biased, and/or the
conditional variance of the stochastic gradient grows without bound as a function of t, the conditions for
convergence are those in Theorem 4.1. As we have seen earlier, this formulation allows us to handle the
so-called zeroth-order methods, wherein the stochastic gradient is computed using only noisy measurements
of the objective function.

Next we come to [93]. The analysis in [130] is applicable only to convex objective functions. In [93], the
authors prove results that are applicable to arbitrary nonconvex functions that have a Lipschitz-continuous
gradient. However, for nonconvex funtions, they can prove only that

lim
t→∞

min
0≤τ≤t

∥∇J(θτ )∥22 = 0. (4.4.21)

Clearly, this is a weaker conclusion than ∇J(θt) → 0 as t→ ∞. To prove that conclusion, they assume that
J(·) is strongly convex. They also relax the bound on the conditional variance of the stochastic gradient to
the so-called Expected Smoothness assumption of [75], namely

Et(∥ht+1∥22) ≤ 2AJ(θt) +B∥∇J(θt)∥22 + C, (4.4.22)

for suitable constants A,B,C. This is proposed in [75] as “the weakest assumption” for analyzing the
convergence of SGD or SHB for nonconvex functions. However, unlike in [130], these authors assume that
the momentum term is a constant, that is, µt = µ ∀t.

After the brief literature review, we now compare our results to those of [93]. Throughout, we replace
the variance bound (4.4.22) by weaker bound (4.4.28). We also permit the momentum parameter µt to vary
with t, which is not possible in the method of proof used in [93]. When no convexity of any type is assumed,
and the only assumption is that ∇J(·) is Lipschitz-continuous, we are able to show that

lim inf
t→∞

∥∇J(θt)∥2 = 0. (4.4.23)

Given any sequence of nonnegative numbers {xt}, it is easy to show that

lim inf
t→∞

xt = 0 =⇒ lim
t→∞

min
0≤τ≤t

xτ = 0,

but the converse need not be true. (Suppose xT = 0 for some T but xt ≥ ϵ > 0 for all t > T .) Hence our
conclusion (4.4.23) is stronger than (4.4.21). Next, we permit a mild form of nonconvexity (namely the KL
or PL properties). In this more general setting, we nevertheless derive the almost sure convergence of the
iterations, when the Robbins-Monro or Kiefer-Wolfowitz-Blum conditions are satisfied.

Now let us return to [92]. In that paper, it is assumed that the stochastic gradient is unbiased and has
uniformly bounded variance, whereas we permit a more general type of stochastic gradient, which satisfies
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(4.4.27)–(4.4.28). Our conclusions are also stronger. Under the Robbins-Monro or Kiefer-Wolfowitz-Blum
conditions, when J(·) satisfies the (KL) property, we deduce that θt converges almost surely to the set of
minimizers. When J(·) satisfies the stronger (PL) property, we can bound the rate of convergence. Finally,
if the only assumption is that ∇J(·) is Lipschitz-continuous, we are able to show that

lim inf
t→∞

∥∇J(θt)∥2 = 0.

In contrast, in [92], the authors show only that

lim
t→∞

min
1≤τ≤t

E[∥∇J(θτ )∥22 = 0.

This is a weaker conclusion, as shown above.

4.4.3 Statements of Main Theorems

In this subsection we state the main theorems concerning the unified momentum approach. The proofs are
given in the next subsection.

Assumptions on the Stochastic Gradient

Let Ft denote the σ-algebra generated by θ0,h
t
1, where ht

1 denotes (h1, · · ·ht); note that there is no h0. As
before, for an Rd-valued random variable X, let Et(X) denote the conditional expectation E(X|Ft), and
let CVt(X) denote its conditional variance defined by

CVt(X) = Et(∥X − Et(X)∥22) = Et(∥X∥22) − ∥Et(X)∥22. (4.4.24)

With these notational conventions in place we state the assumptions on ht+1. We begin by defining

zt = Et(ht+1), xt = zt −∇J(wt), ζt+1 = ht+1 − zt. (4.4.25)

Thus xt denotes the “bias” of the stochastic gradient. If ht+1 is an unbiased estimate of ∇J(wt), then
xt = 0. Most papers in the literature assume that xt = 0, but our objective here is specifically to permit
biased estimates. This is necessary to analyze the situation where the stochastic gradient is obtained using
function valuations alone. The last equation in (4.4.25) implies that Et(ζt+1) = 0. Therefore

Et(∥ht+1∥22) = ∥zt∥22 + Et(∥ζt+1∥22). (4.4.26)

With these definitions, the assumption on the stochastic gradient is that there exist sequences of constants
{Bt} and {Mt} such that

∥xt∥2 ≤ Bt[1 + ∥∇J(wt)∥2], ∀θt ∈ Rd, ∀t, (4.4.27)

Et(∥ζt+1∥22) ≤M2
t [1 + J(wt)], ∀θt ∈ Rd, ∀t. (4.4.28)

Equation (4.4.27) states that the stochastic gradient ht+1 can be biased, but the extent of the bias has to
be bounded by a constant plus the norm of the gradient. As we will see in subsequent sections, while Bt

is permitted to be nonzero, eventually it has to approach zero; in other words, the stochastic gradient has
to be “asymptotically unbiased.” In contrast, (4.4.28) states that the conditional variance of the stochastic
gradient can grow as a function of the iteration counter t. This feature is essential to permit the analysis of
so-called zeroth-order methods, where only a small number (often just two) of function evaluations are used
to construct ht+1.
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Assumptions on the Constants

Aside from the step length αt, there are four constants in the algorithm (4.4.2)–(4.4.3). The assumptions on
these constants are as follows: There exist constants ā, b, b̄, µ̄, ϵ̄ such that, for all t, we have

0 ≤ at ≤ ā, 0 < b ≤ bt ≤ b̄, 0 ≤ µt ≤ µ̄ < 1, |ϵt| ≤ ϵ̄ <∞. (4.4.29)

Now we discuss a few implications of the above bounds. First, at is always nonnegative and bounded above.
Second, bt is bounded both below and above by positive constants. Third, the momentum coefficient µt can
equal zero, but is bounded away from 1. Finally, ϵt can be either positive or negative, but is bounded in
magnitude. Observe that when SHB is formulated as a special case of (4.4.2)–(4.4.3), the assumptions in
(4.4.29) hold. As for SNAG, in the traditional formulation, the momentum parameter µt ↑ 1 as t → ∞.
Hence the assumptions in (4.4.29) do not hold. What is analyzed here is a nonstandard version of SNAG
in which (4.4.29) hold. The version of SNAG analyzed in [93] is even more restrictive in that µt is a fixed
constant less than one.

Two ready consequences of these assumptions are that, if we define

kt :=
at

(1 − µt)
, k̄ :=

ā

1 − µ̄
, (4.4.30)

then
kt ∈ [0, k̄], bt + kt+1 ∈ [b, b̄+ ā/(1 − µ̄)]. (4.4.31)

A key assumption is this: Define δt := kt+1 − kt. Then

δt → 0 as t→ ∞. (4.4.32)

Note that there are no restrictions on the sign of δt. This assumption is readily satisfied if both {at} and
{µt} converge to some limits. The assumption allows us to transform the variables in (4.4.2)–(4.4.3) in such
a way that the resulting transformed equations are “asymptotically decoupled.” More details can be found
below.

In our analysis, it is quite permissible to allow all five constants at, bt, ϵt, µt, αt to be random variables.
In this case, the bounds in (4.4.29) and (4.4.31) hold almost surely. If we define Ft to be the σ-algebra
generated by θ0 and ht

1, then all of these constants need to belong to M(Ft), the set of random variables
that are measurable with respect to Ft. In particular, in (4.4.12), we see that ϵt = µt+1µt. Thus, in order
to incorporate the approach of [8] in the present framework, we must assume that µt+1 ∈ M(Ft), i.e., that
{µt} is a predictable process.

With these assumptions out of the way, we now state the two main theorems regarding the convergence
of the general algorithm (4.4.2) and (4.4.3)), and several corollaries thereof. In brief, when the objective
function J(·) satisfies the (KL’) property, and the analogs of the Kiefer-Wolfowitz-Blum conditions are
satisfied (see (4.4.33) and (4.4.34) below), then the algorithm converges almost surely. If the hypothesis on
J(·) is strengthened to (PL) from (KL’), then we can also derive bounds on the rate of convergence.

Theorem 4.3 below shows that the unified momentum algorithm converges under the same conditions as
in Theorem 4.1.

Theorem 4.3. Suppose that the various constants satisfy the assumptions in (4.4.29), while the objective
function J(·) satisfies Standing Assumptions (J1) and (J2). Further, suppose the stochastic gradient ht+1

satisfies the assumptions (4.4.27)–(4.4.28). With these assumptions, we can state the following:

1. Suppose
∞∑
t=0

α2
t <∞,

∞∑
t=0

αtBt <∞,

∞∑
t=0

α2
tM

2
t <∞. (4.4.33)

Then {∇J(θt)} and {J(θt)} are bounded, and in addition, J(θt) converges almost surely to some
random variable as t→ ∞.
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2. If in addition
∞∑
t=0

αt = ∞, (4.4.34)

then
lim inf
t→∞

∥∇J(θt)∥2 = 0. (4.4.35)

3. If, in addition to (4.4.33) and (4.4.34), the function J(·) satisfies (KL’), then J(θt) → 0 and ∇J(θt) →
0 as t→ ∞, where both convergences are in the almost sure sense.

4. Suppose that in addition to (KL’), J(·) also satisfies (NSC), and that (4.4.33) and (4.4.34) both hold.
Then ρ(θt) → 0 almost surely as t→ ∞.

Now we state some useful corollaries of the above theorem.

Corollary 4.3. Suppose that the various constants satisfy the assumptions in (4.4.29), while the objective
function J(·) satisfies Standing Assumptions (S1) and (S2). Further, suppose the stochastic gradient ht+1

satisfies the assumptions (4.4.27)–(4.4.28), with Bt = 0 for all t, and M2
t ≤ M2 for all t for some fixed

constant M . With these assumptions, we can state the following:

1. Suppose
∞∑
t=0

α2
t <∞. (4.4.36)

Then {∇J(θt)} and {J(θt)} are bounded, and in addition, J(θt) converges almost surely to some
random variable as t→ ∞.

2. If in addition (4.4.34) holds, then
lim inf
t→∞

∥∇J(θt)∥2 = 0.

3. If in addition J(·) satisfies (KL’), then J(θt) → 0 and ∇J(θt) → 0 as t→ ∞, where both convergences
are in the almost sure sense.

4. Suppose that in addition to (KL’), J(·) also satisfies (NSC), and that (4.4.36) and (4.4.34) both hold.
Then ρ(θt) → 0 almost surely as t→ ∞.

Note that (4.4.36) and (4.4.33) are the familiar Robbins-Monro conditions introduced in [123]. Thus,
when the stochastic gradient is unbiased and has bounded variance, the conditions for the convergence of
the general algorithm (4.4.2)–(4.4.3) are the familiar ones for SGD, as shown in [71].

Corollary 4.4. Under the assumptions of Theorem 4.3, suppose further that there exists a sequences of
constants ct (known as the “increment”) such that Bt = O(ct), and M

2
t = O(1/c2t ). With these assumptions,

we can state the following:

1. Suppose
∞∑
t=0

α2
t <∞,

∞∑
t=0

αtct <∞,

∞∑
t=0

(α2
t )/(c2t ) <∞. (4.4.37)

Then {∇J(θt)} and {J(θt)} are bounded, and in addition, J(θt) converges almost surely to some
random variable as t→ ∞.

2. If in addition J(·) satisfies (KL’), and (4.4.34) holds, then J(θt) → 0 and ∇J(θt) → 0 as t → ∞,
where both convergences are in the almost sure sense.

3. Suppose that in addition to (KL’), J(·) also satisfies (NSC), and that (4.4.36) and (4.4.34) both hold.
Then ρ(θt) → 0 almost surely as t→ ∞.
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Thus the point of these two corollaries is to show that the conditions for the convergence of the unified
algorithm in Theorem 4.3 are exactly the same as those for the convergence of the SGD algorithm in
Theorem 4.1, even in the presence of time-varying momentum terms. In contrast, as shown in Section 4.5.3,
the previously known sufficient conditions for convergence given in [130] are more restrictive.

Corollary 4.4 is relevant when the stochastic gradient is obtained using only function evaluations, and
no gradient computations. It can be thought as the counterpart of Corollary 4.2 to the unified momentum
algorithm.

The objective of the next theorem is to show that if the hypothesis (KL’) is strengthened to (PL), then
it is possible to obtain bounds on the rate of convergenc e.

Theorem 4.4. Let various symbols be as in Theorem 4.3. Suppose J(·) satisfies the standing assumptions
(S1) and (S2) and also property (PL), and that (4.4.37) and (4.4.34) hold. Further, suppose there exist
constants γ > 0 and δ ≥ 0 such that

Bt = O(t−γ), Mt = O(tδ), ∀t ≥ 1,

where we take γ = 1 if Bt = 0 for all sufficiently large t, and δ = 0 if Mt is bounded. Choose the step-size
sequence {αt} as O(t−(1−ϕ)) and Ω(t−(1−C)) where ϕ and C are chosen to satisfy

0 < ϕ < min{0.5 − δ, γ}, C ∈ (0, ϕ]. (4.4.38)

Define

ν := min{1 − 2(ϕ+ δ), γ − ϕ}. (4.4.39)

Then ∥∇J(θt)∥22 = o(t−λ) and J(θt) = o(t−λ) for every λ ∈ (0, ν). In particular, by choosing ϕ very small,
it follows that ∥∇J(θt)∥22 = o(t−λ) and J(θt) = o(t−λ) whenever

λ < min{1 − 2δ, γ}. (4.4.40)

4.4.4 Proofs of the Main Results

In this subsection, we present the proofs of the theorems in the previous subsection.

Transformation of Variables

The convergence analysis of (4.4.2)–(4.4.3) is based on carrying out a linear transformation of the variables
such that the resulting equations are “nearly” decoupled, and are exactly decoupled if all terms at, bt, ϵt, µt

are constant. In contrast, in [130], the authors propose a linear transformation that achieves exact decoupling
even when µt varies with t. As shown in Section 4.4.5, this approach is untenable when µt is monotonic,
either decreasing or increasing. In contrast, our approach does not suffer from such limitations. Moreover,
as shown in the results stated in Section 4.4.3, our conditions for the convergence of the algorithm in (4.4.2)–
(4.4.3) are natural generalizations of the familiar Robbins-Monro [123] or the Kiefer-Wolfowitz-Blum [77, 17]
conditions, unlike in [130].

Let us rewrite (4.4.2)–(4.4.3) as[
wt+1

vt+1

]
=

[
I atI
0 µtI

] [
wt

vt

]
−
[
btI
I

]
αtht+1, (4.4.41)

where each I denotes Id×d. Define

At =

[
I atI
0 µtI

]
,Λt =

[
I 0
0 µtI

]
. (4.4.42)
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Then At is the coefficient matrix in (4.4.41) and Λt is the matrix of the eigenvalues of At. In order to
diagonalize At into Λt, we compute the matrix of eigenvectors of At, as follows:

Zt =

[
I − at

1−µt
I

0 µtI

]
=

[
I −ktI
0 µtI

]
, Z−1

t =

[
I ktI
0 µtI

]
, (4.4.43)

where

kt :=
at

1 − µt
. (4.4.44)

Then Z−1
t AtZt = Λt. Next, define[

ut

vt

]
:= Z−1

t

[
wt

vt

]
=

[
wt + ktvt

vt

]
. (4.4.45)

Here we take advantage of the fact that the bottom block of Z−1
t is [0 I]. Hence, in effect, wt is replaced

by ut, but vt is left unaltered. Hence the update equation for vt also remains as (4.4.3).
Next we compute the update equation for ut.

ut+1 = wt+1 + kt+1vt+1 = wt+1 + ktvt+1 + δtvt+1, (4.4.46)

where

δt = kt+1 − kt =
at+1

1 − µt+1
− at

1 − µt
. (4.4.47)

Now observe that

wt+1 + ktvt+1 = wt + atvt − btαtht+1 + ktµtvt − ktαtht+1.

However

ktµt + at = at

(
µt

1 − µt
+ 1

)
=

at
1 − µt

= kt.

Hence we can write

wt+1 + ktvt+1 = wt + ktvt − αt(bt + kt)ht+1 = ut − αt(bt + kt)ht+1. (4.4.48)

The last term in (4.4.46) becomes

δtvt+1 = δtµtvt − δtαtht+1. (4.4.49)

Substituting from (4.4.48) and (4.4.49) into (4.4.46) gives the final form of the update equation for ut.

ut+1 = ut + δtµtvt − (bt + kt + δt)αtht+1

= ut + δtµtvt − (bt + kt+1)αtht+1,
(4.4.50)

while the updating equation for vt remains as before, namely

vt+1 = µtvt − αtht+1. (4.4.51)

These are the two equations whose behavior is analyzed in the remainder of the subsection. Based on the
analysis, we make inferences about the behavior wt, and eventually, θt. Note that these two equations are
not decoupled in general, due to the presence of the term δtµtvt in (4.4.50). However, in the special case
where both at and µt are constant, then δt = 0 for all t, and the equations are indeed decoupled. This
is the approach used in [121] to study the SHB algorithm when µt is constant. More generally, if both at
and µt converge to some some constants as t → ∞, then δt → 0 as t → ∞, and the equations become
“asymptotically decoupled.” We can draw some useful conclusions when δt → 0 as t→ ∞.
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Proof of Theorem 4.3

The proof of Theorem 4.3 is based on applying the Robbins-Siegmund theorem stated here as Theorem 2.22
to the “Lyapunov function”

Vt := J(ut) + ∥vt∥22. (4.4.52)

The reason for calling it a “Lyapunov function” is that its conditional expectation obeys the conditions of
the Robbins-Siegmund theorem; this in turn allows us to deduce the convergence of Vt to zero almost surely.
We will find an upper bound for Et(Vt) in the form

Et(Vt) ≤ Vt + ftVt + gt −
1 − µ̄2

2
− αtb̄

2
∥∇J(ut)∥22 − Ft, (4.4.53)

where the sequences {ft}, {gt} are nonnegative and summable, and Ft is a quadratic form in ∇J(ut) and
∥vt∥2 which is positive definite for sufficiently large t, say for all t ≥ T . (In case these entities are random,
these conditions hold almost surely), Since we can always start our analysis at time T , we can neglect the
term −Ft for all t ≥ T , and apply Theorem 2.22.

Going forward, we will avoid a lot of cumbersome notation if we agree to refer to a nonnegative sequence
{zt} as a Well-Behaved Function (WBF) if there exist nonnegative summable sequences {ft}, {gt} such that

zt ≤ gt + ftVt, ∀t ≥ 0. (4.4.54)

In case the various entities are random, the assumptions (inequality and summability) hold almost surely.
Clearly the sum of two WBF is again a WBF, and a WBF multiplied by a bounded sequence is again a WBF.
Therefore any WBF can be absorbed into the terms gt + ftVt, and it is not necessary to keep careful track of
them.

Bounding Et(Vt+1) involves several intricate computations. For this purpose, it is now shown that the
first two conditions in (4.4.33) imply that

∞∑
t=0

α2
tBt <∞,

∞∑
t=0

α2
tB

2
t <∞. (4.4.55)

The proof of this claim is as follows: The first bound in (4.4.33) implies in particular that αt → 0 as t→ ∞,
and hence αt is bounded, say by ᾱ. Therefore

∞∑
t=0

α2
tBt ≤ ᾱ

∞∑
t=0

αtBt <∞.

This is the first bound in (4.4.55). As for the second bound, recall that every (absolutely) summable sequence
is also square summable. Therefore we can append the two bounds in (4.4.55) to the three bounds in (4.4.33).

The first step in proceeding further is to reformulate the bounds (4.4.27) and (4.4.28), which are stated
in terms of ∇J(wt), in terms of ∇J(ut). Accordingly, we modify (4.4.25) by defining

x̄t = zt −∇J(ut) = Et(ht+1) −∇J(ut). (4.4.56)

The objectives are to find bounds for ∥x̄t∥22 and Et(∥ζt+1∥22) in terms of Vt. Throughout we use the bound
(4.4.19), namely ∥∇J(ut)∥22 ≤ 2LJ(ut). We also make repeated use of the obvious inequalities

x ≤ (1 + x2)/2, xy ≤ (x2 + y2)/2, ∀x, y ∈ R. (4.4.57)

We begin with a bound for ∥x̄t∥2. Observe that

x̄t = zt −∇J(ut) = xt + ∇J(wt) −∇J(ut)
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Hence it follows from (4.4.56) and (4.4.27) that

∥x̄t∥2 ≤ ∥xt∥2 + L∥wt − ut∥2
≤ Bt(1 + ∥∇J(wt)∥2) + Lkt∥vt∥2
≤ Bt(1 + ∥∇J(ut)∥2 + Lkt∥vt∥2) + Lkt∥vt∥2
≤ Bt(1 + ∥∇J(ut)∥2 + Lk̄∥vt∥2) + Lk̄∥vt∥2.

(4.4.58)

Next, we can find a bound for ∥x̄t∥22 starting from (4.4.58), and arrive at

∥x̄t∥22 ≤ B2
t (1 + ∥∇J(ut)∥2 + Lk̄∥vt∥2)2

+ 2BtLk̄(1 + ∥∇J(ut)∥2 + Lk̄∥vt∥2) · ∥vt∥2 + (Lk̄)2∥vt∥22.
(4.4.59)

Note that terms of the form ∥∇J(ut)∥2, ∥vt∥2, ∥∇J(ut)∥22, ∥∇J(ut)∥2 · ∥vt∥2 and ∥vt∥22 can be bounded by
terms of the form C1 +C2Vt for suitable constants C1 and C2. Clearly ∥vt∥22 ≤ Vt. The rest can be bounded
repeatedly using (4.4.57). Specifically

∥∇J(ut)∥2 ≤ 1

2
(1 + ∥∇J(ut)∥22) ≤ 1

2
+ LJ(ut) ≤

1

2
+ LVt,

∥vt∥2 ≤ 1

2
(1 + ∥vt∥22) ≤ 1

2
(1 + Vt),

∥∇J(ut)∥22 ≤ 2LJ(ut) ≤ 2LVt,

∥∇J(ut)∥2 · ∥vt∥2 ≤ 1

2
(∥∇J(ut)∥22 + ∥vt∥22)

≤ LJ(ut) +
1

2
∥vt∥22) ≤ max{L, 1/2}Vt.

Applying all these bounds to (4.4.58) shows that

∥x̄t∥22 ≤ B2
t (D11 +D12Vt) +Bt(D21 +D22Vt) + (Lk̄)2∥vt∥22, (4.4.60)

for suitable constants D11 through D22.
For future use, we also bound ∥zt∥22. Since zt = x̄t + ∇J(ut), we can write

∥zt∥22 ≤ ∥x̄t∥22 + 2∥x̄t∥2 · ∥∇J(ut)∥2 + ∥∇J(ut)∥22
≤ ∥x̄t∥22 + [∥x̄t∥22 + ∥∇J(ut)∥22] + ∥∇J(ut)∥22
= 2∥x̄t∥22 + 4LJ(ut).

(4.4.61)

Since J(ut) ≤ Vt, we can substitute from (4.4.60) into (4.4.61) to obtain the bound

∥zt∥22 ≤ B2
t (D11 +D12Vt) +Bt(D21 +D22Vt) + 4LJ(ut) + (Lk̄)2∥vt∥22

≤ B2
t (D11 +D12Vt) +Bt(D21 +D22Vt) + max{4L, (Lk̄)2}Vt.

(4.4.62)

With these bounds in place, we now proceed to prove (4.4.52). Clearly

Et(Vt+1) = Et(J(ut+1)) + Et(∥vt+1∥22). (4.4.63)

So we bound each of these two terms individually. First, it follows from (4.4.51) that

∥vt+1∥22 = ∥µtvt − αtht+1∥22 = µ2
t∥vt∥22 − 2αtµt⟨vt,ht+1⟩ + α2

t ∥ht+1∥22.

Therefore, from (4.4.26), we get

Et(∥vt+1∥22) = µ2
t∥vt∥22 − 2αtµt⟨vt, zt⟩ + α2

t [∥zt∥22 + Et(∥ζt+1∥22)]. (4.4.64)
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We can estimate the last two terms separately.
First,

−2αtµt⟨vt, zt⟩ ≤ 2αtµt∥vt∥2 · ∥zt∥2 ≤ 2αtµ̄∥vt∥2 · ∥zt∥2.

Note that the bound is unaffected by the presence or the absence of the minus sign in front of the inner
product. Further,

2αtµ̄∥vt∥2 · ∥zt∥2 ≤ 2αtµ̄∥vt∥2 · [∥x̄t∥2 + ∥∇J(ut)∥2].

Substituting for ∥x̄t∥2 from (4.4.58), and recalling that {αtBt} is a summable sequence leads to the obser-
vation that

2αtµ̄∥vt∥2 · ∥x̄t∥2 = WBF + 2αtµ̄Lk̄∥vt∥22 + 2αtµ̄∥vt∥2 · ∥∇J(ut)∥2, (4.4.65)

where “WBF” denotes a well-behaved function, defined in (4.4.54). Therefore it is not necessary to write it
out in detail. As a result

2αtµ̄∥vt∥2 · ∥zt∥2 = WBF + 2αtµ̄Lk̄∥vt∥22 + 4αtµ̄∥vt∥2 · ∥∇J(ut)∥2, (4.4.66)

Next we bound the last term.

α2
t [∥zt∥22 + Et(∥ζt+1∥22)] = α2

t ∥zt∥22 + α2
tEt(∥ζt+1∥22)]. (4.4.67)

We already have a bound for ∥zt∥22, namely (4.4.62). As discussed earlier, the hypothesis (4.4.33) implies
(4.4.55). Therefore the term α2

t ∥zt∥22 is a WBF. So let us focus on Et(∥ζt+1∥22)]. There is a bound on this
quantity in (4.4.28), but it is stated in terms J(wt). The bound is now restated in terms of J(ut), using
Theorem 3.1. We know from (4.4.45) that ut = wt + ktvt. So applying Theorem 3.1 gives

J(wt) = J(ut − ktvt) ≤ J(ut) − kt⟨∇J(ut),vt⟩ +
Lk2t

2
∥vt∥22. (4.4.68)

Now Schwarz’ inequality and (4.4.57) lead to

−kt⟨∇J(ut),vt⟩ ≤
kt
2

[∥∇J(ut)∥22 + ∥vt∥22]

≤ kt
2

[2LJ(ut) + ∥vt∥22] ≤ k̄

2
[2LJ(ut) + ∥vt∥22],

(4.4.69)

This can be substituted into (4.4.68) to give

J(wt) ≤ J(ut) + Lk̄J(ut) +

[
k̄

2
+
Lk̄2

2

]
∥vt∥22 ≤ D3Vt, (4.4.70)

where

D3 = max

{
Lk̄,

k̄

2
+
Lk̄2

2

}
.

Therefore the bound in (4.4.28) can be reformulated as

α2
tEt(∥ζt+1∥22)] ≤ α2

tD3Vt, (4.4.71)

which is a WBF in view of the assumptions (4.4.33). Substituting all these bounds into (4.4.64) gives

Et(∥vt+1∥22) ≤ WBF + µ2
t∥vt∥22 + 2αtµ̄Lk̄∥vt∥22 + 2µ̄αt∥vt∥2 · ∥∇J(ut)∥2. (4.4.72)

Next we turn our attention to Et(J(ut+1)). Recall from (4.4.50) that

ut+1 = ut + δtµtvt − (bt + kt+1)αtht+1.
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Therefore, by applying Lemma 3.4, we get

J(ut+1) = J(ut + δtµtvt − (bt + kt+1)αtht+1)

≤ J(ut) + δtµt⟨∇J(ut),vt⟩ − αt(bt + kt+1)⟨∇J(ut),ht+1⟩

+
L

2
∥δtµtvt − αt(bt + kt+1)ht+1∥22.

(4.4.73)

From (4.4.22) we have that

∥δtµtvt − αt(bt + kt+1)ht+1∥22 = ∥δtµtvt − αt(bt + kt+1)zt − αt(bt + kt+1)ζt+1∥22.

However, since Et(ζt+1) = 0, it follows that

Et(∥δtµtvt − αt(bt + kt+1)ht+1∥22) = ∥δtµtvt − αt(bt + kt+1)zt∥22
+ α2

t (bt + kt+1)2Et(∥ζt+1∥22).

Applying Et(·) to both sides of (4.4.73), and substituting the above relationship, gives

Et(J(ut+1)) ≤ J(ut) + δtµt⟨∇J(ut),vt⟩ − αt(bt + kt+1)⟨∇J(ut), zt⟩

+
L

2
∥δtµtvt − αt(bt + kt+1)zt∥22 +

L

2
α2
t (bt + kt+1)2Et(∥ζt+1∥22).

(4.4.74)

Now we analyze each of the terms in (4.4.74) individually. Before doing so, we replace several functions
of t by their bounds. Specifically

� δt could be positive or negative, but is assumed to converge to 0. Therefore |δt| is bounded, say by δ̄.

� µt ∈ [0, µ̄] where µ̄ < 1.

� bt ∈ [b, b̄] where 0 < b ≤ b̄, and kt ∈ [0, k̄]. Therefore bt + kt+1 ∈ [b, b̄+ k̄].

With these observations, we have the following bounds:

δtµt⟨∇J(ut),vt⟩ ≤ δ̄µ̄∥∇J(ut)∥2 · ∥vt∥2. (4.4.75)

Next

−αt(bt + kt+1)⟨∇J(ut), zt⟩ = −αt(bt + kt+1)∥∇J(ut)∥22
− αt(bt + kt+1)⟨∇J(ut), x̄t⟩
≤ −αtb∥∇J(ut)∥22
+ αt(b̄+ k̄)∥∇J(ut)∥2 · ∥x̄t∥2.

(4.4.76)

To bound the last term on the right side of (4.4.76), we use the bound on ∥x̄t∥2 from (4.4.58), and the
summability of {αtBt}. This gives

αt(b̄+ k̄)∥∇J(ut)∥2 · ∥x̄t∥2 ≤ αtLk̄(b̄+ k̄)∥∇J(ut)∥2 · ∥vt∥2 + WBF. (4.4.77)

Next we tackle the first quadratic term on the right side of (4.4.74).

L

2
∥δtµtvt − αt(bt + kt+1)zt∥22 =

L

2
∥δtµtvt∥22

+
α2
tL

2
(bt + kt+1)2∥zt∥22

− αtL(bt + kt+1)δtµt⟨vt, zt⟩.

(4.4.78)
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Each of the three terms can be analyzed individually.

L

2
∥δtµtvt∥22 ≤ Lµ̄2δ2t

2
∥vt∥22. (4.4.79)

Next, from (4.4.62), it follows that
α2
tL

2
(bt + kt+1)2∥zt∥22 = WBF. (4.4.80)

Finally, we already have a bound for the cross-product term αtµt⟨vt, zt⟩ from (4.4.66). After multiplying
this bound by Lδ̄(b̄+ k̄), we get

αtL(bt + kt+1)δtµt⟨vt, zt⟩ ≤ WBF + αtL
2k̄δ̄(b̄+ k̄)∥vt∥22

+ 2αtLδ̄(b̄+ k̄)∥vt∥2 · ∥∇J(ut)∥2.
(4.4.81)

Now we can add up all these bounds. This gives

E(Vt+1) = Et(J(ut+1)) + Et(∥vt+1∥22)

≤ J(ut) + ∥vt∥22 − (1 − µ̄2)∥vt∥22 − αtb∥∇J(ut)∥22
+ C1αt∥vt∥22 + C2αt∥vt∥2 · ∥∇J(ut)∥2 + WBF,

(4.4.82)

where C1, C2 are some positive constants whose precise value is not important. Next, we can “borrow” half
of each of the two negative terms in the above, and rewrite the bound as

E(Vt+1) ≤ Vt −
1 − µ̄2

2
∥vt∥22 − αt

b

2
∥∇J(ut)∥22 − Ft + WBF, (4.4.83)

where Ft is the quadratic form

Ft = [ ∥vt∥2 ∥∇J(ut)∥2 ]

[
1−µ̄2

2 − αtC1 −αt(C2/2)
−αt(C2/2) αt(b/2)

] [
∥vt∥2

∥∇J(ut)∥2

]
.

Let us define

Kt =

[
1−µ̄2

2 − αtC1 −αt(C2/2)
−αt(C2/2) αt(b/2)

]
. (4.4.84)

It is now shown that Kt is a positive definite matrix, and Ft is a positive definite form, for t sufficiently
large; specifically, there exists a T < ∞ such that Ft ≥ 0 for all t ≥T. Suppose we succeed in proving this.
Since we can always start our analysis of (4.4.71) starting at time T , we can write

E(Vt+1) ≤ Vt+1 −
(

1 − µ̄2

2

)
∥vt∥22 − αt∥∇J(wt)∥22 + WBF, ∀t ≥ T. (4.4.85)

In other words, the term −Ft is gone. Now (4.4.85) is in a form to which the Robbins-Siegmund theorem
(Lemma 3.2) can be applied. So let us now establish the positive definiteness of the quadratic form for
sufficiently large t. Note that a symmetric 2 × 2 matrix is positive definite if its trace and its determinant
are both positive. In this case

tr(Kt) =
1 − µ̄2

2
− (C1 − (b/2))αt, det(Kt) =

1 − µ̄2

2

b

2
αt − C3α

2
t ,

where C3 is another constant. Since, by hypothesis,
∑∞

t=0 α
2
t <∞, it follows that αt → 0 as t→ ∞. Hence

the trace of Kt is positive for sufficiently large t. Similarly, in the expression for the determinant of Kt, the
positive term is linear in αt, whereas the negative term is quadratic in αt. Hence the determinant of Kt is
also positive for sufficiently large t. Hence we conclude that Kt is a positive definite matrix for sufficiently
large t.

With this observation, we can apply Theorem 2.22 to (4.4.85).
We begin wih Item 1. Note that all statements hold “almost surely,” so this qualifier is not repeated

each time. Suppose (4.4.85) holds. Then the following conclusions follow from Theorem 2.23:
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� J(ut) + ∥vt∥22 is bounded. Moreover, there is a random variable W such that J(ut) + ∥vt∥22 → W
(almost surely) as t→ ∞.

� Further, almost surely
∞∑
t=0

(
1 − µ̄2

2

)
∥vt∥22 + αt∥∇J(ut)∥22 <∞. (4.4.86)

Since the summands in (4.4.86) are both nonnegative, and (1 − µ̄2)/2 is just a constant, it follows that

∞∑
t=0

∥vt∥22 <∞, (4.4.87)

∞∑
t=0

αt∥∇J(ut)∥22 <∞. (4.4.88)

Now (4.4.87) implies that ∥vt∥22 → 0 as t→ ∞, i.e., that vt → 0 as t→ ∞. In turn, if J(ut) + ∥vt∥22 → X,
then J(wt) → X as t→ ∞.

Now recall from (4.4.1) that θt = wt − ϵtvt. Since J(·) is continuous and vt → 0, it follows that
J(θt) → W as t → ∞. The boundedness of {J(θt)} follows from it being a convergent sequence. Finally,
the boundedness of {∇J(θt)} follows from Lemma 4.1. Thus we have established Item 1.

Next we address Item 2. Suppose (4.4.34) holds. Then it readily follows from (4.4.88) that

lim inf
t→∞

∥∇J(ut)∥22 = 0.

To translate this conclusion into the behavior of ∇J(θt), we proceed as follows: It follows from the definitions
of wt and ut that

θt = ut − (kt + ϵt)vt.

Since ϵt and kt are bounded, vt → 0 as t→ ∞, and ∇J(·) is Lipschitz-continuous, it can be concluded that

lim inf
t→∞

∥∇J(θt)∥22 = 0.

This is Item 2.
Next we address Item 3 of the theorem. The hypotheses are that, in addition to (4.4.33), (4.4.34) also

holds, and J(·) satisfies Property (KL’). Then by definition there exists a function ψ : R → R in Class B
such that ∥∇J(θt)∥2 ≥ ψ(J(θt)). Recall that all the stochastic processes are defined on some underlying
probability space (Ω,Σ, P ). Define

Ω0 := {ω ∈ Ω : J(θ(ω)) →W (ω) & ∥vt(ω)∥22 → 0},

Ω1 := {ω ∈ Ω :

∞∑
t=0

αt(ω) = ∞}.

Note that if the step sizes are deterministic, then Ω1 = Ω. Define Ω2 = Ω0 ∩ Ω1, and note that P (Ω2) = 1,
by Item 1.

The objective is to show that W (ω) = 0 for all ω ∈ Ω2. Once this is done, it would follow from Lemma
3.2 that

∥∇J(θt(ω))∥2 ≤ [2LJ(θt(ω))]1/2 → 0 as t→ ∞, ∀ω ∈ Ω2.

Accordingly, suppose that, for some ω ∈ Ω0, we have that W (ω) > 0, say W (ω) = 2p, where p > 0. Define

G(ω) := sup
t
J(θt(ω)).
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Then G(ω) <∞ because {J(θt(ω))} is a convergent sequence. Define

q :=
1

2
inf

p≤r≤G(ω)
ψ(r).

Then q > 0 because ψ(·) is a function of Class B. Now choose a T0 < ∞ such that J(θ(ω)) ≥ p for all
t ≥ T0. By the (KL’) property, it follows that

∥∇J(θ(ω))∥2 ≥ 2q, ∀t ≥ T0.

Next, choose T1 <∞ such that ∥vt(ω)∥2 ≤ q/L for all t ≥ T1, and define T2 = min{T0, T1}. Then it follows
from the Lipschitz continuity of ∇J(·) that

∥∇J(wt(ω))∥2 ≥ ∥∇J(θt(ω))∥2 − L∥vt(ω)∥2 ≥ q, ∀t ≥ T2. (4.4.89)

On the other hand, because ω ∈ Ω2, we have that∑
t=T2

αt(ω) = ∞. (4.4.90)

Thus (4.4.89) and (4.4.90) together imply that

∞∑
t=T2

αt∥∇J(θt)∥22 = ∞.

Since this contradicts (4.4.88), we conclude that no such ω ∈ Ω2 can exist. In other words W (ω) = 0 for all
ω ∈ Ω2. This establishes Item 3.

Item 4 is a ready consequence of Item 3 and Property (NSC). If {J(θt)} is bounded, then the fact that
J(·) has compact level sets means that {θt} is bounded. Then the fact that J(θt) → 0 as t → ∞ implies
that ρ(θt) → 0 as t → ∞; in other words, the distance from the iterate θt to the set SJ of global minima
approaches zero. Note that it is not assumed that SJ consists of a singleton.

This completes the proof of Theorem 4.3.

Proof of Theorem 4.4

The proof, based on Theorem 4.3, is basically the same as that of Theorem 4.4, except that we invoke
Theorem 2.24 instead of Theorem 2.23.. The only difference is that the bound (4.4.84) holds only after some
time T . Clearly this does not affect the asymptotic rate of convergence. Nevertheless, in the interests of
completeness, the proof is sketched here.

The hypotheses on the various constants imply that

α2
t = O(t−2+2ϕ), α2

tM
2
t = O(t−2+2(ϕ+δ)), αtBt = O(t−1+ϕ−γ),

while α2
tBt and α2

tB
2
t decay faster than αtBt. Hence both {ft} and {gt} are summable if

−2 + 2ϕ < −1,−2 + 2(ϕ+ δ) < −1,−1 + ϕ− γ < −1.

The three inequalities are satisfied if ϕ satisfies (4.4.38). Next, let us define ν as in (4.4.39), and apply
Theorem 2.24. This leads to the conclusion that J(ut) + ∥vt∥22 = o(t−λ) for every λ ∈ (0, ν). In turn this
means that, individually, both J(ut) and ∥vt∥22 are o(t−λ) for every λ ∈ (0, ν). Since θt = ut − (kt + ϵt)vt,
and both ϵt and kt are bounded, this leads to J(θt) = o(t−λ) for every λ ∈ (0, ν). Finally, the (PL) property
leads to ∥∇J(θt)∥22 = o(t−λ) for every λ ∈ (0, ν). If we choose the step size sequence to decay very slowly,
then the bound in (4.4.40) follows readily. This completes the proof of Theorem 4.4.
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4.4.5 Nonviability of an Earlier Iterative Scheme

In this section, we analyze the behavior of the solutions of (4.4.16) introduced in [130], reproduced here for
the convenience of the reader.

λt+1 =
λt
µt

− 1, ηt = (1 + λt+1)αt

Recall from (4.4.20) that the convergence conditions in [130] involve the “synthetic” step size sequence {ηt}.
The objective of this section is to show that this approach is not feasible. Specifically, if {µt} is a decreasing
sequence, then λt → ∞ as t → ∞. Thus, even if the original step size sequence {αt} is square-summable,
the synthetic sequence of step sizes {ηt} need not be. Thus the assumptions in (4.4.20) are strictly stronger
than the standard Robbins-Monro conditions, which are the sufficient conditions used in Theorem 4.3. In
the other direction, if {µt} is an increasing sequence bounded away from 1, eventually 1 + λt+1 < 0, thus
leading to a negative step size ηt, which is absurd. Thus the point is that, while the approach in [130] is
quite elegant, it is not practical.

We begin by presenting a “closed-form” formula for λt+1 as a function of the µt sequence. Write the first
equation in (4.4.16) as

λt+1 =
λt
µt

− 1 =
λt − λt−1

µt
+
λt−1

µt
− 1

=
1

µt
(λt − λt−1) +

(
1

µt
− 1

µt−1

)
λt−1 +

λt−1

µt−1
− 1

= λt +
1

µt
(λt − λt−1) +

(
1

µt
− 1

µt−1

)
λt−1.

(4.4.91)

Therefore

λt+1 − λt =
1

µt
(λt − λt−1) +

(
1

µt
− 1

µt−1

)
λt−1. (4.4.92)

It is easy to show by induction that a “closed-form” solution to (4.4.91) is

λt+1 = λt +

[
t∏

τ=1

1

µτ

]
(λ1 − λ0) +

t∑
τ=1

[
t−1∏
s=τ

1

µs

](
1

µτ
− 1

µτ−1

)
λτ−1, (4.4.93)

where empty products are taken as 1 and empty sums are taken as 0. Note that λ0 is unspecified. So if we
take λ0 = µ0/(1 − µ0), then

λ1 =
λ0
µ0

− 1 =
1

1 − µ0
− 1 =

µ0

1 − µ0
= λ0.

With this choice, the first term in (4.4.93) drops out; but this is not much of a simplification. Note also that
if µt = µ for all t, then λt = λ0 for all t.

Now let us analyze the behavior of λt in two specific situations: (i) {µt} is a strictly decreasing, i.e.,
µt < µt−1 for all t, and (ii) {µt} is strictly increasing, but bounded above by some µ̄ < 1. In principle, the
closed form solution (4.4.93) can be used to analyze arbitrary sequences {µt}. However, the two situations
studied here are perhaps the most natural.

Lemma 4.2. Suppose λ0 is chosen as µ0/(1 − µ0), so that λ1 = λ0. Suppose further that µt < µt−1 for all
t ≥ 1. Then λt → ∞ as t→ ∞.

Proof. The first step is to show that λt+1 > λt for all t ≥ 1. The proof is by induction. First, for t = 1, we
have that

λ2 =
λ1
µ1

− 1 >
λ1
µ0

− 1 =
1

1 − µ0
− 1 = λ1.
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Next suppose λt > λt−1. Then

λt+1 =
λt
µt

− 1 >
λt−1

µt−1
− 1 = λt.

This completes the proof by induction.
Next, we invoke the recursion (4.4.91).

λt+1 − λt =
1

µt
(λt − λt−1) +

(
1

µt
− 1

µt−1

)
λt−1.

The fact that µt < µt−1 implies that (
1

µt
− 1

µt−1

)
λt−1 > 0, ∀t ≥ 2.

Hence

λt+1 − λt >
1

µt
(λt − λt−1) >

1

µ2
(λt − λt−1), ∀t ≥ 2.

As a consequence we get

λt+1 − λt >

[
t∏

s=2

1

µs

]
(λ2 − λ1) >

(
1

µ2

)t−1

(λ2 − λ1), ∀t ≥ 2.

We can add the above bound for all t. Because it is a telescoping sum, we get

λt+1 = λ2 +

t∑
k=2

(λk+1 − λk) ≥ (λ2 − λ1)

t∑
k=2

(
1

µ2

)k−1

→ ∞ as t→ ∞.

Lemma 4.3. Suppose µt−1 < µt < 1 for all t, and that

t∏
τ=2

(
1

µτ

)
→ ∞ as t→ ∞. (4.4.94)

Then there exists a finite t0 such that
1 + λt < 0, ∀t ≥ t0. (4.4.95)

In particular, if µt ≤ µ̄ < 1 for all t, then we can take

t0 = 3 + log(1/µ̄)

λ1
λ1 − λ2

. (4.4.96)

Proof. Observe that

λ2 =
λ1
µ1

− 1 <
λ1
µ0

− 1 = λ1.

Now suppose that λt < λt−1. Then

λt+1 =
λt
µt

− 1 <
λt−1

µt−1
− 1 = λt.

After observing that
1

µt
− 1

µt−1
< 0,
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we can rewrite(4.4.91) as

λt − λt+1 =
1

µt
(λt−1 − λt) +

(
1

µt−1
− 1

µt

)
λt−1. (4.4.97)

Now suppose λτ > 0 for τ = 1, · · · , t. Then (4.4.97) implies that

λτ − λτ+1 >
1

µτ
(λτ−1 − λτ ) >

(
τ∏

k=2

1

µk

)
(λ1 − λ2). (4.4.98)

λ1 − λt+1 =

t∑
τ=1

(λτ − λτ−1) >

[
t∑

τ=1

(
t∏

k=2

1

µk

)]
(λ1 − λ2). (4.4.99)

Consequently

λt+1 < λ1 −

[
t∑

τ=1

(
τ∏

k=2

1

µk

)]
(λ1 − λ2)

< λ1 −

(
t∏

k=2

1

µk

)
(λ1 − λ2).

(4.4.100)

Now choose T such that (
T∏

k=2

1

µk

)
>

λ1
λ1 − λ2

. (4.4.101)

This is possible in view of (4.4.94). Then there are two possibilities: (i) λτ > 0 for τ = 2, · · · , T . Then
λT+1 < 0 by virtue of (4.4.101). In this case we have that

λT+2 =
λT+1

µT+1
− 1 < −1.

Therefore λT+2 + 1 < 0. The argument can be repeated, to show that λt + 1 < 0 for all t ≥ T + 2. Hence
we can take t0 = T + 2 in (4.4.101). (ii) There exists a τ between 2 and T such that λτ ≤ 0. By the above
reasoning, it follows that

λτ+1 =
λτ
µτ

− 1 ≤ −1 < 0.

Therefore

λτ+2 =
λτ+1

µτ+1
− 1 < −1, or λτ+2 + 1 < 0.

As above, this leads to the conclusion that λt + 1 < 0 for all t ≥ τ + 2. Since τ ≤ T , we can conclude as
before that λt + 1 < 0 for all t ≥ T + 2. Hence we can again take t0 = T + 2 in (4.4.101).

To prove the last claim, suppose that µt ≤ µ̄ < 1 for all t. Then we can replace (4.4.101) by(
1

µ̄

)T−1

≥ λ1
λ1 − λ2

.

Solving for T and choosing t0 = T + 2 gives (4.4.96).
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4.5 Stochastic Algorithms with Block Updating

Until now, we have studied what might be called “full coordinate updating.” Thus, in (4.3.1), it is assumed
that, at each step t, every component of θt is updated. Similarly, in (4.4.2)–(4.4.3), it is assumed that
every component of both wt and vt are updated at each t. In Chapter 3, we studied various types of
“block stochastic approximation” in which, at each step t, some but not necessarily all components of θt are
updated. This is referred to as block updating, though the terminology is not standard. We study three
different types of block updating, which cater to the most commonly used methods. It is shown that, for
the SGD algorithm, if the assumptions in Theorems 4.1 or 4.2 are satisfied, then the conclusions of these
theorems continue to hold under each of these types of block updating. For the unified momentum algorithm,
the situation is not so satisfactory. We are able to prove that, if block updating is used in the stochastic
gradient term ht+1 in (4.4.2)–(4.4.3), but not in the delay or momentum term, then the conclusions of
Theorems 4.3 and 4.4 continue to hold. At the moment, there are no results on what happens when block
updating is applied also to the momentum terms.

4.5.1 Various Block Updating Schemes

Let ht+1 denote the stochastic gradient in (4.3.1). The updating method described in (4.3.1) is then the
“full coordinate” update option. We refer to it as “Option 1.” Now we describe three different options
for block updating, which we call single coordinate, multiple coordinate, and Bernoulli updates. These are

called Options 2, 3 and 4, and are denoted by h
(k)
t+1 for k = 2, 3, 4. These updating schemes include most if

not all of the widely used block updating methods.
Option 1: Full Coordinate Update: Let

h
(1)
t+1 = ht+1. (4.5.1)

Option 2: Single Coordinate Update: This option is also referred to as “coordinate gradient descent”
in [175] and studied further in [165]. At time t, choose an index κt ∈ [d] at random with a uniform probability,
and independently of previous choices. Let eκt denote the elementary unit vector with a 1 as the κt-th
component and zeros elsewhere. Then define

h
(2)
t+1 = deκt

◦ ht+1, (4.5.2)

where ◦ denotes the Hadamard, or component-wise, product of two vectors of equal dimension. Thus

[h
(2)
t+1]j =

{
ht+1,i if j = i,
0 if j ̸= i.

The factor d arises because the likelihood that κt equaling any one index i ∈ [d] is 1/d. In this option, if
κt = i ∈ [d] at step t, then only the i-th coordinate of θt gets updated at time t. In other words,

θt+1,j = θj,t, ∀j ̸= i.

Option 3: Multiple Coordinate Update: This option is just coordinate update along multiple coor-
dinates chosen independently at random. At time t, choose N different indices κnt from [d] with replacement,
with each choice being independent of the rest, and also of past choices. Moreover, each κnt is chosen from
[d] with uniform probability. Then define

h
(3)
t+1 :=

d

N

N∑
n=1

eκn
t
◦ ht+1. (4.5.3)

Because sampling is with replacement, the average number of times an index i ∈ [d] gets selected for updating
is is N/d; to normalize this, the multiplicative factor in (4.5.3) is the reciprocal of the average. In this option,
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h
(3)
t+1 can have up to N nonzero components. Because the sampling is with replacement, there might be some

duplicated samples. In such a case, the corresponding component of ht+1 simply gets counted multiple times
in (4.5.3).

Option 4: Bernoulli Update: At time t, let {Bt,i, i ∈ [d]} be independent Bernoulli processes with
success rate ρt. Thus

Pr{Bt,i = 1} = ρt, ∀i ∈ [d]. (4.5.4)

It is permissible for the success probability ρt to vary with time. However, at any one time, all components
must have the same success probability. Then define

vt :=

d∑
i=1

eiI{Bt,i=1} ∈ {0, 1}d. (4.5.5)

Thus vt is a random vector, and vt,i equals 1 if Bt,i = 1, and equals 0 otherwise. Now define

h
(4)
t+1 =

1

ρt
vt ◦ ht+1. (4.5.6)

Note that, as with the other options, the factor 1/ρt is the reciprocal of the likelihood of a particular i ∈ [d]
being selected for updating. However, there is no a priori upper bound on the number of nonzero components

of h
(4)
t+1; the stochastic gradient h

(4)
t+1 can have up to d nonzero components. It is also possible that Bt,i = 0

for each i, in which case vt = 0 and θt+1 = θt. But the expected number of nonzero components is ρtd.

4.5.2 Convergence of SGD with Block Updating

When the choice of the block update direction involves some random choices (such as κnt or Bt+1,i), the
definition of the filtration {Ft} needs to be adjusted. In the case of Option 2 (coordinate updating), Ft

is the σ-algebra generated by κt0 in addition to θt0 and ht
1. In the case of Option 3, κt0 is replaced by the

collection κt0,i for i ∈ [N ]. Finally, in Option 4, κt0 is replaced by vt
0.

The objectives of Lemma 4.4 below are: (i) to show that the conditional expectation Et(h
(k)
t+1 is the same

for all four values of K, and (ii) to give explicit expressions for the conditional variance CVt(h
(k)
t+1 for each

value of k. To reduce the notational burden, we denote h
(1)
t+1 by just ht+1.

Lemma 4.4. As in (4.3.4), define

zt = Et(ht+1), ζt+1 = ht+1 − zt.

Then
Et(h

(k)
t+1) = Et(h

(1)
t+1) = zt, k = 2, 3, 4. (4.5.7)

Moreover,

CVt(h
(2)
t+1) = (d− 1)∥zt∥22 + dEt(∥ζt+1∥22),

CVt(h
(3)
t+1) = (d− 1)∥zt∥22 + dEt(∥ζt+1∥22),

CVt(h
(4)
t+1) =

1 − ρt
ρt

∥zt∥22 +
1

ρt
Et(∥ζt+1∥22).

(4.5.8)

Proof. It is obvious that (4.5.7) is satisfied. Therefore, to compute the conditional variance of h
(k)
t+1, it is

necessary to compute the residual ∥h(k)
t+1 − zt∥22, and then take its conditional expectation.

Option 2: Suppose that κt = i. Then

h
(2)
t+1,j =

{
d(zt,i + ζt+1,i), if j = i,
0, if j ̸= i,
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h
(2)
t+1,j − zt,j =

{
(d− 1)zt,i + dζt+1,i, if j = i,
−zt,j , if j ̸= i,

Therefore, conditioned on the event κt = i, we have that

d∑
j=1

(h
(2)
t+1,j − zt,j)

2 = (d− 1)2z2t,i + d2ζ2t+1,i + 2d(d− 1)zt,iζt+1,i +
∑
j ̸=i

z2t,j ,

Now we take the conditional expectation of the above quantity. For this purpose, we note that (i) each of
the events κt = i occurs with probability 1/d, and (ii) Et(zt,iζt+1,i) = 0. Hence

Et(∥h(2)
t+1 − zt∥22) =

1

d

d∑
i=1

(d− 1)2z2t,i +
∑
j ̸=i

z2t,j

+
1

d

d∑
i=1

Et(d
2ζ2t+1,i)

=
(d− 1)2 + (d− 1)

d
∥zt∥22 + dEt(∥ζt+1∥22)

= (d− 1)∥zt∥22 + dEt(∥ζt+1∥22).

This gives the first equation in (4.5.8).
Option 3: Observe that ht+1 is the average ofN different quantities wherein the error terms ζnt+1, n ∈ [N ]

are independent. Therefore their variances just add up, giving the middle equation in (4.5.8).
Option 4: For notational simplicity, we just use ρ in the place of ρt. In this case, each component

ht+1,i equals (1/ρ)(zt,i + ζt+1,i) with probability ρ, and 0 with probability 1 − ρ. Thus ht+1,i − zt,i equals
((1/ρ) − 1)zt,i + (1/ρ)ζt+1,i with probability ρ, and −zt,i with probability 1 − ρ. As can be easily verified,
the conditional variance is ((1 − ρ)/ρ)z2t,i + (1/ρ)Et(ζ

2
t+1,i)) for each component. As the Bernoulli processes

for each component are mutually independent, the variances simply add up. It follows that

CVt(h
(4)
t+1) =

1 − ρ

ρ
∥zt∥22 +

1

ρ
Et(∥ζt+1∥22),

which is the bottom equation in (4.5.8).

With Lemma 4.4 in place, we can now state the following meta-theorem on the convergence of block-
uptating applied to the SGD algorithm. To state the theorem, we define xt as in (4.3.4), and study the SGD
formulation

θ
(k)
t+1 = θ

(k)
t − αth

(k)
t+1. (4.5.9)

This formulation is just (4.3.1), with the “full coordinate” stochastic gradient ht+1 replaced by h
(k)
t+1 for

k = 2, 3, 4. As stated earlier, we denote h
(1)
t+1 as ht+1.

Theorem 4.5. Suppose the stochastic gradient ht+1 satisfies the bounds (4.3.6) and (4.3.7). Further, suppose
that when Option 4 is used, then

inf
t
ρt =: ρ̄ > 0. (4.5.10)

Then the conclusions of Theorems 4.1 and 4.2 continue to hold for {θ(k)t } for k = 2, 3, 4.

Proof. For the update rule (4.5.9), one can just replace ht+1 by h
(k)
t+1 in (4.3.13). Therefore, for k = 2 or

k = 3, (4.3.14) gets replaced by

Et(J(θ
(k)
t+1)) = J(θt) − αt⟨∇J(θ

(k)
t ), zt⟩ +

α2
tL

2
Et(∥h(k)

t+1∥22)

= J(θt) − αt⟨∇J(θ
(k)
t ), zt⟩ +

α2
tL

2
[(d− 1)∥zt∥22 + dEt(∥ζt+1∥22)]

≤ J(θ
(k)
t ) − αt⟨∇J(θ

(k)
t ), zt⟩ +

α2
tdL

2
[∥zt∥22 + Et(∥ζt+1∥22)]

= J(θ
(k)
t ) − αt⟨∇J(θ

(k)
t ), zt⟩ +

α2
tdL

2
CVt(∥ht+1∥22). (4.5.11)
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In deriving (4.5.11), we use two facts: First, all the stochastic gradients h
(k)
t+1 have the same conditional

expectation, and second, it follows from (4.5.8) that

CVt(∥h(k)
t+1∥22) = (d− 1)∥zt∥22 + dEt(∥ζt+1∥22) ≤ d[∥zt∥22 + dEt(∥ζt+1∥22)] = dCVt(∥ht+1∥22).

So in effect we have replaced α2
t by dα2

t . The desired conclusions now follow readily. Next, when Option 4
is utilized, we have that

CVt(h
(4)
t+1) =

1 − ρt
ρt

∥zt∥22 +
1

ρt
Et(∥ζt+1∥22) ≤ 1 − ρ̄

ρ̄
CVt(∥ht+1∥22).

So once again the desired conclusion follows.

4.5.3 Convergence of the Unified Momentum Algorithms

Next we study the unified momentum-based algorithms of (4.4.2)–(4.4.3), but with block updating. Specif-
ically, suppose

wt+1 = wt + atvt − btαth
(k)
t+1, (4.5.12)

vt+1 = µtvt − αth
(k)
t+1, (4.5.13)

where h
(k)
t+1 denotes the block-updated stochastic gradient. Thus, at each step t, some but not all components

of h
(k)
t+1 will be zero. However, there is no block-updating in the other terms.

Theorem 4.6. Suppose that the various constants satisfy the assumptions in (4.4.29), while the objective
function J(·) satisfies Standing Assumptions (J1) and (J2). Further, suppose the stochastic gradient ht+1

satisfies the assumptions (4.4.27)–(4.4.28). Further, suppose that when Option 4 is used, then

inf
t
ρt =: ρ̄ > 0. (4.5.14)

Then the conclusions of Theorems 4.3 and 4.4 continue to hold for {θ(k)t } for k = 2, 3, 4.

The proofs are omitted as they are obvious.

Notes and References

As shown in Section 3.1, the problem of finding a stationary point of a C1 function J(·) is equivalent to
finding a solution of ∇J(θ∗) = 0. Hence all the discussion in Chapter 3 is also applicable here.

As mentioned in the Notes and References section of Chapter 1, methods such as steepest descent,
conjugate gradient, and quasi-Newton etc. using the exact gradient vector were widely studied in the 1960s.
However, the behavior of these algorithms when the true gradient was replaced by an approximate, or even
stochastic, gradient commenced only in the 1970s. One of the early papers to study this approach is [118],
in which the authors introduce a “pseudo-gradient” (which is the same as the present stochastic gradient)
which, on average, has a negative inner product with the true gradient. From that beginning, optimization
using a stochastic gradient has witnessed an explosion of papers. The objectives of these papers was mostly to
relax the assumptions on the class of functions (from strongly convex or convex to something more general),
and on the measurement errors (by permitting biased noise and/or noise whose conditional variance grows
without bound at the iteration counter t increases). The results in Section 4.3 are the most general available
at present, and are taken from [70, 71].

The material in Section 4.5 is largely taken from [121], which also contains several numerical examples.
There are several other papers that mention “block” updating, such as [176, 30, 97, 122]. However, the
choice of the “blocks” to be udpated is far less general than it is in [121]. The discussion of momentum-
based methods with time-varying parameters is taken from [169].



Chapter 5

Markov Decision Processes

A brief introduction to Reinforcement Learning was given in Section 1.2. A widely used mathematical
formalism for studying problems in RL is Markov Decision Processes (MDPs) where the dynamics of the
Markov process are not known, and must somehow be “inferred” on the fly. Before tackling that problem, we
must first understand MDPs when the dynamics are known. That is the aim of the present chapter. In the
interests of simplicity, the discussion is limited to the situation where the state and action spaces underlying
the MDP are finite sets. MDPs where the underlying state space and/or action space is countable, or an
arbitrary measurable space, are also of interest in some applications. For example, the situation where X
and/or U are subsets of some Euclidean space Rd for some d are also sometimes of interest. Two recent
papers [60, 61] present some new techniques for addressing such problems. The latter paper also contains an
extensive and relevant bibliography. However, we do not study the more general situations in these notes.

The topic of MDPs is quite well-studied, and there are several excellent books on the subject. The reader
is directed to [119] for a comprehensive treatment of the subject, which also studies the case of infinite state
and action spaces. The theory of MDPs is also studied in [145] and [148]. The book [27] contains several
practical examples of MDPs.

5.1 Markov Reward Processes

Recall the introduction to Markov processes in Section 2.2. Further facts about Markov processes can be
found in [131, 167].

Suppose X is a finite set of cardinality n, written as {x1, . . . , xn}. If {Xt}t≥0 is a stationary Markov
process assuming values in X , then the corresponding state transition matrix A is defined by

aij = Pr{Xt+1 = xj |Xt = xi}. (5.1.1)

Thus the i-th row of A is the conditional probability vector of Xt+1 when Xt = xi. Clearly the row sums of
the matrix A are all equal to one. Therefore the induced norm ∥A∥∞→∞ also equals one.

Up to now there is nothing new beyond the contents of Section 2.2. Now suppose that there is a “reward”
function R : X → R associated with each state. There is no consensus within the community about whether
the reward corresponding to the state Xt is paid at time t as in [148], or time t + 1, as in [119, 145]. It is
assumed here that the reward is paid at time t, and is denoted by Rt; the modifications required to handle
the other approach are easy and left to the reader. The reward Rt can either be a deterministic function of
Xt, or a random function. If Rt is a deterministic function of Xt, then we have that Rt = R(Xt) where R is
the reward function mapping X into (a finite subset of) R. On the other hand, if Rt is a random function of
Xt, then one would have to provide the probability distribution of Rt given Xt. Since Xt has only n different
values, we would have to provide n different probability distributions.

Two kinds of Markov reward processes are widely studied, namely: Discounted reward processes, and
average reward processes. Each of these is studied in a separate subsection.

135
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5.1.1 Discounted Reward Processes

a
To study discounted Markov Reward Processes, we choose a “discount factor” γ ∈ (0, 1). Suppose xi ∈ X

is the “starting state of interest.” Then the expected discounted future reward V (xi) starting at time
0 in state xi is defined as

V (xi) = E

[ ∞∑
t=0

γtRt|X0 = xi

]
. (5.1.2)

We often just use “discounted reward” instead of the longer phrase. Note that, because the set X is finite,
the reward function Rt is bounded if it is a deterministic function of Xt. If Rt is a random variable dependent
on Xt, then it customary to assume that it is bounded. With these assumptions, because γ < 1, the above
summation converges and is well-defined. The quantity V (xi) is referred to as the value function associated
with xi, and the vector

v = [ V (x1) · · · V (xn) ]⊤, (5.1.3)

is referred to as the value vector. Note that, throughout these notes, we view the value as both a function
V : X → R as well as a vector v ∈ Rn. The relationship between the two is given by (5.1.3). We shall use
whichever interpretation is more convenient in a given context.

This raises the question as to how the value function and/or value vector is to be determined. Define the
vector r ∈ Rn via

r := [ r1 · · · rn ]⊤, (5.1.4)

where, if Rt is a random function of Xt, then

ri := E[Rt|Xt = xi]. (5.1.5)

Of course, if Rt is a deterministic function R(Xt), then ri is just R(xi).

Theorem 5.1. The vector v satisfies the recursive relationship

v = r + γAv, (5.1.6)

or, in expanded form,

V (xi) = ri + γ

n∑
j=1

aijV (xj). (5.1.7)

Proof. Let xi ∈ X be arbitrary. Then by definition we have

V (xi) = E

[ ∞∑
t=0

γtRt|X0 = xi

]
= ri + E

[ ∞∑
t=1

γtRt|X0 = xi

]
. (5.1.8)

However, if X0 = xi, then X1 = xj with probability aij . Therefore we can write

E

[ ∞∑
t=1

γtRt|X0 = xi

]
=

n∑
j=1

aijE

[ ∞∑
t=1

γtRt|X1 = xj

]

= γ

n∑
j=1

aijE

[ ∞∑
t=0

γtRt|X0 = xj

]

= γ

n∑
j=1

aijV (xj). (5.1.9)

In the second step we use fact that the Markov process is stationary. Substituting from (5.1.9) into (5.1.8)
gives the recursive relationship (5.1.7).
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Example 5.1.

S 1 2 3 4 5 6 7 8 9 W L

We analyze the toy snakes and ladders game of Example 2.6. As shown therein, the state transition
matrix of this game is given by

S 1 4 5 6 7 8 W L
S 0 0.25 0.25 0.25 0 0.25 0 0 0
1 0 0 0.25 0.50 0 0.25 0 0 0
4 0 0 0 0.25 0.25 0.25 0.25 0 0
5 0 0.25 0 0 0.25 0.25 0.25 0 0
6 0 0.25 0 0 0 0.25 0.25 0.25 0
7 0 0.25 0 0 0 0 0.25 0.25 0.25
8 0 0.25 0 0 0 0 0.25 0.25 0.25
W 0 0 0 0 0 0 0 1 0
L 0 0 0 0 0 0 0 0 1

We define a random reward function for this problem, as follows: We set Rt = f(Xt+1), where f is defined
as follows: f(W ) = 5, f(L) = −2, f(x) = 0 for all other states. However, there is an expected reward
depending on the state at the next time instant. For example, if X0 = 6, then the expected value of R0 is
5/4, whereas if X0 = 7 or X0 = 8, then the expected value of R0 is 3/4.

Now let us see how the implicit equation (5.1.6) can be solved to determine the value vector v. Since the
induced matrix norm ∥A∥∞→∞ = 1 and γ < 1, it follows that the matrix I − γA is nonsingular. Therefore,
for every fixed assignment of rewards to states, there is a unique v that satisfies (5.1.6). In principle it is
possible to deduce from (5.1.6) that

v = (I − γA)−1r. (5.1.10)

The difficulty wth this formula however is that in most actual applications of Markov Decision Problems,
the integer n denoting the size of the state space X is quite large. Moreover, inverting a matrix has cubic
complexity in the size of the matrix. Therefore it may not be practicable to invert the matrix I − γA. So
we are forced to look for alternate approaches. A feasible approach is provided by the Contraction Mapping
Theorem (CMT), namely Theorem 7.1. With the contraction mapping theorem in hand, we can apply it to
the problem of computing the value of a discounted Markov reward process.

Theorem 5.2. The map y 7→ Ty := r+γAy is monotone and is a contraction with respect to the ℓ∞-norm,
with contraction constant γ.

Proof. The first statement is that if y1 ≤ y2 componentwise (and note that the vectors y1,y2 need not
consist of only positive components), then Ty1 ≤ Ty2. This is obvious from the fact that the matrix A has
only nonnegative components, so that Ay ≥ 0 whenever y ≥ 0, where the inequalities are componentwise.
Now suppose that y1 ≤ y2. Then

y2 − y1 ≥ 0 =⇒ A(y2 − y1) ≥ 0.
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Therefore Ay1 ≤ Ay2, which in turn implies that T is monotone. For the second statement, note that,
because the matrix A is row-stochastic, the induced norm of A with respect to ∥ · ∥∞ is equal to one.
Therefore

∥Ty1 − Ty2∥∞ = ∥γA(y1 − y2)∥∞ ≤ γ∥y1 − y2∥∞.

This completes the proof.

Therefore one can solve (5.1.6) by repeated application of the contraction map T . In other words, we
can choose some vector y0 arbitrarily, and then define

yi+1 = r + γAyi.

Then the contraction mapping theorem tells us that yi converges to the value vector v. Moreover, from
(7.1.3) one can estimate how far the current iteration is from the solution v. Note that the contraction
constant ρ in the statement of the theorem can be taken as the discount factor γ. Define the constant

c := ∥r + γAy0 − y0∥∞,

which measures how far away the initial guess y0 is from satisfying (5.1.6). Then we have the estimate

∥yi − v∥∞ ≤ γi

1 − γ
c. (5.1.11)

In this approach to finding the value function, each iteration has quadratic complexity in n, the size of the
state space. Moreover, (5.1.11) can be used to decide how many iterations should be run to get an acceptable
estimate for v. This approach to determining v (albeit approximately) is known as “value iteration.” Now,
if we wish to find an approximation vk to v that is accurate to within some prespecified accuracy ϵ, then we
need to ensure that

γk

1 − γ
c ≤ ϵ, or k ≥ log(c/(ϵ(1 − γ)))

log(1/γ)
=

log((ϵ(1 − γ))/c)

log γ
=: N,

after routine calculations. Thus if we use N iterations, then the complexity of value iteration is O(Nn2)
as opposed to O(n3) for using (5.1.10). Hence the value iteration approach is preferable if N ≪ n. To
illustrate, let us choose typical values of γ = 0.99, ϵ = 10−4. If the initial mismatch c = 5, then N = 1, 535.
So if, for example, n = 106, then value iteration would be preferable. Note that the faster future rewards
are discounted (i.e., the smaller γ is), the faster the iterations will converge.

5.1.2 Average Reward Markov Processes

a
Now we discuss average reward Markov processes. As before, there is a Markov process {Xt}t≥0 on

a finite space X of cardinality n, with the state transition matrix A ∈ [0, 1]n×n, and a reward function
R : X → R. If the reward is random, it is assumed that the reward is bounded almost surely (to avoid
technicalities), and the symbol ri is used to denote the expected value of the reward to be paid at time t,
when Xt = xi.

The objective is to compute the average reward

c∗ := lim
T→∞

1

T

T∑
t=0

E[R(Xt)|X0 ∼ ϕ], (5.1.12)

where ϕ ∈ S(X ) is a probability distribution on X . Compared with the definition (5.1.2) of the discounted
reward, two points of contrast would strike us at once.
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1. In (5.1.2), the existence of the sum is not in question, because γ < 1. However, in the present instance,
there is no a priori reason to assume that the limit in (5.1.12) exists.

2. The value function V in (5.1.2) is associated with an initial state xi. It is implicit in the definition that
V (xi) need not equal V (xj) if xi ̸= xj . In (5.1.12), the initial state is replaced by an initial distribution
ϕ, which is more general. However, we write c∗, instead of c∗(ϕ), suggesting that the limit, if it exists,
is independent of ϕ.

Theorem 5.3 presents a simple sufficient condition to address both of the above observations.

Theorem 5.3. Suppose A is irreducible, and let µ denote its unique stationary distribution. Then

c∗ = µr = E[R,µ], ∀ϕ ∈ S(X ), (5.1.13)

where r is the reward vector defined in (5.1.4).

Proof. If X0 ∼ ϕ, then Xt ∼ ϕAt. Therefore

E[R(Xt)|X0 ∼ ϕ] = ϕAtr.

Also, as stated in Theorem 2.11, we have

lim
T→∞

1

T

T∑
t=0

At = 1nµ.

Therefore

c∗ = ϕ

[
lim

T→∞

1

T

T∑
t=0

At

]
r = ϕ1nµr = µr = E[R,µ], (5.1.14)

because ϕ1n = 1. This is the desired result.

Next we introduce an important concept known variously as the bias or the transient reward. For a
discussion (albeit with “reward” replaced by “cost”), see [119, Section 8.2.3] or [3, Section 4.1].

Definition 5.1. Suppose A is primitive,1 and define c∗ as in (5.1.14) For each index i, the transient
reward J∗

i ∈ R is defined as

J∗
i =

∞∑
t=0

{E[R(Xt|X0 = xi] − c∗}. (5.1.15)

A priori it is not clear why the sum in (5.1.15) is well-defined, because there is no averaging over time.
It is now shown that the transient reward is indeed well-defined, and several explicit expressions are given
for it.

Theorem 5.4. Suppose A is primitive, and let µ denote its stationary distribution. Define M := 1nµ ∈
[0, 1]n×n, and J∗ ∈ Rn as [J∗

i ]. Then the following statements are true:

1. The vector J∗ is well-defined.

2. An explicit expression for J∗ is given by

J∗ = (I −A+M)−1(I −M)r = (I −A+M)−1(r− c∗1n). (5.1.16)

1This is equivalent to assuming that A is irreducible and aperiodic; see Theorem 2.10.
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3. The vector J∗ satisfies the “Poisson equation”

J = r− c∗1n +AJ. (5.1.17)

Moreover, J∗ is the unique solution of (5.1.17) that satisfies

µJ = 0. (5.1.18)

Proof. Note that µ,1n are row and column eigenvectors of A corresponding to the eivenvalue λ = 1, and
that all other eigenvalues of A have magnitude less than one. So if we define

A2 = A− 1nµ = A−M,

then the spectrum of A2 is the same as that of A, except that the eigenvalue at 1 is replaced by 0. In
particular, ρ(A2) < 1, and as a consequence

∞∑
t=0

At
2 = (I −A2)−1 = (I −A+M)−1. (5.1.19)

Next, suppose v ∈ Rn satisfies µv = 0. Then it is easy to verify that Av = A2v, and moreover,
µA2v = 0. Repeated application of this relationship shows that Atv = At

2v, for all t ≥ 1. Therefore, for
every such v, we have that

∞∑
t=0

Atv =

∞∑
t=0

At
2v = (I −A+M)−1v. (5.1.20)

Now in particular, choose
v = r− c∗1n = (I −M)r.

Then it follows from (5.1.14) that µv = 0. Hence (5.1.20) implies that

∞∑
t=0

At(r− c∗1n) = (I −A+M)−1(I −M)r.

To prove Statements 1 and 2, let ei denote the i-th elementary basis vector. Then X0 = xi is equivalent
to X0 ∼ e⊤i . Then Xt ∼ e⊤t A

t, and

J∗
i =

∞∑
t=0

[e⊤i A
tr− c∗],

J∗ =

∞∑
t=0

(Atr− c∗1n) =

∞∑
t=0

At(r− c∗1n)

= (I −A+M)−1(I −M)r. (5.1.21)

Here we use the fact that c∗1n = c∗At1n for all t. This establishes Statements 1 and 2.
Now we come to Statement 3. From (5.1.15), we get

J∗
i =

∞∑
t=0

{E[R(Xt|X0 = xi] − c∗}

= ri − c∗ +

∞∑
t=1

{E[R(Xt|X0 = xi] − c∗}

= ri − c∗ +

n∑
j=1

aij

∞∑
t=1

{E[R(Xt|X1 = xj ] − c∗}

= ri − c∗ +

n∑
j=1

aijJ
∗
j ,
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which is just (5.1.17) written out in component form. Hence J∗ is a particular solution of (5.1.17).
Finally, observe that if J is another solution of (5.1.17), then (J∗ − J) = A(J∗ − J), which implies that

J = J∗ + α1n for some constant α. Thus {J∗ + α1n : α ∈ R} is the set of all solutions to (5.1.17). Now,
since µ(r− c∗1n) = 0, it follows that

µJ∗ = µ

∞∑
t=0

At(r− c∗1n) =

∞∑
t=0

µ(r− c∗1n) = 0.

Moreover, if µ(J∗ + α1n) = 0, then α = 0. Hence J∗ is the unique solution of (5.1.17) that satisfies
µJ = 0.

It is possible to give an alternate proof of Statement 3, and we do so now. Suppose J∗ is given by (5.1.21).
Observe that

µ(I −A+M) = µM = µ, or µ(I −A+M)−1 = µ.

Also, µ(I −M) = 0. Therefore

µJ∗ = µ(I −A+M)−1(I −M)r = µ(I −M)r = 0.

Next, (5.1.21) implies that
(I −A+M)J∗ = (I −M)r.

However, MJ∗ = 1nµJ
∗ = 0, and (I −M)r = r− c∗1n. Therefore

J∗ −AJ∗ = r− c∗1n.

This is just (5.1.17). The above derivation avoids infinite sums.
Let us now summarize the situation of discounted reward processes vis-a-vis average reward processes.

� The discounted reward is well-defined for all Markov reward processes, irrespective of the nature of
the matrix A.

� If A is irreducible, then the average reward is also well-defined. However, there is no guarantee that
the transient reward is well-defined.

� If A is not just irreducible but also primitive, then the transient reward is also well-defined.

5.2 Markov Decision Processes

5.2.1 Markov Decision Processes: Problem Set-Up

In a Markov process, the state Xt evolves on its own, according to a predetermined state transition matrix. In
contrast, in a MDP, there is also another variable called the “action” which affects the dynamics. Specifically,
in addition to the state space X , there is also a finite set of actions U . Associated with each action uk ∈ U
is a corresponding state transition matrix Auk = [auk

ij ]. So at time t, if the state Xt equals xi, and an action
uk ∈ U is applied, then

Pr{Xt+1 = xj |Xt = xi, Ut = uk} = auk
ij , ∀xj ∈ X . (5.2.1)

Obviously, for each fixed uk ∈ U , the corresponding state transition matrix Auk is row-stochastic. In addition,
there is also a “reward” function R : X ×U → R. Note that in a Markov reward process, the reward depends
only on the current state, whereas in a Markov decision process, the reward depends on both the current
state as well as the action taken. As in Markov reward processes studied in Section 5.1, it is possible to
permit R to be a random function of Xt and Ut as opposed to a deterministic function. Moreover, to be
consistent with the earlier convention, it is assumed that the reward R(Xt, Ut) is paid at time t. Note that
other authors assume that the reward is paid at time t+ 1.
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In the above definition, the assumption is that the set of permissible actions U does not depend on the
current state xi. One can imagine situations where this assumption may not be realistic. An example is
provided by autonomous navigation in the midst of obstacles. Suppose there is a grid, some squares of
which are occupied by obstacles, and the state space X consists of the free squares. The action set can be
U = {F,B,R,L}, representing go forward, go back, turn right, and turn left respectively. Depending on
the current state (that is, the square currently occupied by the vehicle), some of these actions might not be
permissible, due to the presence of obstacles. However, this situation can be tackled by assigning a large
negative “reward” (that is, a large penalty) to an action that is not permitted. This approach provides a
uniform set of actions for all states.

The most important concept in an MDP is that of a “policy,” which is just a systematic way of choosing
Ut given Xt. One can make a distinction between deterministic and probabilistic policies. A deterministic
policy is just a map from X to U . A probabilistic policy is a map from X from the set of probability
distributions on U , denoted by S(U). Let Πd, Πp denote respectively the set of deterministic, and the set
of probabilistic, policies. Clearly the number of deterministic policies is |U||X |, while Πp is uncountable.
Observe that a policy π ∈ Πd can be represented by a matrix Pπ of dimensions |X | × |U|, where each row of
Pπ contains a single one and the rest are zeros. Thus in i, the one is in column π(xi) and the rest are zeros.
If π ∈ Πp, then Pπ need not be binary, but Pπ must have only nonnegative elements, and the sum of each
row must equal one.

Now we make an important observation. Whether a policy π is deterministic or probabilistic, the resulting
stochastic process {Xt} is a Markov process with the state transition matrix denoted by Aπ determined as
follows: If π ∈ Πd, then

[Aπ]ij = Pr{Xt+1 = xj |Xt = xi, π} = a
π(xi)
ij . (5.2.2)

If π ∈ Πp and
π(xi) = [ ϕi1 · · · ϕim ], (5.2.3)

where m = |U|, then

[Aπ]ij = Pr{Xt+1 = xj |Xt = xi, π} =

m∑
k=1

ϕika
uk
ij . (5.2.4)

Equation (5.2.4) contains (5.2.3) as a special case, by setting ϕij = 1 if π(xi) = uj , and zero otherwise.
In a similar manner, for every policy π, the reward function R : X × U → R can be converted into a

reward map Rπ : X → R, or a reward vector rπ, as follows: If π ∈ Πd, then

Rπ(xi) = R(xi, π(xi)), (5.2.5)

whereas if π ∈ Πp, then

Rπ(xi) =

m∑
k=1

ϕikR(xi, uk). (5.2.6)

Equations (5.2.4) and (5.2.6) can be put into “closed-form” using the notion of a Hadamard product.
The standard definition of a Hadamard product is this: If M,N are matrices of equal dimensions, then their
Hadamard product M ◦N has the same dimensions, and is defined by

[M ◦N ]ij = mijnij , ∀i, j.

We now extend the definition as follows: Suppose M is a matrix, and N is a column vector, where both
M,N have the same number of rows. Then we define M ◦N as a matrix that has the same dimensions as
M , given by

[M ◦N ]ij = mijni, ∀i, j.

With this definition, we can write both Aπ and rπ as follows: Defiine the matrix Pπ ∈ [0, 1]|X |×|U| associated
with the policy π. Note that if π ∈ Πd is a deterministic policy, then Pπ ∈ {0, 1}|X |×|U|. Let [Pπ]k denote



5.2. MARKOV DECISION PROCESSES 143

the k-th column of Pπ. Then

Aπ =

|U|∑
k=1

A(uk) ◦ [Pπ]k. (5.2.7)

Next, write the Reward matrix R as a matrix of dimensions |X | × |U|, where

Rik = R(xi, uk).

Then

rπ = [R ◦ Pπ] · 1|U| =

|U|∑
k=1

R ◦ [Pπ]k. (5.2.8)

Suppose |X | = 3, |U| = 2. Thus there are three states and two actions. Suppose that the two state
transition matrices are given by

A(u1) =

 0.2 0.5 0.3
0.5 0.4 0.1
0.3 0.3 0.4

 , A(u2) =

 0.4 0.3 0.3
0.3 0.2 0.5
0.1 0.2 0.7

 .
As required both matrices are row-stochastic. Further, suppose that the associated reward matrix is given
by

R =

 1 6
4 3
2 5

 .
This means that the reward associated with the state x1 and action u1 is 1, and so on. The reward can
represented conveniently in matrix form as above.

Now suppose we choose the deterministic policy π1 as π1(x1) = u1, π1(x2) = u2, π1(x3) = u1 . This
means that when Xt = x1, we choose the action Ut = u1 etc., irrespective of the value of the time index t.
Thus the policy matrix Pπ1

is given by

Pπ1
=

 1 0
0 1
1 0

 .
Now we can apply (5.2.7) to deduce that

A(u1) ◦ [Pπ1
]1 =

 0.2 0.5 0.3
0 0 0

0.3 0.3 0.4

 , A(u2) ◦ [Pπ1
]2 =

 0 0 0
0.3 0.2 0.5
0 0 0

 ,

Aπ1 = A(u1) ◦ [Pπ1 ]1 +A(u2) ◦ [Pπ1 ]2 =

 0.2 0.5 0.3
0.3 0.2 0.5
0.3 0.3 0.4

 .
Next, the reward vector Rπ1

can be computed using (5.2.8). It follows that

R ◦ Pπ1 =

 1 0
0 3
2 0

 , Rπ1 =

 1 0
0 3
2 0

[ 1
1

]
=

 1
3
2

 .
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5.2.2 Markov Decision Processes: Analysis

For a MDP, one can pose three questions:

1. Policy evaluation: For a given policy π, define Vπ(xi) to be the “value” associated with the policy
π and initial state xi, that is, the expected discounted future reward with X0 = xi. How can Vπ(xi)
be computed for each xi ∈ X ?

2. Optimal Value Determination: For a specified initial state xi, define

V ∗(xi) := max
π∈Πp

Vπ(xi), (5.2.9)

to be the optimal value over all policies for that initial state. How can V ∗(xi) be computed? Note
that in (5.2.9), the optimum is taken over all probabilistic policies. It is shown in Theorem 5.9 in the
sequel that the optimum can actually be achieved by a deterministic policy.

3. Optimal Policy Determination: Define the optimal policy map X → Πd via

π∗(xi) := arg max
π∈Πd

Vπ(xi). (5.2.10)

How can the optimal policy map π∗ be determined? Note that in the previous item, we wish to find
the optimal value associated with each state, whereas in this item, we wish to identify a policy that
achieves the optimal value. It is possible restrict our search only to deterministic policies, because as
stated above, the maximum over π ∈ Πp is not any larger. Moreover, it is again shown in Theorem 5.9
that there exists one common optimal policy for all initial states.

Next we present answers to the three questions above.

Policy Evaluation:

Suppose a policy π ∈ Πd is specified. Then the corresponding state transition matrix and reward are given
by (5.2.2) and (5.2.5) respectively. Now suppose we define the vector vπ by

vπ = [ Vπ(x1) . . . Vπ(xn) ], (5.2.11)

and the reward vector rπ by
rπ = [ Rπ(x1) . . . Rπ(xn) ], (5.2.12)

where R(xi) is defined by (5.2.5) or (5.2.6) as appropriate. Then it readily follows from Theorem 5.1 that
vπ satisfies an equation analogous to (5.1.6), namely

vπ = rπ + γAπvπ. (5.2.13)

As before, it is inadvisable to compute vπ via vπ = (I − γAπ)−1rπ. Instead, one should use value iteration
to solve (5.2.13).

For future use we introduce another function Qπ : X × U → R, known as the action-value function,
which is defined as follows:

Qπ(xi, uk) := R(xi, uk) + Eπ

[ ∞∑
t=1

γtRπ(Xt)|X0 = xi, U0 = uk

]
. (5.2.14)

Apparently this function was first defined in [172]. Note that Qπ is defined only for deterministic policies.
In principle it is possible to define it for probabilistic policies, but this is not commonly done. In the above
definition, the expectation Eπ is with respect to the evolution of the state Xt under the policy π. When the
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reward is a random function of Xt and Ut, then inside the summation we would need to take the expected
value of R(Xt, π(Xt)) for a deterministic policy.

The way in which a MDP is set up is that at time t, the Markov process reaches a state Xt, based on the
previous state Xt−1 and the state transition matrix Aπ corresponding to the policy π. Once Xt is known,
the policy π determines the action Ut = π(Xt), and then the reward Rπ(Xt) = R(Xt, π(Xt)) is generated.
In particular, when defining the value function Vπ(xi) corresponding to a policy π, we start off the MDP in
the initial state X0 = xi, and choose the action U0 = π(xi). However, in defining the action-value function
Q, we do not feel compelled to set U0 = π(X0) = π(xi), and can choose an arbitrary action uk ∈ U . From
t = 1 onwards however, the action Ut is chosen as Ut = π(Xt). This seemingly small change leads to some
simpifications. Specifically, it will be seen in later chapters that it is often easier to approximate (or to
“learn”) the action-value function than it is to approximate the value function.

Just as we can interpret V : X → R as a |X |-dimensional vector, we can interpret Q : X × U → R as an
|X | · |U|-dimensional vector, or as a matrix of dimension |X| × |U|. Consequently the Q-vector has higher
dimension than the value vector.

Theorem 5.5. The function Q satisfies the recursive relationship

Qπ(xi, uk) = R(xi, uk) + γ

n∑
j=1

auk
ij Qπ(xj , π(xj)). (5.2.15)

Proof. Observe that at time t = 0, the state transition matrix is Auk . So, given that X0 = xi and U0 = uk,
the next state X1 has the distribution

X1 ∼ [auk
ij , j = 1, · · · , n].

Moreover, U1 = π(X1) because the policy π is implemented from time t = 1 onwards. Therefore

Qπ(xi, uk) = R(xi, uk) + Eπ

 n∑
j=1

auk
ij

(
γR(xj , π(xj)) +

∞∑
t=2

γtRπ(Xt)|X1 = xj , U1 = π(xj)

)
= R(xi, uk) + Eπ

γ n∑
j=1

auk
ij

(
R(xj , π(xj)) +

∞∑
t=1

γtRπ(Xt)|X1 = xj , U1 = π(xj)

)
= R(xi, uk) + γ

n∑
j=1

auk
ij Q(xj , π(xj)).

This is the desired conclusion.

Theorem 5.6. The functions Vπ and Qπ are related via

Vπ(xi) = Qπ(xi, π(xi)). (5.2.16)

Proof. If we choose uk = π(xi) then (5.2.15) becomes

Qπ(xi, π(xi)) = Rπ(xi) + γ

n∑
j=1

a
π(xj)
ij Q(xj , π(xj)).

This is the same as (5.2.1) written out componentwise. We know that (5.2.1) has a unique solution. This
shows that (5.2.16) holds.

In view of (5.2.16), the recursive equation for Qπ can be rewritten as

Qπ(xi, uk) = R(xi, uk) + γ

n∑
j=1

auk
ij Vπ(xj). (5.2.17)
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Optimal Value Determination:

For a policy π ∈ Πd or π ∈ Πp, define the associated map Tπ : Rn → Rn via

Tπv = rπ + γAπv. (5.2.18)

Then it follows from Theorem 5.2 that Tπ is monotone and is a contraction with respect to the ℓ∞-norm,
with contraction constant γ.

Now we introduce one of the key ideas in Markov Decision Processes. Define the Bellman iteration
map B : Rn → Rn via

(Bv)i := max
uk∈U

R(xi, uk) + γ

n∑
j=1

auk
ij vj

 . (5.2.19)

Theorem 5.7. The map B is monotone and a contraction with respect to the ℓ∞-norm.

Proof. The theorem has two claims: The first claim is that the map B is monotone, meaning that if v1 ≤ v2

componentwise, then B(v1) ≤ B(v2) componentwise. The second claim is that B is a contraction with
respect to the ℓ∞-norm. Note that, unlike the value iteration map Tπ defined in (5.2.18), the map B is not
affine.

Let us begin with the first claim. Suppose v1 ≤ v2. Then

(B(v1))i = max
uk∈U

R(xi, uk) + γ

n∑
j=1

auk
ij v1j


≤ max

uk∈U

R(xi, uk) + γ

n∑
j=1

auk
ij v2j


= (B(v2))i.

Here we use the fact that auk
ij ≥ 0 for all i, j. This establishes that B is monotone, which is the first claim.

The proof of the second claim is a bit more elaborate. We begin by establishing that∣∣∣∣max
uk∈U

g(xi, uk) − max
uk∈U

h(xi, uk)

∣∣∣∣ ≤ max
uk∈U

|g(xi, uk) − h(xi, uk)|, ∀xi ∈ X . (5.2.20)

To prove (5.2.20), we begin with the obvious observation that, if α, β are real numbers, then

α− β ≤ |α− β| =⇒ α ≤ |α− β| + β.

Note that this inequality holds irrespective of the signs of α and β. Fix xi ∈ X , uk ∈ U and apply the above
inequality with α = g(xi, uk), β = h(xi, uk). This gives

g(xi, uk) ≤ |g(xi, uk) − h(xi, uk)| + h(xi, uk).

Now take the maximum of both sides over uk ∈ U . This gives

max
uk∈U

g(xi, uk) ≤ max
uk∈U

[|g(xi, uk) − h(xi, uk)| + h(xi, uk)]

≤ max
uk∈U

|g(xi, uk) − h(xi, uk)| + max
uk∈U

h(xi, uk).

Rearranging gives
max
uk∈U

g(xi, uk) − max
uk∈U

h(xi, uk) ≤ max
uk∈U

|g(xi, uk) − h(xi, uk)|.
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By symmetry, we can interchange g and h, which gives

max
uk∈U

h(xi, uk) − max
uk∈U

g(xi, uk) ≤ max
uk∈U

|g(xi, uk) − h(xi, uk)|.

Combining these two inequalities gives (5.2.20).
Now we make use of (5.2.20) to show that B is a contraction with respect to the ℓ∞-norm. Let v1,v2 ∈ Rn

be arbitrary, and fix xi ∈ X . Then, by using the definition of B and (5.2.20), we get

|(B(v1))i − (B(v2))i| =

∣∣∣∣∣∣max
uk∈U

R(xi, uk) + γ

n∑
j=1

auk
ij v1j

− max
uk∈U

R(xi, uk) + γ

n∑
j=1

auk
ij v2j

∣∣∣∣∣∣
≤ max

uk∈U

∣∣∣∣∣∣R(xi, uk) + γ

n∑
j=1

auk
ij v1j −R(xi, uk) − γ

n∑
j=1

auk
ij v2j

∣∣∣∣∣∣
= max

uk∈U
γ

∣∣∣∣∣∣
n∑

j=1

auk
ij (v1j − v2j)

∣∣∣∣∣∣ ≤ max
uk∈U

γ

∣∣∣∣∣∣
n∑

j=1

auk
ij |v1j − v2j |

∣∣∣∣∣∣
≤ γ∥v1 − v2∥∞. (5.2.21)

Here we use the facts

|v1j − v2j | ≤ ∥v1 − v2∥∞ ∀j,
n∑

j=1

auk
ij = 1, ∀i, ∀uk ∈ U

Because the inequality (5.2.21) holds for every index i, it follows that

∥B(v1) −B(v2)∥∞ ≤ γ∥v1 − v2∥∞.

This shows that the map B is a contraction with respect to the ℓ∞-norm, which is the second claim.

Theorem 5.8. Define v̄ ∈ Rn to be the unique fixed point of B, and define v∗ ∈ Rn to equal [V ∗(xi), xi ∈ X ],
where V ∗(xi) is defined in (5.2.9). Then v̄ = v∗.

Proof. By definition, for every π ∈ Πd, we have that

[Tπ(v̄)]i = R(xi, π(xi)) +

n∑
j=1

a
π(xi)
ij V̄j

≤ max
uk∈U

R(xi, uk) + γ

n∑
j=1

auk
ij V̄j

 = (B(v̄))i = V̄i, (5.2.22)

because v̄ is a fixed point of the map B. If π ∈ Πp, say

π(xi) = [ ϕi1 · · · ϕim ] ∈ Sm,

then

[Tπ(v)]i =

l∑
l=1

ϕil

R(xi, ul) +

n∑
j=1

aul
ij V̄j


≤ max

uk∈U

R(xi, uk) +

n∑
j=1

auk
ij V̄j


= (B(v̄))i = V̄i. (5.2.23)
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Because (5.2.22) and (5.2.23) hold for every index i, it follows that

Tπ(v̄) ≤ v̄.

Next, because Tπ is monotone as per Theorem 5.2, it follows that

T 2
π (v̄) = Tπ(Tπ(v̄)) ≤ Tπ(v̄) ≤ v̄.

The reasoning can be repeated to show that

T l
π(v̄) ≤ v̄, ∀l.

Now let l → ∞. Then the left side approaches the fixed point of the map Tπ, which is vπ. Thus we conclude
that, for all policies in Πd or Πp, we have that

vπ ≤ v̄. (5.2.24)

Therefore, for each xi ∈ X , we infer that

V ∗(xi) = max
π

V (xi) ≤ V̄i, ∀i, or v∗ ≤ v̄. (5.2.25)

To show that v̄ ≤ v∗, define a deterministic policy π̄ ∈ Πd by

π̄(xi) = arg max
uk∈U

R(xi, uk) +

n∑
j=1

auk
ij V̄j

 . (5.2.26)

In case of ties, choose any deterministic tie-breaking rule, e.g., choose the uk with the lowest index. Then,
since the right side of (5.2.26) equals (B(v̄))i = V̄i, we conclude that

V̄i = R(xi, π̄(xi)) +

n∑
j=1

a
π̄(xi)
ij V̄j , ∀i. (5.2.27)

Hence Tπ̄(v̄) = v̄. But since Tπ̄ is a contraction, it has a unique fixed point, which shows that V̄i = Vπ̄(xi)
for all i. Therefore, for each index i, we have that

V̄i = Vπ̄(xi) ≤ V ∗(xi), ∀i, or v̄ ≤ v∗.

Taken together with (5.2.24), this shows that v̄ = v∗.

By replacing v̄ in Theorem 5.8 by v∗ (which equals v̄), we derive the following fundamental result for
Markov Decision Processes.

Theorem 5.9. Define the optimal value function V ∗(xi) as in (5.2.9). Then

1. The optimal value function V ∗ : X → R is the unique solution of the following recursive relationship,
known as the Bellman Optimality Equation:

V ∗(xi) = max
uk∈U

R(xi, uk) + γ

n∑
j=1

auk
ij V

∗(xj)

 . (5.2.28)

2. There is at least one deterministic policy π ∈ Πd such that

Vπ(xi) = V ∗(xi), ∀i ∈ X . (5.2.29)
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Specifically, the policy π̄ defined by restating (5.2.26) with V̄j replaced by V ∗
j , namely

π∗(xi) = arg max
uk∈U

R(xi, uk) +

n∑
j=1

auk
ij V

∗
j

 . (5.2.30)

satisfies (5.2.29) and is thus an optimal policy.

Note that Item 2 of the theorem states that enlarging the policy space to include probabilistic policies
does not increase the maximum value. Also, there is one common policy that achieves the optimal value for
every state xi. Perhaps neither of these statements is obvious on the surface.

In analogy with the optimal value function, we can also define an optimal action-value function.

Theorem 5.10. Define Q∗ : X × U → R by

Q∗(xi, uk) = R(xi, uk) + γ

n∑
j=1

auk
ij V

∗(xj). (5.2.31)

Then Q∗(·, ·) satisfies the following relationships:

Q∗(xi, uk) = R(xi, uk) + γ

n∑
j=1

auk
ij max

wl∈U
Q∗(xj , wl). (5.2.32)

V ∗(xi) = max
uk∈U

Q∗(xi, uk), (5.2.33)

Moreover, every policy π ∈ Πd such that

π∗(xi) = arg max
uk∈U

Q∗(xi, uk) (5.2.34)

is optimal.

Proof. Since Q∗(·, ·) is defined by (5.2.31), it follows that

max
uk∈U

Q∗(xi, uk) = max
uk∈U

R(xi, uk) + γ

n∑
j=1

auk
ij V

∗(xj)

 = V ∗(xi),

by (5.2.28). This establishes (5.2.33) and (5.2.34). Substituting from (5.2.33) into (5.2.31) gives (5.2.32).

Now we define an iteration on action-functions that is analogous to (5.2.19) for value functions. As with
the value function, the action-value function can either be viewed as a map Q : X × U → R, or as a vector
in R|X |·|U|. Define F : R|X |×|U| → R|X |×|U| by

[F (Q)](xi, uk) := R(xi, uk) + γ

n∑
j=1

auk
ij max

wl∈U
Q(xj , wl). (5.2.35)

Theorem 5.11. The map F is monotone and is a contraction. Therefore for all Q0 : X × U → R, the
sequence of iterations {F t(Q0)} converges to Q∗ as t→ ∞.

Proof. The proof is very similar to that of Theorem 5.9. Given a map Q : X ×U → R, define the associated
map M(Q) : X → R by

[M(Q)](xi) = max
uk∈U

Q(xi, uk),
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and rewrite (5.2.35) as

[F (Q)](xi, uk) := R(xi, uk) + γ

n∑
j=1

auk
ij [M(Q)](xj). (5.2.36)

Also, if Q,Q′ : X ×U → R, let Q ≤ Q′ denote that Q(xi, uk) ≤ Q′
i(xi, uk) for all xi, uk. Then it is clear that

if Q ≤ Q′, then M(Q) ≤ M(Q′). Because auk
ij is always nonnegative, it follows that the map F is monotone.

Next, as in the proof of Theorem 5.7, for arbitrary maps Q1, Q2 : X × U → R, we have

|[M(Q1)](xi) − [M(Q2)](xi)| =

∣∣∣∣max
uk∈U

Q1(xi, uk) − max
uk∈U

Q2(xi, uk)

∣∣∣∣
≤ max

uk∈U
|Q1(xi, uk) −Q2(xi, uk)|, ∀xi ∈ X .

As a result
∥M(Q1) −M(Q2)∥∞ ≤ ∥Q1 −Q2∥∞.

Substituting this into (5.2.36) gives

∥F (Q1) − F (Q2)∥∞ ≤ γ∥Q1 −Q2∥∞. (5.2.37)

The desired conclusion now follows.

If we were to rewrite (5.2.28) and (5.2.32) in terms of expected values, the advantages of the Q-function
would become apparent. We can rewrite (5.2.28) as

V ∗(Xt) = max
Ut∈U

{R(Xt, Ut) + γE[V ∗(Xt+1)|Xt]}, (5.2.38)

and (5.2.32) as

Q∗(Xt, Ut) = R(Xt, Ut) + γE

[
max

Ut+1∈U
Q∗(Xt+1, Ut+1)

]
. (5.2.39)

Thus in the Bellman formulation and iteration, the maximization occurs outside the expectation, whereas
with the Q-formulation and F -iteration, the maximization occurs inside the expectation. As shown in later
chapter, learning Q∗ is easier than learning V ∗.

The idea of learning Q∗ instead of learning V ∗ is introduced in [172].

Optimal Policy Determination:

Theorems 5.8 and 5.9 together show the following: Start with any initial guess v0 ∈ Rn, and apply the
Bellman iteration B defined in (5.2.19). Then the sequence {vk} with vk+1 = Bvk converges monotonically
to the optimal value v∗. Once v∗ is determined, then an optimal policy can be determined using (5.2.30).
This approach to determining v∗ is known as value iteration. While this is a useful result, a shortcoming
is that the intermediate vectors vk do not necessarily correspond to any policy. An easy remedy is to choose
the starting point of the iterations v0 to be the value of some policy π0. Then each successive iteration
vk also corresponds to a policy πk. In this way, we generate a sequence of suboptimal policies πk with the
property that the associated value vector vk = vπk

converges to the optimal value. This approach is known
as policy iteration. This is made precise as follows:

Theorem 5.12. Choose an arbitrary policy π0 ∈ Πd, and compute the corresponding value vπ0
. At the k-th

iteration, choose an updated policy πk+1 ∈ Πd according to

πk+1(xi) = arg max
uk∈U

R(xi, uk) + γ

n∑
j=1

auk
ij (vπk

)j

 . (5.2.40)

Then
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1. vπk+1
≥ vπk

, where the dominance is componentwise.

2. {vπk
} ↑ v∗ as k → ∞.

The proof is quite straightforward. The key step is to verify that if we define the updated policy πk+1

according to (5.2.40), then the corresponding value vπk+1
is just Bvπk

; but this is obvious.
All of the material above provides a theoretical foundation for determining optimal values and optimal

policies for MDPs. However, when the size of the state space is very large, as it often is, one is forced to
resort to approximations to find “nearly optimal” values and/or policies. Approaches to do this are discussed
in later chapters.

Example 5.2. Now we return to the game of Blackjack. A detailed discussion of the game is given in [145,
Example 5.1]. To describe the original game briefly, it is played between a player and the “House.” (It is
possible to have more than one player playing against the House, but we don’t study that problem in the
interests of simplicity.) At each turn, the player and the House have the option of drawing a card (“hit”) or
not drawing (“stick”). Each card is counted as its face value, with picture cards counted as 10. An ace can
count as either 1 of 11 at the player’s preference. The objective of the player is to exceed the total of the
House without going over 21.

From the description, it is obvious that if the player’s current total is eleven or less, then the best strategy
is to hit, because there is no chance of losing on the next draw. Hence the issue of what to do arises only
when the player’s total reaches 12 or higher. Indeed, if the target were to be changed to some number N ,
then it is clear that if the player’s total is N − 10 or less, then the correct solution is to hit. It can also be
assumed that the probability of any particular card being the next card drawn is the same, no matter what
cards have been drawn until then (infinitely many card decks being used). In the original Blackjack game,
only one card of the House is visible. In what follows, for the purposes of illustration, we eliminate all of
these complications, and introduce a simplified game.

Suppose that, instead of drawing a card, the player rolls a fair four-sided die. Since there are only four
possible outcomes, irrespective of what the target total might be, it is reasonable to suppose that the state Pt

of the player lies in the set {0, 1, 2, 3,W,L}, with 0 being the start state. It can be assumed that the current
state is in {0, 1, 2, 3}, while W and L are terminal states. To simplify the problem further, suppose that the
House adopts the strategy that it does not roll the die further once its state is in {1, 2, 3} (i.e., it does not try
for a win from any of these states). Therefore the state Ht of the house lies in the set {1, 2, 3}. The overall
state (Pt, Ht) lies in the Cartesian product {0, 1, 2, 3,W,L}×{1, 2, 3}. Out of these, there are twelve possible
current states, namely {0, 1, 2, 3}× {1, 2, 3} where the first number is the state of the player and the second
is the state of the House. If the player rolls the die, the possible next states are {1, 2, 3,W,L} × {1, 2, 3},
or a total of fifteen states. In this game, as in the snakes and ladders game, the reward is random and is a
function of the next state.

As a part of the problem statement, we need to specify the dynamics of the Markov process. For the
House, it does not play, so its state transition matrix is the 3 × 3 identity matrix, which ensures that
Ht+1 = Ht. As for the player’s state Pt, if the action is to “stick,” then the state transition matrix AS is
the 5 × 5 identity matrix. If the action is to “hit,” then the state transition matrix AH is given by

AH =

0 1 2 3 W L
0 0 0.25 0.25 0.25 0.25 0
1 0 0 0.25 0.25 0.25 0.25
2 0 0 0 0.25 0.25 0.50
3 0 0 0 0 0.25 0.75
W 0 0 0 0 1 0
L 0 0 0 0 0 1

.

To complete the problem formulation, we need to specify the reward. Unlike the state transition matrix
above, which is based on nothing more than the assumption that all four outcomes of the die are equally
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likely, the reward is to some extent arbitrary. Let us assign the following rewards:

Pt > Ht 2
Pt = Ht 1
Pt < Ht 0
Pt = W 5
Pt = L −5

With this problem specification, we should strive to find an optimal policy. Note that the action space
U = {H,S} (for “hit” or “stick”) has cardinality two. Hence the number of policies is 212 = 4, 096, which is
already large enough that simply enumerating all possibilities is not practicable.2 Hence some kind of policy
iteration is the only way.

For evaluating a specific policy, it can be noted that the duration of the game cannot exceed four time
steps. This is because the player’s position has to advance by at least one at each time step. So discount
factors very close to 1 do not make sense. The discount γ should be chosen much smaller, say 0.5.

Problem 5.1. Suppose that a Markov decision problem has four states and two actions. Suppose further
that the two row-stochastic matrices corresponding to the two actions are as follows:

Au1 =


0.1 0.3 0.3 0.3
0.3 0.4 0.1 0.2
0 0.4 0.4 0.2

0.4 0.2 0.2 0.2

 , Au2 =


0.3 0.2 0 0.5
0.1 0.1 0.2 0.6
0.2 0.5 0.1 0.2
0 0.1 0.5 0.4

 .
Suppose further that the reward map R : X ×U is as follows (note that we write e.g., (3, 1) instead of (x3, u1)
to save space):

R =
(1, 1) (1, 2) (2, 1) (2, 2) (3, 1) (3, 2) (4, 1) (4, 2)

2 5 −1 4 3 3 6 −1
.

� Suppose we define a deterministic policy π by

π =

[
0 1 1 0
1 0 0 1

]
.

In other words, π(x1) = u2, π(x2) = u1, π(x3) = u1, π(x4) = u2. Compute the corresponding state
transition matrix Aπ and reward map Rπ.

� Suppose we define a probabilistic policy π by

π =

[
0.3 0.4 0.2 0.6
0.7 0.6 0.8 0.4

]
.

Compute the corresponding state transition matrix Aπ and reward map Rπ.

� How many deterministic policies can there be for this problem?

� With a discount factor of γ = 0.9, compute the optimal value and optimal policy using Theorem 5.12.

Problem 5.2. Prove Theorem 5.11.

Problem 5.3. Using the policy iteration method of Theorem 5.12, compute the optimal value function and
optimal policy for the Markov decision process of Problem 5.1.

Problem 5.4. Show that, if π∗ is determined from (5.2.30), then Vπ∗ = V ∗ as defined in (5.2.28).

2For the full Blackjack game, the number of policies is 2200 as shown in [145, Example 5.1].
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Notes and References

The material in this chapter is quite standard. A very old reference is [64]. A widely used reference is [119].
Some applications of MDPs can be found in [27].
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Chapter 6

Reinforcement Learning

The contents of Chapter 5, specifically Section 5.2 are based on the assumption that the parameters of the
Markov Decision Process are all known. In other words, the |U| possible state transition matrices Auk , as well
as the reward map R : X ×U → R (or its random version), are all available to the agent to aid in the choice
of an optimal policy. One can say that the distinction between MDP theory and reinforcement learning (RL)
theory is that in the latter, it is not assumed that the parameters of the MDP are known. Thus, in RL, one
attempts to learn these parameters based on observations. At this point, one can make a distinction between
“direct” methods and “indirect” methods.1 In the “indirect” approach, one observes the trajectory of the
“unknown” MDP, constructs a maximum likelihood estimate of the dynamics using the methods of Section
2.2.3, and then substitutes these estimates of the dynamics into the Bellman Optimality Equation (5.2.28),
or the F -iteration (5.2.35). The logic is that, after a sufficiently long period of observation, the estimated
parameters would be sufficiently close to the true but unknown parameters; as a result, the solutions of the
fixed-point problems with estimated parameters would also be sufficiently close to the true fixed point. In
the “direct” approach, one directly starts estimating the solution of the fixed-point problems on the basis
of the available data. One hopes to prove mathematically that the “directly estimated” solutions would
converge to the correct solution. In short, there is no attempt to estimate the unknown dynamics of the
MDP.

In the RL literature, a couple of phrases are widely used without always being defined precisely. The first
phrase is “tabular methods.” As we will see, the methods presented in this chapter attempt to form estimates
of the value function, which is a vector in Rn, or the action-value function, which is a matrix of dimensions
n×m, for a specific policy. Recall that in many if not most MDPs (or RL problems), the number of actions
m is quite small. However, the number of states n is often huge. Hence, instead of attempting to determine
the n-dimensional value vector, it is often more convenient to find a lower-dimensional approximation of
this vector. The phrase “tabular methods” thus refers to the situation where one attempts find the full n-
dimensional vector without any reduction in dimension. The alternate is “value” determination with function
approximation.

6.1 Value Determination Using Temporal Differences

In this section we present the “temporal difference method” for determining the value of a discounted Markov
Reward Process when the state transition matrix is unknown. This method was pioneered by Sutton in [144].
Subsequently it was improved in various others papers, which are mentioned at the appropriate place.

The temporal difference method comes in two flavors: In the first, the unknown Markov Process is
assumed to have a known set of absorbing states. Thus the state space X is partitioned as the union of
transient states and absorbing states, and each set is known. However, the dynamics of the Markov process

1This terminology is quite common in the adaptive control theory literature, and less common in the RL literature.
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are not assumed to be known. This is the version of TD learning studied in [144, 66]. In the other version,
the Markov process is assumed to be either irreducible or both irreducible and aperiodic. This is the version
studied in [172] which introduced TD-learning, as well as in [158] which made some fundamental contributions
to the subject. In all of these references, TD-learning is “tabular,” in the sense that the objective is to learn
the true value of the Markov Reward Process. When the dimension n of the state space is very high, it is
common practice to approximate the value function by a function of a d-dimensional vector, where d ≪ n.
This is the version studied in [161].

6.1.1 TD(λ)-Learning Without Function Approximation

As in Section 5.1, let r denote the reward vector (assumed to be deterministic), γ denote the discount factor,
and A the state transition matrix of the Markov process. In this case, the value vector v is specified by
Theorem 5.1, specifically (5.1.6), as the unique solution of the equation

v = r + γAv, (6.1.1)

Suppose however that A is not known to the learner. Instead, a single sample path {Xt} of the Markov
process is available. With this information, the hope is to construct a sequence {v̂t} that converges almost
surely to the true solution v of (6.1.1).

As in Chapter 5, it is convenient to view the value both as a vector v of dimension n, as well as a
read-out map V : X → R. Once the elements of X are ordered in some fashion as {x1, · · · , xn}, the two
interpretations are interchangeable. Hence we will use whichever is more convenient to the situation at hand.

The key to the Temporal Difference approach is the following result.

Lemma 6.1. Suppose {Xt} is a sample path of a Markov process with an unknown state transition matrix
A, and that v is a given (known and deterministic) vector in Rn. Then, for each time t, the component
V (Xt+1) is an unbiased estimator of the Xt-th component of Av, with conditional variance no larger than
4∥v∥2∞.

Remarks:

1. In (6.1.1), the discount factor γ is usually chosen by the learner and is thus known. If the reward is
deterministic, then once the sample path traverses every state at least once, the reward vector r is also
known. Thus the only unknown is the state transition matrix A.

2. An “indirect” approach to solving (6.1.1) might go like this. After observing a “sufficiently long” sample
path {Xt}, the learner can construct a maximum-likelihood estimate of A using the approach from
Section 2.2.3; call it Â. Then (6.1.1) can be solved with Â in place of the unknown A. The temporal
difference approach is “direct” in that it generates a sequence of estimates {vt} which converges to the
true value vector as t→ ∞. There is no attempt to generate estimates of A.

3. The time index t plays no role in the lemma or corollary. If {Xt} is a sample path of a Markov process
with the (unknown) state transition matrix A, and if Xt = xi, Xt+1 = xj , then vj is an unbiased
estimate of the product [Av]i.

4. A key attribute of this lemma is that the bound on the conditional variance of the estimate is inde-
pendent of the unknown matrix A.

5. If v is a fixed vector, then this lemma is not all that useful. However, the way in which the lemma is
used is that vt is itself a function of time, and at each step t, the lemma can be used to generate an
unbiased estimate of one component of Avt.

Proof. Let {Ft} be the filtration generated by {Xt}. Suppose Xt = xi, and define ξt+1,i as the error in
estimating [Av]i at time t+ 1; that is

ξt+1,i = V (Xt+1) − [Av]i, ∀i ∈ [n].
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Then
Pr{Xt+1 = xj |Xy = xi} = aij , ∀j ∈ [n],

E[V (Xt+1|Xt = xi] =

n∑
j=1

aijvj = [Av]i.

Since this is true for each state xi, it follows that V (Xt+1) is an unbiased estimate of [Av]i, where Xt = xi.
Next, conditioned on the event Xt = xi, we have that, with probability aij ,

ξt+1,i = vj − aiv = e⊤j v − aiv,

where ej is the j-elementary unit vector and ai is the i-row of A. Note that ∥e∥1 = ∥ai∥1 = 1. Hence, by
Hölder’s inequality

|e⊤j v| ≤ ∥v∥∞, |aiv| ≤ ∥v∥∞, |e⊤j v − aiv| ≤ 2∥v∥∞,

CVt(ξt+1) =

n∑
i=1

E[ξ2t+1,i|Xt = xi] · Pr{Xt = xi}

≤
n∑

i=1

4∥v∥2∞ · Pr{Xt = xi} = 4∥v∥2∞.

Corollary 6.1. Suppose {Xt} is a sample path of a Markov process with an unknown state transition matrix
A, and that v is a given (known and deterministic) vector in Rn. Then, for each time t and each time τ ≥ 1,
the component V (Xt+τ ) is an unbiased estimator of the Xt-th component of Aτv, with conditional variance
no larger than 4∥v∥2∞.

Proof. The proof is the same as that of Lemma 6.1, after observing that

Pr{Xt+τ = xj |Xy = xi} = [Aτ ]ij ,

Papers by Sutton [144], Tsitsiklis [158] and Jaakkola et al. [66].

6.2 TD(λ)-Learning With Function Approximation

Papers by Tsitsiklis and Van Roy [160, 161, 162, 163].

6.2.1 Discounted Reward Processes

6.2.2 Average Reward Processes

6.3 Simultaneous Value and Policy Approximation

6.3.1 Two Time-Scale Stochastic Approximation: Reprise

Papers by Borkar [21], and by Lakshminarayanan and Bhatnagar [88]

6.3.2 Average Reward Processes: Reprise

6.3.3 Policy Gradient Theorem

[137, 146, 98, 15, 149].
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6.3.4 Actor-Critic Methods

[81, 82, 100, 80]
[89, 13, 14, 88, 150, 151, 152, 153]

6.4 Q-Learning

[147, 46, 132, 170, 171, 172]

6.5 Zap Q-Learning

6.5.1 Stochastic Newton-Raphson Approximation

[128, 116].

6.5.2 Zap Q-Learning

[42, 40, 41, 104]

Notes and References

This part will be written after the contents of the chapter are fleshed out. It will discuss each of the references
above, and their role in the overall RL scene.



Chapter 7

Background Material

The objective of this chapter is to collect in one place the background material required to understand the
remainder of the notes. While much of the chapter consists of standard material that is found elsewhere,
some parts of the chapter are not “background,” because many if not most standard texts do not contain
the material. An example is the material on stopping times and maximum likelihood estimation of Markov
processes in Section 2.2. Where the material is genuinely background in nature and adequate references are
found elsewhere, the treatment here is rigorous but cursory, and several references are given throughout,
In such a case these notes are not, by themselves, sufficient to gain a mastery over these topics. A reader
who is encountering these background topics for the first time is strongly encouraged to consult the various
references in order to understand the topics more thoroughly.

7.1 Contraction Mapping Theorem

In this section we introduce a very powerful theorem known as the contraction mapping theorem (also known
as the Banach fixed point theorem), which provides an iterative technique for solving noninear equations. It
holds in extremely general settings. We present a version that is sufficient for the present purposes.

Theorem 7.1. Suppose f : Rn → Rn and that there exists a constant ρ < 1 such that

∥f(x) − f(y)∥ ≤ ρ∥x− y∥, ∀x,y ∈ Rn, (7.1.1)

where ∥ · ∥ is some norm on Rn. Then there is a unique x∗ ∈ Rn such that

f(x∗) = x∗. (7.1.2)

To find x∗, choose an arbitrary x0 ∈ Rn and define xl+1 = f(xl). Then {xl} → x∗ as l → ∞. Moreover, we
have the explicit estimate

∥x∗ − xl∥ ≤ ρl

1 − ρ
∥x1 − x0∥. (7.1.3)

Proof. By definition, we have that

∥xl+1 − xl∥ ≤ ρ∥xl − xl−1∥ ≤ · · · ≤ ρl∥x1 − x0∥. (7.1.4)

Suppose m > l, say m = l + r with r > 0. Then

∥xm − xl∥ = ∥xl+r − xl∥ ≤
r−1∑
i=0

∥xl+i+1 − xl+i∥

≤
r−1∑
i=0

ρl+i∥x1 − x0∥ ≤
∞∑
i=0

ρl+i∥x1 − x0∥ =
ρl

1 − ρ
∥x1 − x0∥. (7.1.5)
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Therefore ∥xm − xl∥ → 0 as min{m, l} → ∞. Such a sequence is called a Cauchy sequence. In Rn, a
Cauchy sequence always converges to a limit. Denote this limit by x∗. Then x∗ = liml→∞ xl. Now (7.1.1)
makes it clear that the function f is continuous. Therefore

f(x∗) = lim
l→∞

f(xl) = lim
l→∞

xl+1 = x∗.

Therefore x∗ satisfies (7.1.2). To show that x∗ is unique, suppose f(y∗) = y∗. Then it follows from (7.1.1)
that

∥x∗ − y∗∥ = ∥f(x∗) − f(y∗)∥ ≤ ρ∥x∗ − y∗∥.

Since ρ < 1, the only way in which the above inequality can hold is if ∥x∗−y∗∥ = 0, i.e., if x∗ = y∗. Finally,
let m→ ∞ in (7.1.5) so that xm → x∗ and ∥xm − xl∥ → ∥x∗ − xl∥. Then (7.1.5) becomes (7.1.3).

The bound (7.1.3) is extremely useful. Note that ∥x1 − x0∥ = ∥f(x0) − x0∥. Therefore ∥x1 − x0∥ is a
measure of how far off the initial guess x0 is from being a fixed point of f . Then (7.1.3) gives an explicit
estimate of how far xl is from x∗, for each iteration xl. Note that the bound on the right side of (7.1.3)
decreases by a factor of ρ at each iteration.

7.2 Some Elements of Lyapunov Stability Theory

The study of nonlinear differential equations (ODEs) is a centuries-old and well-established subject. In the
context of Reinforcement Learning, nonlinear ODEs arise when studying the convergence properties of the
Stochastic Approximation (SA) algorithm in its various formulations; see Chapter 2. Therefore the present
section presents a tiny slice of this very rich subject, just enough to serve our rather narrow objective.
Authoritative treatments of nonlinear ODEs can be found [58, 166, 76]. Where required, more specific
citations are given.

Throughout, we study ODEs of the form

θ̇(t) = f(θ(t)),θ(0) = θ0, (7.2.1)

where f : Rd → Rd. In some situations, we study a linear ODE of the form

θ̇(t) = Aθ(t),θ(0) = θ0, (7.2.2)

where A ∈ Rd×d. The linear ODE (7.2.2) always has a unique solution corresponding to each initial condition
θ0. It is given by

θ(t) = eAtθ0, where eAt =
∞∑
k=0

Aktk

k!
. (7.2.3)

The summation in (7.2.3) is well-defined for all t, and is called the matrix exponential. However, unless the
function f(·) in (7.2.1) satisfies some assumptions, there is no guarantee that (7.2.1) has a unique solution.
One of the most widely used sufficient conditions is presented next.

Definition 7.1. A function f : Rd → Rd is said to be globally Lipschitz continuous with constant L if

∥f(θ) − f(ϕ)∥ ≤ L∥θ − ϕ∥, ∀θ,ϕ ∈ Rd. (7.2.4)

Note that we have not specified which norm is used in (7.2.4). Since all norms on Rd are equivalent,
the Lipschitz continuity (or the lack of it) of a function f(·) does not depend on the norm used in (7.2.4).
However, the value of the Lipschitz constant L could depend on the norm used. In RL, the most commonly
used norms are ∥ · ∥2 and ∥ · ∥∞.
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Theorem 7.2. (See Theorems 2.4.25 and 2.4.57 of [166].) Suppose the function f(·) satisfies (7.2.4) for
some finite constant L. Then, for each θ0 ∈ Rd, there exists a unique solution s(·,θ0) that satisfies (7.2.1).
Further, given any ϵ > 0, and T <∞, there exists a δ = δ(ϵ, T ) such that

∥s(t,θ0) − s(t,ϕ0)∥2 ≤ ϵ ∀t ∈ [0, T ], if ∥θ0 − ϕ0∥2 ≤ δ. (7.2.5)

The next set of definitions are from the stability theory of ODEs. The interested reader may consult
[166, Chapter 5] for more details.

Definition 7.2. A vector θ∗ ∈ Rd is said to be an equilibrium of (7.2.1) if f(θ∗) = 0.

Note that, if θ∗ is an equilibrium of (7.2.1), then the solution trajectory s(t,θ∗) = θ∗ for all t ≥ 0. There
are various types of equilibria. The next definition introduces some types that are most relevant to RL.

Definition 7.3. We present several notions of stability for an equilibrium.

1. An equilibrium θ∗ of (7.2.1) is said to be stable if, for every ϵ > 0, there exists a δ > 0 such that

∥s(t,θ0)∥2 ≤ ϵ ∀t ≥ 0, if ∥θ0 − θ∗∥2 ≤ δ. (7.2.6)

2. An equilibrium θ∗ of (7.2.1) is said to be globally attractive if

s(t,θ0) → θ∗ as t→ ∞, ∀θ0 ∈ Rd. (7.2.7)

3. An equilibrium θ∗ of (7.2.1) is said to be globally asymptotically stable (GAS) if it is both stable
and globally attractive.

4. An equilibrium θ∗ of (7.2.1) is said to be globally exponentially stable (GES) if there exist
constants µ <∞ and κ > 0 such that

∥s(t,θ0)∥2 ≤ µ∥θ0 − θ∗∥2 exp(−κt), ∀t ≥ 0, ∀θ0 ∈ Rd. (7.2.8)

Remark:

1. The above definition contains a bare minimum from a very rich set of concepts from nonlinear stability
theory. Thorough treatments can be found in [58, 166, 76].

2. The concept of stability becomes clear if one were to compare (7.2.5) and (7.2.6). Equation (7.2.5)
holds for every finite T , and it is possible that δ(ϵ, T ) → 0 as T → ∞. In contrast, (7.2.6) implies
(7.2.5) with the uniform bound δ(ϵ, T ) = δ(ϵ).

3. It is possible for an equilibrium to be globally attractive without being stable. An example, originally
due to Vinogradov, is reproduced in [58, Section 40] and again in [166, Example 5.1.32].

4. If θ∗ is GAS or GES, then θ∗ is the only solution of f(θ) = 0.

Sufficient conditions for GAS and GES are given in terms of the existence of a “Lyapunov function” V
that satisfies appropriate conditions. Suppose V : Rd → R is C1 (continuously differentiable). Then the
function V̇ : Rd → R associated with V and the ODE (7.2.1) is defined by

V̇ (θ) := ⟨∇V (θ), f(θ)⟩. (7.2.9)

Note that the same function V associated with a different ODE could have a different V̇ . The rationale
behind the definition of V̇ is that, along the solution trajectories of (7.2.1), we have

d

dt
V (θ(t)) = ⟨∇V (θ), θ̇(t)⟩ = ⟨∇V (θ), f(θ)⟩ = V̇ (θ(t)). (7.2.10)
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Definition 7.4. A function ϕ : R+ → R+ is said to belong to class K, denoted by ϕ ∈ K, if ϕ(0) = 0,
and ϕ(·) is strictly increasing. A function ϕ ∈ K is said to belong to class KR, denoted by ϕ ∈ KR, if in
addition, ϕ(r) → ∞ as r → ∞.

Definition 7.5. Suppose θ∗ is the unique equilibrium of (7.2.1), and that V : Rd → R is continuous. Then

1. The function V is said to be positive definite at θ∗ if there exists a function ϕ of Class K such that

V (θ) ≥ ϕ(∥θ − θ∗∥2. (7.2.11)

V is said to be negative definite if −V is positive definite.

2. The function V is said to be positive definite and radially unbounded if there exists a function
ϕ of Class KR such that (7.2.11) holds.

Now we reproduce some classical results from [166]. Since we deal with time-invariant systems, the
condition in [166] that V should be decrescent is automatically satisfied.

Theorem 7.3. (See [166, Theorem 5.3.56].) Suppose f(·) in (7.2.1) is globally Lipschitz-continuous. and
that θ∗ is the unique equilibrium of (7.2.1). Then θ∗ is globally asymptotically stable if there exists a C1

function V : Rd → R+ such that V is positive definite and radially unbounded, and V̇ is negative definite.

Theorem 7.4. (See [166, Theorem 5.3.62].) Suppose f(·) in (7.2.1) is globally Lipschitz-continuous. and
that θ∗ is the unique equilibrium of (7.2.1). Then the equilibrium θ∗ of (7.2.1) is globally exponentially
stable if there exists a C1 function V : Rd → R+ and constants a, b, c > 0 such that

a∥θ − θ∗∥22 ≤ V (θ) ≤ b∥θ − θ∗∥22, ∀θ ∈ Rd, (7.2.12)

V̇ (θ) ≤ −c∥θ − θ∗∥22, ∀θ ∈ Rd. (7.2.13)

Proof. Let θ(t) denote the solution of (7.2.1) with the initial condition θ(0) = θ0. (Thus θ(t) is shorthand
for s(t,θ0).) Recall that

V̇ (θ(t)) =
d

dt
V (θ(t)).

Now (7.2.11) and (7.2.12) together imply that

d

dt
V (θ(t)) ≤ −c∥θ − θ∗∥22 ≤ − c

a
V (θ(t)).

In other words,

V (θ(t)) ≤ V (θ0) exp(−(c/a)t), ∀t ≥ 0.

Now we again use (7.2.11) to turn this into a bound for ∥θ(t) − θ∗∥22.

∥θ(t) − θ∗∥22 ≤ V (θ(t))

a
≤ 1

a
V (θ0) exp(−(c/a)t) ≤ b

a
∥θ0 − θ∗∥22 exp(−(c/a)t, ∀t ≥ 0.

This bound can be readily recast in the form (7.2.8).

Next, we present an improvement of Theorem 7.3. Unlike Theorems 7.3 and 7.4, which are classical and
of long-standing, Theorem 7.5 below is of quite recent origin; thus, strictly speaking, it does belong under
“Background.” Nevertheless, it is included here to maintain the flow of ideas. This material is taken from
[168].

In order to state this theorem, we introduce the concept of a function of Class B. It is introduced in [52]
but without giving it a name. The formal definition is given in [168, Definition 1].
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Figure 7.1: An illustration of a function in Class B

Definition 7.6. A function ϕ : R+ → R+ is said to belong to Class B if ϕ(0) = 0, and in addition, for
arbitrary real numbers 0 < ϵ ≤M , it is true that

inf
ϵ≤r≤M

ϕ(r) > 0.

Note that ϕ(·) is not assumed to be monotonic, or even to be continuous. However, if ϕ : R+ → R+ is
continuous, then ϕ(·) belongs to Class B if and only if (i) ϕ(0) = 0, and (ii) ϕ(r) > 0 for all r > 0. Such
a function is called a “class P function” in [55]. Thus a Class B function is slightly more general than a
function of Class P .

As example of a function of Class B is given next:

Example 7.1. Define a function f : R+ → R+ by

ϕ(θ) =

{
θ, if θ ∈ [0, 1],
e−(θ−1), if θ > 1.

Then ϕ belongs to Class B. A sketch of the function ϕ(·) is given in Figure 7.1. Note that, if we were to
change the definition to:

ϕ(θ) =

{
θ, if θ ∈ [0, 1],
2e−(θ−1), if θ > 1,

then ϕ(·) would be discontinuous at θ = 1, but it would still belong to Class B. Thus a function need not
be continuous to belong to Class B.

Theorem 7.5. Suppose f(·) in (7.2.1) is globally Lipschitz-continuous. and that θ∗ is the unique equilibrium
of (7.2.1). Further, suppose that there exists a function V : Rd → R+ and functions η, ψ ∈ KR,ϕ ∈ B such
that

η(∥θ − θ∗∥2) ≤ V (θ) ≤ ψ(∥θ − θ∗∥2), ∀θ ∈ Rd, (7.2.14)

V̇ (θ) ≤ −ϕ(∥θ − θ∗∥2), ∀θ ∈ Rd, (7.2.15)

Then θ∗ is a globally asymptotically stable equilibrium of the ODE (7.2.1).

Proof. Let θ(·) denote a solution trajectory of the ODE (7.2.1). Then (7.2.15) implies that V (θ(t)) is a
nonincreasing function of t, and therefore has a limit as t→ ∞. Since V̇ (θ(t)) = (d/dt)(V (θ(t)), this implies
that V̇ (θ(t)) → 0 as t → ∞, as shown next. Suppose that V (∞) =: V∞ > 0. Then the right-side bound in
(7.2.14) implies that

∥θ − θ∗∥2 ≥ ψ−1(V∞) > 0, ∀t.



164 CHAPTER 7. BACKGROUND MATERIAL

In turn, this implies that
V̇ (θ(t)) ≤ −ϕ(ψ−1(V∞)) < 0, ∀t.

This contradicts the fact that V̇ (θ(t)) → 0 as t → ∞. Therefore V (θ(t)) → 0 as t → ∞. Now the left
inequality in (7.2.14) shows that ∥θ(t)∥2 → 0 as t→ ∞.

We conclude this section with a discussion of linear ODEs. Such ODEs arise naturally in studying the
convergence of RL algorithms, specifically several variants of the Stochastic Approximation algorithm, as
shown in Chapter 3 If the object of study is a linear ODE of the form (7.2.2), then the situation is simpler.
The stability of linear ODEs is found in [166, Sec. 5.4]. The relevant results are summarized below.

Theorem 7.6. (See [166, Theorem 5.4.29].) The equilibrium 0 of the linear ODE (7.2.2) is globally expo-
nentially stable if and only all eigenvalues of A have negative real parts.

Note that a matrix whose eigenvalues all have negative real parts is called a Hurwitz matrix.
For linear sytems, a natural choice for a Lyapunov function is quadratic, in the form V (θ) = θ⊤Pθ.

Note that it can be assumed without loss of generality that P is symmetric. Then V (·) is a positive definite
function if and only if P is a positive definite matrix, that is, all of its eigenvalues are positive. Next, the
function V̇ (·) is also quadratic, and equals −θ⊤Qθ, where Q satisfies the Lyapunov Matrix Equation

A⊤P + PA = −Q. (7.2.16)

Note that we have written V̇ (θ) as −θ⊤Qθ, with the hope that Q would be positive definite, in which case
V̇ (·) would be a negative definite function.

Theorem 7.7. (See [166, Theorem 5.4.42].) Given a matrix A ∈ Rd×d, the following statements are
equivalent:

1. A is a Hurwitz matrix.

2. There exists a positive definite matrix Q such that (7.2.16) has a unique solution for P , and that
solution is positive definite.

3. For every positive definite matrix Q, (7.2.16) has a unique solution for P , and that solution is positive
definite.

Notes and References

The material in this chapter is quite standard. Out of many possible sources, one can consult [166] because
it contains proofs of both the contraction mapping theorem and all the elements of Lyapunov stability theory
used here.
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[40] A. M. Devraj, A. Busić, and S. Meyn. Zap Q-learning– a user’s guide. In Proceedings of the 2019 Fifth
Indian Control Conference (ICC), pages 10–15, 2019.
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[62] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Convex Analysis. Springer-Verlag, Berlin
and Heidelberg, 2001.

[63] R. A. Horn and C. R. Johnson. Matrix Analysis (Second Edition). Cambridge University Press, 2013.

[64] R. Howard. Dynamic Programming and Markov Decision Processes. MIT Press, 1960.

[65] ImageNet. http://image-net.org/about-stats, 2010.

[66] T. Jaakkola, M. I. Jordan, and S. P. Singh. Convergence of stochastic iterative dynamic programming
algorithms. Neural Computation, 6(6):1185–1201, November 1994.

[67] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is q-learning provably efficient? In Proceedings of
Advances in Neural Information Processing Systems 2018, 2018.

[68] A. Juditsky, A. Nazin, A. Tsybakov, and N. Vayatis. Recursive aggregation of estimators by the mirror
descent algorithm with averaging. Problems of Information Transmission, 41:368–384, 2005.

[69] R. L. Karandikar, B. V. Rao, and M. Vidyasagar. Revisiting stochastic approximation and stochastic
gradient descent. https://arxiv.org/pdf/2505.11343, May 2025.

[70] R. L. Karandikar and M. Vidyasagar. Convergence rates for stochastic approximation: Biased noise
with unbounded variance, and applications. https://arxiv.org/pdf/2312.02828v3.pdf, May 2024.

[71] R. L. Karandikar and M. Vidyasagar. Convergence rates for stochastic approximation: Biased
noise with unbounded variance, and applications. Journal of Optimization Theory and Applications,
203:2412–2450, October 2024.

[72] R. L. Karandikar and M. Vidyasagar. Recent advances in stochastic approximation with applications
to nonconvex optimization and fixed point problems. Communications in Optimization Theory, (to
appear), 2024.



BIBLIOGRAPHY 169

[73] R. L. Karandikar and M. Vidyasagar. Recent advances in stochastic approximation with applications to
nonconvex optimization and fixed point problems. https://arxiv.org/pdf/2109.03445v6.pdf, February
2024.

[74] H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-gradient methods
under the polyak- lojasiewicz condition. Lecture Notes in Computer Science, 9851:795–811, 2016.
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du centre National de la Recherche Scientifique, 1963.

[97] Z. Lu and L. Xiao. On the complexity analysis of randomized block-coordinate descent methods.
Mathematical Programming, 152(1-2):615–642, Aug. 2014.

[98] H. R. Maei, C. Szepesvari, S. Bhatnagar, D. Precup, D. Silver, and R. S. Sutton. Convergent temporal-
difference learning with arbitrary smooth function approximation. In Neural Information Processing
Systems (NIPS2009), pages 1–9, 2009.

[99] A. Mahajan, S.-I. Niculescu, and M. Vidyasagar. A vector almost-supermartingale convergence theorem
and its applications. In Proceedings of the 2024 Conference on Decision and Control, pages 3877–3882,
December 2024.

[100] P. Marbach and J. N. Tsitsiklis. Simulation-based optimization of markov reward processes. IEEE
Transactions on Automatic Control, 46(2):191–209, February 2001.

[101] S. M. Meerkov. On simplifying the description of slow Markov walks, I. Automation and Remote
Control, 33(3):404–414, 1972.

[102] S. M. Meerkov. On simplifying the description of slow Markov walks, II. Automation and Remote
Control, 33(5):761–764, 1972.

[103] M. Métivier and P. Priouret. Applications of kushner and clark lemma to general classes of stochastic
algorithms. IEEE Transactions on Information Theory, IT-30(2):140–151, March 1984.

[104] S. Meyn. Control Systems and Reinforcement Learning. Cambridge University Press, 2022.

[105] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing
atari with deep reinforcement learning. In NIPS Deep Learning Workshop, 2013.

[106] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM Journal on optimization, 19(4):1574–1609, 2009.

[107] Y. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence
o(1/k2)n (in russian). Soviet Mathematics Doklady, 269:543–547, 1983.

[108] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume 87. Springer
Scientific+Business Media, 2004.

[109] Y. Nesterov. Lectures on Convex Optimization (Second Edition). Springer Nature, 2018.

[110] Y. Nesterov and V. Spokoiny. Random Gradient-Free Minimization of Convex Functions. Foundations
of Computational Mathematics, 17(2):527–566, 2017.



BIBLIOGRAPHY 171

[111] J. R. Norris. Markov Chains. Cambridge University Press, 1997.

[112] S. Pachal, S. Bhatnagar, and L. A. Prashanth. Generalized simultaneous perturbation-based gradient
search with reduced estimator bias. arxiv:2212.10477v1, December 2022.

[113] B. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational
Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[114] B. T. Polyak. Gradient methods for the minimisation of functionals. USSR Computational Mathematics
and Mathematical Physics, 3(4):864–878, 1963.

[115] B. T. Polyak. Introduction to optimization. Optimization Software, Inc, 1987.

[116] B. T. Polyak. New method of stochastic approximation type (in russian). Automation and Remote
Control, 51(7):937–946, July 1990.

[117] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM Journal
of Control and Optimization, 30(4):838–855, July 1992.

[118] B. T. Polyak and Y. Z. Tsypkin. Pseudogradient adaptation and training algorithms. Automation and
Remote Control, 34(3):377–397, 1973.

[119] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley,
2005.

[120] G. Qu and A. Wierman. Finite-time analysis of asynchronous stochastic approximation and q-learning.
Proceedings of Machine Learning Research, 125:1–21, 2020.

[121] T. U. K. Reddy and M. Vidyasagar. Convergence of momentum-based heavy ball method with ap-
proximate gradients and/or block updating. https://arxiv.org/pdf/2303.16241v4.pdf, April 2025.
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