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Preface

This is a draft manuscript. To quote Oliver Goldsmith, “There are a hundred faults in this Thing and a
hundred things might be said to prove them beauties.” I hope that, as time passes, the faults will decrease
while the “beauties” will increase. In the meantime, “caveat emptor” is the watchword for the reader.

These notes are updated regularly. Please check the date of last update to ensure that you have the
latest version, which is available at

https://people.iith.ac.in/m_vidyasagar/RL-Notes.pdf

Feedback of all kinds would be gratefully received at m.vidyasagar@iith.ac.in

These notes address some aspects of two somewhat disparate disciplines, namely: Nonconvex Optimiza-
tion, and Reinforcement Learning (RL). Each of these disciplines ha a long history and s a vast literature.
Thus the choice of topics covered in this book is dictated by the fact that the solution is obtained by stochas-
tic algorithms. Within optimization, the techniques presented here can be used to minimize not only convex
objective functions, but also some classes of nonconvex functions. Within Reinforcement Learning (RL), we
discuss all of the standard topics such as value computation, Temporal Difference learning, and @-Learning.
However, within this subareas, the focus is on problems that can be solved using stochastic algorithms.

The topic of optimization dates back a few centuries, but the analysis was mostly confined to finding
“closed-form” solutions. The main constraint was the unavailability of tools to carry out numerical computa-
tions at a large scale. The subject really picked up steam in the 1960s with the advent of digital computation,
when the emphasis shifted to iterative methods that did not even attempt to find the solution “in closed
form.” Rather, the emphasis was on constructing a sequence of approximate solutions that converged to the
true solution. Advances in computing (both in terms of increasing capability and decreasing cost) made the
scientific community aspire to solve ever larger problems. In this setting, it is noticeably easier to deal with
conver optimization problems than with nonconvex problems. However, the present-day widespread use of
deep neural networks has led to greater emphasis on nonconvexr optimization.

Stochastic algorithms are natural when the information about the problem to be solved is wuncertain,
or prone to measurement errors. In optimization problems, if the measurements of the objective function
at each iteration, and/or its gradient, are subject to measurement, then it is imperative to use stochastic
algorithms that are guaranteed to converge even in the presence of such uncertainties. Even without uncertain
measurements, some problems become more tractable when some element of randomness is introduced into
the algorithm. The framework presented in this paper is rich enough to handle such randomized algorithms
as well, though those are not the main focus.

Reinforcement Learning (RL) is one of the most active areas of research in AT (Artificial Intellligence), or
Artificial General Intelligence (AGI), and Machine Learning (ML). One can think of AT or AGI as a desire to
enable computers to mimic various aspects of human intelligence, and ML as a set of tools and/or algorithms
to achieve AT/AGI. Thus AI (AGI) is the destination, and ML is the path to that destination.

As mentioned above, the literature in both areas is vast. Therefore the aim of these notes is to provide
a treatment of some aspects of nonconvex optimization as well as RL. The unifying theme in the treatment
of various problems is a well-established technque known as Stochastic Approximation (SA). Stochastic
Approximation was introduced in 1951 as a method for solving equations of the form f(6*) = 0 when only
noisy measurements of f(-) are available. Since then the theory has expanded substantially. One of the
objectives of these notes is to show how SA can be used to prove the convergence of iterative algorithms in
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nonconvex optimization, and in RL. While the use of SA to analyze RL algorithms is well-established, going
back to the late 1980s, the method has begun to be applied to nonconvex optimization relatively recently.

A useful feature of SA is that it is relatively easy to prove that various algorithms converge almost
surely. This is in contrast to other proof techniques that lead to weaker conclusions such as convergence in
probability, or in expectation. Since iterative stochastic algorithms generate one sample path of a stochastic
process, it is worthwhile to know that almost all sample paths converge to the desired limit.

These notes are an outcome of having taught this material three times. Previously, I had offered courses
at UC Berkeley (remotely) during the Fall semester of 2020, and at IIT Hyderabad during the First Semester
of 2022-23. On both occasions, the focus of the course was solely on RL. I taught the course for the third
time during the First Semester of 2024-25, this time with as added focus on optimization.

Over time, the nature of the notes underwent some changes. I had originally envisaged a textbook that
covered most of the widely studied ideas in RL, even if the material did not contain any original research.
However, subsequently I decided to narrow the scope to material that either represented original research, or
streamlining and/or unification of existing proofs. Thus, in their current version, the notes are much more
like a research monograph than a textbook. In the process, I trust that the breadth of coverage has not been
unduly sacrificed, and that most of the relevant topics in RL are still included.

These notes are organized as follows:

Given that the notes are written in the style of a research monograph, very few “exercises” are included.
Instead, the reader is advised to work out all the proofs in detail. This is the best way to master the content,
and not via accepting various theorems at face value.



Contents

Preface i
1 Introducton [l
1.1 Imtroduction to Optimization . . . . . . . . . . . .. . o
1.1.1 Imtroduction to Optimization . . . . . . . . .. .. ... ... m

1.1.2 Classes of Functions . . . . . . . . .. ..

1.1.3 Some Popular Algorithms . . . . . . . .. ... L 2|

1.1.4 Sources of Stochasticity . . . . . . . . . . . ...

1.2 Introduction to Reinforcement Learning . . . . . . . . . .. .. ... L oL @
1.2.1 Introduction to Reinforcement Learning . . . . . . . .. .. ... ... ... ... @

1.2.2  Some Examples of Reinforcement Learning . . . . . . ... ... ... .. ... .... T

1.3 About These Notes . . . . . . . . . . 16l

2 Convergence of Stochastic Processes |
2.1 Random Variables and Stochastic Processes . . . . . . . . . ... ... L. i
2.1.1 Random Variables . . . . . .. . . . . 1K

2.1.2  Joint and Conditional Probabilities, Independence . . . . . . . . . ... ... ... ..

2.1.3 Conditional Expectations . . . . . . . . .. .. 206l

2.2 Markov processes . . . . . ... e e 29]
2.2.1 Markov Processes: Basic Properties . . . .. ... ... ... ... ... ... ..., . 29]

2.2.2  Stopping Times and Hitting Probabilities . . . . . . . . ... .. ... ... .. ....

2.2.3 Maximum Likelihood Estimation of Markov Processes . . . . . . ... ... ... ... 38]

2.3 Some Convergence Theorems . . . . . . . . . . . it e 551
2.3.1 Introduction to Martingales . . . . . . . . ... L L @1

2.3.2 Some Convergence Theorems . . . . . . . .. .. ... . @n

3 Stochastic Approximation: Algorithms and Convergence 55
3.1 An Overview of Stochastic Approximation . . . . . . . . . . ... ... ... ... ...
3.2 Convergence of Synchronous Stochastic Approximation . . . . . . . ... ... ... ... ... bl
3.2.1 Convergence Theorems for SA via Lyapunov Theory . . . . . .. ... ... ... ... bl

3.2.2  Some Applications . . . . . . . L e 631

3.2.3 Existence of Suitable Lyapunov Functions . . . . . . . ... ... .. ... ....... GOl

3.3 Block Asynchronous Stochastic Approximation . . . . . . . .. .. ... ... ... [701
3.3.1 Problem Formulation . . . . .. .. .. ... .. 1

3.3.2 Intermittent Updating: Convergence and Rates . . . . . . .. ... ... ... .....

3.3.3 Boundedness of Tterations . . . . . . . . ... L [78]

3.3.4 Convergence of Iterations with Rates . . . . . . . . . .. ... ... .. .........

3.4 Variants of Standard Stochastic Approximation . . . . . . . . . .. ... ... .. ... .. .. 88
3.4.1 Averaged Stochastic Approximation . . . . . . .. .. ... L Bl

il



iv CONTENTS

3.4.2 Two Time Scale Stochastic Approximation . . . . ... ... ... ... ........ 138
3.4.3 Finite-Time Stochastic Approximation . . . . . . . . . ... . ... . ... .. ..... 89
3.4.4 Markovian Stochastic Approximation . . . . . .. ... ... ... 891

4 Applications to Optimization 93]
4.1 Some Invex Functions . . . . . . . . . .. L 93]
4.2 Review of Some Standard Algorithms . . . . . . ... .. ... L O]
4.2.1 Stochastic Gradient Descent . . . . . . . . . .. L L 90l
4.2.2 Momentum-Based Methods . . . . . . . . ... ... ... o1l

4.3 Stochastic Gradient Descent . . . . . . . . . . . .. 103}
4.4 A Unified Theory for Momentum-Based Methods . . . . . . ... ... ... ... .. ..... 1T
4.4.1 A Unified Momentum-Based Algorithm . . . . . .. ... ... ... ... ... ..., 1
4.4.2 Literature Review . . . . . . . .. L e 112
4.4.3 Statements of Main Theorems . . . . . . . . . . ... L oo 116l
4.4.4 Proofs of the Main Results . . . . . . . . . . . .. . . ... .. . 119
4.4.5 Nonviability of an Earlier Iterative Scheme . . . . . . ... ... ... ... .. ... 128

4.5 Stochastic Algorithms with Block Updating . . . . . . . ... ... ... . ... ... ... 31
4.5.1 Various Block Updating Schemes . . . . . . . . .. .. ... .. 1311
4.5.2  Convergence of SGD with Block Updating . . . . . . . ... ... ... ... ..... 132
4.5.3 Convergence of the Unified Momentum Algorithms . . . . . . .. ... ... ... ... @34

5 Markov Decision Processes
5.1 Markov Reward Processes . . . . . . . . . . L e
5.1.1 Discounted Reward Processes . . . . . . . . . . . . L 136
5.1.2 Average Reward Markov Processes . . . . . . . . .. .. ... ... ... 138

5.2 Markov Decision Processes. . . . . . . . . .. 141
5.2.1 Markov Decision Processes: Problem Set-Up . . . . .. ... ... ... ........ 41
5.2.2 Markov Decision Processes: Analysis . . . . . . . ... . ... 0oL @44

6 Reinforcement Learning
6.1 Value Determination Using Temporal Differences . . . . . . .. .. ... ... ... ... ...
6.1.1 TD(\)-Learning Without Function Approximation . . . . . ... .. ... ... .... 1561

6.2 TD()M)-Learning With Function Approximation . . . . . . ... . ... ... ... ..... 157
6.2.1 Discounted Reward Processes . . . . . . . . . . . ... =0
6.2.2 Average Reward Processes . . . . . . . . ... Y1

6.3 Simultaneous Value and Policy Approximation . . . . . ... ... .. ... ... ....... =1
6.3.1 Two Time-Scale Stochastic Approximation: Reprise . . . . . ... .. ... ... ...
6.3.2 Average Reward Processes: Reprise . . . . . . .. . . ... . 157
6.3.3 Policy Gradient Theorem . . . . . . . . . . . ... e Iy
6.3.4 Actor-Critic Methods . . . . . . . . . . . 158]

6.4 Q-Learning . . . . . . . . e e e 158
6.5 Zap Q-Learning . . . . . . . ... 158
6.5.1 Stochastic Newton-Raphson Approximation . . . . . . . . ... ... ... ....... 158
6.5.2 Zap Q-Learning . . . . . . . . . . e 158

7 Background Material [159]
7.1 Contraction Mapping Theorem . . . . . . . . . . . . . . . . e 159

7.2 Some Elements of Lyapunov Stability Theory . . . . . .. .. ... ... ... ... .. 160!



Chapter 1

Introducton

1.1 Introduction to Optimization

In this chapter, we give a brief overview of the type of optimization problems studied in this book. Further
details can be found in subsequent chapters, specifically Chapter

1.1.1 Introduction to Optimization

Suppose J : R? — R is some function; we will add more assumptions on .J(-) as we go along. The core problem
of optimization is to find one or more vectors 8* € R? that minimize J(-). It is clear that, by replacing
J(-) by —J(-), the problem of mazimizing a function can be readily reformulated as one of minimizing its
negative. Hence in this book we shall study only problems of minimization. It is customary to refer to J(-)
as the ojbective function. With this convention, we next distinguish between two different problems.

e Unconstrained vs. constrained minimization
e Global vs. local minimization

Let us begin with the first item. In unconstrained minimization, we study a problem of the form

min J(6),

whereas in constrained minimization, we study a problem of the form

mgin J(0) s.t. 0 €S,

where S C R? is a specified region of R?, usually referred to as the “feasible” region. Clearly, if S = R<,
there is no difference between the two. In this book, we restrict our attention to unconstrained minimiza-
tion problems, even though many of the techniques presented here can be made to apply to constrained
minimization with suitable modifications. Next, a vector 8 is a local minimizer of J(-) if there exists a
neighborhood S of 6* such that

J(0") < J(O)VO € S, (1.1.1)

while 8” is a unique local minimizer of J(-) if
J(0") < J(O)VO € S\ {6"}. (1.1.2)

A vector 8* is said to be a global minimizer of J(-) if (I.1.1)) holds with S replaced by R%, while 8" is said
to be a unique global minimizer of J(-) if (1.1.2) holds with S replaced by R%. In optimization problems,

1



2 CHAPTER 1. INTRODUCTON

Figure 1.1: Examples of Convex and Nonconvex Sets

clearly everyone would like to find global minimizers, but often one has to settle for local minimizers. To the
extent possible, in this book we strive to find global minimizers.

Before proceeding further, we clarify our usage of the terms “minimum” and “minimizer,” something
about which not every author is careful. If 8 is a satisfies , then we refer to 8* as the minimizer,
and to J(0%) as the minimum. Thus, the minimizer is the argument, while the minimum is the function
value at the minimizer.

1.1.2 Classes of Functions

In order to make the problem of function minimization more tractable, it is necessary to introduce more
“structure” into the problem, that is, to make some assumptions about J(-). Throughout the book, it is
assumed that J(-) is C!, and that the gradient V.J(-) is globally L-Lipschitz continuous. This means that

IVJ(8) = V()2 < LI — ||z, ¥0,¢ € R”. (1.1.3)

Thus, we do not study “non-smooth” objective functions such as J(0) = ||0]|1, nor functions of the form
J(0) = |6]:.

With these assumptions, there are several classes of functions that are studied in this book. We introduce
convex functions here, but as the title indicates, the focus of the book is on nonconvexr objective functions.
The reader is referred to Section [4.1] for several classes of nonconvex functions studied in the book.

We begin with the notion of a convex set, and then move to the notion of a convex function.

If 6, € R%, and X € [0,1], then the vector A@ + (1 — \)¢ is called a convex combination of 8 and ¢.
If A € (0,1) and 0 # ¢, then the vector A@ + (1 — \)¢ is called a strict convex combination of 8 and ¢.
Some authors also call this a “nontrivial” convex combination.

Definition 1.1. A subset S C R? is said to be a convex set if
A+ (1—XNpeSVrel0,1], VO,¢ € S. (1.1.4)

Thus a set S is convex if every convex combination of two elements of S once again belongs to S. In two
dimensions we can visualize a convex set very simply. If 8, ¢ € R?, then the set {\0 + (1 — \)¢ : X € [0,1]}
is the line segment joining the two vectors @ and ¢. Thus a set S C R? is convex if and only if the line
segment joining any two points in the set S once again belongs to the set S. Therefore in Figure [T} the set
on the left is not convex, because the line segment connecting 8 and ¢ does not lie entirely in S; in contrast,
the set on the right is convex. A similar interpretation also applies in higher dimensions, except that the
“line” has to be imagined and cannot be drawn on a page.

Definition [1.1} is stated for a convex combination of two vectors, but can be easily extended to a convex
combination of any finite number of vectors. Suppose S C R? and 61, ...,0; € S. Then a vector of the form

k

k
d=> X0, X >0Vi,) N\ =1

i=1 i=1
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Figure 1.2: Graph Below Chord Interpretation of a Convex Function

is called a convex combination of the vectors 01, ..., 0. It is easy to show, by recursively applying Definition
that if S C R? is a convex set then every convex combination of any finite number of vectors in S again
belongs to S.

Example 1.1. The n-dimensional simplex S,,, which can be identified with the set of probability distri-
butions on a finite alphabet of cardinality n, is a convex set. Thus if p,v are n-dimensional probability
distributions, then so is the convex combination Ay + (1 — A)v for every A in [0, 1].

Definition 1.2. Suppose S C R? is a convex set and J : S — R. We say that the function J is convex if
JA0+ (1 —XN)p] < AJ(0)+ (1 —N)J(¢), VA€ 0,1], ¥O,¢ € S. (1.1.5)

We say that the function J is strictly convex if
JANO+ (1 —N)p] < AJ(0)+ (1 —N)J(¢p), VA€ (0,1), VO, € S,0 # ¢. (1.1.6)

Equations ([1.1.5) and (1.1.6) are stated for a convex combination of two vectors € and ¢. But we can

make repeated use of these equations and prove the following facts. If J is a convex function mapping a
convex set .S into R, and 64,...,0; € S, then

k k
J (Z Ai0i> <) " NiJ(8:), whenever [Ar... \e] = X € Sk
=1

i=1

The above definitions are all algebraic. But in the case where S is an interval [a, b] in the real line (finite
or infinite), the various inequalities can be given a simple pictorial interpretation. Suppose we plot the graph
of the function J. This consists of all pairs (8, J())) as 0 varies over the interval [a, b]. Suppose (6, J(#)) and
(¢, J(@)) are two points on the graph. Then the straight line joining these two points is called the “chord”
of the graph. We can assume that the two points are distinct, because otherwise the inequalities and
become trivial.) Equation states that for any two points 6, ¢ € [a,b], the chord joining the
two points (6,.J(0)) and (¢, J(¢p)) lies above the graph of the function (z,J(z)) whenever z lies between 6
and ¢. Equation says that, not only does the chord joining the two points (0, J(6)) and (¢, J(¢)) lie
above the graph of the function (z,J(z)) whenever z lies between x and y, but in fact the chord does not
even touch the graph, except at the two end points (0, J(0)) and (¢, J(¢)).

It can be shown that, for all practical purposes, a convex function has to be continuous; see [125, Theorem
10.1]. But if a function is not merely continuous but also differentiable, then it is possible to give alternate
characterizations of convexity that is more useful.

Lemma 1.1. Suppose that J : R? — R is continuously differentiable everywhere. If J is convex, then

J(O+ @) > J(0) + (VJ(B), ), V0, c R (1.1.7)
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Figure 1.3: The Graph Above Tangent Property of a Convex Function

If J is strictly convex, then
J(O+ @) > J(0) + (VJ(0),p), V0, V¢ # 0 € RY. (1.1.8)

For a proof of Lemma see [125, Theorem 25.1].

Now we give interpretations of the various inequalities above in the case where d = 1, so that J : R — R.
Suppose J is continuously differentiable on some interval (a,b). Then for every 6 € (a,b), the function
¢ — J(0) + J(0)(¢ — 0) is the tangent to the graph of f at the point (8, J(6)). Thus (1.1.7) says that for
a convex function, the tangent lies below the graph. This is to be contrasted with hich says that
the chord lies above the graph. Equation says that if the function is strictly convex, then not only
does the tangent lie below the graph, but the tangent touches the graph only at the single point (6, J(6)).
Figure depicts the “graph above the tangent” property of a convex function, which is to be contrasted
with the “graph below the chord” property depicted in Figure

The above discussion allows us to introduce another relevant concept.

Definition 1.3. A C! function J : R¢ — R is said to be R-strongly convex if
R
J(0+¢) > J(0) + (V] (0), ¢) + 5 [|¢l3, V0, ¢ € R”, (1.1.9)

The above concept is taken from [109] section 2.1.3], which also contains several consequences of strong-
convexity.

If the function is in fact twice continuously differentiable, then we can give yet another set of character-
izations of the various forms of convexity.

Lemma 1.2. Suppose S is an open convex subset of R%, and that J : S — R is twice continuously differen-
tiable on S. Denote Q := V2J(-): S — R Then

1. J is convez if and only if Q(0) is positive semidefinite for all @ € S.
2. J is strictly convez if Q(0) is positive definite for all @ € S.

For a proof of this result, see [125, Theorem 4.5].

1.1.3 Some Popular Algorithms

In this subsection, we discuss various popular approaches for minimizing a C! objective function J(-). Again
the contents of this subsection can be thought of as an overview, with more details being found in Chapter
@

Historically, the oldest method for finding a minimizer of a C! function J(-) is the Steepest Descent
method, which goes back a few centuries. It can be described as follows:
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1. Start with an initial guess 8y € R,
2. At step t, compute the gradient V.J(6;), and choose a “step size” ay.

3. Update 0; via
0t+1 = Ht - OltVJ(Ot) (1110)

4. Repeat

Note that the minus sign in front of a; arises because the aim is to minimize the ojbective function. The recipe
for choosing the step size «; (which is also called the “learning rate” in the Machine Learning community)
has varied over time. Initially, a; was chosen via a “one-dimensional search,” to minimize J(bth: — a«V.J(6;)
as a function of a. However, the current practice is to choose a predetermined “schedule” of step sizes. See
Chapter [ for details.

During the 1960s, the Steepest Descent method was supplemented by momentum-based methods,
wherein the current search direction V.J(6;) in is changed to some function of the current guess 6,
and also the preceding guess 0;_1. We discuss perhaps the two most popular momentum-based algorithms,
namely the Heavy Ball method, and Nesterov’s Accelerated Gradient method.

The Heavy Ball (HB) method was first introduced in [I13]. The update rule in the Heavy Ball method is

0t+l = 0,5 -+ u(@t — 0t—1) — OltVJ(Ot), (1111)

where o is the step size, p is known as the “momentum parameter.” The Nesterov Accelerated Gradient
(NSG) algorithm was introduced in [I07], and can be stated as follows (following [143] Eqgs. (3)—(4)]):

0t+1 = 0,5 + ,ut(Bt - 0,*,71) - atVJ(Ht + ut(Gt — 01571)). (1112)

The main difference between the HB method and NAG is that in HB, the search direction to which the step
size is applied is V.J(0;), whereas in NAG, it is V.J(0; + (0 — 0:-1)).

1.1.4 Sources of Stochasticity

It can be seen that all of the algorithms discussed in the previous subsection are deterministic. The same
was true of practically all the algorithms of that era. However, the title of this book is stochastic algorithms.
So wherefrom does the stochasticity arise?

In recent years, the dimension d of the optimization problems has increased enormously. In the design of
contemporary neural networks or Large Language Models (LLMs), values of d up to 10'? are not uncommon.
Thus, even if the learner has the “ability” to compute the gradient V.J(8;) (which belongs to R?) “exactly,”
the learner often uses an approrimate gradient h;, 1 whose computation is far less resource-intensive com-
pared to computing VJ(8;) exactly. Often, the approximate gradient h;; is also random. Thus, in contrast
with deterministic algorithms where the iterations lead to a sequence of deterministic vectors {6;}, in this
situation the output of the algorithms are a sequence of random vectors {6}, that is, a stochastic pro-
cess. Clearly, the tools required to analyze the behavior of a stochastic process are more involved than those
needed to analyze the behavior of a sequence of vectors. Developing and presenting such tools is one the
main objectives of this book. The same methodology can also be used to analyze the situation where there
are unavoidable “measurement errors” in computing V.J(6;).

As an illustration of these ideas, we study the problem of training a multi-layer neural network. Each
neural network architecture can be thought of as a map f : R? x R® — R!, where d is the number of
weights or adjustable parameters, n is the number of inputs, and [ is the number of outputs. For ease of
presentation, we show in Figure a simple neural network with just a handful of neural elements and
a few hidden layers. In reality, today’s neural networks have millions of neurons if not more, and tens of
billions of “weights” if not more. For each choice of weight vector & € R?, the neural network leads to an
“input-output” map that associates an output f(0,x). The “training” of a neural network takes place as
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fo b—

Figure 1.4: A simple multi-layer neural network

follows: The learner is given a large collection of “labelled” input-output pairs {(x;,y;)} ;. The objective
is to minimize the function

70) = L(yi,£(6,x,)) (1.1.13)

where L : Rl x Rl — R, is known as the “loss function,” and measures the difference between the actual
output of the network f(0,x;), and the desired output y,;. The most commonly used loss function is the
least-squares error

L(y,2) = |ly — zl3- (1.1.14)

As discussed in the preceding subsection, almost all methods for minimizing J(-) require the computation
of VJ(0;), which clearly equals

VJ(8,) = %VQL(yi,f(O,xi)). (1.1.15)

Computing V.J(0;) in this manner is known as the batch approach; see [26] for a discussion of such terms,
as well as an excellent survey of optimization methods for large-scale ML problem. In principle, the above
quantity is easy to compute, but for the fact that it requires m different individual gradient computations.
When m is small, this approach is feasible. But in contemporary ML problems it is not uncommon for m,
the number of training samples, to be in the billions or even trillions. To reduce the computational effort,
a commonly used approach is called mini-batch. In this approach, an integer k < m is selected. At each
iteration, k different indices iy, -- ,4; are chosen from the set [m] := {1,--- ,m}, independently, and with
replacement. (This makes the statistical analysis easier.) Then the approximate gradient h; 4 is defined as

k
m
hy ;= ?;VQL(yij,f(G,xij)). (1.1.16)

Clearly hy;; is a random vector. Since we are choosing the samples independently and with replacement,
it is easy to see that the expected value of h;y; equals the true gradient VJ(6;). This is the reason for
the term m/k. This is the motivation for referring to h;1; as a stochastic gradient. In Chapter [4] we
will present quite general conditions for the convergence of the Stochastic Gradient Descent (SGD)
algorithm, where the true gradient V.J(0;) is replaced by a random approximation to it denoted by hy; 1.
We also analyze momentum-based methods when a stochastic gradient is used.
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1.2 Introduction to Reinforcement Learning

1.2.1 Introduction to Reinforcement Learning

As with many phrases in common usage, there is no precise definition of what constitutes “reinforcement
learning,” often abbreviated to just RL. In the present set of notes, this phrase is used to refer to decision-
making with uncertain models, and in addition, current decisions alter the future behavior of the system.
One consequence of this alteration is that, if the same decision is taken at a future time, the outcome might
not be the same. This additional feature, namely that current decisions alter the dynamics of the system
under study, usually though not always by altering the surrounding environment, is what distinguishes RL
from “mere” decision-making under uncertainty.

Figure [[.5] rather arbitrarily divides decision-making problems into four quadrants. Examples from each
quadrant can be given.

e Many if not most decision-making problems fall into the lower-left quadrant of “good model, no alter-
ation.” For example, a well-studied control system such as a fighter aircraft has an excellent model
thanks to aerodynamical modelling and/or wind tunnel tests. To be specific, the dynamical model of
a fighter aircraft depends on the so-called “flight condition,” consisting of the altitude and velocity
(measured as its Mach number). While the dependence of the dynamical model on the flight condition
is nonlinear and somewhat complex, usually sufficient modelling studies are carried out, both before
the aircraft is flown and afterwards, that the dynamical model can be assumed to be “known.” In
turn this permits the control system designers to formulate an optimal (or some other form of) control
problem, which can be solved.

e Controlling a chemical reactor would be an example from the lower-right quadrant. As a traditional
control system, it can be assumed that the dynamical model of such a reactor does not change as a
consequence of the control strategy adopted. However, due to the complexity of a reactor, it is difficult
to obtain a very accurate model, in contrast with a fighter aircraft for example. In such a case, one
can adopt one of two approaches. The first, which is a traditional approach in the theory of control
systems, is to use a nominal model of the system and to treat the deviations from the nominal model
as uncertainties in the model. The second, which would move the problem from the lower right to the
upper right quadrant, is to attempt to “learn” the unknown dynamical model by probing its response
to various inputs. This approach is suggested in [I45, Example 3.1]. A similar statement can be made
about robots, where the geometry determines the form of the dynamical equations describing it, but
not the parameters in the equations; see for example [I39]. In this case too, it is possible to “learn” the
dynamics through experimentation. In practice, such an approach is far slower than the traditional
control systems approach of using a nominal model and designing a “robust” controller. However,
“learning control” is a popular area in the world of machine learning.

e A classic example of a problem belonging to the upper-left corner is a Markov Decision Process (MDP).
This topic is studied in Chapter [5|and it forms the backbone of one approach to RL. In an MDP, there
is a state space X, and an action space Y. While it is possible for the sets to be infinite, in this book
we avoid a lot of technicalities by assuming that both sets are finite. Also, in realistic MDPs, the size
of the action space U is very small. Often it is just two! However, though the state space X can be
finite, its cardinality |X'| can be enormous, as shown in some of the examples later in this chapter. In
an MDP, at each time instant the learner (also referred to as actor or agent) decides on the action to
be taken at that time. In turn the action affects the probabilities of the future evolution of the system.
Board games without an element of randomness would also belong to the upper-left quadrant, at least
in principle. Games such as tic-tac-toe belong here, because the rules of the game are clear, and the
number of possible games is manageable. In principle, games such as chess which are “deterministic”
(i.e., there is no throwing of dice as in Backgammon for example) would also belong here. Chess is a
two-person game in which, for each board position, it is possible to assign the likelihood of the three
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Figure 1.5: The four quadrants of decision-making under uncertainty

possible outcomes: White wins, Black wins, or it is a draw. However, due to the enormous number of
possibilities, it is often not possible to determine these likelihoods precisely. It is pointed out explicitly
in [133] that, merely because we cannot explicitly compute this likelihood function, that does not mean
that the likelihood does not exist! However, as a practical matter, it is not a bad idea to treat this
likelihood function as being unknown, and to infer it on the basis of experiment / experience. Thus,
as with chemical reactors, it is not uncommon to move chess-playing from the lower-right corner to
the upper-right corner.

e The upper-right quadrant is the focus of these notes. Any problems where the actions taken by
the learner alter the environment, in ways that are not known to the learner, are referred to as
“reinforcement learning” (RL). Despite the lack of knowledge about the consequences, the learner
has no option but to keep trying out various actions in order to “explore” the environment in which
the unknown system is operating. As time goes on, some amount of knowledge is gained, and it is
therefore possible, at least in principle, to “exploit” the knowledge to improve decision making. The
trade-off between exploration and exploitation is a standard topic in RL. A canonical example is MDPs
where the underlying parameters are mot known, and these occupy a major part of these notes. As
mentioned above, often complex problems from the lower-right quadrant (such as chemical reactors),
or the upper-left quadrant (such as Chess), are also treated as RL problems.

Now we will give a general description of the problem. In a RL problem, there is a state space X and
another action space U. At each time ¢, the learner (also known as the actor or the agent) measures the
state X; € X. Based on this measurement, the learner chooses an action Uy from a menu of “actions,” which
is denoted by U, and receives a reward R(X;,U;). The rule by which the current action Uy is chosen as a
function of the current state X; is known as a policy. The idea is to find the best policy. Figure depicts
the situation.

While it is possible for the state space X and the range of possible actions U to be infinite, in these
notes we simplify our lives by restricting U to be a finite set. In the same way, it is possible to treat “time”
as a continuum, but again we simplify life by treating ¢ as a discrete variable assuming values in the set of
natural numbers N = {0,1,---}. Thus RL requires the agent to take a set of sequential decisions from a
finite menu, at discrete instants of time. When the agent chooses an action U; € U, two things happen.

1. The agent receives a “reward” R;. The reward could either be deterministic, or random, and both
possibilities are permitted in these notes. The reward could be a negative number, suggesting a
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Figure 1.6: Depiction of a Reinforcement Learning Problem

penalty instead of a reward, but the phrase “reward” is standard phraseology. In case the reward is
random, it is assumed that the reward lies in a bounded interval in R which is known a priori, in
which case the reward can be translated to belong to an interval [0, M]. The same transformation can
of course be applied if the reward is deterministic. Note that some authors speak of a “cost” which
is to be minimized, rather than a reward which is to be maximized. The modifications required to
tackle this situation are obvious and we will not comment upon this further. The reward depends not
just on the action chosen Uy, but also the state X; of the environment at time t. There can be two
sources of uncertainty in the reward. In a Markov Decision Problem (MDP), the reward could be a
random function of X; and U, but with a known probability distribution. In an RL problem, even
the probability distribution of the reward is not necessarily known. However, for technical reasons, it
is assumed that the upper bound M on the reward is known.

2. The action U, affects the dynamics of the system. A consequence is that the same action taken at a
different time need not lead to the same reward, because in the meantime the “state” of the environment
may have changed.

Over the years, the RL research community has given some “structure” to the above rather vague and
general description. Specifically:

1. The environment is taken as a Markov process (see Section [2.2]) with the state space X, in which the
state transition matrix depends on the action taken. So there are |U| state transition matrices, one for
each possible action.

2. If X; denotes the state of the Markov process at time ¢ and Uy is the action taken at time ¢, then the
reward R is taken to be a function R(X;,U;). This formalism explains why the same action U; € U
taken at a different time may lead to a different reward, because the state X; may have changed. It is
also possible for R to be a “random” function of X; and Uy, so that X;, U; only specify the probability
distribution of R(X¢,U;). In such a case, even if the same state-action pair (X3, U;) were to occur at
a different time, the resulting reward need not the same.

3. Yet another variation is that the reward R(Xy,U;) (whether random or deterministic) is paid at the
next time instant ¢ + 1. This is the case in some books, notably [148, [145]. In other words, if the
Markov process is in state X; and the action U; is applied, the reward is R;11 = R(X¢,U;). This
allows those authors to consider the situation where the “next state” X;;; and “next reward” R;4;
can share a joint probability distribution, which depends on X; and U;. Some other authors assume
that the reward is immediate, so that R, = R(X, Uy). This is the convention adopted in these notes.

4. There are two distinct types of Markov Decision Processes that are widely studied, namely: Discounted
reward processes and average reward processes. Each of them has rather a distinct behavior from the
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other. In discounted reward processes, there is a “discount factor” v € (0,1) that is applied to future
rewards. The objective is to maximize the sum of the future rewards, where the reward at time ¢ is
discounted by the factor v¢. Because this future discounted reward is itself random, we maximize the
expected value of this random variable. In the average reward process, the objective is to minimize the
expected value of the average of future rewards over time. Because there is no discounting of future
rewards, a reward paid at any time contributes just as much to the average as a reward paid at any
other time.

5. In the simplest version of the problem, the || state transition matrices, one for each possible action,
are assumed to be known, as is the reward function. In the case where the reward is a random function
of X; and Uy, it is assumed that the probability distribution of R(X;, U;) is known. It is also assumed
that the state X; of the Markov process can be observed by the agent, and can be used to decide the
action U;. A key concept in RL is that of a “policy” 7 which is a map from the state space X of
the Markov process to the set of actions . The objective here is to choose the optimal policy, which
maximizes the expected value of the discounted future reward over all possible policies. This version
of the problem is usually known as a Markov Decision Process (MDP)E| It is usually viewed as
a precursor to RL. In “proper” RL, neither the Markovian dynamics nor the reward are assumed to
be known, and must be learned on the fly so to speak. However, knowing the solution approaches to
the MDP is very useful in solving RL problems. It should be pointed out that some authors also use
the phrase RL to the problem of finding the optimal policy in an MDP where the parameters of the
problem are completely known.

A dominant theme in RL is the trade-off between “exploration” and “exploitation.” By definition, the
agent in an RL problem is operating in an unknown environment. However, after sometime a reasonably good
model of the environment is available, and a set of actions that is reasonably “rewarding” is also identified.
Should the agent then persist with this set of actions, or occasionally attempt something new, just on the
off-chance that there is a better set of actions available? Let us take a concrete example. A successful chess
player would have evolved, over the years, a set of strategies that work well for him/her. Should the player
persist with the time-proven strategies (exploitation) until someone starts beating him /her, or occasionally
try something completely different just to see what happens (exploration)? The answer is not clear, and is
likely to vary from one domain to another. To illustrate the domain dependence of the solution, suppose
a person moves to a new town and wishes to find the best coffee shop. Then it is probably sufficient to
try each nearby coffee shop just once (or just a few times), because most coffee shops have standardized
protocols for preparing coffee, so that the quality is not likely to vary very much from one visit to the next.
Therefore a person can stick to the coffee shop that is most appealing after a few visits, and there is very
little incentive for further “exploration,” only “exploitation.” In contrast, it can be assumed that the course
of a chess match between two players at the highest level almost invariably leads to a previously unexplored
set of positions. Thus persisting with a stock strategy would invariably lead to suboptimal results, and there
must be greater emphasis on exploration than in the coffee shop example.

There are a couple of methods for quantifying the trade-off between exploration and exploitation. We
begin with the observation that almost any “sensible” learning algorithm would converge to a nearly optimal
policy within a finite number of time steps. Here are two ways to measure how good the algorithm is:

1. Given an accuracy €, one can measure how many time steps are required for the policy to be within
€ of the optimal policyEI The faster a policy becomes e-suboptimal, the better it is. Implicit in this
characterization is the assumption that a policy is not penalized for how badly it performs before it
achieves e-suboptimality — just the time it takes to achieve e-suboptimality status.

1There is a variant where the state X; cannot be observed directly; instead one observes an output Y; which is either a
deterministic or a random function of X;. This problem is known as a Partial Observed Markov Decision Process (POMDP).
This problem is not discussed at all in these notes.

2This idea is made precise in subsequent chapters.
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2. The other measure is to see what the reward would have been, had the learner somehow magically
implemented the optimal policy right at the outset, and compare it against the actually achieved
performance. This quantity is called the “regret” and is defined precisely later on. The difference
between minimizing the regret and minimizing the time for achieving e-optimality is that in the latter,
the performance of the algorithm before achieving e-optimality is not penalized, whereas it is counted
as a part of the regret.

Clearly, the two criteria are not the same. A learning strategy that converges relatively quicky, but performs
poorly along the way would be rated highly under the first criterion, and poorly under the second criterion.

Within the broad area of Machine Learning (ML) or Artificial Intelligence (AI), RL stands quite distinctly
apart from other popular areas such as supervised learning (which is what many people mean when they
talk about ML), and unsupervised learning. In supervised learning, the main goal is generalization. Thus
the learner is shown an amount of labelled “training data.” The labels could be binary, in which case the
problem is called binary classification. Or the label set could be some finite set, in which case the problem
is called multi-class classification. Finally, the label set could be a continuum, like [0, 1] of the set of real
numbers, in which case the problem is called regression. After the training phase, the learner is then shown
“testing data” for which the correct labels are known to the evaluator, and the learner is asked to predict
these correct labels. The extent to which the learner is able to predict the correct labels serves as a measure of
the quality of the learning algorithm. For instance, detecting whether a credit card transaction is legitimate
or fraudulent, or a growth represents a malignant cancer tumor or just a benign growth, are examples of
supervised learning problems. A well-known recent example is the ImageNet database [65], created as a part
of the LSVRC (Large Scale Visual Recognition Challenge). It consists of roughly 14 million images that
are hand-curated. The full set, or some subset thereof, is presented to some supervised learning algorithm,
whose parameters are then adjusted to achieve good performance on the training inputs. While there are
several mathematical formalisms of this class of problems, the so-called PAC (Probably Approximately
Correct) learning formulation is among the more popular approaches. Deep neural networks are an example
of solving supervised learning problems using the PAC formalism.

At the other end of the spectrum lies unsupervised learning. In this problem, the learner is simply given
a set of data, without any labels of any sort. The task of the learner is to collect the data into various
“clusters” as they are known in the world of statistics. Once the training data is clustered, the learner is
given a set of testing data. Each element of the testing data is then assigned to the cluster to which it most
naturally belong. One way of stating the clustering problem is via the K-means algorithm. In this algorithm,
the clusters are chosen in such a way that. the elements of each cluster are closer to the centroid of the
cluster to which it belongs, than to the centroid of all other clusters. Figure illustrates the outcome of one
such clustering. It can be seen that there are five clusters, whose centroids are denoted by stars. In general,
solving the K-means problem ezactly is NP-hard. Hence various approximations are used. Unsupervised
learning is not discussed further in these notes.

One can explain the difference between supervised learning and Reinforcement Learning as follows
(though other explanations are also possible). In supervised learning, the learner gets immediate and
(mostly) accurate feedback about the correctness of the label assigned to the testing data. However, in
RL, the feedback to the learner is long-term, and statistical in nature.

1.2.2 Some Examples of Reinforcement Learning

In this section we briefly discuss a few motivating problems that can serve as illustrations of reinforcement
learning. We will return to a couple of these problems again in future chapters.

There are several examples of reinforcement learning available in the literature. The books [119], [145]
contain several examples, while the book [27] is primary devoted to examples of RL in a variety of areas,
including healthcare, transportation, finance etc. Perhaps the most “famous” application of RL is a general-
purpose algorithm that can be taught to play a variety of games, including Chess, Shogi and Go [37, [136].
Robot control, including path-planning in the presence of (possibly unknown) obstacles is another popular
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Figure 1.7: Typical output of a clustering algorithm

application. Some RL texts and papers study the problem of balancing a stick on a moving cart, which is
known in control theory as the “inverse pendulum” problem. This might not be a good application of RL,
because the system can be modelled very precisely, which in turn leads to very efficient control laws. However,
by viewing this well-studied contro-theoretic problem as a problem in RL, the RL research community has
developed several new and interesting learning paradigms. Another application is that of deciding an optimal
strategy for the game of Blackjack, sometimes also called Twenty One. We will study this example, either
in its full form or in a simplified form, in detail at appropriate places in these notes.

Multi-Arm Bandit Problems

This problem is a generalization of the “slot machine” in gambling casinos around the world, whereby
the player pulls a lever and receives a random payoff. In order to pull the lever, the player has to insert some
money, and the expected value of the payoff is less than the amount to be inserted; that is how the casino
makes money. However, in our model, we ignore the fact that a player has to pay to play, and focus strictly
on the payout part of it.

Suppose a player is facing m slot machines, or “bandits,” each of which has random payout. Specifically,
let X; denote the random payout of the i-th bandit. Then X; has an unknown expected (mean value) payout,
as well as an unknown probability distribution around this mean value. To avoid unnecessary technicalities,
it is assumed that all returns are nonnegative, and that there is a fixed known upper bound M on the payout
of each machine, which can be taken as 1 without any loss of generality. Therefore the return of each arm
has a probability distribution ¢; is supported on the set [0, 1]. Define

1
M:/O xp;(x)dx

to be the mean or expected value of X;. Of course, the player does not know either u; or ¢;(-). But the player
is able to “pull the arm” of each bandit and see what happens. This generates (we assume) statistically
independent samples x;1, - , i of the random variable X;. Based on the outcome of these experiments,
the player is able to make some estimate of u; for each bandit . These estimates can be used to determine
future strategies.

Note that if the quantities pq,- -+ , ty, are known, then the problem is simple: The player should always
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Figure 1.8: Toy Snakes and Ladders Game

play the machine that has the highest expected payout. But the challenge is to determine which machine
this is, on the basis of experimentation. As stated above, there are many reasonable algorithms that will
asymptotically (as the number of trials increases towards infinity) determine the arm(s) with the best re-
turn(s). Therefore one way to assess the performance of an algorithm is its “regret,” that is, the return
achieved over the course of learning, subtracted from the optimal return of always choosing the arm with the
highest return. Bandit theory is a very well-developed branch of Reinforced Learning, which is somewhat
orthogonal to Markov Decision Problems. So that topic, while central to RL, is not discussed further in this
book.
Snakes and Ladders

We all know the ancient snakes and ladders game, where the objective is for a player to pass from the
start to the end while avoiding the snakes and taking advantage of the ladders. We will modify the game
slightly by adding the possibility of losing if the player overshoots the last square. A toy version of the game
is shown below (it is also studied in Section .

The rules of the game are as follows:

e Initial state is S.
e A four-sided, fair die is thrown at each stage.

e Player advances as many squares as the outcome of the throw, followed by the impact of the snake or
ladder, if any.

e Player must land exactly on W to win.

e If implementing a move causes the player to hit or to cross L, then the player loses. Landing exactly
on L also loses.

e Hitting the square W leads to a reward of 5 and hitting the square L leads to a reward of —5. The
reward in every other square is 0.

At each stage of the game, the player has two choices: to roll the die and take a chance on the outcome, or
not to roll it. We can ask: What is the best strategy for a player as a function of the square currently being
occupied? Clearly, it depends on whether the expected return from playing exceeds the expected return
from not playing.
Blackjack

Blackjack is a popular game in gambling casinos around the world. The player plays against the “house.”ﬂ
The player and the house draw cards in alternation. The objective is to draw cards such that the total of

3 Actually, it is possible to have more than one player plus the “house.” However, to simplify the problem, we study only
the case of one player against the “house.”
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(P, H) R
P<H -2
P=H 1

P>HP#W | 2
(P,H)=(W,x) | 5
(P,H) = (L,%) | -5

Table 1.1: Reward Table for Simplified Blackjack Game

the cards is as close to 21 as possible without exceeding it. That is why sometimes Blackjack is also called
“Twenty-One.” The formulation of Blackjack as a problem in RL is discussed in [145], Example 5.1]. At each
time instant, the player has ony two possible actions: To ask for one more card, or not. These are known
as “hit” and “stick” respectively. So the set of possible actions ¢ has cardinality two. If the player draws a
card, the outcome is obviously random. Either way, the house also draws a card whose outcome is random.
It is shown in [145, Example 5.1] that the process can be modelled by a Markov process with 200 states, so
that |X'| = 200. However, tracing out all possible future evolutions of the game, starting from the current
state, is nearly impossible, and simulations are the only way to analyze the problem.

We now present a simplified version of Blackjack. Obviously, drawing a card leads to the player’s total
increasing by anywhere from 1 to 11E| So if the player’s current total is 10 or less, the player cannot possibly
lose by drawing, and may get closer to winning. So the optimal strategy from such a position is not in doubt.
With that in mind, we replace the drawing of a card by the rolling of a fair four-sided die, with all four
outcomes being equally probable. It does not matter what the “target” total is, because if the target total
is T', then so long as the player’s total is T' — 4 or less, the player should roll the die. With this in mind,
we can think of the player’s states as {0,1,2,3, W, L}, with W and L denoting Win and Lose respectivey.
If the player’s current total plus the outcome of the die exactly equals 4, the player wins, and if the total
exceeds 4, the player loses. But there is an added complication, which is the total of the “House.” Let us
assume that the House policy is to “stick” whenever it gets within 3 of the designated total. Hence it can
be assumed that the House total is in {1,2,3}. Now the object of the game is not merely to get as close to
W without going over, but also to beat the House total. Hence the reward for this game can be specified
as shown in Table With this reward structure, at each position, the player has the option of rolling the
die, or not. It turns out that this game is more complex than just the player playing snakes and ladders.
We will analyze this game also in later chapters.

Backgammon

Backgammon is a board game played by two players on a board with (essentially) 24 positions, with
each player throwing two six-sided dice at each turn. Figure shows a typical board position. The game
combines chance (random outcome of throwing the dice) and strategy (what a player does based on the
outcome of the dice).

Unlike in Blackjack, the range of possible actions available to a player at each turn is quite large. This
game is well-suited to a technique called “temporal difference” or TD-learning, which is studied in Section
[42] Tesauro has published several articles on how to program a computer to play backgammon, including
[154) 155, [156]. See [145l, Section 16.1] for a detailed description of the rules of backgammon and the TD
implementation of Tesauro.

AlphaGo and AlphaZero

It would not be a exaggeration to say that a great deal of the public attention to artificial intelligence
arises from the success of two programs, namely AlphaGo and AlphaZero. In 2016, a UK-based company
called Deep Mind (since acquired by Google) created a program called AlphaGo to play Go, a board game
played on a grid of 19 x 19 places. In a five-game match held in Seoul, Korea between the 9th and 15th
of March, AlphaGo played against Lee Sedol, who was an eighteen-time world champion, though he was

4An Ace can be counted as either 1 or 11 as per the player’s choice.
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Figure 1.9: A typical board position in backgammon

not world champion at that time. AlphaGo won four out of the five games. It was the first instance of a
computer defeating a ranking Go player. A year later, in 2017, AlphaGo defeated the top-ranked player Ke
Jie. In a series of three matches played between 23rd and 27th May, AlphaGo won all three matches.

Twenty years earlier IBM had developed the Deep Blue platform to play chess. Obviously, over such a
long period of time, there would be massive improvements in computing hardware. Indeed, AlphaGo ran
on a collection of Tensor Processing Units (TPUs), which are specially designed to carry out the type of
computations required by AlphaGo (as opposed to general-purpose CPUs, or Central Processing Units).

Even at that time, Deep Mind had in its possession a more advanced program called AlphaZero, but did
not deploy it against Ke Jie. AlphaZero could be programmed to play chess, Go and shogi (Japanese chess).
AlphaZero defeated AlphaGo while playing Go, defeated Stockfish (a popular chess-playing program), and
Elmo (a popular program to play shogi). However, in the eyes of many, the real interest in AlphaZero arose
from the manner in which is trained itself. Recall that the Deep Blue platform developed by IBM relied
on human inputs, and a search technique, in order to analyze board positions and determine its next move.
In contrast, AlphaZero used an entirely different approach, whereby it improved itself through “self-play”,
through a mathematical method known as Monte Carlo tree search (MCTS) algorithm. Thus the same
program is able to “teach itself” to play different games. A popular description how AlphaZero goes about
its self-appointed task can be found in [37]. Those interested in the mathematical details can find them in
[136).

One of the intriguing philosophical aspects of AlphaZero is the fact that, as its name implies, AlphaZero
starts from zero, that is, without any prior knowledge. Its superior performance compared to other programs
that make use of prior knowledge has been interpreted by some Al researchers to claim that “prior knowledge”
is not necessary to achieve top performance. To understand why this is interesting, let us consider the same
question, but changing “chess” to “cooking.” Suppose you wish to become a master chef. Should you first
learn under someone who is already a master chef, and experiment on your own only after you have achieved
some level of proficiency? Or is it better for you to undertake trial and error right from Day One? Most of
us would instinctively answer that learning from a master (i.e., tapping domain knowledge) would be better.
One of the intriguing aspects of the success of AlphaZero is that, when it comes to a computer learning to
play chess, domain knowledge apparently does not confer any advantage. However, at the moment the role
of prior domain knowledge in Al is still a topic for further research. It is not clear whether the success of
AlphaZero is a one-off phenomenon, or a manifestation of a more universally applicable principle.
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1.3 About These Notes

This section will be written last.

Notes and References

The problem of deterministic methods of optimization has been studied for decades, and picked up momen-
tum during the 1960s and the 1970s. Historically, these algorithms assumed that various measurements (such
as function evaluations or gradient evaluations) were noise-free. Some of these deterministic algorithms in
turn inspired various stochastic algorithms that are widely used, many of which are studied in this book.
An excellent book on deterministic optimization algorithms is [47]. In [12§], the author briefly discusses the
relationship between the stochastic approximation algorithm and deterministic algorithms, specifically the
Newton-Raphson algorithm, when only noisy measurements are available. This connection is made precise
in the material on Zap Q-learning in Chapter [6]

There are a great many books devoted to both convex analysis and convex optimization. Among the
many excellent books on convex analysis, two noteworthy ones are [125] [62]. These books discuss convex
functions in general, though [62] also has some discussion of convex optimization. Among the bext books
dedicated to convex optimization is [28§].

We will discuss the formulation of Reinforcement Learning (RL) in Chapters |5 and @ For the present,
the reader is directed to the following representative sample of papers that discuss the practical applications
of RL: [157, 11 [105], [6°7, [164], [78], [54].



Chapter 2

Convergence of Stochastic Processes

As mentioned in Section when attempting to solve very high-dimensional optimization problems, it is
often desirable to introduce some randomness, to avoid computing gradient vectors of large dimensions. One
consequence of this is that, in contrast with deterministic optimization algorithms that produce a sequence
of vectors, stochastic algorithms produce a stochastic process. A similar statement applies to Reinforcement
Learning problems. The central problem studied in this book is the convergence of various stochastic
processes that arise in nonconvex optimization and Reinforcement Learning. Therefore, in this chapter we
present some “universal” (that is, widely applicable) theorems that can be used to establish the convergence
of stochastic processes. The actual applications of these convergence theorems to specific situations are
deferred to subsequent chapters. Specifically, applications to nonconvex optimization are studied in Chapter
[ and applications to RL are studied from Chapter [5] onwards.

Note that the contents of the chapter are a mixture of “standard” material and “advanced” material.
Secifically, the material contained in Sections and is quite basic, and can be found in several texts.
Nevertheless, even a knowledgeable reader may wish to browse these sections in order to become familiar
with the notation used in this book. However, the contents of Section [2.1.3] are at a more advanced level.
Good references for this material are [44] [I73]. Similarly, the material in Section is quite standard.
However, the material in Sections and is not so standard. Some of it can be found in [I11], but
much of it is stated here for the first time, so far as the author is aware. Finally, while the material in Section
is standard, some of the material in Section [2.3:2]is new and presented in book form for the first time
(though it is contained some publications by the author).

A typical theorem in this domain gives sufficient conditions for convergence. Thus, if the hypotheses
of the theorem hold, then convergence is guaranteed. However, convergence might take place even when
the hypotheses of the theorem do not hold. Constantly expanding the realm of applicability of convergence
theorems is an on-going and vital activity.

2.1 Random Variables and Stochastic Processes

In this first section of the chapter, we introduce various topics related to measure, probability, and random
variables. The contents of the first two subsections are fairly elementary, and the treatment is fairly cursory.
It is suggested that readers who are encountering these topics for the first time should supplement this
material by the references cited here. The concept of the conditional expectation of a random variable with
respect to a g-algebra is not elementary. It is introduced in this subsection to facilitate a precise definition
of a Markov process in Secton

Probability theory is a well-dveloped subject, and there is no dearth of excellent texts. Thus the suggested
reading list is limited to slightly more advanced texts,, wherein the topics of conditional expection (in this
section) and martingales (Section are covered in depth.

17
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Axiomatic probability theory can be said to have been started by Kolmogorov, and his very brief mono-
graph [79] gives a good motivation for the subject. While the specific contents of this book have been
superceded by later books, [79] is a valuable resource for shedding light on the origins of probability theory,
and its evolution during its early years. For a thorough treatment of topics from measure theory, the reader
can consult [I0]. A very good overview of probability is found in the book (with same name) [29]. Topics
such as conditional expectation and martingales are briefly discussed in [20, 29], and a more detailed treat-
ment can be found in [I73] (16, [44]. In particular, [44] has both a large number of examples as well as a lot
of exercises.

2.1.1 Random Variables

Definition 2.1. Suppose 2 is a set and that F is a collection of subsets of X. Then F is said to be a
J-algebrzﬂ if F satisfies the following axioms:

(S1). Qe F.
(S2). If A e F, then A° € F, where A¢ denotes the complement of A in QE|

(S3). If {A4;};>1 is any countable sequence of sets belonging to F, then

Uaier (2.1.1)
i=1

The pair (2, F) is called a measurable space.

Definition 2.2. Suppose (€2, F) is a measurable space. A function P : F — [0,1] is called a probability
measure if it satisfies the following axioms:

P1. P(Q) = 1.

P2. P is countably additive; that is: Whenever {4;} are pairwise disjoint sets from JF, we have that

P (D Ai> = iP(Ai). (2.1.2)

The triple (2, F, P) is called a probability space.

Note that if 2 is a finite or countable set, it is customary to take F to be the “power set” of 2, that is,
the collection of all subsets of €, often denoted by 2. Suppose {p;} is a sequence of nonnegative numbers,
of the same cardinality as (2, and that ) . p; = 1. Let us enumerate the elements of § in some fashion as

{wi,-,}, and assign a nonnegative weight p; to each element w; € Q. Now suppose A C ), and define
PA) =Y pi=> Iueay (2.1.3)
w;EA w; EQ

where Iy, c 4y is the indicator function that equals w; if i € A and 0 if w; ¢ A. Then it is easy to verify that
(Q, 28 P) is a probability space. However, if {2 is an uncountable set, e.g., the real numbers, then the above
approach of assigning weights to individual elements does not work.

Definition 2.3. Suppose (2, F) and (X,G) are measurable spaces. Then a map f : Q@ — X is said to be
measurable if f~1(S5) € F for all S € G.

1The term o-field is more popular, but this terminology is preferred here.
2Note that (S1) and (S2) together imply that ) € F.
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Thus a map from € into X’ is measurable if the preimage of every set in G under f belongs to F.

Definition 2.4. Suppose (2, F, P) is a probability space, and (X,G) is a measurable space. A function
X : Q — X is said to be a random variable if it is measurable, that is,

X 1(S)eF, vSeg. (2.1.4)
In such a case, for each set S € G, the quantity

P(X7H(8)) =: Px(S)
is called the probability that X € S.

In the above definition, (X, G) is called the “event space,” and the sets belonging to the o-algebra G are
called “events,” because each such set has a probability associated with it via (2.1.4). The triple (2, F, P)
is called the “sample space.”

Example 2.1. Suppose we wish to capture the notion of a two-sided coin that comes up H for heads 60% of
the time, and T for tails 40% of the time. In such a case, the event space (the set of possible outcomes) is just
X = {H,T}. Because the set X is finite, the corresponding o-algebra G can be just 2% = {(, {H}, {T}, X'}.
The sample space (€2, F, P) can be anything, as can the map f : Q — X, provided only that two conditions
hold: First,

FTU{HY) ={weQ: flw)=H}e F,['({T}) ={weQ: flw) =T} € F.
(Actually, either one of the conditions would imply the other.) Second,

P(~ ({H}) = 0.6, P~ ({T}) = 04,
O

Definition 2.5. Suppose X is a random variable defined on the sample space (€2, F, P) taking values in
(X,G). Then the o-algebra generated by X is defined as the smallest o-algebra contained in F with
respect to which X is measurable, and is denoted by o(X).

Example 2.2. Consider again the random variable studied in Example Thus X = {H,T} and G =
2¥ = {0, {H},{T},X}. Now suppose X is a measurable map from some (Q, F, P) into (X,G). Then all
possible preimages of sets in G are:

D=X"10),0=X"1Xx),A:=X"{H}),B:=X"1{T}) = A°=Q\ A.

Thus the smallest possible o-algebra on Q with respect to which X is measurable consists of {0, A, A°, Q}.
Therefore this is the o-algebra of 2 generated by X. Any other sets in F are basically superfluous. We can
carry this argument further and simply take the sample space €2 to be the same as the event space X', and X to
be the identity operator on (2, F, P) into (Q, F). Thus Q = X = {H, T}, and F = {0, {H},{T},Q}. Further,
we can define P({H}) = 0.6, P({T'}) = 0.4. This is sometimes called the canonical representation of the
random variable X. Usually we can do this whenever the event space is finite or countable. O

Suppose S is a collection of sets, each of which belongs to F. Then o(S) denotes the smallest o-algebra
containing all sets in the collection S. Previously we had defined o(X), the o-algebra generated by a
random variable X. The two usages are consistent, in the following sense. Suppose X is a random variable
on (2, F, P) mapping 2 into (X, G), and let S consist of all preimages in Q of sets in G. Then o(X) and
o(8) are the same.

Originally, the phrase “random variable” was used only for the case where the event space X = R, and the
o-algebra is the so-called Borel o-algebra denoted by B, which is defined as the smallest o-algebra of subsets
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of R that contains all closed subsets of R. Random quantities such as the outcomes of coin-toss experiments
were called something else (depending on the author). Subsequently, the phrase “random variable” came
to be used for any situation where the outcome is uncertain, as defined above. Much of Reinforcement
Learning (RL) has to with Markov Decision Processes (MDPs), which are introduced in Chapter |5/ In the
context of MDPs, often the Markov process evolves over a finite set, and the action space is also finite. So
a lot of the heavy machinery above is not needed to describe the evolution of an MDP. However, in RL, the
parameters of the MDP need to be estimated, including the reward—and these are real-valued quantities.
Similarly, in optimization problems, the objective is to find a vector 8* € R? that minimizes some objective
function J : RY — R. This is attempted by generating a sequence {6;}, which, one hopes, will converge to
0*. The process of determining 6, from the past history @}, is the “algorithm.” When the algorithm is
statistical in nature, the resulting sequence of iterations {;} is a stochastic process assuming values in R%.
So in this book, we introduce the axiomatic foundation to deal with random variables that assume values in
a continuum such as R. When we do that, the event set X equals R or some subset thereof, and F equals
the Borel o-algebra.

Next we introduce the concept of the “expected value” of a real-valued random variable that assumes
only finitely many values. Suppose X is a real-valued random variable assuming values in some finite set
X =A{x1, -+ ,x,}, and that f : X — R. Then we can think of f(X) as a real-valued random variable.
Moreover, if X = x; with probability p;, then f(X) = f(x;) with probability p;. Note that the values
{f(z1), -, f(x,)} need not all be distinct. We define the expected value of f(X) as

n

E[f(X),pl == f(x:)pi- (2.1.5)
i=1
Note that the above definition is valid even if the values {f(z1),--- , f(z,)} are not all distinct. Moreover,

while X can be an abstract random variable, f(X) has to be real-valued; otherwise we cannot talk about its
expected value. In particular, if X is tself a real-valued random variable assuming finitely many real values

{z1, - ,zn} C R, then its expected value can be defined as
E[X,p]:= ) xp; (2.1.6)
i=1

if X has only finitely many values. However, if X takes values in a continuum, then the summation has to be
replaced by an integral. Hence we digress to give a very brief introduction to real-valued random variables
that are not restricted to assuming values in a finite set. Here we skirt over many technical issues. For a
proper treatment of the concepts below, the reader is referred to [29] [10].

We begin by introducing the cumulative distribution function, often abbreviated to just cdf. Good
references for this and related topics are [29 Section 2.5], [16, Section 14] and [43, Section 9.1]. Suppose X
is a real-valued random variable, mapping some sample space (€2, F, P) into the event space (R, B). Since
every semi-infinite interval (—oo, a] belongs to B, the preimage X ~!(—o0,a] € F. Therefore the probability

P(Xfl((—oo,a])) = Pr{X <a}
is well-defined for each a € R.

Definition 2.6. Suppose X is a real-valued random variable, which maps some probability space (2, F, P)
into the event space (R, B). Then the function ®x : R — [0, 1] defined by

Dy (a):=Pr{X < a} (2.1.7)
is called the cumulative distribution function (cdf) of X.

Some properties of the cdf are given next. Most of these are easy to verify.
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o If a < b then ®Px(a) < Px(b). So the cdf is nondecreasing.
e Ox(a) >0asa— —oo and Px(a) — 1 as a — +oo.

e Ox(-) is continuous from the right, and has limits from the left. Thus

lim ®x(a) = ®x(b), (2.1.8)
a—bt
lim ®x(a) exists and is < P x (b), (2.1.9)

a—b—
o If ®x(-) is not continuous at b, but has a “jump”, that is

lim ®x(a) < lim Px(a),

a—b— a—bt

then
Pr{X =b} = lim ®x(a)— lim Px(a).
a—bt a—b—
e The set of points at which the cdf is not continuous is either finite or countable.

e If the cdf is continuous at b, then Pr{X =b} = 0.

In case there is a function ¢x : R — R such that
bx(a) = / ox(u) du, (2.1.10)

Where the integration can be with respect to the Lebesgue measure, then ¢(-) is called the probability
density function (pdf) of X.
For a r.v. with density, the quantity (if it exists)

p(x) = [ uoxtu) du

— 00

is called the mean of X. Similarly, the quantity (if it exists)

VO = [ - nX0Pox(w du
is called the variance of X, and o(X) := /V(X) is called the standard deviation of X. It can be shown

that if V(X) < oo, then u(X) < oo; see below. If X does not have a density, then the integrals above can
be interpreted as Riemann-Stiltjes integrals with respect to the cdf.

Next we introduce the concept of an L, real-valued random variable X. Suppose X is a measurable
map from (Q, F, P) to (R,B), i.e., X is a real-valued random variable. We can attempt to integrate the
function X (w),w € Q using the measure P. The concept of integration with respect to an arbitrary measure
is somewhat advanced, and we skip lightly over the details. As mentioned above, [10] is an extremely good
reference for such topics.

Definition 2.7. For 1 < p < oo, we define L,(Q2, F, P) as the set of functions whose p-th powers are
absolutely integrable, or

Ly F,P) = {f: Q=R st. /Q|f(w)|p P(dw) < 50} (2.1.11)
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The L,-norm of a function f € L,(Q, F, P) is defined as

Il s= [ [ 1rrp)] " (21.12)

If p = oo, we define Lo (2, F, P) to be the set of functions that are essentially bounded, that is, bounded
except on a set of measure zero, and define the corresponding norm as the “essential supremum” of f(-),
that is

[flloc = inf{c: P{|f(w)] = ¢} = 0}. (2.1.13)

In the above formulas, the integration is with respect to the probability measure P on the space (€2, F). If
X has a density ¢x (), then we can take (2, F) = (R, B), and P(dw) in the above equations can be replaced

by ¢x (w)dw
Next we introduce two very useful inequalities. The numbers p,q € [1,00] are said to be conjugate
indices if
1 1
- +-=1
p q

In particular, if p € (1,00), then ¢ =p/(p — 1). If p =1, then ¢ = oo and vice versa. If p = 2, then ¢ = 2.

Theorem 2.1. (Hélder’s inequality) If f € L,(Q2, F, P) and g € Ly(Q?, F, P) where p and q are conjugate
indices, then the product fg € L1(Q2, F, P), and

[ 1s@aipa < | [ i dwr/p-[/ﬂ |g<w>|QP<dw>T/q, (2.1.14)

or more compactly,
19l < W f1lp - lgllg- (2.1.15)

Using Holder’s Inequality and the fact that P(2) = 1, it can be shown that
L,(Q,F,P)C L,(Q,F,P) whenever g > p,
or equivalently,
g>p, feLy,F,P) = feL,(QF,P).

In particular, if a real random variable X is square-integrable, it is also absolutely integrable. Thus if X has
finite variance, it also has a finite mean or expected value.
In particular, choosing p = ¢ = 2 in Holder’s inequality leads to Schwarz’ inequality:

Theorem 2.2. if f,g € La2(Q, P), then fg € L1(Q, P), and

/|f w)|P(dw) < [/f |Pdwr/2 [/|g |Pdw]1/27 (2.1.16)

or, more compactly
I £glly < [Ifll2- llgll2- (2.1.17)

For future use, we introduce definitions of what it means for a sequence of real-valued random variables to
converge. Three commonly used notions of convergence are convergence probability, almost sure convergence,
and convergence in the mean. All are defined here. A good reference for this material is [29, Section 2.8];
see also [10, Section 21].
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Definition 2.8. Suppose {X,,}»>0 is a sequence of real-valued random variables, and X* is a real-valued
random variable, on a common probability space (2, F, P). Then the sequence {X,, },,>0 is said to converge
to X* in probability if

P{w e Q:|X,(w) — X*(w)| > €}) = 0 as n — oo, Ve > 0. (2.1.18)
The sequence {X,, },,>0 is said to converge to X* almost surely (or almost everywhere) if
Plwe: Xp(w) = X*(w) asn — oo}) = 1. (2.1.19)

Now suppose that X,,, X* € L1(€Q, P). Then the sequence {X,, },>¢ is said to converge to X* in the mean
if
|1 Xn — X*||1 = 0 as n — oo. (2.1.20)

More generally, for any p € (1, 00), “convergence in the p-th mean” can be defined in the space L,(f2, P),
as || X,, — X*||, = 0 as n — co. However, this terminology is rarely used.

The extension of Definition [2.8| to random variables assuming values in a vector space R? is obvious and
is left to the reader.

The relationship between the various types of convergence is as follows: Again, see [29] Section 2.8], [10]
Section 21].

Theorem 2.3. Suppose {X,, }, X* are random variables defined on some probability space (Q, F, P). Suppose
X, — X* in probability as n — co. Then every subsequence of {X,,} contains a subsequence that converges
almost surely to X*.

Theorem 2.4. Suppose {X,}, X* € L1(Q, P). Then
1. X, = X* a.s. implies that X,, — X* in probability.
2. X, — X* in the mean implies that X,, — X* in probability

3. Suppose there is a nonnegative random variable Z € L1(Q, P) such that | X,| < Z a.e., and suppose
that X,, — X* a.s.. Then X,, — X* in the mean.

These statements also apply to R%valued random variables.

2.1.2 Joint and Conditional Probabilities, Independence

Until now we have discussed what might be called “individual” random variables. Now we discuss the
concept of joint random variables, and the associated notion of joint probability. The definition below is
for two joint variables, but it is obvious that a similar definition can be made for any finite number of joint
random variables. In turn this reads to the concept of conditional probability.

Definition 2.9. Suppose (X, G) and (Y, H) are measurable spaces. Then the product of these two spaces
is (X xY,GRH) where X’ x Y is the usual Cartesian product of X and ), and GRH is the smallest o-algebra
of subsets of X x ) that contains all products of the form G x H,G € G, H € H.

Note that G ® H is called the “product” o-algebra, which equals o(G x H), where o(S) denotes the
smallest o-algebra containing all sets in the collection S, and G x H consists of all products G x H for
G € G,H € H. The use of the tensor product symbol ® to denote the product s-algebra is not entirely
standard.

Suppose (2, F, P) is a probability space, and that (X,G) and (), H) are measurable spaces. Let (X x
V,G ® H) denote their product. Suppose further that Z : Q@ — X x ) is measurable and thus a random
variable taking values in X x ). Let Py denote the probability measure of the random variable Z. Express
Z as (X,Y) where X,Y are the components of Z, so that X : Q — XY : Q — Y. Then it can be shown
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that X and Y are themselves measurable and are thus random variables in their own right. The probability
measures associated with these two random variables are as follows:

Px(S):=Pz(SxY),VS€G, Py(T):=Py(XxT), VT €. (2.1.21)

We refer to Z = (X,Y) as a joint random variable with joint probability measure Pz, and to Py and Py
as the marginal probability measures (or just marginal probabilities) of Py for X and Y respectively.

A common application of marginal probabilities arises when both X and ) are finite sets. In this case
X,Y, Z are random variables assuming values in finite sets X', ), X x Y respectively. Suppose to be specific
that X = {z1, - ,z,} and Y = {y1, - ,Ym}. Then it is convenient to represent the joint probability
distribution of Z = (X,Y) as an n X m matrix ©, where

gij = PI‘{Z = (’l,’uy])} = PI‘{X = xl&Y = yj}
Let us denote the marginal probabilities as

(1)7; = PI‘{X = $i}7’(/)j = PI‘{Y = yJ}

Then it is easy to infer that

m n
i = E Oij, ;= E 0i5,
j=1 i=1
or in vector notation

¢T = elna 1/" = 1I®a

where 1j, denotes a column vector of k ones. Note that we follow the convention that a probability distribution
is a row vector.

Example 2.3. We illustrate the concept of marginal probability using a simple example where the two sets
X and Y are finite. Suppose X = {x1,z9,23} and ¥ = {y1,y2,y3,y4}. Suppose Z = (X,Y) is a random
variable on the product set X x ), with the probability distribution © given by

0.0200 0.0400 0.0300 0.0100
© = 0.1100 0.1700 0.1300 0.0900 |,
0.0700 0.1200 0.0800 0.1300

where the rows represent the values of X and the columns represent the values of Y. Thus Pr{Z = (z2,y3)} =
0.13, and so on. To define the marginal probability Px of the random variable X. we simply sum over all
possible values of Y, or sum each row. Since we view probability distributions as row vectors, we see that

px = ¢ =(01,)" =[ 0.1000 0.5000 0.4000 ].
Similarly the marginal probability Py is obtained as
Py =% =1,0 = 0.2000 0.3300 0.2400 0.2300 |.
O

Definition 2.10. Suppose (2, F, P) is a probability space. Suppose (X,G) and (), H) are measurable
spaces, and let Z = (X, Z) : Q — X x Y be a joint random variable. Finally, suppose S € G,T € H are
events involving X and Y respectively. Then the conditional probability Pr{X € S|Y € T} is defined as

Pr{Z = (X,Y) € SxT} _ Pz(SxT)

Pr{XeSlYeT}= Pr{Y € T} Py (T)

. (2.1.22)
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In the definition of the conditional probability (2.1.22)), it is assumed that Py (T) > 0. If Py (T) = 0, by
convention Pr{X € S|Y € T} is taken as Px(S).
Let us fix a set 7' € H, and define the function Pyx|yery : G — [0,1] by

Pixpyery(S) :=Pr{X € S|Y € T}. (2.1.23)

Then it is easy to verify that P{x|yer) is a probability measure on (X,G). We can think of it as the
probability measure conditioned on the event that Y € T'. If Py (T) = 0, then Px|yery = Px.

Example 2.4. Let us return to Example First, define the event T as Y = y5. Then the corresponding
conditional probability distribution on X is given by

Pix|very = (1/0.33)[ 0.04 0.17 0.12 ].

Now let us define T'= {y1,y3}. Then Py (T) =0.2 + 0.24 = 0.44, and

1
Prxvery m[ 0.02+0.03 0.11+0.13 0.07 +0.08 ]
1
= —]o0. 24 0.15 ].
0.44[005 0 0.15 ]

Observe that Pyx|yery is a convex combination of Pyx|y—y,} and Px|y—y,}, namely

0.20 1 0.24 1
P =—x——[0.02 0.11 0.07 —— x ——[ 0.03 0.13 0.08 ].
XIYETY = 501 X 9.0 I+ 001 51! ]
This property holds in general. O

After defining the concept of a conditional probability, it is straight-forward to define the conditional
expected value. If f : X — R and T C Y is some event involving Y, then E[f(X)|Y € T] is just

Elf(X), Pxyery)-
Example 2.5. Let us continue Example Suppose f : X — R is defined by
[ flzy) flzo) flxs) |=]2 -7 4].

Let T = {y1,ys}. Then it is already known that

1
P =———]0. 24 015 ].
(X|YeT} 0'44[005 0 0.15 ]
Therefore
E[f(X))Y €T] = i(o 1-1.68+0.6) = _0.98
C0ad T T T oA
Similar computations can be carried out for other choices of the event T'. In particular, since T = {y1,ys},
it follows that E[f(X)|Y € T] is a convex combination of E[f(X)|Y = y; and E[f(X)|Y = ys]. O

All of the above definitions can be extended to more than two random variables.
Next we briefly discuss the concept of independence. Kolmogorov, who laid down the foundations of
probability theory, remarks on [T9, p. 8] (in English translation) that

Historically, the independence of experiments and random variables represents the very mathe-
matical concept that has given the theory of probability its peculiar stamp.

This statement, together with the text that precedes it, can be paraphrased as: Without the concept of
independence, there is essentially no difference between measure theory and probability theory. Thus the
concept of independence is fundamental (and unique) to probability theory.
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Definition 2.11. Suppose (2, F, P) is a probability space. Then two events S,T € F are said to be
independent if

P(SNT)=P(S)P(T).
Suppose now that Fi, Fo are sub-o-algebras of F. Then F; and F3 are said to be independent if
P(SNT)=P(S)P(T), VS € F1,T € Fa. (2.1.24)

Two random variables X, X defined on (2, F, P) are said to be independent if the corresponding o-
algebras o(X1),0(X32) are independent. Further, suppose Z = (X,Y) is a joint random variable defined on
a product space (X x Y,G ® H). Then X and Y are said to be independent random variables if

Pz(S x T) = Px(S) x Py(T), VS € G, T € H. (2.1.25)

The extension of the above definition to any finite number of events, or o-algebras, or random variables,
is quite obvious. For more details, see [29], Section 3.1] or [I73, Chapter 4].

2.1.3 Conditional Expectations

The concept of conditional probability discussed in the preceding subsection can be applied to even “abstract”
random variables, that is, random variables assuming values in some abstract set. In contrast, concepts such
as expected value (both unconditional and conditional) are meant to be used with real-valued random
variables. The ideas extend readily to vector-valued random variables by applying them componentwise.
The objective of this subsection is to introduce another concept known as the “conditional expectation” of
a random variable with respect to a o-algebra. While the conditional expected value is a real number, the
conditional expectation is a random variable. There is a close relationship between these two concepts, as will
be brought both through the theory as well as an example. The discussion below requires an understanding
of integration with respect to a probability measure. We do not go into too many details regarding the
abstract concept of integration with respect to a measure, because that would be rather tangential to the
main discussion. Instead we refer interested reader to [I0] for details.

Throughout this subsection, we deal with real-valued random variables. Thus, when we say that X is a
real random variable on (€, F, P), we mean that X is a measurable map from (2, F, P) to (R, B).

In the discussion below, we often deal with two random variables X and X’ that differ only on a set of
measure zero, that is,

Plw: X(w) # X'(w)} = 0.

In such a case, we write X = X’ a.e., or X = X' a.s.

Next, we define the concept of the conditional expectation of a random variable with respect to a o-
algebra. The precise (and rather abstract) definition is given first, followed by some properties of the
conditional expectation. Then some concrete examples are given. Suppose X, Y are random variables, and
as before, let o(Y) denote the o-algebra generated by Y. Then one can think of the conditional expectation
E(X|o(Y)) as a natural generalization of the conditional expected value of X, as Y ranges over all its
possible values.

Definition 2.12. (See |29, Definition 4.16], [44, Section 4.1] or [I73 Section 9.2].) Suppose (2, F,P) is a
probability space, and that X is a real random variable belonging to L, (€, F, P). Suppose that G C F is
another o-algebra on 2. Then the conditional expectation of X with respect to G, denoted by E(X|G),
is any random variable Y such that (i) Y is measurable with respect to (€2,G), and (ii)

/ X () P(dw) = / Y (w)P(dw), VD € G (2.1.26)
D D
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Note that E(X|G) is a (2, G)-measurable approximation to X such that, when restricted to sets in G,
E(X|G) is functionally equivalent to X, as stated in (2.1.26). Note that (2.1.26)) can also be expressed as

/ X(w)Ip(w)P(dw) = / Y(w)Ip(w)P(dw), VD € G
Q Q

where Ip(-) is the indicator function of the set D.

To make the discussion below easier to follow, we employ the notation Y € M(G) to indicate that ¥
maps 2 into R, and is measurable with respect to (£2,G) and (R, B). Also, since in these notes we deal with
both the conditional expectation (which is a random variable) and the conditional expected value (which is
a real number), we use parenthesis to denote the conditional expectation and square brackets to denote the
expected value, conditional or otherwise.

In the above definition, it is not clear that such a conditional expectation exists. Any Y that satisfies
is called a “version” in [I73] 44]. The next theorem summarizes, without proof, some key properties
of the conditional expectation. These details can be found in [I73, Chapter 9] and/or [44] Section 4.1].

Theorem 2.5. Suppose X € L1(Q, F, P) and that G C F is another o-algebra on Q. Then
1. (Ezistence) There is at least one' Y € M(G) such that (2.1.26) holds.
2. (Uniqueness) If YY" € M(G) both satisfy (2.1.26), then Y (w) =Y'(w) a.s..

3. (Expected Value Preservation) Every conditional expectation Y = E(X|G) belongs to L1(Q,F, P).
Moreover X andY = E(X|G) have the same expected value. Thus

E|Y,P]| = E[X, P], or /QY(w)P(dw):/QX(w)P(dw). (2.1.27)

4. (Self-Replication) If X € M(G), then E(X|G) = X a.s..
5. (Iterated Conditioning) If H C G C F are o-algebras, then

E(E(X|G)|H) = E(X[H). (2.1.28)

6. (Idempotency) If p,q are conjugate indices, and Z € Ly(Q?,G,P), X € L,(Q,F, P), then

E((ZX)|G) = ZE(X|G) a.s.. (2.1.29)

7. (Linearity) If X1,Xs € L1(Q, F, P) and a1,a2 € R, then

E((a1X1 + a2X2)|g) = alE(Xl\g) + agE(X2|Q) a.s.. (2130)

8. (Nonnegativity) If X (w) > 0 a.s., then E(X|G)(w) >0 a.s..
9. (Projection Property) If X € Lo(Q, F, P) (and not just L1(Q, F, P)), then

E(X|G)= arg min |Y — XH% a.s.. (2.1.31)
Y €L, (2,G,P)

Now we interpret some of the statements in the theorem. The obvious ones are not discussed. Item 3
states that the expected value of the conditional expectation is the same as the expected value of the original
random variable. ITtem 5 states that if we were to first take the conditional expectation of X with respect
to G, and then take the conditional expectation of the resulting random variable with respect to a smaller
o-algebra H, then the answer would be the same as if we had directly taken the conditional expectation of X
with respect to H. Note that this property is called the “tower property” on [I73] p. 88]. Item 6 states that
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X € L,(Q, F, P) is multiplied by a Z € Ly(f, G, P) where p and ¢ are conjugate indices (so that the product
Z X belongs to L1 (2, F, P)), then the term Z can be moved outside the conditional expectation operation.
Items 6 and 7, taken together, imply the following: If Z1, Z; € Ly(Q2, G, P) and X1, Xo € L,(Q,Q, P), where
p and ¢ are conjugate indices, then

E((Z1X1 + Z2X0)|G) = Z1E(X1|G) + Z2E(X5[G).

A ready consequence of Items 7 and 8 is that, if X; > Xo almost surely, then E(X;|G) > E(X2|G) almost
surely. Finally, Item 9 states that if X belongs to Lo (Q, F, P), which is a subspace of L1 (2, F, P) and an inner
product space, then its conditional expection E(X|G) belongs to the subspace L2(€2, G, P) of Ly(Q, F, P),
and can be computed as the closest element in L2(Q2, G, P) to X using the projection theorem.

In the above discussion, the g-algebra G can be any sub-algebra of F. In some applications, the following
situation arises: Suppose Z € M(F), and G = o(Z), the o-algebra generated by Z. In such a case, we
can also use the alternate notation E(X|Z) to denote E(X|G) = E(X|o(Z)). This notation proves to be
convenient in analyzing problems in RL.

Example 2.6. In this example, we illustrate the concept of a conditional expectation in a very simple case,
namely, that of a random variable assuming only finitely many values. Suppose X = {z1,---,2,} and
Y ={y1, - ,ym} are finite sets, and that Z = (X,Y) is a joint random variable assuming values in X’ x ).
Let © € [0, 1]™*™ denote the joint probability distribution of Z written out as a matrix, and let ¢, denote
the marginal probability distributions of X and Y respectively, written out as row vectors. Finally, suppose
f: X xY — Ris a given function. Then f(Z) is a real-valued random variable assuming values in some
finite set.
Because both X and Y are finite-valued, we can use the canonical representation, and choose 2 = X x ),
F =29 and P = O. Now suppose we define G to be the o-algebra generated by Y alone. Thus G =
{0, X} ® 2Y. Again, because f(X,Y) assumes only finitely many values over a finite set, it is a bounded
random variable. Therefore E(f|G) is the best approximation to f(X,Y) using a function of Y alone. From
Item 9 of Theorem this conditional expectation can be determined using projections.
It can be assumed without loss of generality that every component of v/ is positive. If ¢; = 0 for some
j, then 0;; = 0 for all i; therefore the value y; can be omitted from the set . Therefore the ratio
i _porx — _
— =Pr{X =Y =y,}
¥;
is well-defined, though it could be zero.
In order to determine E(f|G), we should find a function g : Y — R such that the error E[(f — g)?,0] is

minimized. Let g1, , gm denote the values of g(-), and define the objective function
1 n
J=3 oD (95— fi7)*635.
j=1i=1

Note that J is the sum of m terms, where the j-th term depends only on g;. Then the objective is to choose
the constants g1, , gn, S0 as to minimize J. This happens when

o] O o
0= 90 Z(Qj — fij)0iji, Vj € [m].
g;j

i=1
This expression can be rewritten as

n n

0=y, Zaij - Z fijbi; = g5 — Z ijbijs
i=1

i=1 =1
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or
9 =Y fij— = Bf(X, V)Y = y;].
i=1 s

This formula explains the terminology “conditional expectation.” For each outcome Y = y;, the conditional
expectation E(f|G) = g, equals the expected value of f conditioned on the event that Y = v,;. However,
since Y is itself random, so is the conditional expected value E[X|Y = y;]. This is precisely the conditional
expectation E(f|G). Since Y = y; with probability 1, the conditional expectation E(f|G) equals E[f|Y =
y;] with probability ¢;. The same expression also shows that

m

E[E(£1G),%] =Y _gjb; =YY _ fibi; = E[f,0].
j=1

j=11i=1

O

Though simple in appearance, the derivation in Example will be used repeatedly in applications to
Reinforcement Learning, when the underlying MDP evolves over finite state and action spaces.

2.2 Markov processes

In this section, we introduce the concept of a Markov process that assumes values in a finite set X' =
{x1, - ,zn}, where the elements x; could represent abstract symbols, and the “time index” of the process
is the set of natural numbers. It is possible to define Markov processes where both the state space and the
time index set are a continuum; but such generality is not needed in this book.

2.2.1 Markov Processes: Basic Properties

Suppose X is a set of finite cardinality, say X = {z1,---,2,}, and suppose that {X;}:>¢ is a stochastic
process assuming values in X, that is, {X;}:;>0 is a sequence of random variables assuming values in X. Let
the symbol X{ denote the (finite) collection of random variables (X, - - - , X¢).

Definition 2.13. The process {X;}¢>0 is said to possess the Markov property, or to be a Markov
process, if
E(X11]|XE) = BE(X41|Xy), VE > 0. (2.2.1)

The above abstract definition states simply that the conditional expectation of the “state” X;y; condi-
tioned on the entire past X{ is the same as the conditional expectation given only the most recent “state”
X;. This abstract definition can be “operationalized” as follows: For every y € X and every u! € X1 it
is true that

PI’{Xt+1 = y|X(t) = 116} = PI'{Xt+1 = y|Xt = ut}. (222)

In other words, the conditional probability of the state X;,; depends only on the most recent value of Xy;
adding information about the past values of X, for 7 < t does not change the conditional probability. One
can also say that X;;1 is independent of Xéfl given X;. This property is sometimes paraphrased as “the
future is conditionally independent of the past, given the present.”

A Markov process over a finite set X' is completely characterized by the probability distribution ¢, of
the initial state Xo, and its sequence of state transition matrices A®) ¢ [0, 1]™*™, where

aﬁj = PI‘{XH_1 = Z‘j'Xt = Z‘i}, Vl‘i,l‘j e X.

Thus in at

ij» t denotes the current state and j the future state. The reader is cautioned that some authors
interchange the roles of ¢ and j in the above definition. If the transition probability does not depend on

t, then the Markov process is said to be stationary; otherwise it is said to be nonstationary. We do
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not deal with nonstationary Markov processes in these notes. A stationary Markov process is completely
characterized by its state transition matrix A € [0,1]™*", and the probability distribution ¢, of its initial
state.

Note that a;; € [0,1] for all ¢, j. Also, at any time ¢ + 1, it must be the case that Xy, € X, no matter
what X; is. Therefore, the sum of each row of A equals one, i.e.,

n
Y aj=1i=1,...n (2.2.3)
j=1

The above equation can be expressed compactly as
Al, =1, (2.2.4)

where 1,, denotes the column vector consisting of n ones. For future purposes, let us refer to a matrix
A € [0,1]"*™ that satisfies as a row-stochastic matrix, and denote by S, «, the set of all row-
stochastic matrices of dimension n x n.

The matrix A is often called the “one-step” transition matrix, because row i of A gives the probablity
distribution of X;41 if Xy = x;. So we can ask: What is the k-step transition matrix? In other words, what
is the probability distribution of X;, if X; = x;7 It is not difficult to show that this conditional probability
is just the i-th row of A¥. Thus the k-step transition matrix is just A*. Therefore, if X, has the probability
distribution ¢ (denoted by Xg ~ ¢), then X; ~ ¢pA*. Note that the probability distributions are viewed as
row vectors.

Example 2.7. A familiar example of a Markov process is the “snakes and ladders” game. Take for example
the board shown in Figure [2.1] Suppose the player throws a four-sided die with each of the outcomes
(1,2,3,4) being equally probable. Then the resulting sequence of positions {X;};>¢ is a stochastic process.
Suppose for example that the player is on square 60. Then with probability of 1/4, the position at time ¢+ 1
will be 61, 19 (snake on 62), 81 (ladder on 63) and 60 (snake on 64). Note that what happens next after a
player has reached square 60 (or any other square) does not depend on how the player reached that square.
That is why the sequence of positions is a Markov process. Moreover, the states corresponding to any square
that has either a snake or a ladder can be deleted from the state space. Thus the true state space is not
{1,---,100} but some subset thereof. In this case, there are eight snakes and eight ladders, so the state
space consists of 84 elements, namely {1,2,3,5,6,---}. The element 4 is missing because it is the starting
point of a ladder. Thus, in row corresponding to square 60 of the 84 x 84 state transition matrix, there are
elements of 1/4 in columns 19,60, 61,81 and zeros in the remaining 80 columns. In the same manner, the
entire 84 x 84 state transition matrix can be determined.

Let us suppose that the snakes and ladders game always starts with the player being in square 1. Thus
Xp is not random, but is deterministic, and the “probability distribution” of X, viewed as a row vector,
has a 1 in column 1 and zeros elsewhere. If we multiply this row vector by A* for any integer k, we get the
probability distribution of the player’s position after k& moves.

O

An application of the Gerschgorin circle theorem [63] Theorem 6.1.1] shows that, whenever A is row-
stochastic, the spectral radius p(A4) < 1. Moreover, the relationship shows that A = 1 is an eigenvalue
of A with column eigenvector 1,, so that in fact p(A) = 1. Thus one can ask: What does the row eigenvector
corresponding to A = 1 look like? If there is a nonnegative row eigenvector p € R}, then it can be scaled
so that 1, = 1. Such a p is called a stationary distribution of the Markov process, because if X; has
the probability distribution p, then so does X;11. More generally, if Xy has the probability distribution p,
then so does X; for all ¢ > 0.

Theorem 2.6. (See [I1l, Theorem 3.2, p. 8].) Every row-stochastic matriz A has a nonnegative row eigen-
vector corresponding to the eigenvalue A = 1.
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Figure 2.1: Snakes and Ladders Game

Note that Theorem [2.6]is a very weak statement. It states only that there exists a stationary distribution;
nothing is said about whether this is unique or not. However, by making some assumptions about A, it is
possible to derive stronger conclusions. The ideas discussed in the remainder of this subsection are discussed
in far greater detail in [II, Chapter 6], [I31] and [167, Chapter 3].

Definition 2.14. A row-stochastic matrix A is said to be irreducible if it is not possible to partition the
permute the rows and columns symmetrically (via a permutation matrix IT) such that
_ By 0
M1 AIl = :
[ B Bao ]

Thus a row-stochastic matrix is irreducible if it is not possible to turn it into a block-triangular matrix
through symmetric row and column permutations. The notion of irreducibility plays a crucial role in the
theory of Markov processes. So it is worthwhile to give an alternate characterization of irreducibility.

Lemma 2.1. A row-stochastic matriz A is irreducible if and only if, for any pair of states ys,yy € X, there
exists a sequence of states yi,---y; € X such that, with yo = ys and yip1 = yr, we have that

Qyyens > 0,k =0, 1.

Thus the matrix A is irreducible if and only if, for every pair of states ys; and y;, there is a path from
Ys to yr such that every step in the path has a positive probability. In such a case we can say that y is
reachable from y;.

Example 2.8. The Markov process corresponding to the Snakes and Ladders game of Example is not
irreducible. To illustrate just a few combinations, there is no path from 3 to 2, nor from 6 to 5. (However,
there is a path from 8 to 7 by travelling from 8 to 17 which has a “snake” leading back to 7.)

There are several equivalent characterizations of irreducibility, and for nonnegative matrices in general,
not necessarily satisfying (2.2.3). In fact, the discussion in the references [11, Chater 6], [I31] and [I67,
Chapter 3] deal with nonnegative matrices in general, and are not restricted to stochastic matrices alone.
One such characterization of irreducibility is given next.
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Theorem 2.7. (See [167, Corollary 3.8].) A row-stochastic matriz A is irreducible if and only if

n—1

M, 1 = Z Al >0, (2.2.5)
=0

where A = I and the inequality is componentwise.

So we can start with My = I and define recursively M;y; = I + AM;. Then M, is the partial sum up
to the A" term in (2.2.5). If M; > 0 for any [, then is satisfied, because higher powers of A are
nonnegative; hence A is irreducible. If we get up to M, _1 and this matrix is not strictly positive, then A is
not irreducible.

Theorem 2.8. (See [167, Theorem 3.25].) Suppose A is an irreducible row-stochastic matriz. Then
1. AX=1 1is a simple eigenvalue of A.
The corresponding row eigenvector of A has all positive elements.

Thus A has a unique stationary distribution, whose elements are all positive.

e

There is an integer p, called the period of A, such that the spectrum of A is invariant under rotation
by exp(i27/p).

5. In particular, exp(i2l7/p), I =0,--- ,p — 1 are all eigenvalues of A.
Now we introduce a concept that is stronger than irreducibility.

Definition 2.15. A row-stochastic matrix A is said to be primitive if there exists an integer [ such that
Al > 0.

To connect the two notions of irreducibility and primitivity, we introduce another important concept
called the period of an irreducible Markov process. An aperiodic Markov process is one whose period equals
one.

Suppose A corresponds to an irreducible Markov process. Then, by Lemma there is a path between
every pair of states. Now let x; be any state. Then there is always at least one “cycle,” that is, a path
starting at z; back to itself. To see this, pick any other state z; # x;. Then by irreducibility, there exists a
path from z; to =, and also a path from z; to x;. Taken together, they form a cycle from z; back to itself.
There can of course be multiple cycles from a state back to itself.

Definition 2.16. Fix a state x;. The period of the state x; is defined as the greatest common divisor
(g.c.d.) of the lengths of all cycles from x; back to itself. As shown in [I67, Theorem 3.12], every state in
an irreducible Markov process has the same period, which is defined to be the period of the process. A
Markov process is said to be aperiodic if its period equals one.

Theorem 2.9. If a row-stochastic matriz A is irreducible and aperiodic, then A = 1 is the only eigenvalue
of A with magnitude one.

Theorem 2.10. (See [167, Theorem 3.15].) A row-stochastic matriz A is primitive if and only if it is
irreducible and aperiodic.

Example 2.9. Suppose

0 05 0.5 010
Air=105 0 05 |,4=]0 01
05 05 O 1 00

Then A; is primitive, while As is irreducible but not primitive; it has a period p = 3. O
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(a) (b)
Figure 2.2: Irreducible vs. aperiodic Markov processs

Example 2.10. In this example, we illustrate the concept of aperiodicity using just the graphical features
of a Markov process, without having to specify the transition probabilities.

In Figure 2.2} we deliberately do not specify the values of the transition probabilities; rather, the presence
of an arrow indicates that the corresponding transition probability is positive, while the absence of an
arrow indicates that the corresponding transition probability is zero. The objective is to highlight that the
properties of a Markov process depend only on the pattern of the values (zero or nonzero), and not on the
actual values.

From the diagram, it is clear that the Markov process consists of two “cyclical” processes, one with the
transitions 1 — x3 — 4 — 3 — x1, and other one being z; — x5 — x4 — x3 — x1. Therefore there is a
path from every vertex to every other vertex, so that the Markov process is irreducible. Moreover, there are
cycles of length 4 as well as of length 2, but no cycles whose length is an odd number. So the period of the
Markov process is two.

Now suppose we add just one transition, say from x; to x4. Then there are two cycles from z; to itself: one
of length four, namely 1 — x3 — x4 — 2 — x1, and another of length three, namely z1 — x4 — 2 — =1,
Since 3 and 4 have no common divisors (other than 1), the process is now aperiodic, and thus primitive. O

In some situations, the following result is useful.

Theorem 2.11. (See [167, Lemma 4.12].) Suppose A is an irreducible row-stochastic matriz, and let p
denote the corresponding stationary distribution. Then

1 :
lim > Al=1,p. (2.2.6)

Therefore, the average of I, A,---, AT~1 approaches the rank one matrix 1,u. Recall that, if ¢ is any
probability distribution on X, and the Markov process is started off with the initial distribution ¢, then
the distribution of the state X, is ¢A!. Note that, because ¢ is a probability distribution, we have that

¢1,, = 1. Therefore (2.2.6) implies that

1 :
Jim > AT = plap = p, Vo, (2:2.7)
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The above relationship holds for every ¢ and forms the basis for the so-called Markov chain Monte
Carlo (MCMUC) algorithm. Suppose {X;};>0 is a Markov process evolving over the state space X, with
an irredcible state transition matrix A and stationary distribution p. Suppose further that f: X — R is a
real-valued function defined on the state space X. We wish to compute the expected value of the random
variable f(X;) with respect to the stationary distribution p, namely

E[f(X),pul =Y flaiu. (2.2.8)
r;,€X

While we may know A, often we may not know g or may not wish to spend the effort to compute it due to
the high dimension of A. In such a case, we start off the Markov process with an arbitrary initial probability
distribution ¢, let it run for some time ¢y, and then compute the quantity

to+T

fT:% > F(x. (2.2.9)

t=to+1

Because this quantity is based on the observed state X; which is random, fT is also random. However, the
expected value of fr is precisely E[f(X), u]. Moreover, its sample-path average fr converges to E[f(X), u]
as T'— oo, and is a good approximation for the expected value for finite 7.

The next result is analogous to Theorem for primitive matrices.

Theorem 2.12. (See [167, Corollary 4.13].) Suppose A is a primitive row-stochastic matriz, and let p
denote the corresponding stationary distribution. Then

A 510w as 1 — oco. (2.2.10)

Now we prove a couple of useful lemmas about irreducible and primitive matrices respectively. These are
useful when we study so-called Markov Decision Processes.

Theorem 2.13. Suppose A is a nontrivial convex combination of row stochastic matrices Ay, --- , A, and
that at least one A; is irreducible. Then A is irreducible.

Proof. Without loss of generality, renumber the matrices such that A; is irreducible. Write

k

A= A,

i=1
and note that «; > 0 while A; is irreducible. Then
Al > A AV

where the inequality holds componentwise, because all other “cross-product” terms in the expansion of A’
are nonnegative matrices. Because A; is irreducible, it follows from Theorem that

n—1
> Al >,
1=0

where again the inequality is componentwise. Combining this with the above inequality shows that

n—1 n—1 n—1
ZAl > Z’yiAll >yt ZAll > 0.
=0 =0 =0

Therefore A is irreducible. ]
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Corollary 2.1. The set of irreducible matrices is convezx.

Theorem 2.14. Suppose A is a nontrivial convex combination of row stochastic matrices Ay, --- , A, and
that at least one A; is primitive. Then A is primitive.

The proof is similar to that of Theorem except that Theorem is replaced by Definition

Corollary 2.2. The set of primitive matrices is convex.

2.2.2 Stopping Times and Hitting Probabilities

The contents of this subsection are very useful when we study reinforcement learning using “episodes.” These
results are presented, but without using vector notation, in [ITI], Section 1.3] and [I67, Section 4.2.2]. The
derivations given here are cleaner.

Definition 2.17. A state x; € X is said to be an absorbing state if X; = z; implies that X;; = x;, or
equivalently, that X, = x; for all 7 > t. Another equivalent defintion is that row i of the state transtion
matrix A consists of a 1 in column ¢ and zeros elsewhere. More generally, a subset S C X is said to be a set
of absorbing states if X; € S = X, e Sforall 7 >1¢.

Now we illustrate the concepts of absorbing states, and of absorbing sets. For convenience, we change
notation slightly. Assume that the state space X' of a Markov process can be partitioned as 7 U S, where
T denotes the set of “transient” states, and S is an absorbing set. Suppose further that 7 = {z1, -,z },
and § = {ay,...,as}. The logic behind the phrases “transient” and “absorbing” is brought in [I31] 167]. It
is a ready consequence of Definition that the state transition matrix M of the Markov process has the
form (note the change in notation):

) o (2.2.11)

A B
vl 2]
where C € S, is a row stochastic matrix in itself, and the matrix B has at least one nonzero element. Note
too that the set S can be absorbing, even if no individual state in S is absorbing. For example, suppose C
is a permutation matrix over s indices. However, if C' = I, the identity matrix, then not only is the set S

absorbing, but every individual state in S is absorbing. In this case the matrix M looks like

(2.2.12)

M:[AB].

0 I,

An illustration of an absorbing state is provided by the snakes and ladders game. If the player’s position
hits 100, then the game is over. So 100 is an absorbing state. In other games like Blackjack, there are two
absorbing states, namely W and L (for win and lose). In the Markov process literature, any sample path
X(l) such that X; is an absorbing state is called an episode.

It can be shown that if the state X; of the Markov process enters the absorbing set S with probability
one as t — 0o, then B # 0, that is, B contains at least one nonzero element, and further, p(A) < 1. See
specifically Items 3 and 6 of [I67, Theorem 4.7]. More details can be found in [I67, Section 4.2.2]. (Note
that notation in [I67] is different.) For the purposes of RL, it is useful to go beyond these facts, and to
compute the probability distribution of the time at which the state trajectory enters S. In turn this gives
the average number of time steps needed to reach the absorbing set. In case there are multiple absorbing
states, it is also possible to compute the probability of hitting an individual absorbing state a; within the
overall absorbing set S. To be specific, define 0,5 to be the first time that a sample path {X§°} hits the set
S, starting at Xo = ;. Further, if M is of the form so that each set in S is absorbing, define 6;; to
be the first time that a sample path {X§°} hits the absorbing state ay, starting at Xy = x;. Note that both
0;s and 6;; are integer-valued random variables. Then we have the following result:
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Theorem 2.15. With the above notation, we have that
Pr{0;s =1} =e/ A7'B1, VI > 1, (2.2.13)

where e; denotes the i-th elementary column vector with a 1 in row i and zeros elsewhere. If M has the form

[2:2.12), the for each k € [s], we have
Pr{fy, =1} =e] A7 'by VI > 1 (2.2.14)

where by, denotes the k-th column of B. The probability that a sample path X§° with X = x; terminates in
the absorbing state ay, is given by
pik = € (I —A)"'by. (2.2.15)

Moreover,
S
Zpik =1, Vi € [m].
k=1
The vector of probabilities that a sample path X§° terminates in the absorbing state ay is given by
pr = (I — A) 'by. (2.2.16)

For each transient initial state x; € T, define the average hitting time to reach the absorbing set S starting
from the initial state x; to be the expected value of 0;s, that is

Ois = > _1Pr{is =1},

1=1
and the vector of average hitting times as 85 € R™. Then
0s=(I—-A)""1,. (2.2.17)

Proof. We begin by deriving the expressions for the probability distributions. Note that 6,5 = if and only
if (i) the states X7, -, X;—1 belong to 7, and (ii) X; € S. For each pair of indices i,j € [m]| and each
integer [, the value (Al)z-j is the probability that, starting in state x; at time ¢t = 0, the state X; at time [
equals x;, while staying within the set T. Thus the probability that ;5 = [ is given by

m
Pr{fis =1} =Y (A"1);;(B1,); = e/ A7 B1,.
j=1
Here the summation is over all states j € 7. This is (2.2.13]). If S consists of individual absorbing states, and
we wish to determine the probability distribution that X; = aj given that Xy = x;, then we simply replace

B1, by the corresponding k-th column of B. This is (2.2.14]). Equation (2.2.15) is obtained by observing
that, since p(A) < 1, we have that

oo

AT = (1A

=1

Therefore the probability that a trajectory starting at x; terminates in state ay is given by

= Alfl

This is (2.2.15). Stacking these probabilities as i varies over [m] gives (2.2.16)).

Ze;Alilbk =e; b, = ei(I — A)ilbk.
=1
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Next we deal with the hitting times. Define the vector b = B1lg, and consider the modified Markov
process with the state transition matrix

A b

R

In effect, we have aggregated the set of absorbing states into one “virtual state.” From the standpoint of

computing 6, this is permissible, because once the trajectory hits the set S, or the virtual “last state” in the

modified formulation, the time counter stops. To prove (2.2.17)), suppose the Markov process starts in state

x;. Then there are two possibilities: First, with probability b;, the trajectory hits the last virtual state. In

this case the counter stops, and we can say that the hitting time is 1. Second, with probability a;; for each
j, the trajectory hits the state x;. In this case, the hitting time is now 1 4 6;. Therefore we have

gi = bi + Zaij(l +§J)
j=1

Observe however that .
bi =1- Z aij.
=1

Substituting in the previous equation gives
n
0; =1+ Zaiﬂj,
j=1

or in matrix form

(I—-A)0=1,,.
Clearly this is equivalent to (2.2.17). O

Example 2.11. Consider the “toy” snakes and ladders game with two extra states, called W and L for win
and lose respectively. The rules of the game are as follows:

e Initial state is S.
e A four-sided, fair die is thrown at each stage.
e Player must land exactly on W to win and exactly on L to lose.

e If implementing a move causes crossing of W and L, then the move is not implemented.

There are twelve possible states in all: S, 1, ..., 9, W, L. However, 2, 3, 9 can be omitted, leaving nine
states, namely S, 1, 4, 5, 6, 7, 8 W, L. At each step, there are at most four possible outcomes. For example,
from the state S, the four outcomes are 1, 7, 5, 4. From state 6, the four outcomes are 7, 8, 1, and W. From
state 7, the four outcomes are 8, 1, W, 7. From state 8, there four possible outcomes are 1, W, L and 8
with probability 1/4 each, because if the die comes up with 4, then the move cannot be implemented. It is
time-consuming but straight-forward to compute the state transition matrix as

S 1 4 ) 6 7 8 w
0 025 025 025 O 025 O 0

0 0 025 050 0 025 O 0

0 O 0 025 025 025 025| O

0 0.25 0 025 025 025| O

0 0.25 0 025 0.25]0.25
0

0

0

0

[=NeNeNeNolla

0.25 0 025]0.25 0.25
0.25 0 025]0.25 0.25
0 0 0 1 0
0 0 0 0 1

N S|o ook =0
colcococo

O OO O O

O OO O
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Figure 2.3: Toy Snakes and Ladders Game

The average duration of a game, which is the expected time before hitting one of the two absorbing states

W or L, is given by , and is

[ 5.5738 ]
5.4426
4.7869
6= | 49180
3.9344
3.1475

| 3.1475

To compute the probabilities of reaching the absorbing states W or L from any nonabsorbing state, define
A to be the 7 x 7 submatrix on the top left, and B to be the 7 x 2 submatrix on the top right. Then the
probabilities of hitting W and L are given by (2.2.16)), and are given by

[ 0.5433 0.4567 ]
0.5457 0.4543
0.5574 0.4426
[Pw Pp]=(I—A)"'B=| 05550 0.4450

0.6440 0.3560

0.5152 0.4848
| 0.5152 0.4848

Not surprisingly, the two columns add up to one in each row, showing that, irrespective of the starting
state, the sample path with surely hit either W or L. Also not surprisngly, the probability of hitting W
is maximum in state 6, because it is possible to win in one throw of the die, but impossible to lose in one
throw.

O
2.2.3 Maximum Likelihood Estimation of Markov Processes
Suppose {X;}:>0 is a Markov process evolving over a finite state space (or alphabet) X = {z1,...,z,}, with
an unknown state transition matrix A. We are able to observe a sample path v} := {yo,%1,...,%} of the

process, where each y; € X. From this observation, we wish to determine the most likely state transition
matrix A, that is, the matrix A that maximizes the likelihood of the observed sample path. As it turns out,
the solution is very simple.
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Theorem 2.16. Suppose we are given a sample path yl, For each pair (wi, ;) € X2, let v;; denote the
number of times that the string x;x; occurs (in that order) in the sample path yl. Neat, define

U = Zuij. (2.2.18)
j=1

Then the mazimum likelihood estimate of A is given by

ay =2 (2.2.19)

Proof. For a given sample path y, the likelihood that this sample path is generated by a Markov process
with state transition matrix A is given by

l

Pr{yo} HPT{Xt =y X1 = yr-1, A}
t=1

l
Priyo} [ [ av,_ .- (2.2.20)
t=1

L(yo|A)

The formula becomes simpler if we take the logarithm of the above. Clearly, maximizing the log-likelihood
of observing yé is equivalent to maximizing the likelihood of observing yé. Thus

l
LL(y(l)|A) = log Pr{yO} + Z log Ayy_1y¢- (2221)

t=1

A further simplification is possible. For each pair (z;,z;) € X2, let v;; denote the number of times that the
string z;x; occurs (in that order) in the sample path yj. Next, define 7; as in . Note that 7; is the
number of times that the state x; occurs in the sample path y(l)fl. The last symbol y; does not affect ;. It is
easy to see that, instead of summing over strings y;_1y;, we can sum over strings z;x;. Thus y,_1y; = x;x;
precisely v;; times. Therefore

LL(y|A) =logPr{yo} + > Y vijlogai;. (2.2.22)
i=1 j=1

We can ignore the first term as it does not depend on A. Now, A needs to satisfy the stochasticity constraint

n
Y a=1i=1,...,n. (2.2.23)
j=1

So we want to maximize the right side of (2.2.22)) (without the term log Pr{yo}) subject to (2.2.23)). For this
purpose we form the Lagrangian

n n n n
J:ZZyijlogaiijZ)\i 1*Zaij )
i=1 j=1 =1 Jj=1

where A1, ..., A, are the Lagrange multipliers. Next, observe that

oJ _ Vij
3aij Qi

-\
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Setting the partial derivatives to zero gives
Ui Ui
/\i = , O G35 = *J

Qij T’L
The value of \; can be determined from ([2.2.23)), which gives

Za”:)\izymz%:l — /\i:’ji'

Therefore the maximum likelihood estimate for the state transition matrix of a Markov process, based on
the sample path y}, is given by (2.2.19). O

Here the caret over a indicates that it is only an estimate of the true but unknown value a;;. The only
issue that remains to be settled is: What happens if a particular state x; does not appear at all in the
sample path y}? In this case, 7; = 0, which perforce implies that v;j = 0 for all j. Therefore
becomes indeterminate. The answer is that in this case, we can assign any vector in S,, as the i-th row of
A, and every such matrix is a maximum likelihood estimate of A.

Example 2.12. As a toy example to illustrate ML estimation, suppose X = {0,1}. Suppose we observe a
sample path of length 21, so that [ = 20, as follows:

yg" = 011011000110111010111.

Then
voo = 2,191 = 6,v10 = 5,111 = 7,09 = 8, = 12.

Observe that the last element of 1 adds to v1; but not to 7;. Therefore the maximum likelihood estimate of
the state transition matrix is
Ao [ 2/8  6/8 }

5/12 7/12

Next we study a situation that arises frequently in applications, namely: Instead of having one long
sample path, we have several sample paths, which are statistically independent of each other.

Theorem 2.17. Suppose we are given N different sample paths (yi)*, k € [N], of a Markov process over
X =A{z1, - ,x,}, with an unknown state transition matriz A. Suppose further that these sample paths are
pairwise independent. Then the maximum likelihood estimate of A, denoted by A is obtained as follows: For

each index k € [N], define the corresponding coefficients Z/Z-(jl-c),f/i(k) as in (2.2.18)) and (2.2.19)) respectively.

Then the maximum likelihood estimate of A is given by

N k
~ Zk:l Vl(j )

Gij = N (0 (2.2.24)
k=15
Remark: The expression (2.2.24) can be made clearer by fixing k € [N]. Let us define
(k)
v
ak) _ Zig (2.2.25)

CEOK
which is the ij-th element of the maximum likelihood estimate based on only the k-th sample path. Then

S 7" (k)
di; = Z ). (2.2.26)
k=1 2uk'=1VYi
Thus each element of A is a conver combination of the corresponding k maximum likelihood estimates, based
on each of the k sample paths. Moreover, the weights depend only on the row index ¢, but not on the column
index j.
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Proof. To reduce notational clutter, we will study the case of just two independent sample paths, and also
change notation to y} and zJ*. Then, for a given state transition matrix, the independence of the sample
paths implies that

L(yp&ezg'|A) = L(yo|A) - L(z"|A).-
Therefore
LL(yp&e=g'|A) = LL(yo|A) + LL(z3'|A)
l m
= log(yo) + Z IOg(aytfl,yt) + lOg(ZQ) + Zlog(a‘zt—hzt)

t=1 t=1

= log(yo) + log(z0) ZZ (v) +1/( 2) |log a;;.

Now we can apply the same reasoning as in the proof of Theorem and deduce that

ey,
a;
J Di(y) + 5@
Finally, the above sum can be rewritten as

T I ) _(z) )
Bis = i gy i i
4 ﬂl_(y) + —i(Z) ﬂl(y) Di(y) + —1(2) Di(Z)

=(v) —(2)
S N (7 B/ M )
Di(y) + —i(2) & —Z(y) + _7,(2) EA

Thus a,; is a convex combination of a( and a( %) The reasoning can be readily extended to more than two
independent sample paths. O

2.3 Some Convergence Theorems

In this section, we introduce the concepts of a martingale, supermartingale, and submartingale. Then we
state and prove some convergence theorems that are based on these concepts.

2.3.1 Introduction to Martingales

Originally, martingales represented an abstract representation of a “fair game.” In the context of optimization
algorithms, martingales enter the picture to capture the notion that successive noise-corrupted measurements
are unbiased. Therefore martingale difference sequences play a central role in analyzing the convergence of
stochastic processes. In this subsection we briefly summarize some of the basic results. In turn, these lead to
contemporary results on the convergence of the kind of stochastic processes arising in optimization and/or
Reinforcement Learning,

Further details about this topic can be found in [I73], 29, 20, @4]. In particular, [I73, Part B] is a very
good source of theorems and examples, while the corresponding exercises in [I73] Part E] provide additional
useful material. Similarly, [44] Chapter 4] has a wealth of material, including several examples and problems,
that is relevant to the material below.

Before proceeding to a general discussion of martingales, let us recall the concepts of joint random
variables, but with the twist that now we need to deal with infinitely many random variables, rather than
just a finite number of them. Suppose we are interested in stochastic processes assuming values in the space
R? for fixed integer d. In this situation, the o-algebra of subsets of R? is the Borel o-algebra, defined as the
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smallest o-algebra that contains all open subsets of R%. For convenience, this collection is denoted
hereafter by B;. Note that we could also have used closed subsets instead of open subsets, and this would
lead to the same o-algebra. This is because a set is open if and only if its complement is closed, and a
o-algebra is closed under complementation.

One can think of a stochastic process {X;} evolving over the set R? as a sequence of random variables,
indexed by ¢ > 0. Note that the sequence {X;} belongs to the product space H;’i 0 R¢, which can also be
denoted by (RN where N = {0,1,---} denotes the set of natural numbers. Since our objective in these
notes is to study the convergence of such a sequence as t — oo, we need to specify the associated o-algebra.
Specifically: What are the sample space and the event space, as defined in Definition For this purpose,
we need to define the infinite product measurable space ([];-,R%,S), where S is some suitable o-algebra of
subsets of [];2, R¢. Recall that in Definition we have defined the product of two measurable spaces,
which can be readily extended to any finite product. To extend this definition to an infinite product of
measurable spaces, we proceed as follows.

Definition 2.18. A subset

is called a cylinder set if (i) each S; € By for all 4, and (ii) S; = R? for all but finitely many indices i.
The smallest o-algebra of subsets of Htoio R? that contains all cylinder sets is denoted by ®:,B,4. The pair
(T2, R, @52, By) is the product measurable space.

Thus, for an R%valued stochastic process, the event space is the measurable space (T2, R, @52 ,By).
We use the “canonical representation,” whereby the underlying sample space is also (H:io R?, @2 ,By).
However, we still need to specify the probability measure P on ([[;2,R¢, @2 (B,), which governs the behavior
of the stochastic process.

We will use this definition and convention in various examples. However, in the iterests of completeness,
we define filtrations and martingales in a general situation.

Definition 2.19. Suppose that (2, F, P) is a probability space, as described in Section A sequence of
o-algebras {F;};>0 on 2 is called a filtration if

Fi C Fis1 C©F, VE>0. (2.3.1)

Now suppose that {Z;};>0 is an R%valued stochastic process on (2, F, P). We say that {Z,} is adapted
to the filtration {F3}, or that the pair ({Z:}, {F:}) is adapted, if Z; is measurable with respect to (€2, F),
(i.e., with F replaced by F).

Clearly (2.3.1]) implies that
FoCFIC---CFCFq1 CF, VE2>0. (2.3.2)

Since the underlying set €2 and probability measure P are fixed, and the only thing varying is F;, we denote
this by Z; € M(F;). In view of (2.3.1)), we can make the following observations:

1. Z; € M(F;) whenever T > t.
2. Let Z§ € R+ denote (Zo, Z1,- -+, Z;). Then Z8 € M(F;).
If {Z,}4>0 is an R%valued stochastic process on (Q, F, P), then we can define the “natural filtration” by
Fi=0o(Z}),

where o(Zt) C F is the o-algebra generated by Zf. However, much of the discussion below applies even if
we do not use the natural filtration, but use a larger filtration.
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Definition 2.20. Suppose {F;} is a filtration on (Q, F), and that {Z;};>0 is an R%-valued stochastic process
on (Q,F,P) wherein Z; € Ly(Q, F;, P) for all t. (In other words, {(Z;, F;)} is adapted.) Then the pair
({Z:},{F:}) is said to be a martingale if

E(Zt+1|ft) = Zt, a.s., Vit 2 0. (233)

If (2.3.3) is replaced by
E(Zt+1|ft) < Zt, a.s., Vit > O, (234)

then {Z;},>0 is called a supermartingale, whereas if is replaced by
E(Zy1|Fy) > Zy, as., V>0, (2.3.5)
then {Z;};>0 is called a submartingale.
If we use the natural filtration F; = o(Z{), then can be replaced by
E(Zi1|2) = Zy, as., Vt > 0. (2.3.6)

Similar remarks apply to supermartingales and submartingales.
Several useful consequences of the definition are obtained by applying Theorem If {Z;} is a martin-
gale, then by the iterated conditioning property (Item 6 of Theorem , it follows that

E(Z:\F) = Zy, as., VT >t +1, Vt > 0. (2.3.7)

The equality is replaced by < for a supermartingale, and by > for a submartingale. Next, by the expected
value preservation property (Item 3 of Theorem [2.5)), it follows thatﬂ

E|Z:, P = E[Z, P, ¥t > 0. (2.3.8)
It similarly follows that if {Z;} is a supermartingale, then

E|Z:, P] < E|Zy, P], ¥t > 0, (2.3.9)
where as if {Z;} is a submartingale, then

E[Z,, P > E[Zo, P], ¥t > 0. (2.3.10)

Thus, in a supermartingale, { E[Z;, P]} is a nonincreasing sequence of real numbers, while in a submartingale,
{E|[Z,, P]} is a nondecreasing sequence of real numbers.

Next, let {£:}1>0 be a stochastic process adaptated to a filtration {F;}, such that E[|¢], P] < oo for all
t, and define

t
Zi =Y &. (2.3.11)
7=0

Then it is obvious that {Z,} is also adapted to {F;}. The sequence ({&:}, {F:}) is said to be a martingale
difference sequence if ({Z;},{F:}) is a martingale. It is easy to show using (2.3.3) that, if {&} is a
martingale difference sequence, then

E(§t+1|]:t) = 07 a.s., Vit Z 0. (2312)

If, in addition, & = 0 almost surely, then it follows that E[&, P] = 0 for all ¢ > 1. The picture is clearer if
each & belongs to Ly (2, ;). Then, by the projection property (Item 9) of Theorem (12.3.12) is equivalent
to the statement that &1 is orthogonal to every element of Lo(€, F3).

3The reader is reminded that, wherever possible, we use parentheses for the conditional expectation, which is a random
variable, and square brackets for the expected value, which is a real number.
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Example 2.13. Suppose {&;} is a sequence of random variables such that & € L1(Q, F, P) for each ¢, and
in addition,
E(§t+1‘]:t) =0 a.s. Vt.

Then {;} is a martingale difference sequence, and the sequence {Z;} defined in (2.3.11))is a martingale. O

Example 2.14. In this example we study a coin-tossing game as an illustration of a martingale. The game
starts at time ¢ = 0 with the person having a prespecified amount of money, which can be taken as Xy =0
without loss of generality. At each time ¢ > 0, a fair coin is tossed. If the coin turns up “heads,” then the
person receives 10 units of money, whereas if the coin turns “tails,” then the person must pay up 10 units of
money. To keep the notation consistent, let us suppose that the reward for the coin toss at time ¢ (positive
or negative) is paid at time ¢ + 1. Let Xy = 0, and let Xy, ¢ > 1 denote the payoff at time ¢ (corresponding
to the coin toss at time t — 1). Define

t
7 = th.
=0

Note that we can also start the summation from time 1, because Xy = 0.

To study this situation formally, we use the structure introduced in Definition [2.18] Thus the stochastic
process {X;} evolves on the measurable space (RN, ®2°,B). Let X} denote the tuple of random variables
(Xo,+, Xt), and define F; = o(X{). Then each F; is a sub-c-algebra of ®@7°,B. Moreover, F; C F;11, which
means that {F;} is a filtration. To complete the specification of the stochastic process, we need to define the
probability law of the sequence A*. To keep the discussion simple, it is assumed that each X; is independent
of X(t)_l. Moreover, X; = 10 with equal probability.

Let us analyze the stochastic process {Z;}. Observe that Z; 11 = Z; + X411, and that E(X;41|F:) = 0,
because X1 is independent of previous tosses, and because the coin is fair. Therefore

E(Zt+1|ft) == E(Zt‘]:t) + E<Xt+1‘]:t) == Zt>

because Z; € M(F;), and E(X;41|F;) = 0. Thus {Z;} is a martingale.

Next, let us change the problem specification so that E(X;y1|F:) is no longer zero. This can be done
in either of two ways, which are mathematically equivalent: First, the coin can remain fair, but the payoffs
for Heads and Tails are not equal. Second, the payoffs can remain equal, but the coin is not fair (it has a
bias in favour of Heads or Tails). If the coin is fair but the payoff for Heads is larger in magnitude than the
penalty for Tails, then F(X;11|F:) > 0, and as a result

E(Zt+1|]:t) - E(Zt‘]:t) + E(Xt+]_‘]:t) > Zt7

and the process is now a submartingale. Reversing the magnitudes so that F(X;1|F:) < 0 causes the
process to be a supermartingale. |

Example 2.15. Now we continue the previous example by introducing the concept of “marginal utility”
from economics. If an individual has a quantum of money M, its “utility” is defined as U(M). Usually U is
taken as map from R, to R4, but since the coin toss can result in both a loss as well as a profit, we take U
as a map from R to R such that U(0) = 0. Two key attributes of U(-) are:

1. U(.) is strictly increasing. Thus

xr1 > Lo —> U(l’l) > U(l’g)

2. U(-) is strictly concave. Thus

1 7é To, A € (0, 1) — U[/\xl + (1 — /\).132] > /\U(Z‘1) + (1 — /\)U($2)
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The second property is also referred to as “diminishing marginal utility” or something similar.

Now let us return to the coin-flipping game. Suppose the outcomes H and T has probabilities p and
1 — p, and the payoffs are a and —b (the latter being a penalty). Suppose further that the coin toss is “fair”
in the sense that the expected value of the payoff is zero, that is

pa—(1—p)b=0.

Let X; denote the accumulated payoffs at time ¢, starting at X; = 0. Now let us examine the utility U(X}).
Both {X;} and {U,} are stochastic processes on (R, @5°B). We know that

XL — Xi+a w.p. p,
HLTY X, b wp. 1—0p.

Also
Therefore {X;} is a martingale. This relationship also shows that X} is a convex combination of X; + a and

X; —b. Hence

Hence {U;} is a supermartingale. O

Now we present some important results related to martingales, which are useful in themselves, though
they are not directly used in this book. The material is taken from [I73, Chapter 12] and/or [44] Chapter
4] and is stated without proof. Citations from these sources are given for individual results stated below.

The first result we present is the Doob decomposition theorem. To state this theorem, we introduce a
new concept. Suppose {F;};>0 is a filtration, and {A4;};>1 is a stochastic process that is adapted to F;,
that is, A; € M(F) for all ¢ > 1. We say that {(A4:, F¢)} is predictable if A;y; € M(F;) for all t > 0.
Note that there is no Ap for a predictable process. Also, note that in [I73], such processes are said to be
“previsible.” However, the phrase “predictable” is used in [44] and appears to be more commonly used. We
say that a martingale {Z;} (adapted to F;) is null at zero if Z; = 0 a.s., and that a predictable process
{A;} is null at zero (because there is no Ay).

Theorem 2.18. (Doob decomposition theorem.) See [173, Theorem 12.11] or [{4], Theorem 4.3.2].) Suppose
{Fi} is a filtration and {Y:} is a stochastic process adapted to {F;}. Then Yy can be expressed as

Y, =Z;+ Ay + Y, (2.3.13)

where {Z}4>0 is a martingale null at zero, and {A,} is a predictable process null at zero. If {Z}} and {A}}
also satisfy the above conditions, then

Plw : Zi(w) = Zl(w)&As(w) = AL(w), ¥t} = 1. (2.3.14)

(In other words, the decomposition is essentially unique.) Moreover, {Y;} is a submartingale if and only if
{A:} is an increasing process, that is

P{w: Aipq(w) > Ar(w), Yt} = 1. (2.3.15)
Similarly, {Y;} is a supermartingale if and only if {A;} is a decreasing process, that is

Proof. Define
¢

A1 = S E((Ven = Y2)IF) = STIEY | F) - Vi, (2:3.17)
=0 =0
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Then it is obvious that A;11 € M(F;); hence {A;} is a predictable process. Also, A; satisfies the recursion
Appr = E(Yr 1| Fr) = Y7 + Ay (2.3.18)
Now define a stochastic process {Z;} by Zy = 0, and
Ziy1=Yi41 — App1 — Yo, or Vg1 = Zpp1 + A1 + Yo, VE> 0. (2.3.19)
It is now shown that {Z;} is a martingale, which would prove the first statement. Observe that

E(Zya|F) = E(YialF) — A — Y
= E(Yin|F) - [EXYr|F) =Y+ Ad + Yo
— Yi-A+Yy-2Z,

where in the first step we use the fact that 4,41 € M(F;), and in the second step we use the (2.3.18).
To prove the uniqueness of the decomposition, we essentially reverse the above steps. Suppose

Y1 = Z{ + A + Yo, (2.3.20)
where {Z}} is a martingale null at ¢t = 0, and {A4}} is predictable. Then

E(Yi|F) = B(ZplF)+ A +Y
Z,+ A+ Y,

Zy + A+ Yo + (A — A7)
= Y.+ (Al —A)

Therefore .

Al = AL = E(Yen|F) = Vi, or Apyy = Y [E(Yra|Fr) = Y5,
7=0
Since this is the same summation as in (2.3.17)), it follows that A}, = A, almost surely. Substituting this into

(2.3.19) leads to

! !
Zt+1:1/:‘,4»1_At+1_YE):E+1_At+1_%:Zt+1 a.S.

This shows that the decomposition is unique modulo differing on a set of measure zero.
To prove the last part of the theorem, rewrite (2.3.18]) as

t

At+1 - At = Z[E(YT+1|‘FT) - YT}

7=0
So A¢pq > A, for all ¢ if and only if {Y;} is a submartingale, and So A;y1 < A; for all ¢ if and only if {Y;}

is a supermartingale. O

Next, suppose Y; = M2, where { M, } is a martingale in Ly (€2, P) null at zero. Then it is easy to show using
the conditional Jensen’s inequality (not covered here) that {Y;} is a submartingale null at zero. Therefore
the Doob decomposition of Y; = M2 is

M? = Z; + A, (2.3.21)

where {Z;} is a martingale and {A;} is an increasing predictable process, both null at zero. It is customary
to refer to {A;} as the quadratic variation process and to denote it by (M;). Note that

Apyr — Ay = BE(MP, — MP)|Fy) = BE((Mys1 — My)?|F). (2.3.22)

Define Ay (w) = limy_,o A¢(w) for (almost all) w € Q. Then we have the following:
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Theorem 2.19. (See [1753, Theorem 12.13].) If Ax(:) is bounded almost everywhere as a function of w,
then {M:(w)} converges almost everywhere at t — oo.

Actually [I73, Theorem 12.13] is more powerful and gives “almost necessary and sufficient” conditions
for convergence. We have simply extracted what is needed for present purposes.

We will use several versions of the next theorem repeatedly when analyzing the convergence of various
stochastic algorithms.

Theorem 2.20. (See [J4, Theorem 4.2.12].) If {Z:} is nonnegative (i.e., Zy > 0 a.s.) supermartingale,
then there exists a ¢ € L1(§2, P) such that Zy — ¢ almost surely, and E[(, P] < E[Zy, P].

Note what the theorem does not say: There is no guarantee that Z; converges to ¢ in the mean as t — oc.
However, if Z; € L,(Q, P) for some p > 1, we can make a stronger statement.
A slight variation of the above theorem is also useful.

Corollary 2.3. Suppose {Z;} is a supermartingale, and that there exists a fived constant c, independent of
w, such that
Zi(w) > —c a.s. (2.3.23)

Then there exists a ¢ € L1(82, P) such that Zy — ¢ almost surely, and E[(, P] < E[Zy, P).

Proof. Observe that, since c is a fixed constant independent of w, the process {Z; — ¢} is also a supermartin-
gale. Moreover, this process is nonnegative. Now apply Theorem [2.20] O

Theorem 2.21. Suppose {Z,} is a martingale wherein Z; € L,(Y, P) for some p > 1, and suppose further
that the martingale is bounded in || - ||, that is

sup E[Z}, P] < oo. (2.3.24)
¢

Then there exists a ¢ € L,(Q, P) such that Z, — ¢ as t — oo, almost surely and in the p-th mean.

The above theorem is false if p = 1. The convergence is almost sure but need not be in the mean. See
[44, Example 4.2.13].

2.3.2 Some Convergence Theorems

Recall that, throughout, we are dealing with stochastic processes defined on some probability space (2, F, P),
even if we do not always display this probability space explicitly. Thus when we write, for example, {z},
we really mean {z;(w)}. For the most part, it is not necessary to display this dependence on w. Wherever it
is necessary, we display it. But the w is implicitly present throughout. Also, when we say z; > 0, we mean
that z¢(w) > 0 for almost all w.

The theorems presented in this subsection are the basis of all the proofs of convergence, and estimates
of the rate of convergence, presented in these notes.

Theorem below, originally due to [124], can be said to be the “workhorse” in this area, in the sense
that practically every convergence theorem in this book can be traced back to this theorem, in one way or
another. It is referred to as the “Robbins-Siegmund Theorem,” or the “almost supermartingale convergence
theorem.” We prefer the former name. This result refines an earlier argument from [52], but was discovered
independently. The proof given below is pretty much the same as in the original paper. Another proof,
based on “stopping times” (not discussed in this book) can be found in [9, Section 5.2.1]. Yet another proof
can be found in the survey paper [48].

Theorem 2.22. (Robbins-Siegmund Theorem) Suppose {z:},{ft}, {gt}, {h} are nonnegative stochastic
processes adapted to some filtration {Fi}, that satisfy

E(Zt+1|]:t) S (1 + ft)zt + gt — ht a.s., Vt. (2325)
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Define the set Qg C Q by
Q1= {30 i) < ocb 1w s 3 ) < ) (2:3.20
t=0 t=0
Then, for alff|w € Qo, we have that (i) limy_e0 2(w) exists and is finite, and (ii)
i hi(w) < 00, Yw € Q. (2.3.27)

In particular, if P(Qo) = 1, then {z:} is bounded almost surely, in the sense that

P{w € Q:supz(w) < oo} =1, (2.3.28)
¢

and

iht(w) < 00 a.s. (2.3.29)

Proof. We begin with a simple observation. For each w € Qq,

th(w) <oo = H[l + fi(w)] < 0.
t=0

t=0
Therefore, for each w € Qg,

t

[0+ i) H + fi(w)] "t = bw) > 0, (2.3.30)

t=0

where the limit b(w) could depend on w. Now define new processes (note the difference in the upper limits
of the products)

t—1 t t
Zilt:H[1+ft(W)]_lzt7 g;f:H[]‘—'_ft(W)]_lgh h’{t:H[l—’_ft(w)]_lhta
t=0 t=0 t=0

and observe that \

[0+ (@)™ € M(F).

t=0
With these definitions, we can compute from ([2.3.25) that

t
E(zpq|F) = H 1+ fe(w)] ™ E(zt41]F)
t=0
t—1 t t
< H + fol@)]ae+ [T+ fo@)] e =TT+ frw)) ™ he
t=0 t=0 t=0
= z +g;— hi. (2.3.31)
Next, define
t—1
up =z =y (97 = hy).- (2.3.32)
7=0

4Here and elsewhere, “for all” really means “for almost all.”



2.3. SOME CONVERGENCE THEOREMS

Fix some arbitrary constant a > 0, and define

t
T(a,w) :=inf{t: Zg{ > a},
7=0

49

with the understanding that if Y>7 g/ < a, then T'(a,w) = co. Suppose now that ¢ < T'(a,w). Then

t
E(u|F) = E(Zg-u - Z(glr - hm]:t)
7=0
t
2490 —hy— Y (g —hi)

7=0

IN

t—1

= =S ) =

=0
Let us use the notation ¢ A 7 to denote min{¢t, 7}, and define a new stochastic process {vi(w)} by
V(W) = Up(a,w)ne+1) (W)
Thus .
= { e, 1L
It is now shown that {v;} is a supermartingale. If ¢t < T'(a,w), implies that
E(vi1|Fe) < vy,

whereas if t > T'(a,w), then t + 1 > T(a,w). Hence

Ut+1(w) = UT(aw) — Ut(w)'

(2.3.33)

So {v:} is a supermartingale. Now, because both {z;} and {g;} are nonnegative processes, it follows that

T(a,w)At

Urauint(@) = = > gh(w) > = gh(w) > —a.
7=0

7=0

Therefore it follows from Corollary [2.3] that
tllg.lo UT (a,w)At (W)

exists and is finite for all w such that

> g <a

=0
Now define

O ={w: Zg;(w) < o0}
=0

However, for all w € Qq, it follows from ([2.3.30)) that

b(w)gr(w) < gh(w) < gi(w).

(2.3.34)
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And since

ZgT(w) < oo Vw € Q,
=0

it follows that we can take ; = y. Since a is arbitrary, it follows that for all w € g, holds
for sufficiently large a (which could depend on w), so that T'(a,w) = oo, and up(q,u)r¢(w) for all t. Hence
lim;_, o0 u(w) exists and is finite (almost surely) for all w € Q. In turn this implies that u;(w) is bounded
for all w € Q.

Next we study the consequences of u;(w) being bounded (though the bound could depend on w). Rewrite

.
=1 t—1

ue=z+ Y h =Y g
7=0 =0

For w € Qo, the last term is bounded from below, while u;(w) is bounded. Hence there is a bound ¢(w) such
that

t—1
7+ Y Y <ew), vt
=0
Since both terms are nonnegative, this in turn implies that

7 < ew), Y Ul < ew). (2.3.35)
t=0

Also, since u;(w) converges as t — 00, and

oo

N ACES AR
7=0

7=0

it follows that z;(w) has a limit as ¢ — oo, and the limit is finite, for all w € Q. To complete the proof, all
that remains is to replace 2,1}, by 2, 1; respectively. But this is straight-forward, because

t

[T0+ @) Lb(w) as t — oo,

7=0

as shown in (|2.3.30)). O

The above proof is taken from [124]. The same theorem is also proved in a very terse form on [J, page
343]. Because that proof involves the use of “stopping times,” a concept that is not needed elsewhere in this
book, we choose to give the original proof.

Now we present two convergence theorems, which are extensions of Theorem [2.:22] The first one allows
us to infer the convergence of a stochastic process to zero, while the second one provides bounds on the rate
of convergence to zero. Both theorems are taken from [0} [T1].

Theorem [2.23] below builds upon Theorem [2:22] by providing sufficient conditions to ensure that z; — 0
as t — oco. It draws upon the concept of a function of Class B, defined in Definition For the convenience
of the reader, the definition is repeated below.

Definition 2.21. A function ¢ : Ry — R, is said to belong to Class B if ¢(0) = 0, and in addition, for
arbitrary real numbers 0 < e < M, it is true that

inf  ¢(r) > 0.

e<r<M
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Theorem 2.23. Suppose {z:},{ft},{9:}, {h+}, {c:} are [0,00)-valued stochastic processes defined on some
probability space (Q, F, P), and adapted to some filtration {F;}. Suppose further that

Et(zt+1) < (1 + ft)Zt + gt — Oltht a.s., Vt. (2336)
Define
Qp={we: th(w) < 0o and th(w) < 0o}, (2.3.37)
t=0 t=0
Qi ={we: Zat(w) = oo} (2.3.38)
t=0
Then

1. Suppose that P(Qy) = 1. Then the sequence {z:} is bounded almost surely, and there exists a random
variable W defined on (2, F, P) such that z(w) — W(w) almost surely.

2. Suppose that, in addition to P(Qo) = 1, it is also true that P(Qq) = 1. Then

liminf hy(w) = 0 Vw € Qo N €. (2.3.39)

t—o0

3. Further, suppose there exists a function n(-) of Class B such that hi(w) > n(z(w)) for all w € Q.
Then z(w) — 0 as t = oo for all w € Q.

Proof. By Theorem there exists a random variable W such that z;(w) — W (w) as t — oo for almost
all w € Qg. This implies that z; is bounded almost surely. This is Item 1.
Next we prove item 2. Again from Lemma [2.22

o0

Zat(w)ht(w) < 00, Yw € Q.
t=0

Now, by definition

[e.e]
Zat(w) =00, Yw e Qg N Q.
t=0

Therefore (2.3.39) follows. To prove Item 3, suppose that, for some w € Qg N 2y, we have that W (w) > 0,
say W(w) =: 2¢ > 0. Choose a time T such that z;(w) > € for all t > T'. Also, by Item 1,

M := sup z(w) < oo.
t>T

Since zt(w) — 2€ as t — o0, it is clear that M > 2e. Next, since 7(-) belongs to Class B, it follows that

c:= 6SI7I‘1SfMT](T) > 0.

So, for t > T, we have that
hi(w) = n(z(w)) = c.

Now, if we discard all terms for ¢ < T, we get

Zat(UJ)ht(W) < o0, Vw € QOv Zat(w) = OO,ht(W) >c> 07
t=T t=T

which is clearly a contradiction. Therefore the set of w € Qo N Qy for which W(w) > 0 has zero measure
within Q¢ N Q4. In other words, z:(w) — 0 for (almost) all w € o N Qy. This is Item 3. O



52 CHAPTER 2. CONVERGENCE OF STOCHASTIC PROCESSES

Theorem above shows only that z; converges to 0 almost surely on sample paths in Q¢ N Q. In
these notes, we are interested not only in the convergence of various algorithms, but also on the rate of
convergence. With this in mind, we now state and prove an extension of Theorem that provides such
an estimate on rates.

But before that, we need to define what “rate of convergence” means for a stochastic process converges
almost surely. Unlike convergence in the mean and convergence in probability, which readily lend themselves
to the concept of “rate,” the concept of the rate is somewhat tricky in the case of almost-sure convergence.
Suppose 6; — 0" in the quadratic mean. Then we can study E[||@; — 6%|3, P], and say that 6; — 0" at the
rate \ if E[||@; — 6*||3, P] = O(t~). Prior to the contents of Chapters [3| and 4| were discovered in recent
years, the above notion of the rate was the most widely-studied form. Similarly, if 8, — 6 in probability,

we can define the quantity
q(t,e) :==Pr{||@; — 0%||2 > €}.

Convergence in probability implies that ¢(¢,e) — 0 as t — oo, for each fixed ¢ > 0. One can then study
the rate at which this convergence takes place. Note that some authors refer to bounds on ¢(t,€) as “high
confidence” bounds. However, for the purposes of this book, we use the following definition, which is inspired
by [93].

Definition 2.22. Suppose {Y;} is a stochastic process, and {f;} is a sequence of positive numbers. We say
that

1. Y. = O(fy) if {Yi/fi} is bounded almost surely.

2. Yy = Q(f:) if Y} is positive almost surely, and {f;/Y;} is bounded almost surely.

3. Y, = O(f,) if Y; is both O(f,) and Q(f,).

4. Y =o(fy) if Y/ ft — 0 almost surely as t — oo.

The next theorem is a modification of Theorem [2.:23] that provides bounds on the rate of convergence.

Theorem 2.24. Suppose {z:},{fi},{9:}, {au} are stochastic processes defined on some probability space
(Q, F, P), taking values in [0,00), adapted to some filtration {F}. Suppose further that

Et(zt+1) S (]. + ft)zt + gt — Q2 Vt, (2340)
where

th(w) < %,th(w) < Oo,zozt(w) = .
t=0 t=0 t=0

Then z; = o(t=*) for every X € (0,1] such that there exists a finite T > 0 such that

(W) =Xt >0VE>T, (2.3.41)
and in addition - -
(t+ 1) gi(w) < 00, Y Jau(w) = A7) = oo, (2.3.42)
T=0 T=0

where T is defined in (2.3.41))

The proof makes use of some ideas from [93].

Proof. Over the interval (0,00), the map ¢ + t* is concave for A € (0,1). It follows from the “graph below
the tangent” property of a concave function that

(t+ D> <t* Mt (2.3.43)
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Now a ready consequence of ([2.3.43) is
A
t+1
1< (J;) <1+ ML VE>T.

Now we follow the suggestion of [03, Lemma 1] by recasting (2.3.41)) in terms of t)‘zt If we multiply
both sides of ([2.3.41)) by (¢ + 1), and divide by t* where appropriate, we get

A A
t+1 t+1
E((t+ 1)>‘Zt+1) < (1+ f) (t) t/\Zt +(t+ 1)/\915 — Qg (t) t)‘Zt, vt >T.

Now we observe that

A
t+1
—ay (t) < —ay, V> T,

t+1 A -1 -1 -1
(1+ft)<t) SA+f)A+M) =14+ fr(1+ M)+ M7, VE>T.

If we now define the modified quantity 2z, = t*z, then the above bound can be rewritten as
Et(2t+1) S []. + ft(]- + )\t_l)]it + (t + ].)kgt - (Oét - )\t_l)it, Vit 2 T. (2344)

Since 1 4+ At~ ! is bounded over t > T, it is obvious that
(oo} (oo}
th < oo = th(l+)\t_l) < 0.
t=T =T

Moreover, by assumption, there exists a finite T' such that
ap— M1 >0, vt >T.

Since it is always permissible to analyze the inequality (2.3.41) starting at time 7', we can apply Theorem
to ([2.3.41)), with n(r) = r, and deduce that z; — 0 as t — oo. This is equivalent to z; = o(t™?). O

Notes and References

The topic of the convergence of stochastic processes is vast, and clearly what is presented here is just a
tiny sliver of the subject. Our choice of topics is dictated by their applicability to problems of nonconvex
optimization and to Reinforcement Learning.

The main references cited for probability and stochastic processes are [10] [44] 173]. For general topics in
measure theory and/or real analysis, the reader is directed to [16] 43], [127].

Theorem [2:22] the Robbins-Siegmund theorem, is an extension of the standard result that a nonnegative
supermartingale converges almost surely. For this reason, it is known as the “almost supermartingale” theo-
rem. This theorem represents a refinement of an earlier theorem from [52], but was discovered independently.
Theorem makes use of the concept of a function of class B. This concept is introduced in [52], but
it had no name. The concept is defined precisely, and given a name, in [I68]. Theorem as presented
here is stated in this form in [71], as is Theorem The definition of the “rate of convergence,” and its
application to the problem at hand, is motivated by [93].

5Since t~1 is undefined when ¢t = 0, the bounds below apply when ¢ > 1.
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Chapter 3

Stochastic Approximation:
Algorithms and Convergence

In this chapter we formulate and analyze several versions of Stochastic Approximation (SA), which is the
common thread that binds the two distinct topics studied in this book, namely nonconex optimization,
and Reinforcement Learning. We first state the problem under study; then we analyze the solution to the
problem using a variety of methods.

3.1 An Overview of Stochastic Approximation

In this section, we state the core problem in Stochastic Approximation (SA). Suppose f : R — R? is some
function. For the moment, no assumptions are made about the nature of f(-). Assumptions about f(-) are
added as and when they are needed. The objective is to find a solution to the equation £(6*) = OEI The
phrase “Stochastic approximation,” as well as the first results, were introduced in a seminal paper by Robbins
and Monro [123]. SA was introduced as an iterative technique for finding a solution 8" when only noisy
measurements f(-) are available. It is not necessary for the function to be “known” (e.g., in closed form).
All that is required is that, given an argument 8 € R%, an “oracle” gives us a noise-corrupted measurement
in the form

yir1 = £(0:) + &40, (3.1.1)

where {£,};>1 is a noise sequence. Assumptions about the nature of the noise sequence are introduced at
appropriate places. For the moment, we focus on how the noisy measurements could be used to construct a
sequence of approximations {8} that we hope would converge to a 8* € R? such that £(8*) = 0.

The standard implementation of the SA algorithm is as follows: One begins with an initial guess 8q
which could either be deterministic or random. This guess is updated according to the rule

9t+1 = 0,5 =+ atyt-l-l = Gt + Oét[f(et) + £t+1]7 (312)

where {a:} is either a prespecified sequence of real numbers, or a prespecified sequence of random variables.
It is customary to assume that «; € (0,00) for all ¢. If o is random, then it is assumed that a; > 0 almost
surely. In the optimization literature, oy is referred to as the “step size,” and could vary as a function of
t, the iteration counter (also referred to as “time”). In the Machine Learning literature, it is common to
choose a fized value of a; = «, which is then referred to as the “learning rate.”

In their original paper, Robbins and Monro made very restrictive assumptions regarding the nature of
the function f(-) and the noise sequence {£,,}. These assumptions have been substantially relaxed by later

LObviously, 0 can be replaced by any arbitrary element of R%.

95



56 CHAPTER 3. STOCHASTIC APPROXIMATION: ALGORITHMS AND CONVERGENCE

researchers; hence we need not recapitulate the original assumptions. However, one fact that has remained
(more or less) unchanged over the decades is the set of sufficient conditions for the algorithm to converge,
given in the original paper. These are rightly known as the “Robbins-Monro conditions,” and are stated as

> af <o, (3.1.3)
t=0

and

Zat = 00. (3.1.4)
t=0

Usually both conditions are written together; but there is a reason for displaying them separately in this
book. Specifically, in [52], it is shown that (3.1.3) alone is sufficient to ensure that the iterations {6,} are
bounded almost surelyﬂ The addition of (3.1.4)) to then leads to the stronger conclusion that 8; — 6*
almost surely.

At this point one might ask: Why shouldn’t the update formula be

011 =0, — oy,

because any zero of f(-) is also a zero of —f(-)? As we shall see below, the choice of the plus sign or the
minus sign depends on the behavior of the function f(-). Specifically, some convergence proofs of SA are
based on the solution 8" being a globally asymptotically stable (GAS) equilibrium of the associated ODE

0 =£(0). (3.1.5)

Clearly, replacing f(-) by —f(-) destroys the GAS property. If the GAS property holds, then the formulation
in is the approrpiate one, as we shall see below.

While the SA algorithm as described above is intended to find a zero of a function, SA can also be used
to address some related problems. Two of them are mentioned here, namely: Finding a fixed point, and
finding a stationary point.

Suppose g : R? — R? is some function. It is desired to find a fized point of the map g, that is, a vector 8*
such that g(6*) = 6%, when only noisy measurements of g(-) are available. Thus, at time ¢, given a 6 € R?,
an oracle returns the noise-corrupted measurement g(6;) + &;,,. As shown in Chapter |5, computing the
value of a Markov reward problem, or the value of a policy in a Markov Decision Problem (MDP), both fall
into this category. This problem can be formulated as that finding a zero of the function £(0) = g(0) — 6.
If we were to substitute this expression into , we get what might be called the “fixed point version”
of SA, namely

Orr1 =0y + u[g(6:) — Oy + &, 1] = (1 — )0y + cu[g(01) + &,44]- (3.1.6)

In this situation, the step size oy is restricted to lie in (0, 1), as opposed to (0, 00) as in . An advantage
of this formulation is that 0;,; is a convex combination of the current guess 8; and the noisy measurement
g(0:) + & 41

Another application is that of finding a stationary point of a C' function J : RY — R, that is, finding
a 0* € R? such that V.J(8%) = 0. This application is studied in detail in Chapter 4l Since the objective
is to solve V.J(8*) = 0, we can replace ys+1 in by a stochastic gradient h;;;, which is a noisy
approximation to VJ(6;). With this definition, the stochastic approximation step becomes

0t+1 = 0t - Oltht+1. (317)

This is a generalization of the familiar gradient descent method of (1.1.10]), with the true gradient replaced
by the stochastic gradient. For this reason, (3.1.7)) is often referred to as Stochastic Gradient Descent

2This means that almost all sample paths of the stochastic process are bounded, though the bound would depend on the
sample path.
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(SGD). It might be mentioned that SGD is the workhorse of contemporary optimization, and neural network
training.

At this point it might appear that we are using Stochastic Approximation to address three distinct
problems, namely: Finding a zero of a function, finding a fixed point of a map, and finding a stationary
point of a function. In reality, these three problems are closely related. We have already seen that finding a
fixed point of a map g is equivalent to finding a zero of a function f(0) = g(€) — 6. Now it is shown that,
under suitable conditions, finding a stationary point of a C2 map J(-) is equivalent to finding the fixed point
of an associated contraction map.

Specifically, suppose J(-) is C?, and suppose further that there exist constants 0 < a < b < oo such that

aly < V2J(0) < bly, VO € RY, (3.1.8)

where for symmetric matrices A and B, the notation A < B denotes that B — A is positive semidefinite.
Note that any function J(-) satisfying (3.1.8]) is strictly convex, though the converse is not always true. Now
define

_bt+a  b-a

TP T

and note that p < 1. With these definitions, it is now shown that the map 6 — 6 — (1/r)VJ(0) is a
contraction, with constant p. To see this, observe that a ready consequence of is

(3.1.9)

(1 - i) I, < I — (1/r)V2() < (1 - %) 1.

However, it is easy to verify that

b
l—f:—p,l—g:p.
r r

In turn this implies that
[a = (1/r)V2I(0)|ls < p, (3.1.10)

where ||M||s denotes the largest singular value of M, which is also the the f5-induced matrix norm of the
matrix M, that is
[M]s = max [[Mv]2.
vila<1

Next, observe that )
VJ(O)=VJ(p)+ /0 V2J(+ N0 — 9))(0 — @) dX.
Hence
(60— (1/r)VJ(0)) — [ — (1/r)VI(e)] = /0 (Io = (1/r)V2J (¢ + X6 — $))) (0 — ¢) dA.

Now we can invoke (3.1.10) to conclude that

<l — @ll2-
2

/O (Ls — (1/r)V2T(¢ + A(8 — 6)))(0 — ) dA

In turn this implies that
10— (1/r)VJ(8)) —[¢ — ((1/r)VI(@))]ll2 < pl|0 — @l|2.

This is the desired conclusion.
Now observe that solving V.J(8) = 0 is the same as solving (1/r)V.J(6) = 0. Clearly

(1/r)VJ(0) =0 < 6=0— (1/r)V.J(0).
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From the above discussion, we know that the map on the right side is a contraction. Hence finding a stationary
point of a J(-) that satisfies is equivalent to solving the above fixed-point problem. To complete the
discussion, let us see what the iteration looks like, for finding a fixed point of the map 8 — 8 — (1/r)V.J(8).
We start with an initial guess 0y, and then update it via

9t+1 = 075 — (1/7‘)VJ(9,§)

This is called “fixed step size” gradient descent. Note that, in order to compute r, it is necessary only to
have a lower bound for a, and an upper bound for b, in .

After the SA algorithm was introduced in [I23], some generalizations and/or simplifications followed very
quickly; see [I74, [77, [45], 39]. An excellent survey can be found in [87]. Book-length treatments of SA can
be found in [85] [9] 8] [23].

In , it is noteworthy that every component of 8; is updated at time ¢. For this reason, in this
book we refer to the approach in as Synchronous Stochastic Approximation (SSA), though
the terminology is not very standard. SSA can be contrasted with a situation whereby, at each step ¢, only
one component of 8, is updated. This is known as Asynchronous Stochastic Approximation( ASA),
a term that was introduced in [159, [158] 22], and is by now standard terminology. An intermediate approach
is to update, at each step t, some but not necessarily all components of 6;. In this book, this is referred to
a Block Asynchronous Stochastic Approximation (BASA). Again, this terminology is not standard.
We derive sufficient conditions for the convergence of SSA in Section and for BASA in Section[3.3] ASA
need not be studiede separately as it is a special case of BASA.

3.2 Convergence of Synchronous Stochastic Approximation

In this section, we study the convergence of the “synchronous” Stochastic Approximation (SA) algorithm
(3.1.1)) under a variety of conditions. Variants of the standard SA algorithm are studied in Section and
3.4

Some of the theorems in this section only establish the convergence of the SA algorithm, whereas other
theorems also establish the rate of convergence. All of these theorems make use of the theorems proved in
Section

This section is organized as follows: Some theorems also make use of Lyapunov stability theory, introduced
in Section[7.2] as well as a new result in “converse” Lyapunov theory, which is presented later in this section.

Note that the assumptions on the function f(-) and on the noise sequence {£,, ;} are far more general than
those in the original Robbins-Monro paper. Also, the conclusions are stronger. For example, the original
paper studies only the scalar case (d = 1). Moreover, the convergence of the iterations to the desired limit
is only in the quadratic mean, and hence in probability. The current “best practice” is to strive to prove
almost sure convergence, which is stronger. The reason for desiring almost sure convergence is obvious: The
application of any stochastic algorithm results in a single sample path of a stochastic process. It is therefore
worthwhile to know that almost all sample paths reach the correct answer.

3.2.1 Convergence Theorems for SA via Lyapunov Theory

Now let us return to the problem at hand, namely to establish the convergence of the SA algorithm, aims to
find a zero of a C! function f : R? — R?. One begins with a (possibly random) initial guess g, after which
the update rule is

0111 =0y + u[f(6:) + &, 4], (3:2.1)

where a; is a nonnegative-valued and possibly random step size, and &, is the measurement error. We
begin with the assumptions on the function f(-) in (3.2.1)).

(F1) The equation £(6*) = 0 has a unique solution, which is assumed to be 8* = 0, by shifting coordinates
if necessary.
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(F2) There is a constant S such that
1£(8)]]2 < 56]l2, V6 € RY.

Note that (F2) is weaker than assuming that f(-) is globally Lipschitz-continuous with constant S, which
would be

I1£(8) — £(¢)ll2 < S0 — @2, V0. € R

In effect, (F2) is the above relation with ¢ set equal to 0 (or 8* in the general case). In particular, the
function f(-) need not even be continuous in order to satisy (F2). For example, the function f : R — R
defined by

30, 6 <[0,1),
f(6) = 1+exp(@—1), 0€ll,o00),
—f(=0), 6 < 0.

Then f(-) is discontinuous at § = +1, but still satisfies (F2).
Next we state the assumptions on the measurement error &, . Let us define

Zy = Et(£t+1)a Ct+1 = €t+1 — Z¢. (3~2~2)
Then it follows from Theorem [2.5] that
Et(CtJrl) =0, C‘/;f(ftJrl) = CV;&(Cwl)a Et(HmeH%) = ||Zt||§ + C‘/t(ctJrl)' (3-2-3)

One can think of z; as the the predictable part of the measurement error, and ¢, ; as the unpredictable
part. So if z, = 0 for all ¢, then the noisy measurement y;1; = f(6;) + §,,; can be said to be “unbiased,”
because E;(y;+1) = £(0¢). However, any convergence theory cannot be restricted to this situation. As we
shall see later, there are so-called “zeroth-order” or “derivative-free” methods for implementing SA, in which
case the bias z; need not equal zero. Our theory needs to be versatile enough to cater to this situation as
well.

With this notation, we state the assumptions on the measurement error &, ;.

(N1) There exists a sequence of constants {B;} such that

1E(&e)ll2 = llzell2 < Bi(1+[16:]]2), V=0, (3.2.4)

(N2) There exists a sequence of constants , {M;} such that

CVilCr41) = Ee(l€isa]13) < MP(1+ [6:]3), V¢ > 0. (3.2.5)
We begin our study with a bound that is very useful in its own right. The bound is taken from [I2, Eq.
(2.4)].

Theorem 3.1. Suppose J : R — R is C', and suppose further that VJ(-) is L-Lipschitz continuous, that
18,

IVJ(0) = VJI(¢)||2 < L||O — @2, VO, d € RY. (3.2.6)
Then I
J(0 + ) < J(0) +(VJ(0), 6) + |3 (3.2.7)
Proof. Define h: R — R via
h(X) := h(0 + \o).
Then h(-) is in C!, and

h(0) = J(8), h(1)=J(¢), h(\) = (VJI(O+\p), ), ¥AER.
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Now observe that h(0) = J(0) and h(1) = J(0 + ¢). Therefore

h(1) h(0) + /01 () dA

= h(0)+ /01<VJ(0 + A), @) dA

1 1

h(0) + / (VJ(0, ) dA+ / ([VJ(0+ \p) — VI(0)], ) d. (3.2.8)
0 0

By the Liptschitz continuity of VJ(-), it follows that

IVJ(6 +Ap) = VJ(0)]l2 < L2

Further, by Scwharz’ inequality,

1 1 I
[0 +26) = V6)6) ar < LIGIE [ Xax= 1613
0 0
Substituting this into gives
L
h(1) < h(0) +(VJ(0),¢) + §||¢||§-

This is the same as (3.2.7)). O

Remarks:

1. The inequality (3.2.7) is well-known in convex analysis. For example the right inequality in [T09, Eq.
2.1.9] becomes (3.2.7) after changing f to J, z to 6 and y to 6 + ¢. Thus Theorem does away
with the assumption that the function J(-) is convex, which is a huge improvement. However, it is
important to note that [I09, Eq. 2.1.9] has two parts. The left inequality implies that the function J(-)
is convex, as shown there. In the present case, there is no analog of the left inequality.

2. The theorem follows readily from Taylor’s theorem if J(-) is C? and not just C!. This can be seen
as follows: The assumption that V.J(-) is L-Lipschitz-continuous implies that V.J(-) is absolutely
continuous, in the sense defined in [127]; see in particular the Remark at the bottom of page of 122.
By the contents of [127, Section 6.4], it follows that VJ(-) is differentiable almost everywhere (i.e.,
everywhere except on a set of Lebesgue measure zero). Moreover, wherever V.J(-) is differentiable, it
follows readily that |[V2J(-)||s < L. Here ||A||s denotes the largest singular value of a matrix A. Note
that ||A|s also equals ||A||2—2, which is the matrix norm induced by the fo-norm on vectors. Hence
if were to strengthen the hypothesis of Theorem to: J € C? (instead of J € Cl), and VJ(-) is
L-Lipschitz continuous, then it would follow that ||[V2J(0)|s < L for all 6. In such a case, Taylor’s
theorem would imply that, for each 8, ¢ € R?, there exists a \ € (0,1) such that

J(O+ @) = J(0)+(VJ(0),d) + %qﬁTVQJ(B + ).

This would in turn imply (3.2.7). a the contribution of [I2] is to weaken the hypothesis from J € C?
to J € CL.

Now we present a sufficient condition for the convergence of the SA algorithm of (3.2.1)), which involves
the existence of a “Lyapunov function” V : R? — R that satisfies some conditions. The concept of a
Lyapunov function is introduced in Section in the context of the stability of ODEs. In particular, let us

associate an ODE )
6=1£(0)
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with the function f(-) whose zero we are trying to find. Now suppose V : R? — R, is an C! function with
gradient VV. Then the function V : R¢ — R associated with V and the ODE above is defined by (cf.
(7.2.9))): .

V(0) := (VV(0),1(8)).

Now we state the standard assumptions on the Lyapunov function.
(L1) VV is C! and L-Lipschitz continuous, and VV (0) = 0.
(L2) There exist positive constants a, b such that

all@||? <V (8) <b||0||2, VO c R™ (3.2.9)

To avoid a lot of repetition, we state a standing assumption:
(S) Assumptions (F1), (F2), (N1), (N2), (L1), (L2) hold.

Now we state our results on the convergence of the SA algorithm of . The first theorem gives
sufficient conditions for the almost sure convergence of 8; to 0, but does not give any information on the
rate of convergence. By strengthening the assumptions on V()7 we derive bounds on the rate of convergence
in the next theorem and its corollary.

Theorem 3.2. Suppose that Assumptions (S) hold.
1. Suppose that V(O) <0 for all 8, and that

Za? < 00, ZatBt < 00, Zanf < 00, (3.2.10)
t=0 t=0 t=0

Then {V(0:)} and {||0+]|2} are bounded, and in addition, V(0;) converges to some random variable as
t — oo.

2. Suppose that, in addition to (3.2.10)), it is also the case that

> =0, (3.2.11)
t=0

and in addition, there exists a function ¢ : Ry — Ry belonging to Class B such that
V(0) < —(]|0))2), VO € R™. (3.2.12)
Then V(0;) — 0 and 6; — 0 as t — oco.
Proof. Applying Theorem to the function V(+), and making use of the updating formula leads to

V(0:11) < V() + ar(VV(0:),£(0:)) + ar(VV(0:), & 41) + @fé\\f(et) + &5

Applying E,(-) to both sides, using (3.2.2)) and (3.2.3), and applying the definition of V(-), gives
Ey(V(0i41)) < V(0:) +aiV(0:) + a(VV(6y), 7)
L
+ Offg[llf(l%)\l% +2(£(0:), 21) + |12l + Ee (1€ 113))- (3:2.13)

Now we observe that
[£0:)]l2 < Sl0cll2,  (IVV(0:)[l2 < L||6:]]2
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Substituting these bounds into (3.2.13]), and invoking the assumptions (N1) and (N2), gives a bound in the
form

L
E(V(0141) < V(0:) + i BLIO]o(1+ [0l]2) + af S[S*[6]]3 + 25 B [6]|2(1 + [16]]2)]
L .
+ i S B+ [0]3) + MP(1+ 6]5)] + eV (62).

We proceed to simplify the above inequality in stages. The first step is to incorporate the bound

1+ 163
jof < 1100

This gives
By(V(0e41)) < V(0:) + eBL(0.5 + 1.50]3) + af§[52|l9\|3 +5B,(1+3]6]13)]
+ af%[Bf(l +[1613) + ME(1+16]3)] + V().
The last step is to bound ||0||3 by (1/a)V (8;). Ths leads to the final form of the bound

E:(V(0:41)) < (1 + f)V(0:) + g: + .V (8y). (3.2.14)

where L5 I
fi = jatBtL + af%[# +3S8B; + B} + M7,

0.5

g = 7atBtL + a2 —=[SB; + B} + M?).

L
2a
This bound is in the form to which we can apply Theorem [2:23] if it can be established that the two sequences
{f+} (not to be confused with f) and {g;} are summable. Leaving aside various constant terms, both f; and

g; involve these five terms:
2 2 2p2 27372
oy, atBy, a; By, a; By, oy Mf.

From (3.2.10]), we know that the sequences {a?}, {auB;}, and {7 M}} are all summable. Now, any summable

sequence is also square-summable. Hence {«?B?} is summable. Finally, since {a?} is summable, it is evident

that «; is bounded. This, coupled with the summability of {a;B;}, shows that {a?B;} is also summable.

Thus, if V(Bt) < 0 for all 84, then Item 1 of Theorem applies, and Item 1 of the conclusions follows.
Now we come to Item 2 of the conclusions. For this purpose, define n: Ry — R} via

n(r) = inf (x).

 (r/b)<e<(r/a)

Now (3.2.9)) implies that
(1/0)V(0:) < [|0]]2 < (1/a)V(6y).

Therefore it is immediate that
—ap([|0]]2) < —aun(V(6:)).

Moreover, since 1(-) is a function of Class B, so is 5(-), as is easy to verify. Hence, in (3.2.14), we can
replace the term +0,V(0;) by —ayn(V(0)), and apply Item 2 of Theorem This leads to Item 2 of the

conclusions. O

Theorem 3.3. Suppose that Assumptions (S), and (3.2.10) and (3.2.11) hold. Suppose further that there
exists a constant ¢ > 0 such that

) 2 d
>~ 25 . L.
V(9) < —c|0]2, VO € R (3.2.15)
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Further, suppose there exist constants v > 0 and § > 0 such that
B, =0(@t™"), M, =0(),

where we take v = 1 if By = 0 for all sufficiently large t, and § = 0 if M, is bounded. Choose the step-size
sequence {a;} as Ot~ (=) and Q(t~(=9)) where ¢ is chosen to satisfy

0 < ¢ < min{0.5 — 6,7}, (3.2.16)

and C € (0,¢]. Define
v:=min{l — 2(¢ + 9),v — ¢}. (3.2.17)
Then [|6:]13 = o(t=) for every X\ € (0,v). In particular, by choosing ¢ very small, it follows that ||04|3 =
o(t™)
A < min{l — 24,~}. (3.2.18)

Proof. Since most of the hard work is already done in proving Theorem the proof is only sketched.

Since (3.2.15)) is assumed to hold, in ([3.2.14)), the term —a;V (6;) can be replaced by —ayc||@]3, and then
by —a:(c/b)V(0:). Now one can apply Theorem to obtain the result. O

Corollary 3.1. Suppose that Assumptions (S), and (3.2.10) and (3.2.11)) hold. Suppose further that there
exists a constant ¢ > 0 such that (3.2.15) holds. Finally, suppose z; = 0 almost surely, and there exists a
finite constant M such that

CV, < M?(1+64]3), Vt. (3.2.19)

Then, by choosing ¢ = O(t=1=9)) with ¢ > 0 arbitrarily small, we can ensure that V(0y), ||0:||2 are o(t™)
for all A < 1.

The proof is omitted as it is easy.

3.2.2 Some Applications

In this subsection, we apply Theorems and to establish the convergencd of the SA algoritm in two
specific problems, namely:

e When () is “passive,” and
e When it is desired to compute the fixed point of a contraction g(-).

In each case, it is assumed that only noisy measurements are available.

The first application, namely to find a solution of £(6*) = 0 even when f(-) is not necessarily continuous
(except at 0), was one of the motivations in the seminal paper [52]. Note that, if £(-) is discontinuous (except
at 0), the ODE approach requires some modifications, because the ODE 0=t (0) has solutions only in the
Fillippov sense in general. The martingale approach pursued here does not become more complex when f(-)
is discontinuous.

The second application is to find a fixed point of a contractive map g(-), when only noisy measurements
of the function are available. In this situation, the “natural” iteration

0,01 =g(0:) +& .1,

where £, , | is the measurement error, does not work in general.

There is yet another application, which is to find a stationary point of a C' map J : R — R. In other
words, it is desired to find a solution to V.J(6*) = 0. In principle this is the same as the first application,
with £(-) = VJ(-). However, there are some special wrinkles. Hence this problem is studied separately in
Chapter

First, we show that the SA algorithm of converges when the function f(-) is “passive,” which is
made precise in Definition below. This approach was pioneered in [52]. The reader is cautioned that
in [52], the SA algorithm uses a minus sign in front of a4, that is, it uses the formulation , and the
definition of passivity is adjusted commensuretly.
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Definition 3.1. Suppose f : R? — R? and that 8* € R%. Then f is said to be passive at 8" if (i) f(8") = 0,
and (ii) for all 0 < e < M < oo, we have that

I A L : 2.2

Remark: If we define a function (-) : Ry — Ry by

n(r) == |\efioriﬂ2:r —(0 —67,1(9)), (3.2.21)

then f(-) is passive at 6" if and only if n(-) is a function of Class B. Note that if f(-) is continuous, then

(3.2.20) can be replaced by
(6 —07,£(0)) <0VO + 6" (3.2.22)

In circuit theory, a nonlinear characteristic that satisfies ((3.2.20)) with 8* = 0 would be called “passive,” so
we borrow that terminology. Also, (3.2.20) does not rule out the possibility that £(8) — 0 as ||@|| — co. For
instance, the function f : R — R defined by

0, if 90,1,
—f(@)=< 1—exp(@—1), if0>1,
—f(=0), if 0 < 0.

Then f(-) is passive at zero, even though f(6) — 0 when |08] — co.

Equation implies that (8 — 0*,£(6)) < 0 for all @ # 8* € R This in turn implies that 8* = 8*
is the only solution to £f(8) = 0. To find 6, suppose we have available only noisy measurements of f(-).
Specifically, suppose we can measure

Vir1 =£(0) + &1,

where the measurement error satisfies assumptions (N1) and (N2). To determine 8", we use the SA iterations
defined by (3.1.2)). Suppose now that the step sizes a; are positive, and satisfy the standard Robbins-Monro
conditions hold, namely:

D af < oo (3.2.23)
t=1
oo
> =00, (3.2.24)
t=1

It is shown now that 8; — 8™ almost surely as t — co.

Theorem 3.4. Suppose that Assumptions (F2), (N1) and (N2) hold, and in addition, £(-) is passive at 6.
Under these assumptions, we have the following conclusions:

1. If (3.2.10) holds, then the sequence {6} is bounded almost surely.

2. If (3.2.11)) holds in addition to (3.2.10)), then 8, — 0 almost surely as t — oo.

Proof. The proof follows readily by applying Theorem [3.2| with the Lyapunov function V() = ||0|3. In this
case,

V(0) = (6,£(8).
Thus

V() < —n([0]]2),
where 7(+) is defined in (3.2.21]). O
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Next, we study the use of SA to find a fixed point of a contractive map when only noisy measurements
are available. Specifically, suppose P € R%*? is a positive definite matrix, set M = PT P, and define the
vector norm

[Vl[ar = (vT M) = [P, (3.2.25)
Now suppose g : R? — R is a map such that (i) there is a unique 8" such that g(8*) = 0, and (ii) there
exists a constant p < 1 such that

lg(8) — 6" lar < pl|6 — 67[|as, VO € R™. (3.2.26)

An easy way to ensure that (3.2.26) holds is to assume that g is a contraction with respect to || - ||as, i-e.,
that

g(0) — &(@)lar < pllO — llrs, V6,0 € R
Observe that ([3.2.26) is just the above contraction condition with ¢ set to the fixed point 8*.
To find 6, we apply the fixed point version of the SA algorithm, namely
Orv1 = (1 —)0; + ar[g(0r) + &1 q]- (3.2.27)
This is the standard fixed point iteration with measurement errors.

Theorem 3.5. Suppose g : R* — R% has a unique fized point 8 = 0, and that (3.2.26)) holds for some
p < 1. Suppose further that Assumptions (N1) and (N2) hold. Under these conditions, Finally, suppose that
(3.2.10) and (3.2.11)) hold. Suppose there exist constants v > 0 and 6 > 0 such that

Bt == O(t_’y)7 Mt == O(té),

where we take v = 1 if By = 0 for all sufficiently large t, and § = 0 if M, is bounded. Choose the step-size
sequence {a} as O(t=(1=9)) and Q(t~=9)) where ¢ is chosen to satisfy

0 < ¢ < min{0.5 — §,~}, (3.2.28)

and C € (0,¢]. Define
v:=min{l — 2(¢ + 9),v — ¢}. (3.2.29)

Then (0|3 = o(t=*) for every A € (0,v). In particular, by choosing ¢ very small, it follows that ||0:]|3 =
o(t™) whenever
A < min{1 — 26,~}. (3.2.30)

Proof. The proof is based on Theorem [3.3] Let us define the Lyapunov function
1 1
V(0) := §||e||ﬁ4 = 5(ﬂM@.

Observe that
£f(0) = -6+g(0).

Therefore ]
V(0) =0 Mf(0) =—||0|2, + 0" Mg(#).
However
0" Mg(0) =6' P Pg(6) <||PB|-|Pg(8)ll2 < p|l6|l3-
Therefore

V< —(1-p)lol3 =201~ p)V(6)

The rest of the details are as in Theorem and the conclusions partain to ||0;||3;. However, since M is
positive definite, the same bounds also apply to ||6;||3. O
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3.2.3 Existence of Suitable Lyapunov Functions

Theorems and are quite powerful, provided there exists a suitable Lyapunov function that satisfies
Assumptions (L1) and (L2). So-called “converse” Lyapunov theory gives conditions under which a suitable
Lyapunov exists. In this subsection, we state and prove one such theorem for global exponential stability,
which can be used in conjunction with Theorem

There is a part of Lyapunov stability theory known as “converse” theory. The idea here is to show that,
under suitable conditions of the function f in , if 8" is Globally Exponentially Stable (GES), then there
exists a Lyapunov function V satisfying the conditions of Theorem Many standard books on Lyapunov
stability theory do not include these theorems. The contents of this subsection are taken from [168].

As a prelude, we state and prove an inequality known as Gronwall’s inequality, which turns an implicit
inequality into an explicit inequality

Lemma 3.1. (Gronwall’s Inequality) Suppose a : Ry — R, is continuous, and that b,c > 0 are
constants. Under these conditions,

¢
a(t) < b+ c/ a(t) dr, Vt >0 (3.2.31)
0
implies that
a(t) < bexp(ct), Vt > 0. (3.2.32)
Proof. Define
¢
dt)=b+ c/ a(T) dr,
0
and observe that d(t) > 0 for all t. Now (3.2.31]) states that a(t) < d(¢) for all t. Next

d(t) = ca(t) < cd(t), ¥t >0, (3.2.33)

—[d(t)exp(—ct)] = d(t)exp(—ct) — cd(t) exp(—ct)

= exp(—ct)[d(t) — cd(t)] <0, Vt >0,
from . Hence
d(t) exp(—ct) < d(0) = b, or d(t) < bexp(ct) Vt > 0.
Now the bound follows from a(t) < d(t) for all ¢. O
Now we state the new converse theorem. First we state the assumptions on the function f : R — R¢,
(F1) The equation f(8) = 0 has a unique solution 6™.

(F2) The function f is twice continuously differentiable, and is globally Lipschitz-continuous with constant
L. Thus
1£(6) —£(¢)ll2 < LI@ — B2, VO, ¢ € R (3.2.34)

Note that, as a consequence of this assumption, for each 8 € R? there is a unique function s(-, @) that

satisfies the ODE
ds(t,9)

S = £(s(t,6)),5(0,6) = 6. (3.2.35)

(F3) The equilibrium 6 of the ODE 0=t (0) is globally exponentially stable. Thus there exist constants
u > 1,7 > 0 such that

s(t, 8) — 0% ||o < 1||@ — 6%||2 exp(—~t), ¥t >0, VO € R, (3.2.36)
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(F4) There is a finite constant K such that

IV2£:(0)|s - 1|0 — 0%l < K, Vi € [d], VO € RY, (3.2.37)
where [d] denotes the set {1,...,d}, and || - ||s denotes the spectral norm of a matrix, i.e., its largest
singular value. A consequence of (3.2.37)) is that

9*f:(0) d

|0 —0%||2 < K, Vi,j,k € [d], VO € R®. 3.2.38
ae]aek || HQ — ) Z’]? G [ ]7 6 ( )

Theorem 3.6. Suppose Assumptions (F1)-(F4) hold. Under these hypotheses, there erists a C? function
V :RY = Ry such that V and its “derivative” V : R — R together satisfy the following conditions: There
exist positive constants a,b,c and a finite constant M such that

1|0 — 072 < V(0) < 2]|0 — 672,V (0) < —c3]|0 — 072, VO € RY. (3.2.39)
IV2V(0)||s < 2M, V6O € R™. (3.2.40)

Remark: The existence of a Lyapunov function V that satisfies (3.2.39) is quite standard. Indeed, the
usual choice is

V(0) = /OOO lIs(t, @)||3dt. (3.2.41)

However, for this choice of V', no conclusions can be drawn about the behavior of the gradient VV nor the
Hessian V2V In [34], the authors introduce a completely different Lyapunov function of the form

T
V(0) = / 27 |1s(7, 8) — 6°|2 dr, (3.2.42)
0

where 0 < k <+ is arbitrary, and T is any finite number such that

In p
Y —K

<T < o0,

where p,y are defined in (3.2.36)). For this choice of Lyapunov function, it is shown in [34] that there exists

a finite constant L’ such that
[VV(0)|l2 < L'||6 — 62 (3.2.43)

Therefore, the Lyapunov function V of “looks quadratic,” while the Lyapunov function V' of
and its gradient both “look quadratic.” Now Theorem [3.0] extends the theory further by showing that, if
(F4) holds, then the Lyapunov function V, gradient VV, and Hessian V2V, all “look quadratic.” As we
shall see, (F4) is the key assumption that allows us to extend the converse Lyapunov theory of [34]. In turn
this leads to a simple proof of Theorem [3.6

Proof. Following in [34], define the Lyapunov function candidate V' as in (3.2.42)). Then, as shown in [34],
V satisfies (3.2.39)) and (3.2.43)). The latter is not of any concern to us. So we focus on proving (3.2.40).
Note that the solution function s(-, @) satisfies

s(t,0) =0 + /Ot f(s(r,0)) dr. (3.2.44)

Therefore .
Vos(t,0) = I + / Vof(s(r,0)) dr. (3.2.45)
0

Next, the chain rule gives
Vef(S(T» 0)) = Vtﬁf(d))ld;:s(ﬂe) VGS(Tv 0)
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Now the global Lipschitz continuity of f implies that

IVef(s(T, @))lls < L, Vo, V7.

Therefore (3.2.45)) leads to (after dropping the subscript )
t
IVs(t.6)ls <1+ [ LIVs(r.0)]s dr.
0
Now Gronwall’s inequality of Lemma [3.1] leads to the bound

IVs(t, 0)|ls < exp(Lt), Vt, V6. (3.2.46)

Next we proceed to find a bound on the second partial derivatives. It follows from (3.2.44]) that

asi(t,e) s t 8fi(S(T, 0))
oo, i +/0 a6, °

T,

where d;; is the Kronecker delta. Next,

W:/twdr.

2.4
96,00, 6,00, (3.2.47)

We will use (3.2.47) later. Next, expand V' (0) as
d

v (6) :/O ey [si(r,0) — 07]2 dr

i=1

Thus
Vo) _ [T, s 105i(7,6)
2, —/0 2e ;[31(7’,9)—01]87% dr,
9%V (0) 9 0si(7,0) 831 (1,0)
— 9e2RT
06,00y, /0 Z 00y, 00, "
T d
0?s4(T,0)
) 26T . _prx 2\ 7
+ /0 e ;[51(7,0) 7] 90,00, dr
= I+ 1,
where

T d
_ / Z (; o) 4 (3.2.48)

T d 2
I, = 20217 i(7,0) — 07—~ dr. 3.2.49
o= [ e > () 011 g dr (3.2.49)
We will prove the boundedness of each integral separately. Note that, as a consequence of ([3.2.49)), we have

0si(7,0)
00,

0s;(1,0)
00

)

‘ < |IVs(r,0)|ls < expLt, V1,i,j, k.
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So the first integral is bounded by
T
|| < / 2de® 2T dr =: C) < o0
0

for some constant C, whose precise value need not concern us. So we concentrate on showing that, under
Assumption (F4), I is also bounded globally.
Towards this end, we begin by observing that

Is(t,0)ll> > e~=4[18 — 6|5, vt > 0.
The proof is elementary and is omitted. In particular
Is(t, 0)||2 > e LT||@ — 6%, Vt € [0,T). (3.2.50)
Now we estimate the entity 9% f;(s(7,0))/060,;00), in (3.2.47)). Note that

of; d Bfi(qﬁ)‘ 9s,(7,0)
7,0)) = enny)
O =3 5 o

09, £
P*fi(s(r,0) _ iafiw)‘ Ps1(7,0)
89j39k =1 0y o=s(7,0) 89jaek
0 [ofi(e) 9s(7,0)
—_— —_— 7 3.2.51
+ ;aek 0% ' N a7 (3:2.51)

The second term can be expanded as

93, (r, 0)] 9s,(7,0)

¢=s(7,0) 904 90

Now Assumption (F4) and the bound ([3.2.50) together imply that

0*fi() 2 K KetT
<IVfils(r,0))s < < o VT e [0, 7]
01001 | 4_g(r.6) 50— 0~ Jo—6
Also, as shown in ((3.2.46|),
0s.(1,0)| |0si(7,0) I LT
< (7] <e'™ < 4 0,T].
2] [P0 < ystr s < e < 27, vr e 011
Next, the global Lipschitz continuity of f implies that
2040 <
Oy
Substituting all of these bounds into (3.2.47) gives
2.. LT LT L’T
0%s;(t,0) < / 9?s,(r,0) dr Jr/ gt
00,06, 90,00, 0 oo 1 ||0 072
¢
9?s,(r,0)
< L —| d 3.2.52
< cz+/0 Z S0 | (3:2.52)

=1
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where
d2TK€3LT

e -6l

is inversely proportional to ||@ — 8 ||2. Now define

Cs

8254(t, 0)

d
J

i=1

Note that the right side of (3.2.52)) does not depend on i. Therefore (3.2.52)) implies that

d t d 2
0°s;(T,0
hjk(tve) < Z 02+/ Lzae(aﬂ)]
i=1 S ) 39k
t
< ng—i—/ Ldhi(7,0) dr.
0

So by Gronwall’s inequality
hjk(t,0) < Code™ ¥t € [0,T).

Since hjj, is a sum, each individual component must also be smaller than A, in magnitude. Thus

Cs

’a%i(t,o)
10— 672

Z 7| <« deT<
0,00, ‘02 © =

for a suitable constant C3. Therefore we have established that the Hessian of each s; decays as 0 gets farther
away from 0*. Now we return to Iy as defined in (3.2.49]), and observe that, as a consequence of Assumption
(F3) of global exponential stability, we have

[5i(6,0) — 07| < [Is(t, 6) — 6" |2 < |6 — 6%}z, vt > 0.
Now in the definition of I5, we get the bound

0?s(7,0)

Cs.
90,00, HEs

|&mewwmw ‘SMW—GWr

73 =
10 — 6%l

Since the integrand in (3.2.49)) is bounded and T is finite, it follows that I is also bounded. This finally
leads to the desired conclusion that ||[V2V||s is globally bounded. O

Note that in the above proof, the finiteness of the constant 7" is crucial. The traditional Lyapunov
function of the form (3.2.41)) may not be suitable for the present purposes.

3.3 Block Asynchronous Stochastic Approximation

In this section, we study the problem of finding a fixed point of a map g : R — R? which is a contraction
with respect to the {,,-norm. As shown in Chapter b this problem arises when it is desired to determine
the value of a Markov Reward Process. Now, Theorem establishes the convergence of the SA algorithm
when the function g is a contraction wih respect to an inner product norm; however this theorem does not
apply to the /..-norm. Hence a distinct approach is needed.

The stochastic approximation algorithm studied in Section |3.2] can perhaps be termed as “fully syn-
chronous” (or just “synchronous”) because every component of the current guess 0, is updated at time ¢+ 1.
At the other extreme lie “asynchronous” SA algorithms, wherein exactly one component of 6; is updated
at time ¢. This is the approach used in temporal difference learning, and @-learning, which are discussed
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in subsequent chapters. In-between lies “Block Asynchronous Stochastic Approximation (BASA),” wherein,
at each instant ¢, the indices belonging to a subset S(¢) C [d] of the components of 6; are updated. By
choosing S(t) = [d] we revert to fully synchronous SA, whereas if S(¢) is a singleton set at each ¢, then
BASA becomes ASA (asynchronous SA). The elements of the set S(¢) can be chosen at random, and the
cardinality of S(t) (that is, the number of coordinates of 8; that are updated at time ¢ 4+ 1) can vary from
one time to another. Also, the step sizes need not be the same for each element of S(¢). To highlight this
point, we switch notation and use {3} for a fixed sequence of step sizes, while {ay;} denotes the sequence
of step sizes for component ¢ at time t.
The contents of this section are based on [72].

3.3.1 Problem Formulation

If g : R? — R? is a map and it is desired to find a fixed point of g(-), then we can use the fixed-point version
of SA, which is
0141 =1g— )00 +ay0lg(l) +&,4] (3.3.1)

Here 1, denotes the column vector of d ones, and o denotes the Hadamard productﬂ In this case, it is
customary to restrict o to belong to (0,1)? instead of (0,00)¢. Then each component of 8, is a convex
combination of the corresponding components of 8; and the noisy measurement of g(6;).

Next we discuss various options for the step size vector a;, which is allowed to be random. In all cases,
it is assumed that there is a scalar deterministic sequence {f;} taking values in (0,1). We now discuss three
commonly used variants of SA, namely: synchronous (also called fully synchronous), asynchronous, and
block asynchronous. In synchronous SA, one chooses oy = ;14. Thus, in (3.3.1)), the same step size f; is
applied to every component of 8;. In block asynchronous SA (or BASA), there are d different {0, 1}-valued
stochastic processes, denoted by k!,4 € [d], called the “update” processes. Then the i-th component of 8, is
updated only if ki = 1. To put it another way, define the “update set” as

Sy :={ie[d:kl=1}.

Then o} = 0 if i ¢ S;. However, this raises the question as to what a! is for i € S;. Two options are
suggested in the literature, known as the “global” clock and the “local” clock respectively. This distinction
was first suggested in [22]. If a global clock is used, then o} = ;. To define the step size when a local clock
is used, first define

t
VZ = Z /fi. (3.3.2)
7=0

Thus v} counts the number of times that 6! is updated, and is referred to as the “counter” process. Then
the step size is defined as _
oy = By (3.3.3)

The distinction between global and local clocks can be briefly summarized as follows: When a global clock
is used, every component of 8; that gets updated has exactly the same step size, namely (3;, while the other
components have a step size of zero. When a local clock is used, among the components of 8; that get updated
at time t, different components may have different step sizes. An important variant of BASA is asynchronous
SA (ASA). This phrase was apparently first used in [I58], in the context of proving the convergence of the
Q-learning algorithm from Reinforcement Learning (RL). In ASA, ezactly one component of 8, is updated
at each t. This can be represented as follows: Let {NV;} be an integer-valued stochastic process taking values
in [d]. Then, at time ¢, the update set S; is the singleton {N;}. The counter process v} is now defined via

t
Vti = ZI{NT:Z}’
7=0

3Recall that if a, b are vectors of equal dimension, then their Hadamard product ¢ = aob is defined by ¢; := a;b; for all
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where I denotes the indicator process. The step size can either be f; if a global clock is used, or f5,; if a
local clock is used. In [22], the author analyzes the convergence of ASA with both global as well as local
clocks. In the Q-learning algorithm introduced in [I72], the update is asynchronous (one component at a
time) and a global clock is used. In [I58], where the phrase ASA was first introduced, the convergence of
ASA is proved under some assumptions which include @Q-learning as a special case. Accordingly, the author
uses a global clock in the formulation of ASA. In [46], the authors use a local clock to study the rate of
convergence of QQ-learning.

Next we discuss the assumptions made on the error vector &, ;. It is assumed that there exist sequences
of constants B; and M; such that

[ Et(&11)ll2 < B(1+[[0¢]l2), Vt. (3.3.4)

CVi(€441) < Mi(1+164]13), V2. (3.3.5)

These are the same as the assumptions in Section 3.2} and Theorems [3.2] and [3-3] establish the convergence
of synchronous (or full-coordinate update) SA under these assumptions.

3.3.2 Intermittent Updating: Convergence and Rates

The key distinguishing feature of BASA is that each component of 6; gets updated in an “intermittent”
fashion. In other words, a component gets updated at some steps, but not at other steps. Before tackling
the convergence of BASA in R, in the present subsection we state and prove results analogous to Theorems
[3:2] and [3:3] for the scalar case with intermittent updating.

The problem setup is as follows: The recurrence relationship is

wip1 = (1 — apke)we + arkeiin, (3.3.6)

where {w;} is an R-valued stochastic process of interest, {£;} is the measurement error (or “noise”), {a;} is
a (0, 1)-valued stochastic process called the “step size” process, and {x;} is a {0, 1}-valued stochastic process
called the “update” process. Clearly, if x; = 0, then w11 = wy, irrespective of the value of ay; therefore
w41 is updated only at those ¢ for which k; = 1. This is the rationale for the name. With the update
process {k:}, as before we associate a “counter” process {14}, defined by

V=Y kK. (3.3.7)

s=0
Thus v; is the number of times up to and including time ¢ at which w; is updated. We also define
v (1) :=min{t e N: vy =7}, V7 > 1. (3.3.8)
Then v~1(-) is well-defined, and
v () =1 () <t vTHr) <17 -1, (3.3.9)

The last inequality arises from the fact that there are ¢ + 1 terms in . Also, k¢ = 1 only when
t =v~1(r) for some 7, and is zero for other values of ¢. Hence, in (3.3.6)), if ¢t = v~!(7) for some 7, then w,
gets updated to w1, and

Wiyl = W42 = 0 = wu—1(7+1), (3310)

at which time w gets updated again. Thus w; is a “piecewise-constant” process, remaining constant between
updates. This suggests that we can transform the independent variable from ¢ to 7. Define

Tr = ’I,Ul,fl(,,-),CT_;,_l = §V*1(7)+17 \4a > 1, (3311)
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with the convention that 1 = wy. Note that the convention is consistent whether vy = 1 or not (as can be
easily verified). Also we define
br 1= auky,

whenever t = v~1(7) for some 7. With these definitions, (3.3.6)) is equivalent to
Try1 = (1 =bp)xr +b,;Cryr, VT > 1, (3.3.12)

Note that, in (3.3.12), b, is a random variable for all 7 > 1, and that there is no by. To analyze
the behavior of (3.3.12)), we introduce some preliminary concepts. Let F; be the o-algebra generated by

wo, kG, f. With the change in time indices, define {G.}, where G, = F,—1(,), whenever t = v=1(7) for some
7. Then it is easy to see that {G,} is also a filtration, and that

E($r|gr) = Et(wt|~7:t)

whenever ¢t = v~!(7) for some 7. Hence we can mimic the earlier notation and denote F(X|G,) by E.(X).
Also, if it is assumed that original step size a;; belongs to M(F;), then b, € M(F;) = M(F,-1(7)) = M(G).
The assumption implies that, while the step a; may be random, it only makes use of the information available
up to and including step t.

Now we present a general convergence result for . Observe that {w;} is a “piecewise-constant
version” of {z,}. Hence if some conclusions are established for the z-process, they are also established for
the w-process, after adjusting for the time change from ¢ to 7.

Theorem 3.7. Consider the recursion (3.3.12). Suppose there exist constants By, My such that

|E:(&41)] < Be(1+ |wy]) Vt > 0, (3.3.13)
CVi(€y1) < ME(1+w?), ¥t > 0. (3.3.14)
Define
fr= (L4 242y + M2 () + 31, (3.3.15)
gr = V22001 + M3 () + brpty-1(r).- (3.3.16)
Then we have the following conclusions:
1. If . .
Y fr<00,) gr < oo, (3.3.17)
=1 =1

then x, is bounded almost surely.
2. 1If, in addition to (3.3.17)), we also have
> by =00, (3.3.18)
T=1

then  — 0 as T — o0.

3. If both (3.3.17) and (3.3.18)) hold, then x, = o(7~?*) for every A\ < 1 such that

Z(T + 1) g, < o0, (3.3.19)
T=1
Z[bT — M1 = oo, (3.3.20)
T=1

and in addition, there exists a T < co such that

by — AT >0vr > T. (3.3.21)
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Proof. The proof consists of reformulating the bounds on the error §;,; in such a way that Theorems
and [3.3] apply. By assumption, we have that

|Ee(§e+1)] < Be(1+ we|) V.
In particular, when ¢ = v=1(7), we have that (; 1 = &1, and

|Er (Gra)| = [Ei(§r1) ] < Bi(1 4 [wi]) = 1oy (1 + [2- ).

It follows in an entirely analogous manner that
OVi(Gr1) € Myr () (1 +22).

With these observations, we see that Theorems and apply to , with the only changes being
that (i) the stochastic process is scalar-valued and not vector-valued, (ii) the time index is denoted by 7 and
not ¢, and (iii) By, M; are replaced by Hu=1(7)s My-1(r) respectively. Now the conclusions of the theorem
follow from Theorems B2 and 3.3 O

Now we reprise the two commonly used approaches for choosing the step size, known as a “global clock”
and a “local clock” respectively. This distinction was apparently first introduced in [22]. In each case, there
is a deterministic sequence {f;};>0 of step sizes. If a global clock is used, then a; = 3, at each update, so
that b, = B,-1(r). If a local clock is used, then oy = f3,,, so that then b, = 3;_; . The extra —1 in the
subscript is to ensure consistency in notation. To illustrate, suppose k; = 1 for all t. Then v, =t + 1, and
v i) =71-1.

Now we begin our analysis of (3.3.12]) with the two types of clocks. Now that Theorem is established,
the challenge is to determine wheﬂ@ through (as appropriate) hold for the two choices of step
sizes, namely global vs. local clocks.

Towards this end, we introduce a few assumptions regarding the update process.

(Ul) v — oo as t — oo almost surely.

(U2) There exists a random variable r such that

% — 71 ast— 0o, as.. (3.3.22)

Observe that both assumptions are sample-pathwise. Thus (U2) implies (U1).
We begin by stating the convergence results when a local clock is used.

Theorem 3.8. Suppose a local clock is used, so that oy = B,,, so that by = Br_1. Suppose further that
Assumption (Ul1) holds, and moreover

(a) {B:} is nonincreasing; that is, pi11 < By, Vt.
(b) My is uniformly bounded, say by M.
With these assumptions,

1. 1If
D B <00, BBy < o, (3.3.23)
t=0 t=0

then {z.} is bounded almost surely, and {w} is bounded almost surely.

2. 1If, in addition
> B =, (3.3.24)
t=0

then z — 0 as t — oo almost surely, and wy — 0 as t — co almost surely.
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3. Suppose By = O(t=(1=9) for some ¢ > 0, and B; = Q=) for some C € (0,4]. Suppose that
By =0O(t™¢) for some e >0. Then x; — 0 as 7 — 00, and wy — 0 as t — oo, for all ¢ < min{0.5, €}.
Further, x; = o(t™*), and w; = o((v;)™") for all A\ < € — ¢. In particular, if By = 0 for all t, then
z, = o(t7N), and wy = o((vy) ™) for all X < 1.

4. If Assumption (U2) holds instead of (Ul), then in the previous item, w; = o((v4)~*) can be replaced
by wy = o(t™).

Proof. The proof consists of showing that, under the stated hypotheses, the appropriate conditions in (3.3.17))
through (3.3.21)) hold.

Recall that b, = B,_1. Also, by Assumption (Ul), 14 — oo as t — oo, almost surely. Hence v=1(7) is
well-defined for all 7 > 1.

Henceforth all arguments are along a particular sample path, and we omit the phrase “almost surely,”
and also do not display the argument w € Q.

We first prove Item 1 of the theorem. Recall the definitions of f; and g, from (3.3.15) and ([3.3.16)
respectively. Item 1 is established if t is shown that holds. For this purpose, note that pus < By if
s >t, and M; < M for all t. We analyze each of the three terms comprising f,. First,

(o9} oo oo
D= 8= B <o
T=1 =1 t=0

Next, since My < M for all ¢, we have that

o9} (o9}

2772 2 2
g be My vy <M g br < 0.
=1 T7=1

Finally, . . .
Zb‘l'ljfl/*l(f) < Zﬁ‘rfllurfl = ZﬁtBt < o0.
=1 =1 t=0

Here we use the fact that v=!(7) > 7 — 1, so that p-1(ry < pr—1. Thus it follows from (3.3.15) that
{f-} € £1, which is the first half of (3.3.17). Next, since {brpt,-1(r)} € 1, s0 is {bFu? ., }. Hence it follows

from (3.3.16]) that {g.} € ¢1, which is the second half of (3.3.17). This establishes that {z,} is bounded,
which in turn implies that {w;} is bounded.

To prove Item 2, note that
oo o0
DU A
=1 =0

Hence (3.3.18)) holds, and z; — 0 as 7 — oo, which in turn implies that w; — 0 as ¢t — oco.
Finally we come to the rates of convergence. Recall that By = O(t™¢) while M; is bounded by M. Also,
By is chosen to be O(t~(1=%)) and Q(t~(1=)). From the above, it is clear that

fr = O(242) O 1+70)
Hence holds if
—24+2p< —land —14+¢—e< —1, or  <min{0.5,€}.
Next, from the definition of g, in , it follows that
W HT) + D)) gr < (T HT + 1)) Ngr = O 1O,

Hence (3.3.19)) holds if
—14+¢d—€e+ A< -1 = A<e—¢.
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Combining everything shows that z, = o(7~*) whenever
¢ < min{0.5,€e}, A < € — ¢.

If B, = 0 for all ¢, then € can be chosen to be arbitrarily large. However, the limiting factor is that the
argument in Theorem holds only for A < 1. Hence z, = o(7~*) whenever

¢ <05 AN<1.

Now suppose Assumption (U2) holds, and fix some ¢ > 0. Then along almost all sample paths, for sufficiently
large T' we have that v;/t > r — € for all ¢ > T. Thus, whenever ¢t > T, we have that

v >t = o((r) ™) < o((rt) ™) = o(t™).
Thus w; has the same rate of convergence as . O

Since the analysis can commence after a finite number of iterations, it is easy to see that Assumption
(a) above can be replaced by the following: {B;} is eventually nonincreasing; that is, there exists a T' < oo
such that

pir1 < By, VE>T.

Next we state a result when a global clocks is used. Theorem [3.9] below is not directly comparable to
Theorem above. Specifically, in Theorem the bias coefficient By is assumed to be non increasing,
and the variance bound M} is assumed to bounded uniformly with respect to t. However, the step sizes are
constrained only by the requirement that various summations are finite. In contrast, in Theorem there
are no assumptions regarding B; and My, but the step size sequence {f;} is assumed to be nonincreasing.

Theorem 3.9. Suppose a global clock is used, so that ay = By whenever t = v=1(7) for some 7 and as a
result by = f3,-1(y. Suppose further that Assumption (U2) holds. Finally, suppose that B; is nonincreasing,
so that Biy1 < Bt for all t. Under these assumptions,

1. If (3.3.23) holds, and in addition
> BEM} < oo, (3.3.25)
t=0

then {w;} is bounded almost surely.
2. 1If, in addition, (3.3.24) holds, then wy — 0 as t — oo almost surely.

3. Suppose in addition that B, = O(t=1=9)), for some ¢ > 0, and B; = Qt~1=)) for some C € (0, ¢].
Suppose that By = O(t=¢) for some ¢ > 0, and My = O(t%) for some § > 0. Then w; — 0 as t — 00
whenever

¢ < min{0.5 — 4, €}.

Moreover, wy = o(t™) for all A < € — ¢. In particular, if By = 0 for all t, then wy = o(t™*) for all
A<

The proof of Theorem [3.9 makes use of the following auxiliary lemma.

Lemma 3.2. Suppose the update process {ki} satisfies Assumption (U2). Suppose {B:} is an R, -valued
sequence of deterministic constants such that fi11 < B¢ for all t, and in addition, (3.3.24)) holds. Then

> By = Bikis = 0. (3.3.26)
=1 t=0
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Proof. We begin by showing that there exists an integer M such that, whenever 2¥ > M, we have

2k+1

1 T
t=2F+41

By assumption, the ratio 14/t — r as ¢ — oo, where r could depend on the sample path (though the
dependence on w is not displayed). So we can define e = r/2, and choose an integer M such that

= = .
= —rl=|= -7 <z, VT > M.
T ; Ke =T = |7 ;(ﬁt N <z VT2
Thus, if 2¥ > M, we have that
1 2k‘+1 1 2k’+1 1 27@
o 2 =) < op > (= )|+ |55 D (ke =)
t=2k+1 t=1 t=1
< 2 n 1 r
—e+-e=e=—.
3 3 2

Next, suppose that B;41 < 8¢ for all ¢. (If this holds only for all sufficiently large t, we just start all the
summations from the time when the above holds.)

[e%s) o) ok+1 [e%s) ok+1
E Biky > E E Biky | = E E Bok+1 Ky
t=0 k=1 \t=2k+1 k=1 \t=2k+1
o) ok+1 o) o)
Z Z Z A r Z k+1
= ,ng+1 Kt Z ﬁ2k+12 5 = 1 ﬁ2k+12
k=1 t=2k 1 k=1 k=1
r e’} ok+2 r e’} 2k+2 r o)
= 1 E E /82k+1 Z 1 E E Bt = Z E /Bt = Q.
k=1 ¢=2k+141 k=1¢=2k+141 k=5
This is the desired conclusion. O

Proof. Of Theorem Recall that a global clock is used, so that b, = 3,-1(,). Hence

0o 0o
ZfT = Z[ﬁgfl(‘r) +63*1(T)M3*1(T) +Bu*1(7),ul/*1(7-)]
T=1 T=1

[BF + BeM} + BBy < oo
=0

Via entirely similar reasoning, it follows that {g,} € ¢;. Hence (3.3.17) holds, and Item 1 follows.
To prove Item 2, it is necessary to establish (3.3.18]), which in this case becomes

Zﬂl,71(7_) = ZbT = Q.
=1 7=0

This is (3.3.18)). Hence Item 2 follows.

Finally we come to the rates of convergence. The only difference is that now M; = O(t°) whereas it was
bounded in Theorem To avoid tedious repetition, we indicate only the changed steps. The only change

is that now
fr = O(172F29) 4 O(77 220420y L O(771H97€),
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Hence (3.3.17)) holds if
—2+2p< —1,-2+2p+20<—1, and —1+¢—e< —1,
or
¢ < min{0.5 — J, €}.
Next, from the definition of g, in (3.3.16)), it follows that
(NP + 1) gr < (TN (T + 1) g = O(r O,
Hence (3.3.19) holds if
—“1+¢p—€e+ A< -1 = A<e—¢.

Hence z, = o(7~*) and w; = o(t~*) whenever
¢ <min{0.5 — d,e}, A < € — ¢.
If By = 0 for all ¢, then we can choose € to be arbitrarily large, and we are left with

$<05—6A<1.

3.3.3 Boundedness of Iterations

Next, we give a precise statement of the class of fixed point problems to be studied. In this subsection, it
is shown that the iterations are bounded (almost surely), while in the next subsection, the convergence of
the iterations is established, together with the rate of convergence. The boundedness of the iterations is
established under far more general conditions than the convergence. More details are given at the appropriate
place.

Let N denote the set of natural numbers including zero, and let h : N x (RH)N — (R?)N denote a
measurement function. Thus h maps R%valued sequences into R%-valued sequences. The objective is
to determine a fixed point of this map when only noisy measurements of h are available at each time t¢.
Specifically, define

n, = h(t,0}). (3.3.28)

Suppose that, at time £+ 1, the learner has access to a vector 1, +§&,, 1, where £, ; denotes the measurement
error. The objective is to determine a sequence 7* € (RN (if it exists) such that

h(n*) = =",

using only the noise-corrupted measurements of n,.
To facilitate this, a few assumptions are made regarding the map h. First, the map h is assumed to be
nonanticipativeﬂ and to have finite memory. The nonanticipativeness of h means that

e 0 € (RYHY, 0 = ¢l = h(1,0°) =h(r,¢p°),0< 7 <t. (3.3.29)

In other words, h(t,0:°) depends only on @). The finite memory of h means that there exists a finite
constant A which does not depend on ¢, such that h(t, 06) further depends only on 0§_A+1. With slightly
sloppy notation, this can be written as

h(t,00) =h(t,0,_A,,), Vt > A, VO € (RN, (3.3.30)

4In control and system theory, such a function is also referred to as “causal.”
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This formulation incorporates the possibility of “delayed information” of the form

N = 9i(01(t — A1(t)), -+, 0a(t — Aa(?))), (3.3.31)

where Aq(t),---,Aq(t) are delays that could depend on ¢t. The only requirement is that each A;(¢) < A
for some finite A. This formulation is analogous to [I58, Eq. (2)] and [22] Eq. (1.4)], which is slightly more
general in that they require only that ¢ — A;(t) — oo as t — oo, for each index i € [d]. In particular, if h is
“memoryless” in the sense that, for some function g : R¢ — R?, we have

h(t,0;) = g(6:), (3.3.32)

then we can take A = 1. Note that, if h is of the form (3.3.32), then the problem at hand becomes one of
finding a fixed point in R? of the map g, gives noisy measurements of g at eath time step.
To proceed further, it is assumed that the measurement function satisfies the following assumption:

(F1) There exist an integer A > 1 and a constant v € (0,1) such that
It 95 ar1) =Bt & ap)lloo < AW ats = Gt atalloos V8= A, V7, 657 € (RN (3.3.33)

This assumption means that the map 0;__, — h(t,0;_,_,) is a contraction with respect to || - ||cc-
In case A =1 and h is of the form (3.3.32)), Assumption (F1) says that the map g is a contraction.

Now we discuss a few implications of Assumption (F1).

(F2) By repeatedly applying (3.3.33]) over blocks of width A, one can conclude that
(%5 at1) = Bt @ ai)lloo < VA0 = 66 oo, VA5, B5° € (R, (3.3.34)

Therefore, for every sequence ¢g°, the iterations h(t,q.’)g) converge to a unique fixed point #*. In
particular, if we let (7*)5° denote the sequence whose value is w* for every ¢, then it follows that

[h(t, (7)5) — 7" [|loe < CoyH/2), Wi, (3.3.35)
for some constant Cy.

(F3) The following also follows from Assumption (F1): There exist constants p < 1 and ¢} > 0 such that

h(t, ¢5)lloc < pmax{c;, [[dglloc}. Vo € (RT)™, ¢ > 0. (3.3.36)

In order to determine 7w* in (F2), we use BASA. Specifically, we choose 8y as we wish (either determin-
istically or at random). At time ¢, we update 8; to 0,1 according to

0111 =0, +a,0n +& 1) (3.3.37)

where o is the vector of step sizes belonging to [0,1)?, &, 41 1s the measurement noise vector belonging to
R?, and o denotes the Hadamard product. We are interested in studying two questions:

(Q1) Under what conditions is the sequence of iterations {6;} bounded almost surely?
(Q2) Under what conditions does the sequence of iterations {6,} converge to @* as t — 0o?

Question (Q1) is addressed in this subsection, whereas Question (Q2) is addressed in the next.

In order to study the above two questions, we make some assumptions about various entities in .
Let F; denote the o-algebra generated by the random variables 6y, Stl, and aé’fi for ¢ € [d]. Then it is clear
that {F;} is a filtration. As before, we denote F(X|F;) by E¢(X).

The first set of assumptions is on the noise.
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(N1) There exists a finite constant ¢j and a sequence of constants {B;} such that

1B (& 1)ll2 < 1 Be(1+ 1|65 ]1oc), VE = 0. (3.3.38)

(N2) There exists a finite constant ¢}, and a sequence of constants {M;} such that
CVil€r11) < MP(1+65]2,), ¥t = 0, (3.3.39)

where, as before,
C‘/t(gt-&-l) = Et(||€t+1 - Et(£t+1)||§)

Before proceeding further, let us compare the conditions and with their counterparts (3.2.4])

and in Theorem It can be seen that the above two requirements are more liberal (i.e., less

restrictive) than in Theorem because the quantity ||6;||2 is replaced by ||@h]|s. Hence, in and

7 the bounds are more loose. However, Theorems and in the next subsection apply only to

contractive mappings. Hence Theorems and complement Theorem [3.2} and do not subsume it.
The next set of assumptions is on the step size sequence.

(S1) The random step size sequences {a;;} and the sequences {B;}, {M?} and satisfy (almost surely)

af; < oo,ZMtzafﬁi < oo,ZBtam < 00, Vi € [d]. (3.3.40)
t=0 t=0 =0

(S2) The random step size sequence {«y;} satisfies (almost surely)
> i =00, as., Vi€ [d]. (3.3.41)
t=0

With these assumptions in place, we state the main result of this subsection, namely, the almost sure
boundedness of the iterations. In the next subsection, we state and prove the convergence of the iterations,
under more restrictive assumptions.

Theorem 3.10. Suppose that Assumptions (N1) and (N2) about the noise sequence, (S1) and (S2) about
the step size sequence, and (F1) about the function h hold, and that 041 is defined via (3.3.37). Then
sup, ||0t]|cc < 00 almost surely.

The proof of the theorem is fairly long and involves several preliminary results and observations.
To aid in proving the results, we introduce a sequence of “renormalizing constants.” This is similar to
the technique used in [I58]. For ¢ > 0, define

Ay := max{||0} || 0, ¢} }, (3.3.42)
where ¢} is defined in (3.3.28). With this definition, it follows from that 1, = h(t, ) satisfies
[1:lloo < pA, VE. (3.3.43)
Define ¢, = L; '€, for all t > 0. Now observe that L; " < ¢;", and L; " < (||6f|sc) . Hence
1B (Civr1,i)lloe < 1 Biler + 1) =: 2By, (3.3.44)
where ¢y = ¢} (c;* +1). In particular, the above implies that

|Et(Cet1,6)| < 2By, VL > 0. (3.3.45)
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Similarly
CVi(Cig1,i) < esMP, Wt > 0, (3.3.46)
for some constant cs.

If we compare with (3.3.38)), and (3.3.45)) with (3.3.39)), we see that the bounds for the “modified”
error §;, 1 are simpler than those for €, ;. Specifically, the right side of both (3.3.44)) and ([3.3.45|) are bounded
with respect to 8} for each ¢, though they may be unbounded as functions of t. In contrast, the right sides
of (3.3.38) an (3.3.39) are permitted to be functions of [|0}]|oc-

Though the next result is quite obvious, we state it separately, because it is used repeatedly in the sequel.

Lemma 3.3. Fori € [d] and 0 < s < k < oo, define the doubly-indexed stochastic process

(s,k +1) Z[ H — }amgﬂ,i, (3.3.47)

t=s r=t+1
where an empty product is taken as 1. Then {D;(s,k)} satisfies the recursion
Di(S, If + ].) = (]. — Oékﬂ')Di(S, k) -+ ak’ifk_;_u, DZ'(S, 8) = 0 (3348)
In the other direction, (3.3.47)) gives a closed-form solution for the recursion (3.3.48)).

Recall that N denotes the set of non-negative integers {0,1,2,...,}. The next lemma is basically the
same as [I58, Lemma 2].

Lemma 3.4. There exists Qq C Q with P(Q1) =1 and r} : Q1 x (0,1) = N such that
|Di(s,k+1)(w)| <€ Yk >s>r](w,e). (3.3.49)
Proof. Let € > 0 be given. It follows from Lemma [3.3] that D; satisfies the recursion
D;(0,t+1) = (1 — a,5)Di(0,t) + v iCry1.

with D;(0,0) = 0. Let us fix an index 4 € [d], and invoke (3.3.45)) and (3.3.46]). Then it follows from (3.3.46)
that

OVi(Ce1.i) < csM?,

and (3.3.45)) also holds. Now, if Assumptions (S1) and (S2) also hold, then all the hypotheses needed to
apply Theorem [3.7| are in place. Therefore D;(0,k + 1) converges to zero almost surely. This holds for each
i € [d] Therefore, if we define

0 = {(.U e Dz(O,k+1)(w) —0ast— o0Vie [d]},
then P(€;) = 1. We can see that for w € ©; we can choose 75 (w, €) such that Vk > ri(w,e€),i € [d] we have
1D; 0,k +1)(w)| < Le.

To proceed further, we suppress the argument w in the interests of clarity. Observe from (3.3.47) that,
whenever s < k we have

k k
Di(s,k+1) = Z[ H (1- Oér,i)]at,i@tﬂ,i (3.3.50)

t=s r=t+1
k k

= Z[ H ( — Qp; }Oét th-i—l i Z[ H — Oy }at,iCH—l,i (3351)
t=0 r=t+1 t=0 r=t+1

= Di(oak+ 1) - [H 1 — Qg ] Z[ H 1—047«1 :|O£t1<‘t+1l (3352)

t=0 r=t+1

k
= Di(0,k+1)— [H(l - ozr,i)] D;(0, ). (3.3.53)
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Since 1 — a-; € (0,1) for all 7, ¢, it follows that the product also belongs to (0,1). Therefore

[Di(s,k+ 1) < |Di(0,k +1)[ +[Dy(0,5)| <

-
=2

= €.

This is the desired conclusion. O

Lemma 3.5. There exists Qy C Q with P(Q2) =1 and r3 : Q1 x N x (0,1) = N such that

k
[10 = wiw) <€ VE>r5(w,j,€),i € [d],w € Qa. (3.3.54)

s=j

Proof. In view of the assumption (S2), if we define
Qy = weQ:Zatﬂ-(w):ooVie [d] ¢,
=7

then P(€Q2) = 1. For all w € Qy, we have
Z oy i(w) = oo.
s=j

Using the elementary inequality (1 — z) < exp{—=z} for all z € [0, c0), it follows that

k

k
[T - cni(w) <exp =D ani(w)
s=j s=j

Hence for w € Qo, H]::j(l — ay;(w)) converges to zero as k — oo. Thus we can choose 75 (w, 7, €) with the
required property. O

In the rest of this section, we will fix w € 3 NQy, the functions r}, r3 obtained in Lemma|3.4]and Lemma
respectively and prove that if (F1) holds, then ||0;(w)|| is bounded, which proves Theorem
Let us rewrite the updating rule (3.3.37)) as

Orr1,i = (1 — 0 i)0ri + 0 (i + MeGgr,6),0 € [d], £ >0, (3.3.55)
By recursively invoking (3.3.55|) for k € [0, ], we get
Or41,i = Apy1,i + Bigri + Crgri (3.3.56)
where .
Appri = [H(l - ak,i)}‘%,u (3.3.57)
k=0
t t
B = Z{ IT a- ar,i)}ak,ink,i; (3.3.58)
k=0 r=k+1
t t
Ce1,i = Z[ IT a- Ozm‘)} i Mk Crg1,i- (3.3.59)
k=0 r=k+1

Lemma 3.6. Forie€ [d],

|Cit1.il < Ay sup |Dy(r,t+1)]. (3.3.60)
0<r<
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Proof. We begin by establishing an alternate expression for Cj, ;, namely
t
Ciyri=LEoDi(0,t+1)+ Y (L — Lp_1)Di(k,t + 1), (3.3.61)
k=1

where D; (-, ) is defined in (3.3.47). For this purpose, observe from Lemma that Cyy1,; satisfies
Ciy1 =Liay iGyis+ (11— 3)Cri = LeDi(t, t + 1) + (1 — 0y,5)Cr s, (3.3.62)

because a; ;i1 = D;(t,t+1) due to (3.3.48) with s = t. The proof of (3.3.61)) is by induction. It is evident

from (|3.3.59) that

C1,i = Loao1Cii = LoD;(0,1).
Thus (3.3.61]) holds when ¢ = 0. Now suppose by way of induction that

t—1
Cii =LoD;i(0,t) + > (g — Ly_1)D;(k, ). (3.3.63)
k=1

Using this assumption, and the recursion (|3.3.62)), we establish (3.3.61)).
Substituting from (3.3.63]) into (3.3.62)) gives

Ciy1,0 = LeDi(t,t + 1) + Lo(1 — a,4)Di(0,1) + (1 — aur4) Z(Lk —Li_1)Di(k, ). (3.3.64)

Now (3.3.47)) implies that
(1 — Oét,i)Di(k,t) = Dl(k,t + 1) - at,iCt+1,i = Dz(k,t‘i’ 1) - Dz(tt + 1)

Therefore the summation in (3.3.64]) becomes

t—1 t—1
> (Ek—Eeo1)(d = o) Di(k,t) = > (bk — Ex1)Dik, )
k=1 k=1
t—1
— Di(t,t—‘rl) (Lk_Lk—l) =51 + S5 say.
k=1

Then S5 is just a telescoping sum and equals
Sy ==Ly Di(t,t+ 1) + LoDi(t, T+ 1).

The second term in (3.3.64) equals
Lo(1 — at,i)Di(0,t) = Lo[D;(0,t + 1) — o iCe41.4] = LoD (0, + 1) — Lo Di(t,t + 1).
Putting everything together and observing that the term LoD;(¢,t + 1) cancels out gives

t—1
Cri1,i = LoDi(0,t +1) + (Ly — Lo 1) D(t,t + 1) + Y (L — L 1) Di(k, ).
k=1

This is the same as (3.3.64) with ¢+ 1 replacing ¢. This completes the induction step and thus (3.3.61]) holds.
Using the fact that L; > L;_1, the desired bound (3.3.60) follows readily. O
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Proof. (Of Theorem [3.7) As per the statement of the theorem, we assume that (F1) holds. We need to prove
that
sup Ly < o0.
>0
Define
1—-p 1
) ) 7}v
p 2
and observe that, as a consequence, we have that p(1 + 26) < 1. Choose 7 = r}(J) as in Lemma such
that

0 = min{

|Di(s,k+1)| <dVk>s>r], Vield.
It is now shown that
L, <1+ 25)Lr; Vt, Vi € [d]. (3.3.65)

By the monotonicity of {L;}, it is already known that L; < L,» for ¢ < 7. Hence, once (3.3.65) is established,
it will follow that
sup Ay < (14 20)A,:.

0<t<o0o
The proof of (3.3.65)) is by induction on . Accordingly, suppose (3.3.65) holds for ¢ < k. Using (3.3.60)),
we have
It is easy to see from its definition that
k
|Apy1,i| < Lps [H(l - as,i):|
s=0
Using the induction hypothesis that L; < (1 + 26)L,r for ¢t < k, we have
k k
|Bk+17i| < Z|: H (1 - ar,i):| as7i|ns,i|
s=0 r=s+1
E k
S Z|: H (1 - ar,i):| as,ipLs
s=0 r=s+1
k E
< p(l + 26)L7"f Z[ H (1 - Oérﬂ‘):| Qs g
s=0 r=s+1
k k
< Lri‘ |: H (1 - O‘r,i):| Qs g,
s=0 r=s+1
because p(1 4 2§) < 1. Also, the following identity is easy to prove by induction.
k k k
[H(l - as,i)} n Z[ I1a- am-)} s =1Vk < 00 (3.3.67)
s=0 s=0 r=s+1

Combining these bounds gives
| Art1,i] + [Bryil < s
Combining this with (3.3.56) and (3.3.66) leads to
Or+1,i < Lo (14+0(1426)) < Epr (1 +20).
Therefore [[@x11]/co < Lpr (14 26), and
Lk+1 = max{||0k+1||oo, Lk} § er(l + 25)

This proves the induction hypothesis and completes the proof of Theorem [3.7} O
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3.3.4 Convergence of Iterations with Rates

In this subsection, we further study the iteration sequence (3.3.37)), under a variety of Block (or Batch)
updating schemes, corresponding to various choices of the step sizes. Whereas the almost sure boundedness
of the iterations is established in the previous subsection, in this subsection we prove that the iterations
converge to the desired fixed point 7w*. Then we also find bounds on the rate of convergence.

We study three specific methods for choosing the step size vector a; in . Within the first two
methods, we further divide into local clocks and global clocks. However, in the third method, we permit
only the use of a global clock, for reasons to be specified.

Convergence Theorem

The overall plan is to follow up Theorem[3.10] which establishes the almost sure boundedness of the iterations,
with a stronger result showing that the iterations converge almost surely to 7*, the fixed point of the map
h. This convergence is established under the same assumptions as in Theorem [3.10} In particular, the step
size sequence is assumed to satisfy (S1) and (S2). Having done this, we then study conditions under which
(S1) and (S2) hold for each of the three methods for choosing the step sizes.

Theorem 3.11. Suppose that Assumptions (N1) and (N2) about the noise sequence, (S1) and (S2) about the
step size sequence, and (F1) about the function h hold, and that 0:41 is defined via (3.3.37)). Then 6; — =*
as t — 0o almost surely, where ™ is defined in (F2).

Proof. From ([3.3.56)), we have an expression for 6441 ;, where A;y1 4, Biy1,; and Cpyq; are given by (3.3.57)),
(3.3.58) and (3.3.59)) respectively. Also, by changing notation from k to t and s to k in (3.3.67)), and

multiplying both sides by 7}, we can write

= [f[u — an) |+ {i[ f[ (1- am-)}a;“-} L V.

k=0 k=0 r=k+1

Substituting from these formulas gives

01115 — 7 = A1+ Biyri + Cry, (3.3.68)
where
t

Appri =[O = awi) (0o — 7)), (3.3.69)

k=0

B t

Byt = [ I] - ar,i)}ak,i(nk,i -7, (3.3.70)

r=k+1

and Cy4q,; is as in (3.3.59). It is shown in turn that each of these quantities approaches zero as t — oo.
First, from Assumption (S2), it follows thatE|

t
H(l — ;) = 0ast— oo.
k=0

Since 6y ; — 7} is a constant along each sample path, A;,1; approaches zero.
Second, by combining (3.3.34)) and (3.3.35]) in Property (F2), it follows that

i = | < ALA 08 — (7)o < Cry L/

5We omit the phrase “almost surely” in these arguments.
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for some constant C; (which depends on the sample path). Thus

oo
Z|7It,i—ﬂf| <00
r=0

along almost all sample paths. Now it follows from (3.3.70]) that

t

Bedl < [ T (0= an]anms ==
r=k+1
< [ II (1—%,1’)]%,1017“/AJ = Liy1,- (3.3.711)
r=k+1

Let Liy1,; denote the right side of this inequality. Then it follows from Lemma that Ly, satisfies the
recursion
Lit1i=(1—api)Lii + o ;C1y/A). (3.3.72)

The convergence of L;11,; to zero can be proved using Theorem Since the quantity Ciy*/2) is deter-
ministic, its mean is itself and its variance is zero. So in (3.3.13)) and (3.3.14)), we can define

BEF .= CyW/A ME =0 vt
We can substitute these definitions into (3.3.15)) and (3.3.16|), and define
fE =020+ 2080 ) + 3br 1), (3.3.73)

97 = b2 (2051 () + brpu-1(r)- (3.3.74)

Since a; € [0,1] and the sequence {BF} is summable (because v < 1), and M} = 0, (3.3.17) is satisfied.
Also, by Assumption (S2), is satisfied. Hence L;y1; — 0 as ¢ — oo, which in turn implies that
Bt+1,i —0ast— oo.

Finally, we come to Cyy1 ;. It is evident from and Lemma that Cyyq ; satisfies the recursion

Cir1i=1—04,)Cti + op;LiCr i (3.3.75)

Now observe that L; is bounded, and the rescaled error signal ;41 satisfies (3.3.45) and (3.3.46]). Hence, if
L* is a bound for L;, then it follows from ([3.3.45)) and (3.3.46)) that

|Ey(LiCig1,)| < coL™ By, V> 0,CVy(LiCrg1,0) < csL* M2, vt >0, (3.3.76)
Hence, when Assumptions (S1) and (S2) hold, it follows from Theorem [3.7|that Cy41,; - 0 ast —oco. [

Next, we describe three different ways of choosing the update processes {¢,;}.
Bernoulli Updating: For each ¢ € [d], choose a rate b; € (0,1], and let {x;;} be a Bernoulli process
such that
Pr{ﬁt,i = 1} = bi, Vt.

Moreover, the processes {k;;} and {k; ;} are independent whenever i # j. Let v ;, the counter process for
coordinate i, be defined as usual. Then it is easy to see that v, ;/t — b; as t — oo, for each ¢ € [d]. Thus
Assumption (U2) is satisfied for each i € [d].

Markovian Updating: Suppose {Y;} is a sample path of an irreducible Markov process on the state
space [d]. Define the update process {x¢;} by

=71 J— 17 if}/t:i’
Fhi ==l =1 0, ifY, #i.
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Let g denote the stationary distribution of the Markov process. Then the ratio v, ;/t — p; as t — oo, for
each i € [d]. Hence once again Assumption (U2) holds.

Batch Markovian Updating: This is an extension of the above. Instead of a single Markovian sample
path, there are N different sample paths, denoted by {Y;*} where n € [N]. Each sample path {Y;"} comes
an irreducible Markov process over the state space [d], and the dynamics of different Markov processes could
be different (though there does not seem to be any advantage to doing this). The update process is now

given by
Rt5 = Z I{)/tn:z}
née[N]

Define the counter process v;; as before, and let u™ denote the stationary distribution of the n-th Markov

process. Then
Vi
tl — E i

n€[N]

Hence once again Assumption (U2) holds.

Now we establish convergence rates under each of the above updating methods (and indeed, any method
such that Assumption (U2) is satisfied). The proof of Theorem [3.11] gives us a hint on how this can be done.
Specifically, each of the entities /_XHM, L4, Ceqa,; satisfies a stochastic recursion, whose rate of convergence
can be established using Theorems [3.8 and [3:9] These theorems apply to scalar-valued stochastic processes
with intermittent updating. In principle, when updating 6;, we could use a mixture of global and local
clocks for different components. However, in our view, this would be quite unnatural. Instead, it is assumed
that for every component, either a global clock or a local clock is used. Recall also the bounds ([3.3.38) and
(3.3.39) on the error &, .

Theorem 3.12. Suppose a local clock is used, so that oy s = By, ; for each i that is updated at timet. Suppose
that {B;} is nonincreasing; that is, py11 < By, Vt, and My is uniformly bounded, say by M. Suppose in
addition that B; = O(t=(=), for some ¢ > 0, and B; = Q== for some C € (0,¢]. Suppose that
By = O(t™¢) for some € > 0. Then 6, — 0 as T — oo for all ¢ < min{0.5,€}. Further, 6, = o(t=*) for all
A\ < € — ¢. In particular, if B; = 0 for all t, then 6, = o(t=) for all A < 1.

The proof of the rate of convergence uses Item (3) of Theorem In the proof, let us ignore the index
i wherever possible, because the subsequent analysis applies to each index ¢. Recall that A;; ; is defined in
(3.3.69). Since In(1 — z) < —xz for all z € (0,1), it follows that

t t
In H(l — o) < — Zak,ia
k=0 k=0

where oy, ; = 0 unless there is an update at time k. Now, since a local clock is used, we have that oy ; = ., ,
whenever there is an update at time k. Therefore

Vi, i

t
§ A4 = E ﬂs
k=0 s=0

Now, if Assumption (U2) holds (which it does for each of the three types of updating considered), it follows
that v;; ~ t/r for large t. Thus, if 8, = Q(7~(17)), then we can reason as follows:

t/r

S Bem Y 500 (1),
s=0 s=0

Therefore, for large enough ¢, we have that

t

[T = aw) < exp(=t/r)9).

k=0
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It follows from that A1, — 0 geometrically fast.

Next we come to Bt+1,ia which is bounded by L4 1 5, as defined in (3.3.72)). Recall the definitions
and for the sequences {fL} and {g£}. Then (3.3.17) and (3.3.18) will hold whenever C' > 0. Since
Assumption (U2) holds, we have that

L gy = Oyl T /AL < Oy

for suitable constants Cs and /. The point to note is that the sequence {C’Q'y’",T} is a geometrically convergent
sequence because v < 1. Therefore (3.3.19)) holds for every A > 0. Also, holds for all C' > 0. Hence
it follows from Item (3) of Theorem [3.7| that Liy1,; = o(t~*) for every A > 0.

This leaves only Cyy1,. We already know that Cy4,,; satisfies the recursion . Moreover, the
modified error sequence {L,(; ;} satisfies (3.3.76). The estimates for the rate of convergence now follow from
Item (3) of Theorem and need not be discussed again.

Theorem 3.13. Suppose a global clock is used, so that oy ; = [, whenever the i-th component of 0 is
updated. Suppose that Py is nonincreasing, so that Biy1 < B¢ for all t. Suppose in addition that By =
O(t=(=2)), for some ¢ > 0, and By = Qt~ =) for some C € (0,¢]. Suppose that By = O(t~¢) for some
€ >0, and M; = O(t?) for some § > 0. Then 6; — 0 as t — oo whenever

¢ < min{0.5 — §, €}.
Moreover, 8; = o(t™) for all A < € — ¢. In particular, if B; =0 for all t, then 6; = o(t=*) for all A < 1.

The proof is omitted as it is very similar to that of Theorem

3.4 Variants of Standard Stochastic Approximation

3.4.1 Averaged Stochastic Approximation

Papers by Ruppert [128], Polyak [116], Polyak and Juditsky [I17] and Nemirovski et al. [106].

An important variant of standard SA is the so-called “averaged” SA, pioneered in [128] [116] and developed
further in [I17, [T06]. The idea is simply to average the iterations of a standard SA algorithm. Specifically,
let {6} denote the sequence produced by an SA algorithm (the specific nature of which is not important
for the moment), and define

Note that 8, can be computed iteratively from 8, via

— 1
0, + — 0,41

B0 — 1
T t+1

Hence “averaging” can also be viewed as a two-step iterative algorithm: The first step is to generate €@y
from @;, and the second step is to generate 8;,; from 0; and 6,,; as above. In [128, [116], the asymptotic
covariance of the matrix ¢t~1(0; — 6*)(8; — ") " € R¥*? is computed. For linear stochastic approximation
problems, it is shown that this quantity converges to the “lowest possible” covariance matrix, which depends
on the (unknown) parameters of the problem. The key point is that the iterative algorithm does not assume
knowledge of these parameters, but achieves “asymptotically optimal” scaled covariance as t — co. In [117],
it is shown that the quantity t=(8; — 8*)(0; — %) is asymptotically multivariate normal, and of course,
the covariance matrix is again “optimal.” In [I06], the analysis is extended to convex objective functions,
thus relaxing the assumption of strong convexity assumed in [I17] and its predecessors.
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3.4.2 Two Time Scale Stochastic Approximation

Papers by Borkar [2I], and by Lakshminarayanan and Bhatnagar [8§]

3.4.3 Finite-Time Stochastic Approximation
Some relevant papers are [170} 14T, T3] 32] 120} 56] 57]. Forthcoming survey paper by Chen and Maguluri.

3.4.4 Markovian Stochastic Approximation
Some relevant references are [90, [33] 120, 19] T40].

Notes and References

The Stochastic Approximation method is introduced in a seminal paper by Robbins and Monro [123] with
that same title, for finding a solution to a scalar equation f(z) = 0, where f : R — R, when only noisy
measurements of f(-) are available.

While [123] is seminal, the results are quite restrictive by today’s standards:

e The function f(-) is globally bounded; see [123 Eq. (5)].

e The measurement error & is assumed to have zero conditional mean; see [123, Eq. (3)].
e The measurement error & is assumed to be bounded; see [123 Eq. (4)].

e The convergence is only in probability, and not almost sure.

Despite all of these restrictions, the paper can be credited with having started a new area of research. Inter-
estingly, the paper does not have a single reference, suggesting that there was very little by way of precedent
for the method. The phrase “Stochastic Approximation” comes from this paper, as to the conditions (|3.1.3|)
and (3.1.4).

Shortly after the publication of [123], Kiefer and Wolfowitz [77] extended the results of Robbins-Monro
for finding a stationary point of a smooth function J : R — R. For this purpose, they replaced the true
gradiend J'(-) by a first-order approximation of the form (in the next chapter). They realized two
technical challenges posed by their formulation, namely: The measurement error & is “biased” in that its
conditional expectation is not zero, and its conditional variance grows without bound as ¢ increased. In
[17], Blum extended the approach of Kiefer-Wolfowitz to maps J : R? — R?. His formulation also had
the same technical difficulties as Kiefer-Wolfowitz. In [45], Dvoretzky presents a formulation of stochastic
approximation that contains both the Robbins-Monro and Kiefer-Wolfowitz formulations as special cases.

In all these cases, the authors suggest various workarounds, but not a general theory. Moreover, the
convergence is only in probability, and not almost sure (with the exception of [I7]). In the opinion of the
present author, the first approach that was capable of being generalized further is given gy Gladyshev [52].
His approach consisted of carrying out an affine transformation of the stochastic process {6;} in such a
way that the transformed process is a nonnegative supermartingale, and hence converged almost surely to
a limit. By inverting the affine transformation, it followed that 6, also converged almost surely to a limit.
Some further analysis established that the limit was indeed the desired solution. In the original paper, the
function f(-) is assumed to be “passive,” that is, there exists a function ¢(-) belonging to Class B such that

(f(6),0 —6%) > c(||6 — 67||2), V0 € R,

where 6 is the unique solution of £f(8) = 0. Subsequent analysis in [I68] showed that the key attribute of
f(-) is not passivity, but the global asymptotic stability of the associated ODE 8 = f(0). If f(-) is passive,
then V(0) = ||@]|3 is a suitable Lyapunov function. In addition to this, Gladyshev was the first to establish
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a “division of labor” whereby the square summability of the step sizes is sufficient to ensure the almost
sure boundedness of the iterations, while the additional assumption that the sum of the step sizes diverges
ensures convergence to the desired limit.

A slightly later, but independent, development is the Robbins-Siegmund theorem [124]. Tt partially sub-
sumes the results of Gladyshev; moreover, the theory applies even to the situation where the step sizes a; are
random, whereas the theory of Gladyshev does not. In the opinion of the present author, Gladyshev’s work
is not sufficiently well-known in the Western research community, and that most contemporary researchers
cite the Robbins-Siegmund theorem. Interestingly, in [9, pp. 343-344], the authors give a simple proof of the
Robbins-Siegmund theorem, and use it to prove the almost sure convergence of the SA algorithm under the
passivity condition used in [52]. However, since the proof in [9] uses the notion of a stopping time process,
which is not used in this book, we give the original (and longer) proof for the Robbins-Siegmund theorem.

The convergence theorems for standard SA are taken from [70, [71]. Some recent results on Stochastic
approximation can be found in [69] [@99].

The next stage in the evolution of Stochastic Approximation theory is the formulation of the so-called
ODE approach. This approach began in the early 1970s in the erstwhile Soviet Union and in the Western
world. In the USSR, among the first papers were [I01}[102], in which the author derived sufficient conditions
under which the solutions of a stochastic difference equation can be approximated by the solution of an
associated deterministic difference equation. In the general case, the approximation is uniformly good over
a finite interval. If it is assumed that solution of the original stochastic difference equation is bounded over
time, then the approximation is uniformly good over an infinite time interval. In these references, the step
size is fixed, and successive measurement errors are assumed to be independent. In [38], Derevitskii and
Fradkov bound the error between the trajectories of the stochastic process {6;} and the solutions of the
associated ODE 0 = £ (0), (as opposed to another difference equation as in Meerkov’s work). They assume
that the noise sequence {§;,} is i.i.d., but permit time-varying step sizes. Their theory works whether
or not the step sizes approach zero. In [84], Kushner analyzes the Kiefer-Wolfowitz version of Stochastic
Approximation; that is, he tackles the fact that the error is biased and has variance that grows without
bound as t increases. He permits the errors to be correlated (unlike [38]), and derives an expression for
the limiting behavior in terms of an integral equationﬂ However, Kushner establishes only convergence
in probability. This work is followed by Ljung in [94, ©95]. In these references, as in [84], the noise &,
is allowed both to be biased and also to have unbounded variance. But unlike in Kushner’s paper, Ljung
establishes almost sure convergence. Ljung explicitly mentions the limit ODE in [94]. In [95], he shows that
the square summability of the step size sequence can be relaxed, if the noise sequence has finite moments of
order greater than two.

In Section we have analyzed Asynchronous SA as well as Block Asynchronous SA (BASA). Perhaps
the first paper to analyze the behavior of stochastic algorithms when the vector 6; is updated in an asyn-
chronous fashion is [I59]. The first papers to study Stochastic Approximation when only one component of
0; is updated at each ¢ (that is, ASA) are [I58] and [66]. In [I58], the emphasis is on proving the conver-
gence of the @-learning algorithm, which is introduced here in Chapter @ while in [66], the emphasis is on
proving the convergence of a version of the T'D(\) algorithm for computing the value of a Markov Reward
Process. This algorithm is also introduced in Chapter [ In the present Section we have abstracted the
essence of the proof in [I58], and have also permitted Block updating. The material in Section on Block
Asynchronous Stochastic Approximation (BASA) is taken from [73| [72].

Notes and References for the material in Section 3.4l will be added once the section is written.

The approach taken here for proving the convergence of the SA algorithm is based on the Robbins-
Siegmund theorem (Theorem , and might be referred to as the “martingale approach.” Note that there
is another very popular technique for analyzing the convergence of the SA algorithm, known popularly as
the “ODE method.” Since the ODE approach is also widely used, we give a very brief summary of some of
the key aspects of this approach.

60bviously, the integral equation can be equivalently expressed as an ODE, and vice versa. But every other paper mentions
a limit ODE, and not a limit integral equation.
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In the ODE method, the key step is to show that, as time progresses, the sample path of the iterations
{0} begins to resemble the deterministic solution trajectory of an associated ODE

0 =£(0).

Some relevant references for the ODE approach are [38], [94] [95], [85], [T03], 9}, 86 [7, 22] 24]. If the SA iterations
{0} are bounded almost surely (a property called “stability”), and a few technical assumptions hold, then
the iterations @; converge to the set of solutions of the equations £(6) = 0. In particular, if 8 is the unique
globally attractive equilibrium of this associated ODE, then it can be shown that 8; — 8™ almost surely as
t — oo, again under suitable technical assumptions. The books [7), 22] 24] describe the ODE approach in
full generality, and the interested reader may consult these authoritative resources.

The ODE approach is more general than the “martingale” approach put forward here, in that the ODE
approach is applicable even when the equation f(6) = 0 has multiple solutions. However, much of the
theory is based on the assumption that the SA iterations {6} are bounded almost surely. Often this latter
assumption can b e validated using different methods.

A major breakthrough in the ODE approach is contained in the paper [25], in which the almost sure
boundedness of the iterations is a conclusion and not a part of the hypotheses. Specifically, the authors define
another vector field f as follows:

£.(0) = lim 9

r—oo T

, VO € R

It is assumed that 0 is a globally asymptotically stable equilibrium of the associated ODE
6 =1..(0).

If this assumption holds, then the authors prove that 8, converges to the (unique) solution 8* almost surely
as t — o0.

While it is undoubtedly a major improvement to make the almost sure boundedness of the iterations
as a conclusion and not a hypothesis, the above assumption contains a subtle limitation of the approach.
Specifically, if the function f(-) grows sublinearly in the sense that

lim Lr@)

r—oco T

=0, V0 € RY,

then it is clear that f,,(8) = 0 for all 8, and the associated ODE cannot have 0 as a globally asymptotically
stable equilibrium. In particular, if the function f(-) is globally bounded, then the results of [25] do not
apply. In contrast, the martingale approach can cope with sublinearly growing functions f(-) without any
difficulties.

To summarize, the martingale approach and the ODE approach have complementary strengths and
weaknesses. Much of the time, both approaches are applicable to the problem at hand. But there are some
situations where one approach is applicable but not the other.
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Chapter 4

Applications to Optimization

In this chapter, we apply the ideas introduced in the preceding chapters to:
e Identify some important classes of nonconvex functions to which these ideas are applicable.
e State several commonly-used algorithms for both convex and nonconvex optimization.

e State and prove theorems on the convergence of these algorithms, as well as their rates of convergence
to a solution.

4.1 Some Invex Functions

The reader is reminded that in this book, we study only unconstrained optimization; see Section Also,
throughout this chapter, we make two “standing” assumptions, which are standard in the literature. Note
that J(-) denotes the objective function.

(J1) J(-) is C*, and V.J(-) is globally Lipschitz-continuous with constant L.

(J2) J(-) is bounded below. Thus
J* = inf J(6) > —o0.
6cR4
However, it is not assumed that the infimum J* is attained. For instance, the function J(0) = exp(—6)
satisfies the standing assumptions. Hereafter, to simplify notation, we replace J(-) by J(:) — J*, which
enables us to assume that J* = 0, without any loss of generality. When the infimum is indeed attained, we
define the set
S;:={0cR?:.J(0) =0}, (4.1.1)

and observe that it is a closed, nonempty set. Moreover, the quantity
0) .= inf -0 4.1.2
p.(6) s, & 2 ( )

is well-defined, and is referred as the “distance” to S.

The algorithms studied in this chapter are stochastic versions of the gradient descent algorithm, and
various versions of momentum-based algorithms. The deterministic versions of these algorithms are very
briefly discussed in Section Indeed, Stochastic Gradient Descent (SGD) is the most widely used method
for training very large neural networks. The material in Section [4.2.1]is motivated by this application.

The topic of this chapter is nonconvex optimization. Specifically, we are interested in finding (if possible)
global mimizers of an objective function J(-). As stated in LemmalL.1] if J(-) is convex, then every stationary
point (i.e., a @* such that V.J(8*) = 0) is a global minimizer. The converse is always true, for any C! objective

93
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function, convex or nonconvex. That is, if ™ is a global (or even local) minimizer of J(-), then V.J(8") = 0.
Thus, for smooth convex objective functions J(-), we have that VJ(8*) = 0 is both a necessary as well as a
sufficient condition for 8* to be a global minimizer.

Over the decades, several attempts have been made to find classes of functions that satisfy the property
that every stationary point is also a global minimumizer. Obviously the intent is to go beyond just convex
functions. Among many such classes of functions, we will focus on one specific class, known as “invex”
functions.

Definition 4.1. A C! function J : R? — R is said to be invex if there exists a map 1 : R x R4 — R? such
that
J(¢) > J(6) + (n(6,),VJ(8)), V6, ¢ € R". (4.1.3)

One can also say that J(-) is invex with respect to a particular function n(-) if holds, because the
bound might hold for one choice of () but not another. It is also possible to modify the definition slightly
and say that J(-) is invex on S C R? if (i) n: S x S — R? and (ii) holds only for all (6,¢) € S x S.

Observe that if J; and Jo are invex with the same function n(-), then so is ¢1 J; +c2Jo for any nonnegative
constants ¢y, ca. Thus, for a fixed function n(-), the set of functions that are invex with respect to n(-) is a
convex cone. Since we won’t use the concept of a convex cone in this book, we do not pursue this matter
further.

The above definition is introduced in [59]. However, the phrase “invex” is not used therein, but is
introduced in [35]. Note that if J(-) is convex, then we can take

n(0,¢) :=¢— 6.

However, we shall see below several examples of invex functions that are not convex.

It is obvious from that if J(-) is invex, and if V.J(0*) = 0, then J(8) > J(6) for all § € R?. Thus
0™ is a global minimizer of J(-). Note that the nature of the function n(-) plays no role in this observation.
More generally, if J(-) is invex on S, and if 8% € S satisfies V.J(0*) = 0, then 6" is a minimizer of J(-)
over the set S. A remarkable result from [36] states that the converse is also true: If every stationary point
of J(-) is also a global minimizer, then there ezists a function 7(-) such that J(-) is an invex function with
respect to n(-). See [36, Eq. (9)] and the text thereafter. These results derive n(-) in terms of a Lagrangian
dual problem, and thus do not readily lead to “explicit” formulas for n(-).

This result suggests that we should be studying the minimization of invex functions. However, in the
present context, the invexity property alone is not sufficient. This is because we wish to establish not merely
that every stationary point is also a global minimizer, but something more, namely that the SGD algorithm
converges for all functions of a particular class. For this purpose, we introduce two other classes of functions,
denoted by (PL) and (KL’). Both classes are subsets of the class of invex functions. Thus, by the results
of [36], for each such function there exists a corresponding function 7(-) such that holds. However,
it is not straightforward to actually compute n(-). For the theory below, this is not a limitation, because
the function n(-) does not play any role. Thus, at least for the purposes of this book, the results of [36]
are strictly of academic interest. For functions of Class (KL’), we establish the convergence of SGD, but
without any rates. For functions of Class (PL), we not only establish the convergence of SGD, but also
derive estimates on the rate of convergence.

For a comprehensive discussion of invexity, Class (PL), and Class (KL) (a forerunner of Class (KL’)),
the reader is directed to [74]. For applications to the convergence of SGD, the reader may consult [70} [71].

Definition 4.2. Suppose J : R? — R is C! and satisfies the standing assumptions (J1) and (J2). Assume
without loss of generality that J*, the infimum of J(-), equals zero.

(PL) The function J(-) is said to belong to the class (PL) if there exists a constant K such that

|V.J(8)|2 > KJ(8), V0 € RY. (4.1.4)
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(KL’) The function J(+) is said to belong to the class (PL) if there exists a function ¢(-) of Class B such that

IVJ(0)]l2 = ¢(J(8)), VO € R (4.1.5)

Now we discuss the origin and the significance of these concepts.

PL stands for the Polyak-Lojasiewicz condition. In [114], Polyak introduced (£.1.4)), and showed that it
is sufficient to ensure that iterations converge at a “linear” (or geometric) rate to a global minimum, whether
or not J(-) is convex. Note that can also be rewritten as

IVJ(6)]2 > K'[1(6)]'/?, ¥6 € R

To place the (PL) property in context, let us recall the definition of strong convexity. The function J(-) is
said to be R-strongly convex if there exists a constant R > 0 such that

J(@) > J(0) +(V(6), 6~ ) + &~ 0]

See for example [109, Section 2.1.3]. In this case, J(-) has a unique global minimizer, call it 8. Again, let
us assume that J* = J(0") = 0. Then we can apply [I08, Eq. (2.1.24)] with f = J, z = 0", y = 6, and
p = R, which gives

70) < 55 IVI0)]3.

Thus an R-strongly convex function satisfies (PL) with K = 2R. Therefore one can think of the (PL)
property as a generalization of this particular property of strongly convex functions.
As shown in Lemma below, whenever J(-) is Ct, VJ(-) is L-Lipschitz continuous, and J* is a lower
bound for J(-), it is the case that
IVI(O)]13 < 2L(J(8) - J*).

In particular, by redefining .J(-) if necessary, we can take J* = 0, in which case we have |[V.J(0)||3 < 2LJ(6).
The PL condition is the inverse of the above observation, in the sense that || V.J(8)|3 is bounded below by
a constant multiple of J(6).

On the other hand, the class (PL) is strictly larger than the class of strongly convex functions; it also
contains some nonconver functions.

Example 4.1. Define
J(0) = 62 + 3sin” 6.

A plot of 0 versus J(6) is shown in Figure The figure shows both J(6) as well as the ratio (V.J(8))2/J(0)
as functions of 9E| Since J(:) is an even function, the plot is shown only for § > 0. It can be verified
numerically that J(-) is not convex, but satisfies the (PL) property with K = 0.3511.

In [96], Lojasiewicz introduced a more general condition
17(0)]l2 > C[J(6)]", VO € RY, (4.1.6)

for some constant C' and some exponent r € [1/2,1). He also showed that holds for real algebraic
varieties in a neighborhood of critical points.

In [83], Kurdyka proposed a more general inequality than (4.1.6)), namely: There exist a constant ¢ > 0
and a function v : [0,¢) — R which is C! on (0, ¢), such that v(x) > 0 for all z € (0,¢), and

[V(voJ)@)|s>1, VO € J10,c), (4.1.7)

where (only on this occasion) o denotes the composition of two functions. By applying the chain rule, one

can rewrite (4.1.7) as
IVI(©)]2 > [v'(J(6)) 7. (4.1.8)

ISince d = 1, we can use J'(0) instead of V.J(0). But we use V.J(6) to be consistent.
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lllustration of the PL Property
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Figure 4.1: An Example of a function in the Class (PL): J(6) = 6% + 3sin®

In particular, if v(x) = 2'~" for some 7 € (0, 1), then becomes with C = 1/(1 — ). For this
reason, is sometimes referred to as the Kurdyka-Lojasiewicz (KL) inequality. See for example [18].
In our case, we don’t require the right side to be a differentiable function; rather we require only that it be
a function of Class B of J(0). Hence we choose to call this condition as (KL’), to suggest that it is similar
to, but weaker than, the KL condition.

Example 4.2. Consider an even function J : R — R defined by

62 + 4sin? 0, 0<6<5,
Jx0) =< J(5)+0.5J(5)(1 —exp(—2(0 —5))), 6>5,
J(-0), 6 <0.

A plot of J() and of (V.J(0))?/J(0) are shown in Figure Again, since J(-) is an even function, the
plot is shown only for § > 0. From this it can be seen (and it is also readily verified) that, though the ratio
(VJ(0))?/J(0) — 0 as § — oo, the ratio is never actually zero. Thus (V.J(6))%/J () is a function of Class
B. As a result, this function satisfies the property (KL’).

It is clear from the definition of both (PL) and (KL’) classes that, if V.J(0) = 0, then J(0) = 0, which
is the global minimum. Hence, by the result of [36], every Class (PL) function and every (KL’) function is
invex. This proof is rather indirect, and it would be desirable to have a more direct proof of this fact.

4.2 Review of Some Standard Algorithms

In this section, we briefly survey a few standard algorithms for convex optimization. The convergence of
these algorithms is not discussed, as (for the most part) the convergence can be inferred from the results for
nonconvex optimization in Section The reader is directed to an excellent survey paper [26] that discusses
many issues not covered here, with an emphasis on applications to machine learning.

4.2.1 Stochastic Gradient Descent

Recall the Gradient Descent algorithm, also known as steepest descent, described in ({1.1.10)). In the Stochas-
tic Gradient Descent (SGD) algorithm, the true gradient V.J(0;) is replaced by a random vector hyq,
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Figure 4.2: An example of a function of Class (KL’)

which is supposed to approximate VJ(0;). Thus (1.1.10) gets replaced by
0t+1 = 0,5 — Oltht+1. (421)

Usually the step size sequence is deterministic and predetermined. However, some variations are possible,
which we discuss next. It is noteworthy that the phrase “stochastic gradient” is used with two different
meanings in the literature. Both of them are discussed here.

Much of the literature addresses the following specific type of optimization problem: Suppose X' is some
set, and 7 is some probability measure on X. Suppose further that f : X x R? — R is a C! function, and
define the objective function

J(0) := Epor[f(2,0)] = /X f(z,0) w(dx). (4.2.2)

One can ensure that the above integral is well-defined by imposing some reasonable assumptions on the
function f and/or the probability measure 7. In order to minimize J(-), it becomes necessary to compute
the gradient V.J(€). This raises the question as to when

VJ(8) = E,r[Vof(z,0)]? (4.2.3)

In other words, when it is permissible to interchange differentiation and integration in ? If Xisa
finite set, then this is automatic, because the expectation with respect to x is just a finite summation. If
X is an infinite set, this is not automatic. However, in the practically important case where f(z,0) is a
convez function of @ for almost all x, holds with a few additional technical assumptions. The reader
is directed to [126, Eq. (11)] and [I34, Eq. (7.1270], which give the required equality. These results are not
stated here, as that would take us too far afield.

A typical application where J(-) has the form would be neural network training. Suppose x € R"
is the input to the network, y € R the desired output with input x (the label), and 0 is the set of “weights” or
adjustable parameters in the network. A neural network “architecture” defines family of maps H(-,0) : R™ —
R for each 6 € R%. Finally, there is a “loss function” L : R x R — R, ; quite often L(y,z) = |y — z|2. The
training data consists of labelled pairs {(x;,y;)}7,. To choose the weight vector optimally, one minimizes

m

7)== 3" Llyi, H(x;,0)).

i=1
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To put this problem within the framework of , we can define X to be the finite set {(x1,41), "+, (Xm, ¥m)},
and choose 7 to be the uniform distribution on X.

Next we discuss three approaches to approximating V.J(@) when J(-) is as in . As a part of this,
we introduce three phrases that are widely used in the world of optimization and ML. Further details can
be found in [26], Section 3.3]. As a part of this, we introduce one of the two usages of the phrase Stochastic
Gradient: the other usage is introduced in Section
Stochastic Gradient: At step t, choose a random element x;4; € X with distribution 7. To permit
adaptive sampling, it is not assumed that z;y; is independent of the preceding samples (x1,-- ,x¢). Then
the search direction hy,; is set equal to

ht+1 = ng(xt+17 0t) (424)

Since z41 follows the distribution 7, the expected value of the above quantity is

E$t+1~ﬂ[ht+1] = E:Et+1~ﬂ'[v9f(xt+17 et)]

If the sufficient conditions from [126] [134] hold, then the above expected value is indeed the true gradient
VJ(6;). This is the justification for this approach.
Batch Update: In this case,

ht+1 = VJ(et)

as computed in . If X is finite, say |X| = n, then the above computation involves adding n different
individual gradients VJ(z;, 8;) over z; € X. If n is large, the computation can be quite expensive. However,
there is no approximation involved.

Minibatch Update: This approach is intermediate between the above two approaches. At step t, an
integer N; (possibly random) is chosen, and N; samples z;,j € [N;] are chosen from X. The analysis is
simplest if these samples are drawn independently with distribution 7, after replacement. Then

Ny
1
hiy = A Z Vo f(zj,0:). (4.2.5)
t i

If there are repeated samples, then the corresponding terms are summed more than once in the above
equation. As with the stochastic gradient approach, we have that

Eﬂct+1~ﬂ'[ht+1] - VJ(Ot)

under suitable conditions.

Until now, we have focused on objective functions of the form , and ways to approximate its
gradient by random sampling. We have also not catered to the possibility of errors in the computation of
the gradients, which can be modelled as additive noise. Next we discuss approximation methods that apply
to general C! objective functions, with possibly noisy computations of the gradients. There are two parts
to this: (i) Constructing approximations to the true gradient, and (ii) selecting which components of the
current guess 6, are to be updated at step t. We discuss these two topics in the opposite order. That is, we
begin by discussing some popular methods of choosing coordinates to be updated, assuming that the true
gradient, corrupted by additive noise, is available. It will be obvious that the same selection strategies can
also be applied to any stochastic gradient as well.

The first of these methods is referred to as “Coordinate Gradient Descent” as in [I75] and elsewhere, but
also sometimes as “stochastic gradient,” thus possibly leading to confusion with .

Coordinate Gradient Descent: Suppose that, at step ¢, the current guess is 6;, and suppose that the
learner has access to a (possibly noise-corrupted) measurement V.J(0) + &, ;. An index i € [d] is chosen at
random with a uniform probability, and the search direction is defined as

hipy =de; o [VJ(6:) + 4], (4.2.6)
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where e; denotes the i-elementary unit vector, and o denotes the Hadamard or componentwise productﬂ
Evenif €, =0, hyy, is still random due to the choice of i. The factor of d is to ensure that the conditional
expectation with respect to 8, of hy1 1 equals the true gradient V.J(6;) plus the expectation of &, ;. If this
h;,, is substituted into 7 it is obvious that only the i-th component of 8, is updated at time ¢, and
all other components remain the same.

An excellent survey of coordinate gradient descent for convex objective functions is found in [I75], and
some results for nonconvex objective functions are found in [I65]. It is worth pointing out that, in these
references and many others, the error term &, is assumed to be zero. Thus the only source of randomness
is the coordinate to be updated. Much of the detailed analysis carried out in these papers would not be
applicable in the presence of measurement errors.

One can also apply this philosophy of updating only one (possibly randomly chosen) coordinate at a time
to stochastic approximation as in . Note that the ability to cope with noisy measurements is a key
strength of SA. This leads to the update formula

0t+1 = Bt + au€; 0 [f(0t> + Et—i—l]' (427)

In such a case, it is common to refer to this approach as Asynchronous SA or ASA. This terminology was
apparently introduced in [I58]. The approach is studied further in [22]. In particular, a distinction between
using a “global clock” and a “local clock” for componentwise updating is introduced in that reference.
Block Coordinate Gradient Descent: A variant of the above is to carry out “block” updating. At each
time, a possibly random subset S; C [d] is selected. Define

€g, = E €e;.

1E€ES

Then the vector hy;1 is defined as
d
ht+1 = @est e} [VJ(Ot) + €t+1]' (428)

This implies that, at time ¢, only the components of 6, i € S; are updated, and the rest are unchanged. As
above, block updating can also be incorporated in the SA algorithm of (4.2.1)), as follows:

0t+1 =0; +a;0 €g, © [f(@t) + €t+1]a (429)

where oy is now a wector of step sizes. Thus, while only those components i € S; are updated, different
updated components could have different step sizes. This topic is discussed in Section [3.3] The reader is
referred to [73}, [72] for a detailed treatment.
Gradients Using Only Function Evaluations: Next we discuss some approaches to generating approx-
imate gradients that make use of only function evaluations. The first such approach is in [77], which is for
the case d = 1, and requires two function evaluations per iteration. Subsequently Blum [I7] presented an
approach for the case d > 1, which requires d 4+ 1 evaluations per iteration. When d is large, this approach
is clearly impractical. A significant improvement came in[I38], in which a method called “simultaneous per-
turbation stochastic approximation” (SPSA) was introduced, which requires only two function evaluations,
irrespective of the dimension d. However, the proof of convergence of SPSA given in [I38] requires many
assumptions. These are simplified in [3I]. An “optimal” version of SPSA is introduced in [129], and is
described below.

For each index ¢ + 1, suppose A;t1,,% € [d] are d different and pairwise independent Rademacher
variablesﬂ Moreover, suppose that Ayyq 4,4 € [d] are all independent (not just conditionally independent)

2If a,b € R%, then ¢ = a o b belongs to R? and is defined via ¢; = a;b; for all i.
3Recall that Rademacher random variables assume values in {—1,1} and are independent of each other.
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of the o-algebra F; for each t. Let Asqq € {—1, 1}d denote the vector of Rademacher variables at time ¢ + 1.
Then the search direction hyyq in (4.2.1)) is defined componentwise, via

[J(6: + ceAir) + &1 ) = [T(0r — ceArn) = €54
2CtAt+1,i

hipri = , (4.2.10)

where §t++1)1, e 751:-1,(17 Ser110 " ,§;+17d represent the measurement errors. A similar idea is used in [I10],
except that the bipolar vector A;y; is replaced by a random Gaussian vector 1, in R?. As can be seen
from the literature, one of the key steps in analyzing SPSA is to find tail probability estimates of the quantity
lmerill2/1me41,4]- If .y is Gaussian, then this ratio can be arbitrarily large, albeit with small probability.
However, with Rademacher perturbations, the ratio ||Asi1|l2/|A¢+1.i| always equals v/d. This observation
considerably simplifies the analysis. An excellent survey of this topic can be found in [91], which discusses
other approaches not mentioned here.

The original SPSA envisages only two measurements per iteration, and the resulting estimate of V.J(6,)
has bias O(c;) and conditional variance O(1/c?). However, it is possible to take more measurements and
reduce the bias of the estimate, while retaining the same bound on the conditional variance. Specifically,
if £ + 1 measurements are taken, then the bias is O(cf) (which converges to zero more quickly), while the
conditional variance remains as O(1/c?). See [112] and the references therein.

The framework discussed until now addresses additive measurement errors. Now we present a more
general framework is proposed that is capable of handling not only additive measurement errors, but also
multiplicative errors, and others. This treatment is taken from [53]. In that paper, three (closely related)
algorithms are proposed in this paper, out of which only the second one is detailed here, in the interests of
brevity.

The set-up is as follows: Suppose f : R” x R? — R is a C' function, and 7 is a (possibly unknown)
probability measure on RP. The objective function is as in , namely

J(e) - an f(W> 0) ﬂ(dw) = EBwnn [f(wa 0)]

There is also a probability distribution P on R¢, chosen by the learner, whose role is to generate an i.i.d.
sequence of perturbations {A;};>;. In addition, there two i.i.d. sequences {w; };>0, and {w; };>0, with
distribution 7. To update the current guess 6;, one undertakes the following steps. As with the other
derivative-free methods, there are two sequences: {c;} of step sizes, and {c;} of increments. At time ¢, the
perturbation vector Ay is known, so one can define

X::Fl = 925 + CtAt+1, X;+1 = Ot — CtAt+1.
The measurements available to the learner at time ¢ consist of the pair
+ + L+ + - _ - —
Yorr = FW o x5) + 80500 e = F(We,x) + 650

where f;;l,«ft;l are measurement errors. The last step is to define the stochastic gradient hyy;. This is
stated in terms of a sequence of “kernel functions” K, : R* — R? that satisfy, for each ¢

K(z) P(dz) =0, Ki(z)z" P(dz) = I, / | K:(2)||3 P(dz) < .
Rd Rd Rd
With this notation, the stochastic gradient h;y; is defined as
+ —_
Yey1 — Y
hyy 1 = 7“12 LK (Ag),
Ct

with the update rule as in (4.2.1]), namely

0,1 =0, —ahyq,
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Note that the choice
Kt(z) = (1/217 T 1/Zd)

gives the standard Kiefer-Wolfowitz-Blum approach, presented here as (4.2.10). However, it is clear that the
present scheme offers considerably more flexibility.
In order to analyze the behavior of the algorithm, it is assumed in [53] that

1. J(-) is a strongly convex function of 8, and
2. There is a constant L such that Vg f(w, 0) is L-Lipschitz continuous for each w € R™.

In particular, Item 1 means that J(-) has a unique global minimizer *. Under these assumptions, [53]
Theorem 1] gives sufficient conditions for 8; to converge to 8 in the mean-squared sense, and almost surely.
The reader is directed to [53] for more details.

We conclude this subsection by discussing some universal lower bounds on the achievable performance of
gradient-based optimization methods. These results are taken from [4], but stated in the present notation.
The authors study an objective function J : R¢ — R with a globally Lipschitz-continuous gradient [4, Eq.
(3)]. Further, it is assumed that

Ei(hyyq) =VJ(6y),

and that there is a finite constant M such that
CVi(hyyp) < M2

See [, Eq. (2)]. Thus the stochastic gradient is assumed to provide an unbiased estimate of the true gradient.
Moreover, the conditional variance of the stochastic gradient is assumed to be bounded, both as a function
of t and as a function of ;. These assumptions are the same as and with g, = 0 for all ¢, and
M2 < M? for all t. Hence they are more restrictive than the assumptions made in this book, namely
and . Even under these restrictive assumptions, it is shown that, in the case where J(-) is convex,
achieving ||[V.J(0;)||2 < € requires £2(e~2) iterations in the worst case; see [4, Section 1.1]. For an arbitrary
nonconvex function, the bound goes up to Q(e’4)E| Therefore, if we wish to find a T" such that

[V J(O)||l2 <€, VE>T,

then T' = Q(e~?) for convex functions, and T' = Q(e~*) for nonconvex functions. We can turn this around to
get a bound on the best achievable rate of convergence. If T = Q(e~*), then € = Q(T~/*) in the worst case.
Hence [|[VJ(0,)|2 = Q(t/2) if J(-) is convex, and ||[V.J(0,)|2 = Qt~/*) if J(-) is a general nonconvex
function. The assumptions in [4] are the same as (3.2.4) and (3.2.5) with p; = 0 for all ¢, and M? < M?>
for all ¢. One of the contributions of the paper [70] is to show that when the function J(-) belongs to class
(PL), then ||[VJ(6,)||3 = o(t=*) and J(6;) = o(t~*) for all A < 1. These bounds are practically the same
as the lower bounds in [4]. The details are presented in Section It is important to remind the reader
that the “universal” lower bound ||V.J(8,)||2 = Q(t~/*) applies for arbitrary nonconvex functions. But if
J(+) is restricted to satisfy Property (PL), then, as mentioned above, the achievable performance improves
to |[VJ(6:)]13 = o(t™) and J(8;) = o(t ) for all A < 1.

4.2.2 Momentum-Based Methods

The phrase “momentum-based” is somewhat vague, but refers to methods wherein the search direction at
step ¢t depends not only on the current guess 6;, but also on the previous guess 0;_.

It should be mentioned that, in the early 1960s, a class of optimization algorithms were introduced,
known as “conjugate gradient” methods. There were purely deterministic in nature, and were distinguished
by the fact that the “search direction” (basically h;y; in , but deterministic) is a linear combination

4There are some additional technical assumptions which are not repeated here.
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of the current gradient V.J(6;) and the previous gradient V.J(6;_1). Momentum-based based are different
in that “past” iterations enter through 6;_; and not VJ(0;_1). A good summary of classical conjugate
gradient methods can be found in [51l Section 5.3] and in [IT5], Section 3.2]. Moreover, in Polyak’s book,
the relationships between two types of methods are explored.

The Heavy Ball (HB) method, introduced in [I13], is one of earliest “momentum-based” methods for
optimization. The algorithm introduced in [I13] is

0t+1 = Ot - OéVJ(Gt) + /J,(gt - Ot_l). (4211)

It is shown by Polyak that, if .J(6) is quadratic of the form (1/2)0 " A8 + (v, 8) + ¢ for some positive definite
matrix A, vector v and constant ¢, then the HB method requires 1/ VR fewer iterations compared to the
gradient descent method, provided p is chosen as (vVR—1)/(v/R+1), where R denotes the condition number
of A.

A subsequent and widely-used momentum-based method is Nesterov’s Accelerated Gradient (NAG)
method [I07]. In [143], NAG is reformulated in a manner that brings out the similarities as well as the
differences with HB. Specifically, the NAG algorithm can be written as

v = vy — VI8 + vy, (4.2.12)
011 =0, +v] . (4.2.13)
These two equations can be combined into the single equation
0:11 =0 — VIO + 114(0: — 0:—1)] + (0 — 0:_1). (4.2.14)
This can be compared with the HB formulation (4.2.11), namely
0:11 =0, —VJ(0:) + (0 — 0:1). (4.2.15)

In other words, in NAG the gradient is computed after the momentum correction term p;(6; — 0;_1) is
added to 6;. It is shown in [I09, Section 2.2] that when J(-) is a smooth convex function with a Lipschitz-
continuous gradient, NAG converges to the minimum at the rate of O(t=2). Moreover, no gradient-based
algorithm can achieve a faster rate. A more precise statement and references are needed. More details can
be found in [26], Section 7]. The paper [143] also shows that NAG can be deployed successfully for training
deep neural networks.

Another relevant reference is [§], in which an alternate momentum-based method is proposed, namely

Vi = mve — aVI(6y),, (4.2.16)
Ot1 = O+ (1+ ,ut)VtB+1 — pe—1vy
= O+ 1V + (14 ) VJI(0y). (4.2.17)

If started with the initial guess 8y = 0, the trajectory of this algorithm matches that in [143] (which is just
a reformulation of NAG) both at the start and in the final phase of local convergence to the solution. But
the formulation in [§] is closer to Polyak’s HB compared to NAG, because the gradient VJ(+) is computed
at the current guess Oy, and not a shifted version of it.

It has been mentioned in previous chapters that the behavior of the SA algorithm can be analyzed by
studying the stability properties of an associated ODE. The same is true of momentum-based methods as
well. In the case of momentum-based methods, the associated ODEs are second order in 6. Also, the analysis
based on ODEs does not always apply when the measurements are noisy. With those caveats, we briefly
summarize a few relevant papers. The behavior of NAG is analyzed in [142], when the step size oy is held
constant, while the momentum coefficient u; varies with time. It is shown that the “optimal” schedule for
we is pe = (¢4 2)/(t +5). Another paper along the same lines is [5]. Similarly, the papers [2] [6] analyze the
Heavy Ball algorithm from an ODE standpoint. Note that there is no measurement error in these papers.
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4.3 Stochastic Gradient Descent

In the previous section, we discussed (but did not really analyze) several standard gradient-based methods
for finding a stationary point of a given function. In all of the formulations, there was no provision for
mdasuremsent errors. In the the remainder of this chapter, we analyze the more general situation where
measurement errors are permitted, and establish both the convergence as well as the rates of convergence of
various algorithms, under suitable hypothesses.

In this section we carry out our analysis of the SGD algorithm of , which is repeated here for the
reader’s convenience:

0t+1 = Gt — atht+1) (431)

The main tools we use to carry out this analysis are Theorems and
In order to analyze the convergence of (4.3.1), we recall the standing assumptions on J(-), namely:

(J1) J(-) is C*, and V.J(-) is globally Lipschitz-continuous with constant L.
(J2) J(-) is bounded below. Thus
J* == inf J(6) > —o0.

OcRd

Note that it is not assumed that the infimum is actually attained, nor that the minimizer is unique if the
minimum is attained.
Before proceeding further, we present a very useful consequence of of Assumptions (J1) and (J2).

Lemma 4.1. Suppose (J1) and (J2) hold. Then
|VJ(0)|5 < 2L[J(6) — J*]. (4.3.2)

Proof. By applying [12], Eq. (2.4)], stated here as Theorem to J(0), it follows that, for every ¢, 0 € R,
we have

TS J(8) < 10) +(VI(0),6—0) + 76— 03

Now choose ¢ = @ — (1/L)V.J(6). This leads to
T < J(0) — L[VIO)|E + = [VIO)2 = T(8) - - [V.(0)[2
= L 27 9L 27 2L 2

This is the same as (4.3.2). O

As pointed out in the first Remark after Theorem the bound is well-known for convex functions;
however, Theorem extends the bound to nonconvex functions. Similarly, in the present setting, (4.3.2]
is also well-known for convex functions; but the contribution of Lemma [4.1|is to show that convexity is not
needed.

Also, we introduce one more property, named (NSC), that the function J(-) is expected to satisfy. This
property consists of the following assumptions, taken together.

1. The function J(-) attains its infimum. Therefore the set S; defined in (4.1.1]) is nonempty.
2. The function J(-) has compact level sets. For every constant ¢ € (0,00), the level set
Ly(c):={0cR: JO) <c}

is compact.
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3. There exists a number r > 0 and a continuous function 7 : [0,7] — Ry such that n(0) = 0, and
p(0) <n(J(0) —J"), VO € L;(r), (4.3.3)

where p(6) is defined as
0) := inf ||0 — ¢|.
p(6) o | 2

and equals the distance from 6 to the set S.

The acronym (NSC) stands for “near strong convexity,” or “nearly strongly convex,” depending on the
syntax. Recall from Definition that J(-) is said to be R-strongly convex if

7(0) > J(9) + (VI(9), 6~ 6) + 10— 9l13. 0,9 € B

Note that the equation above is slightly different from (1.1.9), but is equivalent to it. Now, if J(-) is R-
strongly convex, it has a unique global minimizer, which can be denoted as 8*. Next, if we substitute ¢ = 0*
in the above equation, we get

C Ry g
J0) =7~ S0 - 0"

If we now observe that p(0) = ||@ — 0”||2, the above inequality can be rewritten as
2(J(0) — J*
o(0) < /2O

Thus every strongly convex function satisfies (NSC), but the converse is not true in general.

It is obvious that, if (NSC) is satisfied, then J(0;) — 0 as t — oo implies that p(6;) — 0 as t — oo.
Thus, whenever J(-) satisfies (NSC), and we are able to establish that J(0;) — J* as t — oo, it follows
automatically that p(6;) — 0 as t — oco. In other words, the convergence of J(6;) to its minimum value,
coupled with (NSC), implies that 6; converges to the set S;.

With these preliminaries out of the way, we can begin to analyze the Stochastic Gradient Descent al-
gorithm described in . Recall that hyy; in is the stochastic gradient. To characterize it,
define

Z — Et(ht+1)7 Xt = Z¢ — VJ(Of), Ct-‘,—l = ht+1 — Zy. (434)

One can think of z; as the ‘predictable” part of the stochastic gradient hy 1, that is, the best approximation
at time ¢ of hyy;. In view of this interpretation, it ready follows that x; can be thought of as the bias of
the stochastic gradient. The rationale is that, ideally, we would want the search direction to be the true
gradient V.J(8;); therefore the difference z; and V.J(6;) is the bias.

The last equation in implies that E;(¢; ;) = 0. Therefore

By(lheral3) = l12ell3 + EellCoqa 13- (4.3.5)

Now we state our assumptions on the quantities x; and ¢; ;. The assumptions on these quantities are

similar to the assumptions (3.2.4) and (3.2.5|) on the additive noise in Stochastic Approximation. Specifically,
it is assumed that there exist sequences of constants {B;} and {M;} such that

||Xt||2 < Bt[l + HVJ(gt)HQ], VO, € Rd, Vt, (436)

Ei([€es1ll3) < M[1+ J(6,)], V6, € RY, V. (4.3.7)

Now we briefly discuss the significance of these assumptions.
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1. Note that permits the stochastic gradient to be a biased estimate of V.J(6;). This by itself is
not unusual. In several papers, assumptions of the form occur, but without the ||0||2 term.
We now give an example of a situation where the presence of this term arises naturally. Consider
the “Coordinate Gradient Descent” algorithm described in . In the traditional approach, every
coordinate is sampled uniformly at random, which explains the presence of the factor d in the equation.
Now consider an “off-policy” type of coordinate sampling, in which, at time ¢, the coordinates are
sampled with a probability distribution ¢,, which need not equal the uniform distribution. However,
¢, — ug as t = oo, where uy is the uniform distribution on a set of d elements. To analyze this case,
let I; denote the coordinate chosen to be updated at time ¢t. Then

It =1 W.p. ¢t,i~
Hence the stochastic gradient can be computed as
ht+1 = d[VJ(Ot)] o e[t W.p. ¢t,i7

To estimate the quantity ||x¢||2 where x; = Ei(hs11) — VJ(0:), we use the notation g; for [V.J(6:)]:,
for brevity. Then

—9i,s w.p. ¢t,j7j 7é i.
Therefore, with x; = Fy(hy11 — VJ(0;)) as earlier, we have that

(hyt1 —VJ(0,)]; = { (d=1)gi, w.p. b,

d
vi o= (d=1)gibri — > gibr; = dgitri — gi Y _ be;
j#i j=1
= (déii — 1)gi = d(de,i — ui)gi,

where u; = 1/d is the i-th component of the uniform distribution (for each 7). Summing over ¢ leads
to

(bt

d
4y |(bei — i)l - |gil
=1

dl|dy — ual[1[[VI(6:)[co,

IN

where ||, — ug4l|1 denotes the ¢; distance between ¢, and uy. Next, after observing that [|[v]jeo <
[Ivll2 < ||v|l1, we arrive finally at

[%tll2 < dll@, —ull1[[V.I(6:)]l2,

which is a special case of (4.3.6). Note that, when the “off-policy” sampling probability distribution
is not the uniform distribution, the presence of the term ||V.J(6;)]|2 in (4.3.6]) is unavoidable.

2. Next we discuss (4.3.7). One can compare (4.3.7) with the so-called Expected Smoothness condition
proposed as Assumption 2 in [75], namely

Ey(|lhe+1]13) < 247(6:) + B|VJ(8,)]3 + C, (4.3.8)
for suitable constants A, B, C'. This is proposed as “the weakest assumption” for analyzing the conver-
gence of SGD for nonconvex functions. If J(-) satisfies Assumptions (J1) and (J2), then we can apply
Lemma[4.1] As a result, the term B||V.J(8;)|3 can be bounded by 2BL.J(6;), resulting in

Ei([hesi])3) < 2(A+ BL)J(6,) +C < M(1+J(8,), (4.3.9)
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where
M = max{2(A + BL),C}.

Thus, for functions J(-) satisfying Assumptions (J1) and (J2), the present assumption is weaker
than . Also, the various constants in are bounded with respect to ¢, whereas in ,
the bound M; is allowed to be unbounded with respect to ¢. As shown long ago in [(7], permitting
the variance to be unbounded with time is an essential feature in analyzing SGD based on function
evaluations alone.

With this background, we state the first convergence result, which does not have any conclusions about
the rate of convergence. As always, these bounds and conclusions hold almost surely. Not surprisingly, the
statement of the theorem bears a strong resemblance to Theorem [3.2] as does the proof. However, in the
interests of making each chapter self-contained, the proof is given in its entirety.

Theorem 4.1. Suppose the objective function J(-) satisfies the standing assumptions (J1) and (J2), and
that the stochastic gradient hyyq satisfies (4.3.6) and (4.3.7). With these assumptions, we have the following
conclusions;

1. Suppose
Za? < 00, ZatBt < 00, Za?Mf < 0. (4.3.10)
0 t=0 t=0

t=
Then {VJ(0,)} and {J(0:)} are bounded, and in addition, J(0;) converges to some random variable
as t — oo.

2. If in addition
D =0, (4.3.11)
t=0

then
litn_1>inf (IVJ(8:)|2 = 0. (4.3.12)

3. If in addition J(-) satisfies (KL’), then J(0;) — 0 and VJ(0;) — 0 as t — oo.

4. Suppose that in addition to (KL’), J(-) also satisfies (NSC), and that (4.3.10) and (4.3.11) both hold.
Then p(0:) — 0 as t — oo.

Proof. The proof is based on Theorem It follows from applying Theorem to (4.3.1)) that

a?L
J(0r41) < J(01) — e (VJI(0:), hyt1) + t7||ht+1||§~ (4.3.13)
Applying the operator E; to both sides, using the definitions in (4.3.4]), and applying (4.3.5)), gives
aiL 2 2
Ey(J(0141)) < J(02) — ar(VI (), ze) + —=llzell2 + Ee(lICe4[12)- (4.3.14)

We will bound each term separately, repeatedly using (4.3.6), (4.3.7)), Schwarz’ inequality, and the obvious
inequality
2a < 1—|—aQ7 Va € R.

First,

(VJ(0:),2e) = [VI(O)I5+ (VI (B),xe)
IVI(0)I5 = IV T (8:)]l2 - [[xel2-

v
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Now
VIOl [[xell2 < Bel[VI(6)l2[1 + |V I(04)]]2]
= Bi[[VJ(6:)ll2 + B:[[VI(8:)]13
< 0.5B; + 1.5B||V.J(6,)]3] (4.3.15)
< By +2B¢||VJ(6))|5 < By +4B;LJ(6;). (4.3.16)

In the last equation we have replaced 0.5 by 1 just to avoid dealing with fractions, and have also used (4.3.2)).
Hence

—a(VJ(0:),2t) || VI(00)13 + e[V (8) 12 - 1xe|2

<
< —OétHVJ(Ht)Hg —|—OétBt +404tBtLJ(0t)

Next,

< |IVJ(6.)]5 + 2V I (0|2 - Ixell2 + lIxell3
< |IVJ(6,)|3 + B: + 3BV J(6,)I5 + %13
< By +2L(1+3B,)J(0,) + ||Ix:||3.

|13

Note that here we use the tighter estimate from (4.3.15)). Next,

%3 < BY[1+[IVJ(0:)]2]> = BE[1+2[VJ(8:)]l2 + VI (8:)][3]
< 2BJ[1+|[VJ(6,)3] < 2BF[1 +2LJ(8,)].

Substituting into the above gives the bound
|z]|2 < By + 2B2 + 2L(1 + 3B, + 2B2)J(6,).

Finally, by assumption (4.3.7)),
B¢ ll3) < ME[L+2LJ ().

Substituting these bounds into (4.3.14)) gives a bound to which Theorem can be applied, namely:

Ei(J(0141)) < (1+ f2)J(8:) + g: — 4[|V T(81) 3, (4.3.17)
where I
fe = 2L[204B; + Eaf(l + 3By +2B7) + af M7], (4.3.18)
L
g = ay By + Eaf(Bt +2B2 + M?). (4.3.19)

Now it is straight-forward to verify that the conditions in (4.3.10|) suffice to establish that both sequences
{ft} and {g;} are summable. There are five different terms occuring in (4.3.18)) and (4.3.19)), namely

2 2 2p2 2772
oy, atBy, a; By, a; By, oy My .

Now states that {a?}, {a;B;} and {afM?} are summable. The first condition implies that oy
is bounded, which implies that {a?B;} is also summable. Finally, since every summable sequence is also
square-summable (£; is a subset of £5), {a?B?} is also summable. Since all the conditions needed to apply
Item 1 of Theorem hold, it follows that {J(6;)} is bounded and converges to some random variable.
Now implies that V.J(8;) is also bounded. This establishes the Item 1 of the theorem.

To prove Item 2, note that if property (KL’) holds, then Item 2 of Theorem applies, and J(0¢) — 0
as t — oo.

Finally, Item 3 is a ready consequence of J(6;) — 0 and property (NSC). O



108 CHAPTER 4. APPLICATIONS TO OPTIMIZATION

Next we strengthen Assumption (KL’) to (PL), and prove an estimate for the rate of convergence.

Theorem 4.2. Let various symbols be as in Theorem 4.1 Suppose J(-) satisfies the standing assumptions
(J1) and (J2), and also property (PL), and that (4.3.10) and (4.3.11) hold. Further, suppose there exist
constants v > 0 and § > 0 such that

B;=0@t™"), M;=0(), Vt>1,

where we take v =1 if By = 0 for all sufficiently large t, and § = 0 if M; is bounded. Choose the step-size
sequence {a} as O(t=1=9)) and Q(t~1=9)) where ¢ and C are chosen to satisfy

0 < ¢ <min{0.5—4,7v}, C€(0,9].

Define

v:=min{l — 2(¢ + 9),v — ¢}. (4.3.20)
Then ||V J(60,)||3 = o(t=*) and J(0,) = o(t™>) for every X € (0,v). In particular, by choosing ¢ very small,
it follows that ||VJ(6:)||3 = o(t™*) and J(6;) = o(t~*) whenever

A < min{l — 26,~}. (4.3.21)

Proof. Recall the bound (4.3.17)) and the definitions of f, g; from (4.3.18)) and (4.3.19) respectively. Replacing
the property (KL’) by property (PL) allows us to replace the term —ay||VJ(0,)[3 in (4.3.17) by —a, K J(6;).
This makes Theorem applicable to the resulting bound. Under the stated hypotheses, it readily follows
that

af =0t 1), af M7 = O(t*P2940)) 0y B, = O(t~1+977).

Now define v as in (4.3.20). Then each of the above three terms is O(t~(1*)), while both {a?B?} and
{a?B;} decay even faster. Hence, with v defined as in ([4.3.20)),

ftv gt = O(t7(1+y))v

and both sequences are summable.
Now we are in a position to apply Theorem m We can conclude that J(8;) = o(t~*) whenever
204 — At~ > 0 for sufficiently large ¢, and

{(t + 1)’\gt} S 51,
[2a; — Mt = oo0. (4.3.22)
t=1
Now observe that 2a; = Q(t’(lfc)), and C > 0. Choose a contant D such that 2a; > Dt~ (1= for
sufficiently large ¢. Then, whatever be the value of ), it is clear that

Dt=1=9 _ 1 >0

for sufficiently large t. Also, since C' > 0, it is evident that o; decays more slowly than A\t~!. Hence
is satisfied. Thus the last step of the proof is to determine conditions under which {(¢ + 1)*g;} € ¢;. Since
gi = O(t=(+) it follows that (t + 1) g; = O(t~(1+¥=Y), which is summable if A < v. Hence it follows
that J(0;) = o(t~*) whenever \ < v.

To prove the last statement, observe that, while there is an upper bound on ¢, namely min{0.5 — §,~},
there is no lower bound. So we can choose ¢ = ¢, a very small number. This leads to

A <v=min{l — 20 — 2¢,y — €}.

But since € can be made arbitrarily small, this translates to (4.3.21)). O
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Corollary 4.1. Suppose all hypotheses of Theorem [[.3 hold. In particular, if By =0 for all large enough t

in [@.3.6), and M; in ([4.3.7) is bounded with respect to t, then ||[VJ(0:)||3 = o(t™*) and J(8;) = o(t=) for
all A < 1.

The proof is immediate from Theorem[£.2} With B; = 0, one can take v = 1, and with M; being bounded,
one can take § = 0. Substituting these into (4.3.21)) leads to the desired conclusion.

Remark: It is worthwhile to compare the content of Corollary with the bounds from [4], as sum-
marized in Section In that paper, it is assumed that z; = VJ(60;), and that there is a finite constant
M such that CV;(hy11) < M?; see [4, Eq. (2)]. In the present notation, this is the same as saying that
B; = 0 for all ¢, and that My = M for all ¢. With these assumptions on the stochastic gradient, it is
shown that for an arbitrary convex function, the best achievable rate for a convex objective function is that
[VJ(8:)]]2 = O(t~/?). Now suppose a function J(-) satisfies both Standing Assumptions (J1), (J2) and the
(PL) property. Thus there exists a constant K such that

KJ(0y) <||VJ(6,)||3 <2LJ(6,).

Then, as per Corollary it follows that J(8;) = o(t~) and ||[VJ(0,)|3 = o(t~*) for every A\ < 1. There
is virtually no difference between O(t~!) and o(¢~*) for all A < 1. Thus our results extend the bounds from
[4] from convex functions to a somewhat larger class, namely those that satisfy Assumption (S3) as well as
the Polyak-Lojasiewicz condition.

Next, we study stochastic gradient methods based on function evaluations alone. The Simultaneous
Perturbation SA (SPSA), described in , is typical of this approach. In this equation, two function
evaluations are used at each step; however, there exist approaches that use only one function evaluation at
each step. For the stochastic gradient of , the quantities B; and M; satisfy

By = O(c), MZ?=(1/c). (4.3.23)

A more general approach, somewhat reminiscent of the Runge-Kutta method, is proposed in [I12], wherein
k + 1 function evaluations are used at each step, leading to

B, =0(cF), M?=(1/c), (4.3.24)

which reduces to the above when & = 1. This observation raises the question as to whether there is an
“optimal” choice of the “increment” ¢;, so as to achieve the fastest convergence. Specifically, suppose we
choose ¢; = O(t®) for some exponent s. What is the choice of s that maximizes the bound v in (3.1.2))?

Corollary 4.2. Suppose all hypotheses of Theorem hold. Suppose By, My satisfy (4.3.23)) for arbitrary
increment c¢, and that c; = ©(t~1). Then the optimal choice for the exponent s is 1/3. Then, with a; =
O(t==9), by choosing ¢ = € > 0 arbitrarily small, and s = (1 — €)/3, we get

J(8:),|VJ(0)]|3 = o(t™), VA < 1/3. (4.3.25)

More generally, suppose By, M, satisfy [£.3.24)) for arbitrary increment c;. Then, with ay = Ot~ (=), by
choosing ¢ = e> 0 arbitrarily small, and s = (1 —€)/(k + 2), we get

J(0y),[|VJ(0:)]|2 = o(t™), YA < k/(k + 2). (4.3.26)
Proof. With ¢; = O(t™°), it is already known from [77] that
Bi=0(c) = O(t™*), M? =0(1/¢) = O(t).

Hence we can apply Theoremwith v = 5,0 = 2s. Then the rate of convergence becomes o(t~*) whenever
A€ (0,v), and
v =min{l — 2(¢ + s),s — ¢}.



110 CHAPTER 4. APPLICATIONS TO OPTIMIZATION

To motivate the proof, we depict these two inequalities and the “optimal” choice of s for the case k = 1.
Figure [4.3] depicts the two inequalities

1-2(¢p+s)>0,s—¢ >0,
or
o+5<0.5,¢<s.

The blue line depicts when both parts of the minimum defining v are equal, namely 3s + ¢ = 1. Along this
line, p is maximum when s = 1/3 and ¢ = 0, where p = 1/3. In reality the inequalities should be strict.
Hence, for arbitrarily small € > 0, we can choose

1—e€ 1 4e
d)_ea s = 3 9 #_g_g

But since € is arbitrary, this works out to p < 1/3. Hence (4.3.25|) follows. In the case of general k, we have
1-2(¢p+s)=ks—¢, or (k+2)s+¢=1.

So by choosing ¢ = €, we get

1—e¢ k(1 —e€) k 2k +2
s= = —€= —€ .
k+2 T T2 k+2 “k+2
Again, since € is arbitrary, (4.3.26|) follows. O

It is worth noting that, when k 4 1 function evaluations are carried out, not only is the convergence rate
faster, but the step sizes also become larger (O(tF/(++2))),

Figure 4.3: Feasible combinations of (¢, s)

Remarks: Now we discuss the significance of Corollary and its relationship to previously known
results.

1. The analysis in [4] on the achievable rates of convergence applies only when the stochastic gradient is
unbiased (B; = 0 for all ¢), and its conditional variance is bounded. When only function evaluations
are used to construct a stochastic gradient, these assumptions do not hold. Corollary partially fills
this gap.

2. In [I10], the authors study what would be called Simultaneous Perturbation SA with two measurements
(but with a Gaussian perturbation vector instead of Rademacher perturbations). It is shown that the
iterations converge at the rate J(8;) = O(t~'/?). However, there is no error in the measurements,
and the objective function is restricted to be convex. In contrast, in the present situation, a rate of
o(t~*) is achieved for A < 1/3 even in the presence of measurement errors, and for a class of nonconvex
objective funtions. Moreover, by choosing k = 2 in the approach of [112], that is, by carrying out three
function evaluations at each step, the rate goes up to A < 1/2, the same as in [110]. By letting k — oo,
one can make A arbitrarily close to one. In the view of the author, this last observation is only of
theoretical interest.
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4.4 A Unified Theory for Momentum-Based Methods

In this section, we set up a general class of momentum-based algorithms that includes both the Stochastic
Heavy Ball (SHB) and the Stochastic Nesterov Accelerated Gradient (SNAG) algorithms as special cases,
with suitable choices of the parameters. Then we state and prove sufficient conditions for the convergence
of the general algorithm. Obviously, these sufficient conditions would then guarantee the SHB algorithm.
However, the theory does not apply to the standard version of SNAG, in which the momentum parameter
approaches one. Rather, it applies to a variant of SNAG.

Recall that the problem is to minimize a C' objective function J : R? — R. As before, it is assumed that
J(-) satisfies assumptions (J1) and (J2) stated earlier.

4.4.1 A Unified Momentum-Based Algorithm

The iterative algorithm is not based on updating 6; directly. Rather, it is defined in terms of two auxiliary
vectors, denoted here by w; and v;. The relationship between w; and 8; is given by

Wi = 0t + € V. (441)
The general algorithm consists of updating formulas for w; and vy, as follows:
Witp1 = Wy + ayvy — thLtht+1, (442)

Vipl = Ve — aghyg, (4.4.3)

where, as always, «; is the step size, while u; is known as the momentum parameter. In addition,
{a:}, {bi}, {&} are sequences of real constants that can be adjusted to make (4.4.2)—(4.4.3) mimic various
standard algorithms. Usually they are viewed differently from the sequences {u;} and {a;}. Further, hyq
is a random vector that is an approximation to VJ(w;) (note, not necessarily to VJ(0;)), known as the
stochastic gradient. All of our analysis pertains to the behavior of w; and v;. However, the conclusions
can be translated back to the behavior of the original argument variable 8, using (4.4.1)).

Now it is shown that both SHB and SNAG are special cases of (4.4.2) and (4.4.3) for suitable choices of
the various constants. Since Stochastic Gradient Descent (SGD) is a special case of SHB, it too is a special
case of the above algorithm. However, SGD is not a momentum-based algorithm.

In the present context, the objective is to solve the equation VJ(6) = 0 using noisy measurements of the
gradient. Recall from that the general formulation of SHB studied here is

0t+1 = Gt + ,Ut(at - 0,5_1) — ()[tht+1, (444)

where a4 is the step size, p; is the momentum parameter, and h;;; is a random approximation to V.J(6;).
The Heavy Ball method was first introduced in [I13], where both «; and p. are fixed constants.

To put in the form (4.4.2)-(4.4.3)), define
v =0 — 041, w; = 0;. (4.4.5)
With these definitions, it is easy to show that the update equations for w; and v; are
Wil = Wi + vy — aghyyq, (4.4.6)
Vg1 = peve — aghyy . (4.4.7)
These equations are of the form f if we define
€ =0,a; = pg, by = 1.

Moreover, since wy = 0, the stochastic gradient h;1 is a random approximation to VJ(6;).
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The Nesterov Accelerated Gradient (NSG) algorithm was introduced in [I07]. In the current notation,
with the possibility of the gradient being stochastic, and the momentum coefficient being allowed to vary
with ¢, it can be stated as follows (following [143, Eqgs. (3)—(4)]):

0t+1 = Ot + ut(Ot - Ot—l) - Ottht_;,_l, (448)

where h;4 is a random approximation of V.J(0; + 11:(0: —0;_1)), and not V.J(0;). We analyze (4.4.8]) using
the reformulation in [8, Egs. (6)—(7)], stated here as (4.2.16) and (4.2.17). To accommodate the shift in the
argument of V.J(-), we proceed as follows: Define

vi=0; —0;_ 1, Wy =0y + vy (4.4.9)
Then the updating formulas are given by [8, Eqgs. (6)—(7)] as
Vir1 = peve — aghygq, (4.4.10)
which is the same as , and

Wit1 = Wy + M1t VE — (1 + /,Lt+1)04tht+1. (4411)

These equations are of the form (4.4.2) and (4.4.3)) with

€t = 1 Vt, Ay = HWe+1 K¢, bt =1+ Mi41- (4412)

Once again, as can be seen from , the random search direction hy, is an approximation to VJ(wy).
Finally, since SGD is a special case of SHB with pu, = 0 for all ¢, it too is a special case of the general
algorithm 7.
In this context we mention [92] and its predecessors [I35, [I77] which present a “Stochastic Unified
Momentum (SUM)” algorithm. In the paper [02], the objective function is of the form

J(g) = EWNPF(O, W)
The SUM algorithm consists of two coupled equations (in their notation):
My = M1 — NeGe,  Tep1 = Ty — Aege + (1 — A)my.

Other than the fact that the momentum coeflicient ;1 is constant, the only difference between the above,
and 7, is that the above has a “convex combination” of two terms, which is absent in our
formulation. But this is a minor detail. Hence it is not claimed that our unified algorithm itself is more
general. Rather, the generality is in the conclusions. We can prove a stronger form of convergence, under
conditions that are analogous to the standard Robbins-Monro conditions.

4.4.2 Literature Review

Next, we present a very brief review of the relevant results from the literature on SHB and SNAG, to
provide a point of departure to compare the results in this sectio against those. A more detailed review of
momentum-based algorithms is given in [121, Section 1.1].

After the publication of the two seminal papers [I13] and [I07], a great deal of analysis has been carried out
on these algorithms. The approach adopted in this section is to analyze momentum-based algorithms using
the contents of Section [2.3] what might be called the “almost supermartingale” approach. However, there
is considerable literature on the asymptotic behavior of the ODEs on R? associated with these algorithms.
Whereas the ODE associated with SGD (described in (4.3.1))) is of first-order, the ODEs associated with the
SHB and SNAG methods are of second-order, due to the presence of the “delay” terms. The ODE associated
with NAG is analyzed in detail in [I42], when the step size « is held constant, while the momentum coefficient
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e — 1last — oo. This is consistent with the standard formulation of SNAG, whereas in SHB, the momentum
parameter is constant while the step size varies with time. In [I42], it is shown that the “optimal” schedule
is e = (t+2)/(t+5). In [5], the rate of convergence of this ODE is analyzed further by imposing additional
structure on J(-), such as the Kurdyka-Lojasiewicz property. It is shown that, in certain situations, it is
possible for classical steepest descent method to outperform NAG. The second-order ODE associated with
HB is analyzed in [2,[6], when J(-) satisfies the Polyak-Lojasiewicz property. In all of the above formulations,
it is assumed that the “stochastic gradient” h;,; equals the true gradient V.J(6;); thus these models do not
allow for measurement errors. Hence the analysis applies only to HB or NAG, not SHB or SNAG.

Now we come to more recent papers on SHB, which do permit measurement errors. In much of the
literature, it is assumed that J(-) is convex; here we replace convexity by the weaker properties (PL) and
(KL’). Moreover, in many papers, attention is focused in the convergence in expectation, or convrgence in
probability of various algorithms. In the review paper [26], the emphasis is almost exclusively on convergence
in expectation. SHB and SNAG are discussed in [26, Section 7]. In other papers, the conclusions are even
weaker: It is shown only that

lim min E[||VJ(8,)|3 = 0. (4.4.13)

t—o0 1<7<¢t

The above conclusion is weaker than

lim inf E[|[VJ(6:)]|3] = 0. (4.4.14)

This is because, if E[||V.J(6;)||3] = 0 for some ¢, then (4.4.13)) holds, but not necessarily ([4.4.14). Basically
(4.4.13)) is forward-looking, while (4.4.14)) is backward-looking. Similarly, the conclusion that

. 2
11Srlggt||VJ(9t)\lz =0

in probability is a weaker conclusion that
o 2
liminf |VV.7(6)2 = 0,

where again the convergence is in probability.

Other research on the convergence of HB (without establishing almost sure convergence) is summarized
very well on page 3 of [I30] and Section 1.1 of [93].

In [50], the authors analyze the HB algorithm where hyy 1 = V.J(0;); thus there is no provision for
measurement noise, so that the algorithm being analyzed is HB and not SHB. The function J(-) is assumed
to be convex, and to have a globally Lipschitz-continuous gradient. The authors do not show that J(8;)
converges to the global minimum of J(-). Rather, they show that the average of the first t iterations converges
to the minimum value of the function J(-). This is somewhat in the same spirit as the papers [I17, [68], in
which the authors show that the average of the first ¢ iterations of 6; converges to the minimizer of J(-). In
[49], the authors study the SHB for some classes of nonconvex functions. It is assumed that the stochastic
gradient is unbiased, i.e., that E;(h; 1) = VJ(6;). The iterations are shown to converge to a minimum, but
at the cost of “uniformly elliptic bounds” on the measurement error ¢, , which are very restrictive.

Now we discuss in detail a couple of papers that are most closely related to the present subsection. In
this context, it is very useful to know that the algorithm converges to the desired limit almost surely. This
is because any stochastic algorithm generates one sample path of a stochastic process, and it is therefore
essential to know that almost all sample paths converge to the desired answer. However, there are only a
handful of papers that establish the almost-sure convergence of SHB and/or SNAG. These are discussed in
detail in this subsection.

In [I30], the objective function is an expected value, of the form ([I30, Eq. (1)])

J(g) = EWNPF(B, W)
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The function F(-,w) is convex for each w, and its gradient is Lipschitz-continuous with constant Ly, < L
for all w. Thus the same holds for J(-) as well. The stochastic gradient is chosen as ([I30, Eq. (SHB)])

hy 1 = Ve, F(Wiy1,0;),

where w1 is chosen i.i.d. with distribution P. Effectively this means that the stochastic gradient is unbiased.
Also, it is assumed that, for some constant o2, the conditional variance C'V;(h;y1) of the stochastic gradient
is bounded by ([130, Eq. (5)])

CVi(hyyr) < AL(J(0:) — J*) + 02,

where J* is the infimum of J(-). In [I30] the authors study the SHB with time-varying parameter p., namely
9t+1 = Gt — Oétht+1 + ut(et — 0,5_1), (4415)

It is suggested how to convert (4.4.15)) above into two equations, which do not contain any “delayed” terms.
Specifically, the authors iteratively define

A
b1 = It = L= (14 Ag1)on (4.4.16)
t

In the above, the quantity A is not specified and is chosen by the user. They then deﬁn
Wip1 = W — Dby, (4.4.17)

Ast |
t+
1+ At 1+ Mt

0t+1 = Wit1- (4418)
Then 6,1 satisfies (4.4.15]).

The convergence of (4.4.17)—(4.4.18]) is established under [I30, Condition 1], namely the sequence {n;}
is decreasing, and moreover

o0 o0 oo ’,7
Znt = 00, anoQ < o0, Z % = 0. (4.4.19)
=0 t=0 =1 2r—0l

Thus in [130] the original step size sequence {a;} and momentum sequence {u;} are replaced by the “syn-
thetic” step size sequence {n;}, and the convergence conditions are stated in terms of n;. It is shown that, in
general, .J(6;) — J* where J* is the minimum value of J(-), at a rate of O(t~'/2). In the “over-parametrized”
case, the rate improves to O(t~!). Moreover, the iterations 6, converge to a minimizer of J(-).

Now we give our interpretation of the results in [I30]. There are two restrictive features of these results.
First, the conditions are more stringent than the standard Robbins-Monro conditions, namely

oo (oo}
> mi<oo, Y m=o0, (4.4.20)
t=0 t=0

Compared to , there are two extra assumptions in , namely: (i) the synthetic step size n;
is decreasing, and (ii) the summation of 7/ Zt;:lo 71, is divergent. Since S; is an increasing sequence, the
divergence of this summation is a more restrictive assumption than the second Robbins-Monro condition in
(4.4.20)

The second challenge in this approach is that, given the original step size and momentum sequences,
there is no easy way to verify whether is satisfied. This is why, in [I30, Theorem 8], the authors

5To facilitate a comparison with the original paper, we use the same symbol w;. However, their quantity wy is closer to our
uy defined in Section W
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begin with the sequence {n:}, which appears to us to be somewhat unnatural. If y; = p, a fixed constant,
for all £, then a possible solution to (4.4.16|) is

= ) Vtant:

1
A:)\ = —
t 0 -5 -

(%) Vt.

Since 7, is a constant multiple of «, if {ay} satisfies , then so does {n:}. However, if y, varies as a
function of ¢, this approach will not work. Specifically, it is shown in Section that, if the momentum
coefficient p; is monotonically decreasing, then A\; — oo as ¢ — oco. Consequently, a Robbins-Monro like
assumpion such as Y o a? < oo need not imply that > o n? < co. In the other direction, if p; is
monotonically increasing but bounded away from 1, them there exsts a finite 7" such that 1 + A\;;1 < 0 for
all t > T, thus causing the “step size” 1; to become negative, which is absurd.

In contrast, the approach proposed here can handle the case where not just the momentum parameter
¢ is time-varying, but all parameters vary with ¢t. Moreover, the conditions for convergence reduce to the
familiar Robbins-Monro conditions if the stochastic gradient is unbiased and has finite variance (even if
the parameters vary with ¢). In the more general case where the stochastic gradient is biased, and/or the
conditional variance of the stochastic gradient grows without bound as a function of ¢, the conditions for
convergence are those in Theorem As we have seen earlier, this formulation allows us to handle the
so-called zeroth-order methods, wherein the stochastic gradient is computed using only noisy measurements
of the objective function.

Next we come to [93]. The analysis in [I30] is applicable only to convez objective functions. In [93], the
authors prove results that are applicable to arbitrary nonconvex functions that have a Lipschitz-continuous
gradient. However, for nonconvex funtions, they can prove only that

lim min [|[VJ(0,)|3 = 0. (4.4.21)

t—00 0<T<t

Clearly, this is a weaker conclusion than VJ(6;) — 0 as t — oo. To prove that conclusion, they assume that
J(+) is strongly convez. They also relax the bound on the conditional variance of the stochastic gradient to
the so-called Expected Smoothness assumption of [75], namely

Ey(|he1al3) < 247(6:) + B|VJ(6,)]3 + C, (4.4.22)

for suitable constants A, B,C. This is proposed in [75] as “the weakest assumption” for analyzing the
convergence of SGD or SHB for nonconvex functions. However, unlike in [I30], these authors assume that
the momentum term is a constant, that is, pu; = p Vt.

After the brief literature review, we now compare our results to those of [93]. Throughout, we replace
the variance bound by weaker bound . We also permit the momentum parameter p; to vary
with ¢, which is not possible in the method of proof used in [93]. When no convexity of any type is assumed,
and the only assumption is that VJ(-) is Lipschitz-continuous, we are able to show that

lim inf |77 (6)] = 0. (4.4.23)

Given any sequence of nonnegative numbers {z;}, it is easy to show that

liminfz; =0 = lim min z, =0,
t—o0 t—00 0<7<¢t

but the converse need not be true. (Suppose zr = 0 for some T but z; > ¢ > 0 for all ¢ > T.) Hence our
conclusion is stronger than . Next, we permit a mild form of nonconvexity (namely the KL
or PL properties). In this more general setting, we nevertheless derive the almost sure convergence of the
iterations, when the Robbins-Monro or Kiefer-Wolfowitz-Blum conditions are satisfied.

Now let us return to [92]. In that paper, it is assumed that the stochastic gradient is unbiased and has
uniformly bounded variance, whereas we permit a more general type of stochastic gradient, which satisfies
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f. Our conclusions are also stronger. Under the Robbins-Monro or Kiefer-Wolfowitz-Blum
conditions, when J(-) satisfies the (KL) property, we deduce that ; converges almost surely to the set of
minimizers. When J(-) satisfies the stronger (PL) property, we can bound the rate of convergence. Finally,
if the only assumption is that V.J(-) is Lipschitz-continuous, we are able to show that

lim inf [VJ(6)]]2 = 0.

In contrast, in [92], the authors show only that

lim min E[||VJ(8,)|3 = 0.

t—oo 1<r<t

This is a weaker conclusion, as shown above.

4.4.3 Statements of Main Theorems

In this subsection we state the main theorems concerning the unified momentum approach. The proofs are
given in the next subsection.

Assumptions on the Stochastic Gradient

Let F; denote the o-algebra generated by 6, h!, where h! denotes (hy,---h;); note that there is no hy. As
before, for an R%-valued random variable X, let E;(X) denote the conditional expectation E(X|F;), and
let CV;(X) denote its conditional variance defined by

CVi(X) = B(IX — B(X)I3) = E(IX]13) — I B:(X). (4.4.24)
With these notational conventions in place we state the assumptions on h;; 1. We begin by defining
Z; = Et(ht-i-l)a Xt = Zt — VJ(Wt), Ct-}-l = ht+1 — Zy. (4425)

Thus x; denotes the “bias” of the stochastic gradient. If hyyq is an unbiased estimate of VJ(w;), then
x; = 0. Most papers in the literature assume that x;, = 0, but our objective here is specifically to permit
biased estimates. This is necessary to analyze the situation where the stochastic gradient is obtained using
function valuations alone. The last equation in implies that E;({;,,) = 0. Therefore

Ey([he1ll3) = llzell3 + Ee(1Cepall3)- (4.4.26)

With these definitions, the assumption on the stochastic gradient is that there exist sequences of constants
{B:} and {M;} such that

||Xt||2 S Bt[l + HVJ(Wt)HQ], Vet S ]Rd7 Vt, (4427)

Ei([¢oiall3) < MP[L+ J(wy)], VO, € RY, V. (4.4.28)

Equation states that the stochastic gradient h;;; can be biased, but the extent of the bias has to
be bounded by a constant plus the norm of the gradient. As we will see in subsequent sections, while By
is permitted to be nonzero, eventually it has to approach zero; in other words, the stochastic gradient has
to be “asymptotically unbiased.” In contrast, states that the conditional variance of the stochastic
gradient can grow as a function of the iteration counter ¢. This feature is essential to permit the analysis of
so-called zeroth-order methods, where only a small number (often just two) of function evaluations are used
to construct hyy ;.
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Assumptions on the Constants

Aside from the step length oy, there are four constants in the algorithm (4.4.2)—(4.4.3). The assumptions on
these constants are as follows: There exist constants a, b, b, [i, € such that, for all ¢, we have

0<a;<a,0<b<b <b0<p <ji<llel <e<oo (4.4.29)

Now we discuss a few implications of the above bounds. First, a; is always nonnegative and bounded above.
Second, b; is bounded both below and above by positive constants. Third, the momentum coefficient p; can
equal zero, but is bounded away from 1. Finally, ¢; can be either positive or negative, but is bounded in
magnitude. Observe that when SHB is formulated as a special case of f, the assumptions in
hold. As for SNAG, in the traditional formulation, the momentum parameter u; 1 1 as t — oo.
Hence the assumptions in do not hold. What is analyzed here is a nonstandard version of SNAG
in which hold. The version of SNAG analyzed in [93] is even more restrictive in that u; is a fixed
constant less than one.
Two ready consequences of these assumptions are that, if we define

a¢ - a
k, = 7]€ = —, 4.4.30
() 1—f ( )
then - -
ke € [0,k], by + kip1 € 0+ a/(1 — f)). (4.4.31)
A key assumption is this: Define é; := kiy1 — k¢. Then
oy — 0 ast — oo. (4.4.32)

Note that there are no restrictions on the sign of d;. This assumption is readily satisfied if both {a;} and
{p¢} converge to some limits. The assumption allows us to transform the variables in (4.4.2)—(4.4.3) in such
a way that the resulting transformed equations are “asymptotically decoupled.” More details can be found
below.

In our analysis, it is quite permissible to allow all five constants ay, by, €, ¢, ¢ to be random variables.
In this case, the bounds in and hold almost surely. If we define F; to be the o-algebra
generated by 6y and h{, then all of these constants need to belong to M(F;), the set of random variables
that are measurable with respect to F;. In particular, in , we see that ¢, = pyyripe. Thus, in order
to incorporate the approach of [§] in the present framework, we must assume that p;11 € M(F), i.e., that
{pu+} is a predictable process.

With these assumptions out of the way, we now state the two main theorems regarding the convergence
of the general algorithm and ), and several corollaries thereof. In brief, when the objective
function J(-) satisfies the (KL’) property, and the analogs of the Kiefer-Wolfowitz-Blum conditions are
satisfied (see and below), then the algorithm converges almost surely. If the hypothesis on
J(-) is strengthened to (PL) from (KL’), then we can also derive bounds on the rate of convergence.

Theorem below shows that the unified momentum algorithm converges under the same conditions as
in Theorem (.11

Theorem 4.3. Suppose that the various constants satisfy the assumptions in (4.4.29)), while the objective
function J(-) satisfies Standing Assumptions (J1) and (J2). Further, suppose the stochastic gradient hy i

satisfies the assumptions (4.4.27)—(4.4.28)). With these assumptions, we can state the following:
1. Suppose

Zatz < 00, ZatBt < 00, ZaEMtZ < 00. (4.4.33)
t=0 t=0 t=0

Then {VJ(0,)} and {J(0:)} are bounded, and in addition, J(0;) converges almost surely to some
random variable as t — co.
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2. If in addition

> =0, (4.4.34)
t=0
then
lim inf |V.J(6,)])2 = 0. (4.4.35)
t—o0

3. If, in addition to (4.4.33)) and (4.4.34), the function J(-) satisfies (KL’), then J(0;) — 0 and VJ(0:) —
0 as t — oo, where both convergences are in the almost sure sense.

4. Suppose that in addition to (KL’), J(-) also satisfies (NSC), and that (4.4.33) and (4.4.34) both hold.
Then p(0;) — 0 almost surely as t — oo.

Now we state some useful corollaries of the above theorem.

Corollary 4.3. Suppose that the various constants satisfy the assumptions in (4.4.29), while the objective
function J(-) satisfies Standing Assumptions (S1) and (S2). Further, suppose the stochastic gradient hyqq

satisfies the assumptions (4.4.27)-([4.4.28)), with By = 0 for all t, and M? < M? for all t for some fived

constant M. With these assumptions, we can state the following:

1. Suppose
> af < oo (4.4.36)
t=0

Then {VJ(0,)} and {J(0:)} are bounded, and in addition, J(0;) converges almost surely to some
random variable as t — co.

2. If in addition (4.4.34) holds, then
litrginf IVJ(0:)]2 = 0.

3. If in addition J(-) satisfies (KL’), then J(0;) — 0 and VJ(6;) — 0 as t — oo, where both convergences
are in the almost sure sense.

4. Suppose that in addition to (KL’), J(-) also satisfies (NSC), and that (4.4.36) and (4.4.34) both hold.
Then p(0:) — 0 almost surely as t — co.

Note that (4.4.36) and (4.4.33) are the familiar Robbins-Monro conditions introduced in [123]. Thus,
when the stochastic gradient is unbiased and has bounded variance, the conditions for the convergence of

the general algorithm (4.4.2])—(4.4.3)) are the familiar ones for SGD, as shown in [7]].

Corollary 4.4. Under the assumptions of Theorem [{.3, suppose further that there exists a sequences of
constants c; (known as the “increment”) such that By = O(c;), and M? = O(1/c?). With these assumptions,
we can state the following:

1. Suppose
Zaf < 00, Zatct < 00, Z(af)/(cf) < 0. (4.4.37)
t=0 t=0 t=0

Then {VJ(0.)} and {J(0:)} are bounded, and in addition, J(0:) converges almost surely to some
random variable as t — oo.

2. If in addition J(-) satisfies (KL’), and (4.4.34)) holds, then J(0;) — 0 and VJ(0;) — 0 as t — oo,
where both convergences are in the almost sure sense.

3. Suppose that in addition to (KL’), J(-) also satisfies (NSC), and that (4.4.36) and (4.4.34) both hold.
Then p(0;) — 0 almost surely as t — oco.
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Thus the point of these two corollaries is to show that the conditions for the convergence of the unified
algorithm in Theorem [4.3] are exactly the same as those for the convergence of the SGD algorithm in
Theorem even in the presence of time-varying momentum terms. In contrast, as shown in Section [4.5.3]
the previously known sufficient conditions for convergence given in [130] are more restrictive.

Corollary is relevant when the stochastic gradient is obtained using only function evaluations, and
no gradient computations. It can be thought as the counterpart of Corollary to the unified momentum
algorithm.

The objective of the next theorem is to show that if the hypothesis (KL’) is strengthened to (PL), then
it is possible to obtain bounds on the rate of convergenc e.

Theorem 4.4. Let various symbols be as in Theorem |4.5. Suppose J(-) satisfies the standing assumptions
(S1) and (S2) and also property (PL), and that (4.4.37) and (4.4.34) hold. Further, suppose there exist
constants v > 0 and d > 0 such that

B;=0@t™"), M;=0(), Vt>1,

where we take v =1 if By = 0 for all sufficiently large t, and § = 0 if My is bounded. Choose the step-size
sequence {a} as O(t=1=2)) and Q(t~1=9)) where ¢ and C are chosen to satisfy

0 < ¢ <min{0.5—-46,7v}, C€(0,9]. (4.4.38)

Define
v:=min{l — 2(¢ + ),y — ¢}. (4.4.39)

Then ||[VJ(0,)]|3 = o(t™) and J(8;) = o(t~) for every X € (0,v). In particular, by choosing ¢ very small,
it follows that ||VJ(0)||3 = o(t=*) and J(0;) = o(t~*) whenever

A < min{l — 26,~}. (4.4.40)

4.4.4 Proofs of the Main Results

In this subsection, we present the proofs of the theorems in the previous subsection.

Transformation of Variables

The convergence analysis of f is based on carrying out a linear transformation of the variables
such that the resulting equations are “nearly” decoupled, and are exactly decoupled if all terms ay, by, €z, 1+
are constant. In contrast, in [I30], the authors propose a linear transformation that achieves exact decoupling
even when p; varies with ¢. As shown in Section this approach is untenable when p; is monotonic,
either decreasing or increasing. In contrast, our approach does not suffer from such limitations. Moreover,
as shown in the results stated in Section our conditions for the convergence of the algorithm in @,
are natural generalizations of the familiar Robbins-Monro [123] or the Kiefer-Wolfowitz-Blum [77, [177]
conditions, unlike in [I30].

Let us rewrite (4.4.2)—(4.4.3)) as

Wit o I atI W . bt.[
|: Vit :| = |: 0 :| |: :| |: 7 Oétht_;,_l, (4441)

where each I denotes I xq4. Define

o I CltI _ I 0
a2 5] i)
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Then A; is the coefficient matrix in (4.4.41) and A; is the matrix of the eigenvalues of A;. In order to
diagonalize A; into Ay, we compute the matrix of eigenvectors of Ay, as follows:

I —%7T I —kJd _ I Kk
_ T—pe — t 1_ t 4.4.4
Zt [0 ,U/tI :| [0 ,U,tI :|7Zt [0 ,ut[:|7 ( 3)
where a
ky = ——. 4.4.44
! L —pue ( )

Then Z[lAtZt = A;. Next, define

{ e ] =77 { W ] - { Wit kve } . (4.4.45)

Vi V¢

Here we take advantage of the fact that the bottom block of Z, Lis [0 I]. Hence, in effect, w; is replaced
by ¢, but v, is left unaltered. Hence the update equation for v; also remains as (4.4.3).
Next we compute the update equation for uy.

U1 = Wip1 + ke 1V = Wegr + kevigr + 0viq, (4.4.46)
where

s S
=1 1—

(St = kt+1 - kt = (4447)

Now observe that
Wil + kiVigr = W + agve — braghy g + kg ve — kpoghyg .

However

a
ktut+at:at( Hit +1> = L :kt.
1—/,Lt ].—Mt

Hence we can write
Wit -+ ktvt+1 = W¢ + ktVt — O[t(bt + kt)ht+1 = U — O[t(bt + kt)ht+1. (4448)

The last term in (4.4.46[) becomes
6tvt+1 = (St/.LtVt - (St()ttht+1. (4449)

Substituting from (4.4.48]) and (4.4.49) into (4.4.46)) gives the final form of the update equation for u.

g1 = Uy + O py v — (by + k¢ + 0)ohy g

(4.4.50)
= + O ve — (bt + k1) arhypq,
while the updating equation for v; remains as before, namely
Vit1l = UtV — atht_,_l. (4451)

These are the two equations whose behavior is analyzed in the remainder of the subsection. Based on the
analysis, we make inferences about the behavior wy, and eventually, 6;. Note that these two equations are
not decoupled in general, due to the presence of the term §;pu;v, in . However, in the special case
where both a; and p; are constant, then §; = 0 for all ¢, and the equations are indeed decoupled. This
is the approach used in [I12I] to study the SHB algorithm when pu; is constant. More generally, if both a;
and p; converge to some some constants as t — oo, then §; — 0 as ¢ — oo, and the equations become
“asymptotically decoupled.” We can draw some useful conclusions when d; — 0 as ¢ — co.
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Proof of Theorem [4.3|

The proof of Theorem is based on applying the Robbins-Siegmund theorem stated here as Theorem [2.22
to the “Lyapunov function”
Vi o= J(ug) + [|ve]|3. (4.4.52)

The reason for calling it a “Lyapunov function” is that its conditional expectation obeys the conditions of
the Robbins-Siegmund theorem; this in turn allows us to deduce the convergence of V; to zero almost surely.
We will find an upper bound for E;(V;) in the form

1— a2
2

b
EVy) <Vi+ fiVi+ g — - Tt”VJ(ut)”% - I, (4.4.53)

where the sequences {f:},{g:} are nonnegative and summable, and F} is a quadratic form in V.J(u;) and
Iv¢]|2 which is positive definite for sufficiently large t, say for all ¢ > T. (In case these entities are random,
these conditions hold almost surely), Since we can always start our analysis at time T, we can neglect the
term —F; for all ¢ > T', and apply Theorem [2:22]

Going forward, we will avoid a lot of cumbersome notation if we agree to refer to a nonnegative sequence
{z:} as a Well-Behaved Function (WBF) if there exist nonnegative summable sequences {f;},{g:} such that

20 < ge + fiV, VE 2 0. (4.4.54)

In case the various entities are random, the assumptions (inequality and summability) hold almost surely.
Clearly the sum of two WBF is again a WBF, and a WBF multiplied by a bounded sequence is again a WBF.
Therefore any WBF can be absorbed into the terms g, + f;V;, and it is not necessary to keep careful track of
them.

Bounding F;(V;41) involves several intricate computations. For this purpose, it is now shown that the

first two conditions in (4.4.33]) imply that
Zath < o0, Zafo < 0. (4.4.55)
t=0 t=0

The proof of this claim is as follows: The first bound in (4.4.33]) implies in particular that a; — 0 as t — oo,
and hence a; is bounded, say by &. Therefore

o) 0
Zath S dZatBt < 00.
t=0 t=0

This is the first bound in (4.4.55]). As for the second bound, recall that every (absolutely) summable sequence
is also square summable. Therefore we can append the two bounds in (4.4.55)) to the three bounds in (4.4.33)).

The first step in proceeding further is to reformulate the bounds (4.4.27) and (4.4.28)), which are stated
4.4.25)

in terms of VJ(wy), in terms of VJ(u;). Accordingly, we modify (4.4.25) by defining
)_(t = Z¢ — VJ(ut) = Et(ht+1) - VJ(ut) (4456)

The objectives are to find bounds for ||x.||3 and E;(||¢,,,]|3) in terms of V;. Throughout we use the bound
[4.4.19), namely ||VJ(u;)||3 < 2LJ(u;). We also make repeated use of the obvious inequalities

r < (1+2%)/2,0y < (2* +y?)/2, Vz,y € R. (4.4.57)
We begin with a bound for ||X:||2. Observe that

Xy = Zt — VJ(ut) = X; + VJ(Wt) — VJ(ut)
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Hence it follows from (4.4.56]) and (4.4.27) that

[%ell2 < lIxell2 + Lllwe — a2
< Bi(1+[IVJI(wi)ll2) + Lhe|vill2

4.4.58
< B+ VIl + Llvll) + Ll A5
< Bi(1+ IV (ap)ll2 + LE[[vell2) + LE[vel2.

Next, we can find a bound for ||%X;||3 starting from (4.4.58)), and arrive at
%13 < BE(1+ [V (ue) |2 + Lk vel2)® (4.4.59)

+ 2B, LE(L+ [V (o) |2 + LE|[vell2) - [vell2 + (LE)?[[vel3.

Note that terms of the form ||[V.J(u)||2, [|[vill2, [V (|3, [VJ(us)l2 - [|vell2 and ||v¢||3 can be bounded by
terms of the form C; + C3V; for suitable constants C; and Cy. Clearly |[v;]|3 < V;. The rest can be bounded

repeatedly using . Specifically
19Tl < 51+ 19T@)IB) < 5 + Li(w) < 5+ LV,
Ivillz < 51+ Ivil) < 51+ V),
[V J ()3 < 2LJ(u;) < 2LV,
IV 7@l Ivells < S0V T @3 + )
< LI(w) + 5 Ivil3) < max{L,1/2}Vi.
Applying all these bounds to (4.4.58) shows that
%[5 < B (D11 + D12Vi) + By(Da1 + Da2Vi) + (Lk)?|[v4 |13, (4.4.60)

for suitable constants D11 through Das.
For future use, we also bound ||z;||3. Since z; = %x; + V.J(u;), we can write
Zell3 < l1%el13 + 2[%e]l2 - 1V (ug)ll2 + [V ()13
< NI%ell3 + [I%ell3 + IV (o)1) + 1V (ue) |3 (4.4.61)
= 2[|%¢ 13 + 4L (uy).

Since J(u;) < V4, we can substitute from (4.4.60) into (4.4.61) to obtain the bound

|z¢||3 < Bf (D11 + D12Vi) + Bi(Da1 + DaoVi) + ALJ () + (Lk)?|[v4||3

9 — (4.4.62)
< By (D11 + D12Vy) + By(Day + D2y Vi) + max{4L, (Lk)*}V;.
With these bounds in place, we now proceed to prove (4.4.52)). Clearly
Ei(Vit1) = Ee(J(ueg1) + E([[vesa3)- (4.4.63)

So we bound each of these two terms individually. First, it follows from (4.4.51)) that

[Veralls = lueve — achp |3 = g lIVell3 = 20epe(ve, Berr) + af [Besa 3.
Therefore, from (4.4.26)), we get
Ey([[vell3) = uivells — 200pe(ve, 24) + af[llzell3 + Ee(lIC4113)]- (4.4.64)
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We can estimate the last two terms separately.
First,
=201 (Ve, 2e) < 200pt||Vell2 - [12ell2 < 2001l vel|2 - |z |2
Note that the bound is unaffected by the presence or the absence of the minus sign in front of the inner
product. Further,
2azfil[vellz - l|zell2 < 200l vellz - [[[%ell2 + |V () |2]-

Substituting for ||X¢||2 from (4.4.58)), and recalling that {«;B;} is a summable sequence leads to the obser-
vation that B

20l Vil - [Kell2 = WBF + 200 iLk[[vi |2 + 2ufilvella - IV () |2, (4.4.65)

where “WBF” denotes a well-behaved function, defined in (4.4.54)). Therefore it is not necessary to write it
out in detail. As a result

20, fil| iz - [|zll2 = WBF + 20, iLE[| V4|3 + 4 fil| vill2 - [V (wr) 2, (4.4.66)
Next we bound the last term.

o llzel3 + Ee(ICi113)] = afllzell3 + o Ee(I €, 13)]. (4.4.67)

We already have a bound for ||z|%, namely . As discussed earlier, the hypothesis implies
(£455). Therefore the term a?||z||3 is a WBF. So let us focus on E;(||¢,,,]|3)]. There is a bound on this
quantity in (4.4.28)), but it is stated in terms J(w;). The bound is now restated in terms of J(u;), using
Theorem now from that u; = wy + kyvy. So applying Theorem gives

Lk?
J(Wt) = J(ut — ktvt) S J(ut) — kt<VJ(ut),vt> + Tt”VtH% (4468)

Now Schwarz’ inequality and (4.4.57)) lead to

—kt (VJ(ut), Vt>

IN

k
f[IIVJ(ut)H% + [[vell3]
(4.4.69)

k
Et[QLJ(Ut) + lvell3] <

This can be substituted into (4.4.68)) to give

IN

[2LJ (w) + [|ve][3],

N |

- k  Lk?

L72
+2}.

G E([¢i11[13)] < af D3Vi, (4.4.71)

| v < avi (4.4.70)

where

N |

D3 = max {Lk,

Therefore the bound in (4.4.28) can be reformulated as

which is a WBF in view of the assumptions (4.4.33)). Substituting all these bounds into (4.4.64)) gives
E([[vesa|2) < WBF + p2][vel12 + 200 iLE|[vill3 + 2fieu vl - 1V () - (4.4.72)
Next we turn our attention to E;(J(uy1)). Recall from (4.4.50) that

Wiy = uy + Oy vy — (b + kyg1)ohyeyr.
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Therefore, by applying Lemma we get

J(ut+1) = J(ut + 5t,UtVt - (bt + kt+1)atht+1>
< J(wp) + 6epe (VI (), vi) — cu(be + ke 1) (VI (), hygr) (4.4.73)

L
+ §||6tutvt — ay(be + kg1 ) |f3-

From we have that
16epeve — ar(be + ko) heqa |13 = 10epeve — o (b + kyy1)ze — (b + krg1)Coya |13
However, since Ey({;,,) = 0, it follows that
Ey([|6:peve — 0 (b + ko1 )ig113) = [|0epteve — a(be + key1)zel|3
+af (b + ke 1) 2 Eo([[€ s [13)-
Applying E;(-) to both sides of , and substituting the above relationship, gives

Ey(J(uig1)) < J(ag) + 6 (VI (g), vi) — ap(by + key1) (VI (uy), 2¢)
L L (4.4.74)
+ §||5tum — ay(by + kes1)ze||3 + §a?(bt + k1) Ey(1€pa 113)-

Now we analyze each of the terms in (4.4.74)) individually. Before doing so, we replace several functions
of t by their bounds. Specifically

e §; could be positive or negative, but is assumed to converge to 0. Therefore || is bounded, say by 4.
e u; €0, 1] where i < 1.
e by € [b,b] where 0 < b < b, and k; € [0, k]. Therefore by + k¢y1 € [b, b+ .
With these observations, we have the following bounds:
Se 11t (VI (wg), ve) < Of[|V I ()2 - [|ve 2. (4.4.75)
Next

—ay (b + k1 (VI (uy), 24) = —a (b + ktﬂ)HVJ(ut)Hg
— ay(by + k1 (VI (uy), x¢)
< —ab||VJ (uy)|[3
+a(b+E) [V (a2 - [I%e]l2-

(4.4.76)

To bound the last term on the right side of (4.4.76)), we use the bound on ||X¢||2 from (4.4.58), and the
summability of {a;B;}. This gives

(b + k) |[VI(u)lla - |Zell2 < arLk(D + )| VI (ur)]2 - |[vell2 + WBF. (4.4.77)

Next we tackle the first quadratic term on the right side of (4.4.74)).

L L
§H5tutvt — ap(by + kep1)ze]|3 = §||5tutVtH§

oL 4.4.78
S5 b+ o)l (4478)

— O[tL(bt + kt+1)§t,ut(vt, Zt>.
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Each of the three terms can be analyzed individually.

L Lj?6?

§||6tutvt||§ < Llvill3. (4.4.79)
Next, from (4.4.62)), it follows that

oL

tT(bt + kt+1)2HZt”% = WBF. (4480)

Finally, we already have a bound for the cross-product term i (v, z¢) from (4.4.66). After multiplying
this bound by Li(b + k), we get

OétL(bt =+ kt_,_l)étut(vt, Zt> S WBF + OétLQES(Z_) + 15)||vt||§ (4 4 81)
+ 20 LO(b + K[ vell2 - [|[V I (ug)]]2- h

Now we can add up all these bounds. This gives
B(Viyr) = Be(J (er1)) + Ex([[ves]l3)
< J(wg) + [[vell3 = (1= @)Ivell3 — bl VI (we) |3 (4.4.82)
+ Crag|[ve|l3 + Coaue|[villa - |V I (ue)]|2 + WBF,

where C7, Cs are some positive constants whose precise value is not important. Next, we can “borrow” half
of each of the two negative terms in the above, and rewrite the bound as

I

1—p? b
E(Vig1) <Vi— T”Vt”% - at§||v‘](ut)”§ — F; + WBF, (4.4.83)

where F} is the quadratic form

_ i_atcl —ay(Cy/2 [[vell
Fo=[ vl ||w<ut>||2}[ ENy atfbm/))mefnh]'

Let us define

L 0,01 —ai(Ca)2) } . (4.4.80)

K, = 3
' [ —ay(C2/2)  au(b/2)
It is now shown that K; is a positive definite matrix, and F} is a positive definite form, for ¢ sufficiently
large; specifically, there exists a T' < oo such that F; > 0 for all ¢ >T. Suppose we succeed in proving this.

Since we can always start our analysis of (4.4.71)) starting at time 7', we can write

1—
2

In other words, the term —F; is gone. Now is in a form to which the Robbins-Siegmund theorem
(Lemma can be applied. So let us now establish the positive definiteness of the quadratic form for
sufficiently large t. Note that a symmetric 2 x 2 matrix is positive definite if its trace and its determinant
are both positive. In this case

E(Vii1) < Vigq — ( ) Ivelld — || VJ(We)||3 + WBF, Vt > T. (4.4.85)

-2
! 2M %at —0304?7
where ('3 is another constant. Since, by hypothesis, Zfi 0 a? < oo, it follows that oy — 0 as t — oo. Hence
the trace of K; is positive for sufficiently large ¢. Similarly, in the expression for the determinant of K, the
positive term is linear in oy, whereas the negative term is quadratic in a;. Hence the determinant of K is
also positive for sufficiently large t. Hence we conclude that K; is a positive definite matrix for sufficiently
large t.

With this observation, we can apply Theorem to .

We begin wih Item 1. Note that all statements hold “almost surely,” so this qualifier is not repeated
each time. Suppose holds. Then the following conclusions follow from Theorem [2.23}

1—p?

tr(Ky) = —(C1 = (b/2))a,  det(K;) =
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e J(u;) + ||v¢]|% is bounded. Moreover, there is a random variable W such that J(u;) + ||v¢]|3 — W
(almost surely) as t — oo.

e Further, almost surely

5 (F55) il + el wrun) B < . (14.56)
t=0

Since the summands in (4.4.86)) are both nonnegative, and (1 — 1?)/2 is just a constant, it follows that

> lIvell3 < oo, (4.4.87)
t=0
> V()3 < . (4.4.88)

t=0
Now implies that ||v;[|3 — 0 as t — oo, i.e., that v; — 0 as t — co. In turn, if J(u;) + ||v¢|3 — X,
then J(w;) — X as t — oo.

Now recall from that 8; = w; — €;v;. Since J(-) is continuous and v; — 0, it follows that
J(6:) = W as t — oo. The boundedness of {J(6;)} follows from it being a convergent sequence. Finally,
the boundedness of {VJ(0;)} follows from Lemma [4.1] Thus we have established Item 1.

Next we address Item 2. Suppose holds. Then it readily follows from that

. 2
liminf [[V.J (u;)[|3 = 0.

To translate this conclusion into the behavior of V.J(8;), we proceed as follows: It follows from the definitions
of w; and u; that
0,5 = U — (k/’t + Et)Vt.

Since €; and k; are bounded, v; — 0 as t — oo, and V.J(-) is Lipschitz-continuous, it can be concluded that
. 2
h}ggf VI (6:)]2 = 0.

This is Item 2.

Next we address Item 3 of the theorem. The hypotheses are that, in addition to , also
holds, and J(-) satisfies Property (KL’). Then by definition there exists a function ¢ : R — R in Class B
such that [|[VJ(6:)]|2 > ¢¥(J(6:)). Recall that all the stochastic processes are defined on some underlying
probability space (€, X, P). Define

Q={weQ:JOW) - Ww) & |vi(w)|3— 0},

O i={weq: Zat(w) = o0}
t=0

Note that if the step sizes are deterministic, then 7 = Q. Define Qs = Q¢ N 24, and note that P(Qs) = 1,
by Item 1.
The objective is to show that W (w) = 0 for all w € Q5. Once this is done, it would follow from Lemma
that
VI (O:(w))|l2 < [2LT(8:(w))]/? = 0 as t — oo, Yw € Qs.

Accordingly, suppose that, for some w € g, we have that W (w) > 0, say W (w) = 2p, where p > 0. Define

Gw):= stzp J(0(w)).
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Then G(w) < oo because {J(6:(w))} is a convergent sequence. Define

1

= = inf .
1 2 pﬁrlgG(W) vir)

Then g > 0 because 9(+) is a function of Class B. Now choose a Ty < oo such that J(O(w)) > p for all
t > Tp. By the (KL’) property, it follows that

IVI(O(w))ll2 > 2¢, Yt > Tp.

Next, choose T7 < oo such that ||vi(w)||2 < ¢/L for all t > Ty, and define To = min{Ty,T1}. Then it follows
from the Lipschitz continuity of V.J(-) that

VI (wi(w))ll2 = [IVI(:(w))ll2 = Lllvi(w)l2 = ¢, VE = Tb. (4.4.89)

On the other hand, because w € €5, we have that

Z at(w) = 0. (4.4.90)

t=T5

Thus (4.4.89) and (4.4.90) together imply that

o0

> | VI(0:)]3 = oo

t=T5

Since this contradicts (4.4.88), we conclude that no such w € Q5 can exist. In other words W (w) = 0 for all
w € . This establishes Item 3.

Ttem 4 is a ready consequence of Item 3 and Property (NSC). If {J(6;)} is bounded, then the fact that
J(-) has compact level sets means that {6;} is bounded. Then the fact that J(6;) — 0 as t — oo implies
that p(6;) — 0 as t — oo; in other words, the distance from the iterate 8; to the set S of global minima
approaches zero. Note that it is not assumed that S; consists of a singleton.

This completes the proof of Theorem

Proof of Theorem [4.4]

The proof, based on Theorem is basically the same as that of Theorem except that we invoke
Theorem [2.24] instead of Theorem . The only difference is that the bound holds only after some
time T'. Clearly this does not affect the asymptotic rate of convergence. Nevertheless, in the interests of
completeness, the proof is sketched here.

The hypotheses on the various constants imply that

a2 = O(t~272%), a2 M2 = O(t2+24+9) o, B, = O(t~1+9~),
while a?B; and o?B? decay faster than oy B;. Hence both {f;} and {g;} are summable if
2420 < —1,-24+2(¢p+6) < —1,-1+¢—v< —1.

The three inequalities are satisfied if ¢ satisfies (4.4.38)). Next, let us define v as in (4.4.39), and apply
Theorem This leads to the conclusion that J(u;) + [|v¢]|3 = o(t=*) for every A € (0,v). In turn this
means that, individually, both J(u;) and ||v¢||3 are o(t=*) for every A € (0,v). Since 8; = u; — (k¢ + &)y,
and both €, and k; are bounded, this leads to J(8;) = o(t ) for every A € (0,v). Finally, the (PL) property
leads to ||[V.J(8;)||2 = o(t=*) for every A € (0,v). If we choose the step size sequence to decay very slowly,
then the bound in follows readily. This completes the proof of Theorem
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4.4.5 Nonviability of an Earlier Iterative Scheme

In this section, we analyze the behavior of the solutions of introduced in [I30], reproduced here for
the convenience of the reader.
Aty1 = Mo Lne = (14 Ay1)ae
Lt

Recall from that the convergence conditions in [I30] involve the “synthetic” step size sequence {n;}.
The objective of this section is to show that this approach is not feasible. Specifically, if {y;} is a decreasing
sequence, then A\; — oo as t — oco. Thus, even if the original step size sequence {«;} is square-summable,
the synthetic sequence of step sizes {n;} need not be. Thus the assumptions in are strictly stronger
than the standard Robbins-Monro conditions, which are the sufficient conditions used in Theorem In
the other direction, if {y:} is an increasing sequence bounded away from 1, eventually 1 4+ A;yq1 < 0, thus
leading to a negative step size 1;, which is absurd. Thus the point is that, while the approach in [I130] is
quite elegant, it is not practical.

We begin by presenting a “closed-form” formula for A\;1; as a function of the p; sequence. Write the first

equation in (4.4.16)) as

A At — A A
)\t+1:7t_1: t =1, A=l g
Mt Mt Mot
1 1 1 A
=—(\— A1)+ ( - > Mo+ 24— (4.4.91)
ot Bt Ht—1 Ht—1
1 1 1
=X+ —(A = Xo1) + ( )/\t—l-
ot Mt -1
Therefore
A /\—i(/\ A )+<1 ! )/\ (4.4.92)
t+1 t = m t t—1 I t—1- =3

It is easy to show by induction that a “closed-form” solution to (4.4.91) is

ﬁl] (L) (1.4.93)

ey Hs Hr  Hr—1

t

H:} (A1 = o) +

T=1

t

Aty1 = A¢ +

=1

where empty products are taken as 1 and empty sums are taken as 0. Note that A\ is unspecified. So if we
take Ao = po/(1 — po), then
AU R P N
Ho 1 — o 1 —po
With this choice, the first term in drops out; but this is not much of a simplification. Note also that
if gy = p for all ¢, then Ay = A for all ¢.
Now let us analyze the behavior of \; in two specific situations: (i) {u:} is a strictly decreasing, i.e.,
e < py—q for all ¢, and (ii) {u;} is strictly increasing, but bounded above by some fi < 1. In principle, the
closed form solution can be used to analyze arbitrary sequences {u;}. However, the two situations
studied here are perhaps the most natural.

= o.

Lemma 4.2. Suppose Ao is chosen as po/(1 — po), so that \y = Ag. Suppose further that p, < pe—1 for all
t>1. Then \y — o0 ast — oo.

Proof. The first step is to show that A\;11 > A; for all ¢ > 1. The proof is by induction. First, for ¢t = 1, we
have that
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Next suppose A\; > A\;_1. Then
A Ai—
/\t+1 == _ 1> =1
Ht Hi—1

— 1=\

This completes the proof by induction.
Next, we invoke the recursion (4.4.91)).

1 1 1
Ait1— A= — (N — Nm1) + ( - > At—1.
Mt Mt Ht—1

The fact that p; < p;—1 implies that

1 1
<— ))\t—1>07 vt > 2.
1243 Me—1

Hence 1 1
A1 — A > — (N —Mm1) > — (M — M), VE> 2
Ht H2
As a consequence we get

t

1 1 t—1
Air1 — Ap > [H 1 (Mg — A1) > (m) (A2 — A1), VE > 2.

=2 S
We can add the above bound for all ¢t. Because it is a telescoping sum, we get
t

t k—1
1
)\t+1 = )\2 + E ()\k+1 - Ak) Z ()\2 - )\]_) E <MZ> — 00 as t — 00.

k=2 k=2
O
Lemma 4.3. Suppose pi—1 < pp <1 for allt, and that
s
H <) — 00 as t — oo. (4.4.94)
T=2 Hr
Then there exists a finite tg such that
In particular, if py < i <1 for all t, then we can take
= 3+1 A 4.4
Proof. Observe that
A A
A=t 1< 1=).
M1 Ho
Now suppose that Ay < A;—1. Then
A Aie
A1 = 2 —1< 22 1=,
t Hi—1
After observing that
1 1
- 0,
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we can rewrite(4.4.91)) as

1 1 1
)\t - >\t+1 - *(At_1 - >\t) + < - > >\t—1- (4497)
1243 Hi—1 1223

Now suppose A >0 for 7 =1,--- ,¢t. Then (4.4.97) implies that

T

Ar —Argp1 > ui()\rﬂ - ) > (H 1) (A1 — A2). (4.4.98)

g Mk

A= A1 = Z(/\r —Aro1) > [Z

T=1 T=1

(f[ 1)] O = o). (4.4.99)

j—o FE

Consequently
(4.4.100)

Now choose T such that

T
1 A1
— | > . 4.4.101
(H Hk) A1 — A2 ( )

k=2

This is possible in view of (4.4.94). Then there are two possibilities: (i) A, > 0 for 7 = 2,--- |T. Then
14.101)

Ar41 < 0 by virtue of . In this case we have that
A
)\T+2 = 21 1< —-1.
HT+1

Therefore Ap4o +1 < 0. The argument can be repeated, to show that Ay +1 < 0 for all ¢t > T + 2. Hence
we can take to = T + 2 in (4.4.101)). (ii) There exists a 7 between 2 and T such that A, < 0. By the above
reasoning, it follows that

A

)\T+1:i—1§—1<0.
fr
Therefore
A
Ao ="t 1<« 1, or Ayya+1<0.
Hr41

As above, this leads to the conclusion that A; +1 < 0 for all ¢t > 7 + 2. Since 7 < T, we can conclude as
before that A\; +1 < 0 for all ¢t > T+ 2. Hence we can again take to =T + 2 in (4.4.101J).
To prove the last claim, suppose that u; < i < 1 for all . Then we can replace (4.4.101) by

(1>T_1 )\1
= > .
12 A17>\2

Solving for T and choosing ty = T + 2 gives (4.4.96)). 0
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4.5 Stochastic Algorithms with Block Updating

Until now, we have studied what might be called “full coordinate updating.” Thus, in (4.3.1]), it is assumed
that, at each step ¢, every component of 8; is updated. Similarly, in (4.4.2)—-(4.4.3)), it is assumed that
every component of both w; and v; are updated at each ¢. In Chapter |3| we studied various types of
“block stochastic approximation” in which, at each step t, some but not necessarily all components of 8; are
updated. This is referred to as block updating, though the terminology is not standard. We study three
different types of block updating, which cater to the most commonly used methods. It is shown that, for
the SGD algorithm, if the assumptions in Theorems [I.1] or [£:2] are satisfied, then the conclusions of these
theorems continue to hold under each of these types of block updating. For the unified momentum algorithm,
the situation is not so satisfactory. We are able to prove that, if block updating is used in the stochastic
gradient term h;y; in 7, but not in the delay or momentum term, then the conclusions of
Theorems and [£.4] continue to hold. At the moment, there are no results on what happens when block
updating is applied also to the momentum terms.

4.5.1 Various Block Updating Schemes

Let hy41 denote the stochastic gradient in . The updating method described in is then the
“full coordinate” update option. We refer to it as “Option 1.” Now we describe three different options
for block updating, which we call single coordinate, multiple coordinate, and Bernoulli updates. These are
called Options 2, 3 and 4, and are denoted by hgi)l for k = 2,3,4. These updating schemes include most if
not all of the widely used block updating methods.

Option 1: Full Coordinate Update: Let

h) =y, (4.5.1)

Option 2: Single Coordinate Update: This option is also referred to as “coordinate gradient descent”
in [I75] and studied further in [I65]. At time ¢, choose an index & € [d] at random with a uniform probability,
and independently of previous choices. Let e, denote the elementary unit vector with a 1 as the x;-th
component and zeros elsewhere. Then define

2
h(*), = de,, o hyy, (4.5.2)
where o denotes the Hadamard, or component-wise, product of two vectors of equal dimension. Thus

= hes1s ifj =1,
J 0 if j £ .

The factor d arises because the likelihood that k: equaling any one index ¢ € [d] is 1/d. In this option, if
k¢ =1 € [d] at step t, then only the i-th coordinate of 8, gets updated at time ¢. In other words,

01,5 =01, VjF#1i.

Option 3: Multiple Coordinate Update: This option is just coordinate update along multiple coor-
dinates chosen independently at random. At time ¢, choose N different indices £} from [d] with replacement,
with each choice being independent of the rest, and also of past choices. Moreover, each k} is chosen from
[d] with uniform probability. Then define

[h(2)

N
d
h®) = 2 e ohup (4.5.3)
n=1

Because sampling is with replacement, the average number of times an index i € [d] gets selected for updating
is is N/d; to normalize this, the multiplicative factor in (4.5.3)) is the reciprocal of the average. In this option,
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hgi)l can have up to N nonzero components. Because the sampling is with replacement, there might be some
duplicated samples. In such a case, the corresponding component of hy; simply gets counted multiple times

in (153,

Option 4: Bernoulli Update: At time ¢, let {B;;,i € [d]} be independent Bernoulli processes with

success rate p;. Thus
Pr{B;; =1} = p;, Vi € [d]. (4.5.4)

It is permissible for the success probability p; to vary with time. However, at any one time, all components
must have the same success probability. Then define

d
V= Zeil{Bt,izl} € {0,1}4. (4.5.5)

i=1

Thus v, is a random vector, and v ; equals 1 if B;; = 1, and equals 0 otherwise. Now define
@ _ 1
ht+1 = ;Vt 9] ht+1. (456)
t

Note that, as with the other options, the factor 1/p; is the reciprocal of the likelihood of a particular i € [d]

being selected for updating. However, there is no a priori upper bound on the number of nonzero components

of hgi)l; the stochastic gradient hgi)l can have up to d nonzero components. It is also possible that B;; =0

for each 4, in which case vy = 0 and 6,1 = 6;. But the expected number of nonzero components is p.d.

4.5.2 Convergence of SGD with Block Updating

When the choice of the block update direction involves some random choices (such as k} or Byi1,), the
definition of the filtration {F:} needs to be adjusted. In the case of Option 2 (coordinate updating), F;
is the o-algebra generated by xf in addition to 6f and h!. In the case of Option 3, &} is replaced by the
collection "5671‘ for i € [N]. Finally, in Option 4, x{ is replaced by v.

The objectives of Lemma below are: (i) to show that the conditional expectation Et(hgi)l is the same

for all four values of K, and (ii) to give explicit expressions for the conditional variance CVt(hEi)l for each

value of k. To reduce the notational burden, we denote hgi)l by just hy41.

Lemma 4.4. As in (4.3.4), define
z; = Ey(hiy1), oy = higr — 24

Then i .
Em®) = EmY) =2,k =2,3,4. (4.5.7)

Moreover,
Vi) = (d — 1)||ze]12 + dE(|C [13):
3
CVi(0®)) = (d = 1) |23 + dB([[Coin]I3), (4.5.8)

4 1-p 1
CVi(n{Y) = mwmﬁ+ﬁﬂwgm®.

Proof. Tt is obvious that (4.5.7) is satisfied. Therefore, to compute the conditional variance of hgi)l, it is

necessary to compute the residual ||h£i)1 — 2|3, and then take its conditional expectation.
Option 2: Suppose that k; = i. Then

_ { d(zt,i + Cey1,4), if j =1,
o 0

(2)
h , i #1,

t+1,5
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L= (d — ]-)Zt,i + dCtJrl’i, 1f] = i,
b —2t,5, if j #4,
Therefore, conditioned on the event k; = i, we have that
d

Z(hi-& j Zt,j)2 = (d—1)? Zt it d2Ct+1 i 2d(d — 1)2,iGeqr,i + Z 2,49

j=1 J#i
Now we take the conditional expectation of the above quantity. For this purpose, we note that (i) each of
the events x; = i occurs with probability 1/d, and (ii) E¢(z¢,iCi+1,;) = 0. Hence

d
1 1
(H t+1 —z)3) = az ZmJFZZtg gz d2<t+11
i=1 J#i i=1
(d—1)*+(d

-1
- D o+ a1 1)

= (d=Dlzell2 + dE(|Cop112)-

This gives the first equation in (4.5.8).
Option 3: Observe that h,; is the average of N different quantities wherein the error terms i, 1, n € [V]

are independent. Therefore their variances just add up, giving the middle equation in .

Option 4: For notational simplicity, we just use p in the place of p;. In this case, each component
hiy1,; equals (1/p)(2e,i + Cit1,i) with probability p, and 0 with probability 1 — p. Thus hiy1; — 2¢,; equals
((1/p) = D)zt + (1/p)Cy1,s with probability p, and —z;; with probability 1 — p. As can be easily verified,
the conditional variance is ((1— p)/p)z7; + (1/p)Ei(¢7,1 ;) for each component. As the Bernoulli processes
for each component are mutually independent, the variances simply add up. It follows that

1) —p 1
CVi(h(})) = THZtllé B ),

which is the bottom equation in (4.5.8)). O

With Lemma in place, we can now state the following meta-theorem on the convergence of block-
uptating applied to the SGD algorithm. To state the theorem, we define x; as in (4.3.4)), and study the SGD
formulation

0" = 0% —q,n®). (4.5.9)
This formulation is just (4.3.1), with the “full coordinate” stochastic gradient h;; replaced by n*® for

t+1
k =2,3,4. As stated earlier, we denote hﬁr)l as hyyq.

Theorem 4.5. Suppose the stochastic gradient hy 1 satisfies the bounds (4.3.6) and (4.3.7)). Further, suppose
that when Option 4 is used, then

il;lf pr=:p>0. (4.5.10)
Then the conclusions of Theorems and 9 continue to hold for {B(k)} for k=2 3,4.

Proof. For the update rule one can just replace hyy; by h; +)1 in (4.3.13)). Therefore, for k = 2 or
k=3, (4.3.14)) gets replaced by

’L
E(J01h) = J(0:) — an(VI(01"),24) + “L= Eu( [ 3)
2L
= J(6:) — a(VI(6), z1) + “E=[(d = V)23 + B¢, ]13)]
2dL
< JO) = an(VI0), 24) + =73 + Ee((1C1 1)

aldL

= J(O) — a,(VI(O7),2,) + (Ihera]3). (4.5.11)
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In deriving (4.5.11f), we use two facts: First, all the stochastic gradients hgi)l have the same conditional
expectation, and second, it follows from (4.5.8]) that

Vi(In13) = (d = Dzl + dE([Cosr 1) < dlllze ]l + dE (S s 12)] = dOVi (| g ||2)-

So in effect we have replaced a? by da?. The desired conclusions now follow readily. Next, when Option 4
is utilized, we have that

4 1—ps 1 1-p
CVi(hyy) = — e} + (€11 13) < —=CVil e [3).
Pt Pt p
So once again the desired conclusion follows. O

4.5.3 Convergence of the Unified Momentum Algorithms

Next we study the unified momentum-based algorithms of (4.4.2)—(4.4.3)), but with block updating. Specif-
ically, suppose

Wil = Wi+ arve — btozthﬁli)l, (4.5.12)
Vil = Ve — athﬁi)l, (4.5.13)

where hg’i)l denotes the block-updated stochastic gradient. Thus, at each step ¢, some but not all components

of hgi)l will be zero. However, there is no block-updating in the other terms.

Theorem 4.6. Suppose that the various constants satisfy the assumptions in (4.4.29)), while the objective
function J(-) satisfies Standing Assumptions (J1) and (J2). Further, suppose the stochastic gradient hyqq

satisfies the assumptions (4.4.27)—(4.4.28)). Further, suppose that when Option 4 is used, then
iIflf pr=:p>0. (4.5.14)

Then the conclusions of Theorems andﬂ continue to hold for {Oik)} for k=2 3,4.

The proofs are omitted as they are obvious.

Notes and References

As shown in Section the problem of finding a stationary point of a C! function J(-) is equivalent to
finding a solution of VJ(6*) = 0. Hence all the discussion in Chapter [3|is also applicable here.

As mentioned in the Notes and References section of Chapter methods such as steepest descent,
conjugate gradient, and quasi-Newton etc. using the exact gradient vector were widely studied in the 1960s.
However, the behavior of these algorithms when the true gradient was replaced by an approximate, or even
stochastic, gradient commenced only in the 1970s. One of the early papers to study this approach is [I18],
in which the authors introduce a “pseudo-gradient” (which is the same as the present stochastic gradient)
which, on average, has a negative inner product with the true gradient. From that beginning, optimization
using a stochastic gradient has witnessed an explosion of papers. The objectives of these papers was mostly to
relax the assumptions on the class of functions (from strongly convex or convex to something more general),
and on the measurement errors (by permitting biased noise and/or noise whose conditional variance grows
without bound at the iteration counter ¢ increases). The results in Section are the most general available
at present, and are taken from [70, [71].

The material in Section is largely taken from [121], which also contains several numerical examples.
There are several other papers that mention “block” updating, such as [176, 30, @7, 122]. However, the
choice of the “blocks” to be udpated is far less general than it is in [I2I]. The discussion of momentum-
based methods with time-varying parameters is taken from [169].



Chapter 5

Markov Decision Processes

A brief introduction to Reinforcement Learning was given in Section A widely used mathematical
formalism for studying problems in RL is Markov Decision Processes (MDPs) where the dynamics of the
Markov process are not known, and must somehow be “inferred” on the fly. Before tackling that problem, we
must first understand MDPs when the dynamics are known. That is the aim of the present chapter. In the
interests of simplicity, the discussion is limited to the situation where the state and action spaces underlying
the MDP are finite sets. MDPs where the underlying state space and/or action space is countable, or an
arbitrary measurable space, are also of interest in some applications. For example, the situation where X
and/or U are subsets of some Euclidean space R? for some d are also sometimes of interest. Two recent
papers [60] [61] present some new techniques for addressing such problems. The latter paper also contains an
extensive and relevant bibliography. However, we do not study the more general situations in these notes.

The topic of MDPs is quite well-studied, and there are several excellent books on the subject. The reader
is directed to [I19] for a comprehensive treatment of the subject, which also studies the case of infinite state
and action spaces. The theory of MDPs is also studied in [I45] and [I48]. The book [27] contains several
practical examples of MDPs.

5.1 Markov Reward Processes

Recall the introduction to Markov processes in Section [2.2] Further facts about Markov processes can be
found in [I37], [167].

Suppose X is a finite set of cardinality n, written as {x1,...,z,}. If {X;}i>0 is a stationary Markov
process assuming values in X', then the corresponding state transition matrix A is defined by
Q5 = Pr{XtJrl = 5Cj|Xt = .’L’Z} (511)

Thus the i-th row of A is the conditional probability vector of X;41 when X; = ;. Clearly the row sums of
the matrix A are all equal to one. Therefore the induced norm || Al|s— o0 also equals one.

Up to now there is nothing new beyond the contents of Section 2.2 Now suppose that there is a “reward”
function R : X — R associated with each state. There is no consensus within the community about whether
the reward corresponding to the state X; is paid at time ¢ as in [I48], or time ¢ + 1, as in [119, 145]. It is
assumed here that the reward is paid at time ¢, and is denoted by R;; the modifications required to handle
the other approach are easy and left to the reader. The reward R; can either be a deterministic function of
X, or a random function. If R; is a deterministic function of X;, then we have that R, = R(X;) where R is
the reward function mapping X into (a finite subset of) R. On the other hand, if R; is a random function of
X, then one would have to provide the probability distribution of R; given X;. Since X; has only n different
values, we would have to provide n different probability distributions.

Two kinds of Markov reward processes are widely studied, namely: Discounted reward processes, and
average reward processes. Each of these is studied in a separate subsection.

135
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5.1.1 Discounted Reward Processes

a

To study discounted Markov Reward Processes, we choose a “discount factor” v € (0,1). Suppose z; € X
is the “starting state of interest.” Then the expected discounted future reward V(z;) starting at time
0 in state xz; is defined as

o0
V(z;)=E lz YRy Xo = xi] : (5.1.2)

t=0
We often just use “discounted reward” instead of the longer phrase. Note that, because the set X is finite,
the reward function R; is bounded if it is a deterministic function of X;. If R; is a random variable dependent
on X;, then it customary to assume that it is bounded. With these assumptions, because v < 1, the above
summation converges and is well-defined. The quantity V' (z;) is referred to as the value function associated

with z;, and the vector
v=[ V() - V() ], (5.1.3)

is referred to as the value vector. Note that, throughout these notes, we view the value as both a function
VX — R as well as a vector v € R". The relationship between the two is given by . We shall use
whichever interpretation is more convenient in a given context.
This raises the question as to how the value function and/or value vector is to be determined. Define the
vector r € R™ via
re=[r - ], (5.1.4)

where, if R; is a random function of X;, then
r; := B[R Xt = x4]. (5.1.5)
Of course, if R; is a deterministic function R(X}), then r; is just R(x;).

Theorem 5.1. The vector v satisfies the recursive relationship

v =r+7Av, (5.1.6)
or, in expanded form,
V(zi) =ri+ ’Yzaijv(xj)~ (5.1.7)
j=1

Proof. Let x; € X be arbitrary. Then by definition we have

Z’}/th|X0 = (El‘| =7r;,+ E
t=0

> YRy Xo = x} . (5.1.8)

t=1

However, if Xo = x;, then X; = x; with probability a;;. Therefore we can write

0o n oo
Z’}/th|Xo = .Z‘;| = Zai]‘E Z’}/thle = l‘j]
j=1

=1 =1
n
v E ai; E
i=1

)
D AR Xo = %‘]
n
’}/ZaijV(l‘j). (519)
j=1

E

t=0

In the second step we use fact that the Markov process is stationary. Substituting from (5.1.9)) into (5.1.8])
gives the recursive relationship (5.1.7)). O
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Example 5.1.

We analyze the toy snakes and ladders game of Example As shown therein, the state transition
matrix of this game is given by

S 1 4 ) 6 7 8 W L
S |10 025 025 025 0 025 O 0 0
110 0 025 050 0 025 O 0 0
410 O 0 025 025 025 025| O 0
510 025 0 0 025 025 025| O 0
6 |0 025 O 0 0 025 025]025 O
710 025 O 0 0 0 025]0.25 0.25
8§10 025 0 0 0 0 025]0.25 0.25
w0 0 0 0 0 0 0 1 0
L]0 O 0 0 0 0 0 0 1

We define a random reward function for this problem, as follows: We set R; = f(X:4+1), where f is defined
as follows: f(W) =5, f(L) = =2, f(x) = 0 for all other states. However, there is an expected reward
depending on the state at the next time instant. For example, if Xy = 6, then the expected value of Ry is
5/4, whereas if Xy =7 or Xy = 8, then the expected value of Ry is 3/4.

Now let us see how the implicit equation can be solved to determine the value vector v. Since the
induced matrix norm ||A|lcc—oo = 1 and y < 1, it follows that the matrix I — A is nonsingular. Therefore,
for every fixed assignment of rewards to states, there is a unique v that satisfies . In principle it is
possible to deduce from that

v=(I—-~yA4)""r. (5.1.10)

The difficulty wth this formula however is that in most actual applications of Markov Decision Problems,
the integer n denoting the size of the state space X’ is quite large. Moreover, inverting a matrix has cubic
complexity in the size of the matrix. Therefore it may not be practicable to invert the matrix I —vA. So
we are forced to look for alternate approaches. A feasible approach is provided by the Contraction Mapping
Theorem (CMT), namely Theorem With the contraction mapping theorem in hand, we can apply it to
the problem of computing the value of a discounted Markov reward process.

Theorem 5.2. The mapy — Ty := r+~Ay is monotone and is a contraction with respect to the o -norm,
with contraction constant .

Proof. The first statement is that if y; < y2 componentwise (and note that the vectors yi,ys2 need not
consist of only positive components), then T'yq < T'ys. This is obvious from the fact that the matrix A has
only nonnegative components, so that Ay > 0 whenever y > 0, where the inequalities are componentwise.
Now suppose that y; < ys. Then

yo—y1 >0 = A(y2—y1)>0.
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Therefore Ay, < Ays, which in turn implies that 7' is monotone. For the second statement, note that,
because the matrix A is row-stochastic, the induced norm of A with respect to || - || is equal to one.
Therefore

1Ty1 — Tyalloo = [7A(Y1 = ¥2)lloo < Ylly1 — ¥2lloo-
This completes the proof. O

Therefore one can solve (5.1.6)) by repeated application of the contraction map T. In other words, we
can choose some vector y° arbitrarily, and then define

y' T =r 4y

Then the contraction mapping theorem tells us that y’ converges to the value vector v. Moreover, from
(7.1.3) one can estimate how far the current iteration is from the solution v. Note that the contraction
constant p in the statement of the theorem can be taken as the discount factor «. Define the constant

c:=|r+74y° = y°| .

which measures how far away the initial guess y° is from satisfying (5.1.6). Then we have the estimate

ly* = vl <

. 111
< (5.1.11)

In this approach to finding the value function, each iteration has quadratic complexity in n, the size of the
state space. Moreover, can be used to decide how many iterations should be run to get an acceptable
estimate for v. This approach to determining v (albeit approximately) is known as “value iteration.” Now,
if we wish to find an approximation v to v that is accurate to within some prespecified accuracy €, then we
need to ensure that

v* log(c/(e(1 —7))) _ log((e(1 = 7))/c)

c<e ork>

=: N
1—~ log(1/7) log

)

after routine calculations. Thus if we use N iterations, then the complexity of value iteration is O(Nn?)
as opposed to O(n3) for using . Hence the value iteration approach is preferable if N <« n. To
illustrate, let us choose typical values of v = 0.99, ¢ = 10~%. If the initial mismatch ¢ = 5, then N = 1, 535.
So if, for example, n = 10°, then value iteration would be preferable. Note that the faster future rewards
are discounted (i.e., the smaller v is), the faster the iterations will converge.

5.1.2 Average Reward Markov Processes

a
Now we discuss average reward Markov processes. As before, there is a Markov process {X;};>0 on
a finite space X of cardinality n, with the state transition matrix A € [0,1]"*", and a reward function
R : X — R. If the reward is random, it is assumed that the reward is bounded almost surely (to avoid
technicalities), and the symbol r; is used to denote the expected value of the reward to be paid at time ¢,
when X, = z;.
The objective is to compute the average reward

T—oo T

T
&= lim 4 > EB[R(X,)|Xo ~ ¢, (5.1.12)
t=0

where ¢ € S(X) is a probability distribution on X. Compared with the definition (5.1.2]) of the discounted
reward, two points of contrast would strike us at once.
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1. In (5.1.2)), the existence of the sum is not in question, because v < 1. However, in the present instance,
there is no a priori reason to assume that the limit in (5.1.12)) exists.

2. The value function V in (5.1.2)) is associated with an initial state ;. It is implicit in the definition that
V(z;) need not equal V(z;) if x; # x;. In (5.1.12)), the initial state is replaced by an initial distribution
¢, which is more general. However, we write ¢*, instead of ¢*(¢), suggesting that the limit, if it exists,
is independent of ¢.

Theorem presents a simple sufficient condition to address both of the above observations.
Theorem 5.3. Suppose A is irreducible, and let p denote its unique stationary distribution. Then
" = pr = E[R, p], Vo € S(X), (5.1.13)
where r is the reward vector defined in (5.1.4)).
Proof. If Xg ~ ¢, then X; ~ ¢pA?. Therefore
E[R(X})| X0 ~ ¢] = pA'r.

Also, as stated in Theorem we have

1 I
lim — ZAt =1,u.
=0

T—oo T
t
Therefore
1 Z
e 1 — t = = =
cF=¢ [Tlgréo T ;A r = ¢l,ur = ur = E[R, p), (5.1.14)
because ¢1,, = 1. This is the desired result. O

Next we introduce an important concept known variously as the bias or the transient reward. For a
discussion (albeit with “reward” replaced by “cost”), see [I19] Section 8.2.3] or [3, Section 4.1].

Definition 5.1. Suppose A is primitiveﬂ and define ¢* as in (b.1.14]) For each index 4, the transient
reward J; € R is defined as

Jr = {E[R(X:|Xq = 2] — "} (5.1.15)
t=0

A priori it is not clear why the sum in (5.1.15) is well-defined, because there is no averaging over time.
It is now shown that the transient reward is indeed well-defined, and several explicit expressions are given
for it.

Theorem 5.4. Suppose A is primitive, and let p denote its stationary distribution. Define M = 1,u €
[0,1]"*™, and J* € R™ as [J}]. Then the following statements are true:

1. The vector J* is well-defined.
2. An explicit expression for J* is given by

=T -A+M)'I-Myr=(1—-A+M)"r—c"1,). (5.1.16)

IThis is equivalent to assuming that A is irreducible and aperiodic; see Theorem m
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3. The vector J* satisfies the “Poisson equation”

J=r—-c"1, + AJ. (5.1.17)
Moreover, J* is the unique solution of (5.1.17)) that satisfies
nJ =0. (5.1.18)

Proof. Note that u,1, are row and column eigenvectors of A corresponding to the eivenvalue A = 1, and
that all other eigenvalues of A have magnitude less than one. So if we define

Ay=A—-1,u=A— M,

then the spectrum of Ay is the same as that of A, except that the eigenvalue at 1 is replaced by 0. In
particular, p(As2) < 1, and as a consequence

ZAt (I—Ay) '=(T—-A+M)"L (5.1.19)

Next, suppose v € R™ satisfies pv = 0. Then it is easy to verify that Av = Asv, and moreover,
pAsv = 0. Repeated application of this relationship shows that A'v = Abv, for all ¢ > 1. Therefore, for
every such v, we have that

Z v_ZAQV_ (I—A+M) v (5.1.20)
t=0

Now in particular, choose
v=r—c1l,=(—- M)r.

Then it follows from ([5.1.14]) that v = 0. Hence ([5.1.20)) implies that
> Alr—c1,) = (I — A+ M) (I - M)r.
To prove Statements 1 and 2, let e; denote the i-th elementary basis vector. Then Xy = z; is equivalent

to Xo ~e;. Then X; ~ e[ A’, and
Jr =Y le] A'r — "],
=0

o0

J = Z( fr —c*1,) ZAtr—cl
t=0
= (I-A+M)” (I—M)r. (5.1.21)

Here we use the fact that ¢*1,, = ¢*A?1,, for all . This establishes Statements 1 and 2.
Now we come to Statement 3. From ([5.1.15)), we get

Jr= ) {BIR(X)|Xo = x;] — ¢"}
= e S EIRGX = 0] - )
= 1=+ Y ay ) {BR(Xi| X1 = ;] -}
j=1  t=1

n
= Ti—C*—FE ClijJ;,
j=1
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which is just written out in component form. Hence J* is a particular solution of .

Finally, observe that if J is another solution of (5.1.17), then (J* — J) = A(J* — J), which implies that
J = J* + al, for some constant a. Thus {J* + a1, : a € R} is the set of all solutions to (5.1.17). Now,
since p(r — ¢*1,) = 0, it follows that

—uZAtr—cl :iur—cl =0.

t=0

Moreover, if u(J* 4+ al,) = 0, then o = 0. Hence J* is the unique solution of (5.1.17)) that satisfies
pud =0. O

It is possible to give an alternate proof of Statement 3, and we do so now. Suppose J* is given by (5.1.21)).
Observe that
w(I —A+M)=pM =p, or w(I —A+M)"! =p.

Also, u(I — M) = 0. Therefore
uI* =p(I—A+M)"'(I - M)r=pu(l - M)r=0.

Next, ((5.1.21)) implies that
(I-—A+M)J" =({I-M)r.

However, MJ* =1,uJ* =0, and (I — M)r =r — ¢*1,,. Therefore
— A =r—-c"1,.

This is just (5.1.17)). The above derivation avoids infinite sums.
Let us now summarize the situation of discounted reward processes vis-a-vis average reward processes.

e The discounted reward is well-defined for all Markov reward processes, irrespective of the nature of
the matrix A.

o If A is irreducible, then the average reward is also well-defined. However, there is no guarantee that
the transient reward is well-defined.

e If A is not just irreducible but also primitive, then the transient reward is also well-defined.

5.2 Markov Decision Processes

5.2.1 Markov Decision Processes: Problem Set-Up

In a Markov process, the state X; evolves on its own, according to a predetermined state transition matrix. In
contrast, in a MDP, there is also another variable called the “action” which affects the dynamics. Specifically,
in addition to the state space X', there is also a finite set of actions /. Associated with each action uy € U
is a corresponding state transition matrix A%* = [afj’“] So at time t, if the state X; equals x;, and an action
u € U is applied, then

Pr{Xi11 = 2;| Xy = 2;,U; = wi} = a

Obviously, for each fixed uy € U, the corresponding state transition matrix A“* is row-stochastic. In addition,
there is also a “reward” function R : X x4 — R. Note that in a Markov reward process, the reward depends
only on the current state, whereas in a Markov decision process, the reward depends on both the current
state as well as the action taken. As in Markov reward processes studied in Section it is possible to
permit R to be a random function of X; and U; as opposed to a deterministic function. Moreover, to be
consistent with the earlier convention, it is assumed that the reward R(X;, U;) is paid at time ¢t. Note that
other authors assume that the reward is paid at time ¢ + 1.

Va; € X. (5.2.1)

1]’
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In the above definition, the assumption is that the set of permissible actions U does not depend on the
current state z;. One can imagine situations where this assumption may not be realistic. An example is
provided by autonomous navigation in the midst of obstacles. Suppose there is a grid, some squares of
which are occupied by obstacles, and the state space X consists of the free squares. The action set can be
U = {F, B, R, L}, representing go forward, go back, turn right, and turn left respectively. Depending on
the current state (that is, the square currently occupied by the vehicle), some of these actions might not be
permissible, due to the presence of obstacles. However, this situation can be tackled by assigning a large
negative “reward” (that is, a large penalty) to an action that is not permitted. This approach provides a
uniform set of actions for all states.

The most important concept in an MDP is that of a “policy,” which is just a systematic way of choosing
U; given X;. One can make a distinction between deterministic and probabilistic policies. A deterministic
policy is just a map from X to U. A probabilistic policy is a map from X from the set of probability
distributions on U, denoted by S(U). Let II4, II, denote respectively the set of deterministic, and the set
of probabilistic, policies. Clearly the number of deterministic policies is [U/||*!, while TI, is uncountable.
Observe that a policy 7 € II; can be represented by a matrix P, of dimensions |X| x ||, where each row of
P, contains a single one and the rest are zeros. Thus in 4, the one is in column 7 (z;) and the rest are zeros.
If 7 € II,,, then P, need not be binary, but P, must have only nonnegative elements, and the sum of each
row must equal one.

Now we make an important observation. Whether a policy 7 is deterministic or probabilistic, the resulting
stochastic process {X;} is a Markov process with the state transition matrix denoted by A™ determined as
follows: If w € 114, then

[AT)ij = Pr{Xi41 = 25| Xy = 2,7} = a:j(mi)' (5.2.2)
If 7 € II,, and
m(x) =[] ¢ - Pim |, (5.2.3)
where m = |U|, then
[A™)ij = Pr{Xpp1 = 2| Xy = @i, 7} = ) dinay (5.2.4)
k=1

Equation (5.2.4) contains (5.2.3) as a special case, by setting ¢;; = 1 if m(z;) = u;, and zero otherwise.
In a similar manner, for every policy m, the reward function R : X x Y — R can be converted into a

reward map R, : X — R, or a reward vector r,, as follows: If 7 € II4, then

R (z;) = R(z;, 7(x;)), (5.2.5)
whereas if m € II,,, then
Rep(z:) = Y ¢inR(i, up). (5.2.6)
k=1

Equations (5.2.4)) and (5.2.6) can be put into “closed-form” using the notion of a Hadamard product.
The standard definition of a Hadamard product is this: If M, N are matrices of equal dimensions, then their
Hadamard product M o N has the same dimensions, and is defined by

[M o N]ij = mijnij, V’L,]

We now extend the definition as follows: Suppose M is a matrix, and N is a column vector, where both
M, N have the same number of rows. Then we define M o N as a matrix that has the same dimensions as
M, given by

[M (¢] N]” = mijni, V’L,j

With this definition, we can write both A, and r, as follows: Defiine the matrix P, € [0, 1]|X XU associated
with the policy 7. Note that if 7 € 14 is a deterministic policy, then P, € {0, 1}l Let [P,]; denote



5.2. MARKOV DECISION PROCESSES 143

the k-th column of P,. Then
||
A" =" AW o [Py (5.2.7)
k=1

Next, write the Reward matrix R as a matrix of dimensions |X| x [U|, where
Rik = R(xi,uk).
Then

|
re=[RoP] -1y =Y Ro[P]" (5.2.8)
k=1

Suppose |X| = 3,|U| = 2. Thus there are three states and two actions. Suppose that the two state
transition matrices are given by

02 05 0.3 0.4 03 0.3
A =105 04 01 |,A®) =103 02 05
0.3 0.3 04 0.1 02 0.7

As required both matrices are row-stochastic. Further, suppose that the associated reward matrix is given
by

16
R=1]4 3
2 5

This means that the reward associated with the state 7 and action u; is 1, and so on. The reward can
represented conveniently in matrix form as above.

Now suppose we choose the deterministic policy m; as w1 (z1) = uy, m1(22) = ug,m(z3) = uwy . This
means that when X; = x1, we choose the action U; = uy etc., irrespective of the value of the time index ¢.
Thus the policy matrix Py, is given by

10
Pr=|01
10
Now we can apply (5.2.7) to deduce that
0.2 05 0.3 0 0 0
A(ul) o [Pﬂ'l]l = 0 0 0 7A(u2) o [Pﬂl]g = 0.3 0.2 0.5 s
0.3 03 04 0o 0 0
0.2 05 0.3
Aﬂ-l = A(ul) o [Pﬂ-l]l + A(ug) o [Pﬂ-l]z = 0.3 0.2 0.5
03 03 04

Next, the reward vector R,, can be computed using (5.2.8)). It follows that

Ro P, =

o Ww o
[ —

1
7R7r1 = 0
2

N O =
o Ww o
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5.2.2 Markov Decision Processes: Analysis

For a MDP, one can pose three questions:

1. Policy evaluation: For a given policy 7, define V. (x;) to be the “value” associated with the policy
7 and initial state x;, that is, the expected discounted future reward with Xy = z;. How can V(x;)
be computed for each x; € X7

2. Optimal Value Determination: For a specified initial state z;, define

V*(x;) == max Vp(z;), (5.2.9)

well,

to be the optimal value over all policies for that initial state. How can V*(z;) be computed? Note
that in (5.2.9)), the optimum is taken over all probabilistic policies. It is shown in Theorem in the
sequel that the optimum can actually be achieved by a deterministic policy.

3. Optimal Policy Determination: Define the optimal policy map X — Il  via

7 (x;) = arg max Vi (x;). (5.2.10)
welly

How can the optimal policy map 7* be determined? Note that in the previous item, we wish to find
the optimal value associated with each state, whereas in this item, we wish to identify a policy that
achieves the optimal value. It is possible restrict our search only to deterministic policies, because as
stated above, the maximum over 7 € II, is not any larger. Moreover, it is again shown in Theorem
that there exists one common optimal policy for all initial states.

Next we present answers to the three questions above.

Policy Evaluation:

Suppose a policy m € Il is specified. Then the corresponding state transition matrix and reward are given
by (5.2.2) and (|5.2.5) respectively. Now suppose we define the vector v, by

Ve =[ Valz1) ... Vi(za) |, (5.2.11)
and the reward vector r; by

rr = Re(z1) ... Rgp(zn) |, (5.2.12)
where R(z;) is defined by (5.2.5) or (5.2.6)) as appropriate. Then it readily follows from Theorem that
v, satisfies an equation analogous to (|5.1.6]), namely

Vie=r; +7ATv,. (5.2.13)

As before, it is inadvisable to compute v, via v, = (I — yA™)"!r,. Instead, one should use value iteration

to solve (5.2.13)).

For future use we introduce another function Q. : X x &Y — R, known as the action-value function,
which is defined as follows:
Qn (@i, up) = R(wi,ux) + Br | Y 7 Re(Xy)| Xo = 21, Up = g | - (5.2.14)

t=1

Apparently this function was first defined in [I72]. Note that @, is defined only for deterministic policies.
In principle it is possible to define it for probabilistic policies, but this is not commonly done. In the above
definition, the expectation E, is with respect to the evolution of the state X; under the policy m. When the
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reward is a random function of X; and Uy, then inside the summation we would need to take the expected
value of R(Xy,m(X})) for a deterministic policy.

The way in which a MDP is set up is that at time ¢, the Markov process reaches a state X;, based on the
previous state X;_; and the state transition matrix A™ corresponding to the policy w. Once X; is known,
the policy m determines the action U; = 7(X}), and then the reward R,(X;) = R(X;, 7(X})) is generated.
In particular, when defining the value function V;(z;) corresponding to a policy m, we start off the MDP in
the initial state Xog = x;, and choose the action Uy = 7(x;). However, in defining the action-value function
Q, we do not feel compelled to set Uy = 7(Xo) = m(x;), and can choose an arbitrary action uy, € U. From
t = 1 onwards however, the action Uy is chosen as U; = 7(X;). This seemingly small change leads to some
simpifications. Specifically, it will be seen in later chapters that it is often easier to approximate (or to
“learn”) the action-value function than it is to approximate the value function.

Just as we can interpret V : X — R as a |X|-dimensional vector, we can interpret @ : X x U — R as an
|X] - |U|-dimensional vector, or as a matrix of dimension |X| x |U|. Consequently the Q-vector has higher
dimension than the value vector.

Theorem 5.5. The function @ satisfies the recursive relationship
Qn (i, ur) = R(zi,up) + Y alt Qe (aj, m(x;)). (5.2.15)
j=1

Proof. Observe that at time ¢t = 0, the state transition matrix is A**. So, given that X¢ = x; and Uy = g,
the next state X; has the distribution

Xy N[a?j’“,jzl,--- ,n).

Moreover, U; = 7(X1) because the policy 7 is implemented from time ¢t = 1 onwards. Therefore

Qnr(wiyur) = R(ziup) + Ex |y al <WR(333‘77T($J‘))+ZWtRw(Xt)|X1ijaUlzﬂ(ﬂ«“j)>
t=2

= R(x;,ux) + Ex vza;‘j’“ (R(xj,ﬂ'(xj)) + Z’thw(Xt)\Xl =xz;,U; = 7r(xj)>

t=1

= R(zi,ux) +7 Y altQ(z;, m(x;)).

j=1
This is the desired conclusion. O
Theorem 5.6. The functions V; and Q. are related via

Vie(xi) = Qr(zi, m(z;)). (5.2.16)
Proof. If we choose uj, = 7(x;) then becomes

Qn(wi,m(@:)) = Ralzi) +7 Y al™ Q(a;, ().

j=1
This is the same as (5.2.1]) written out componentwise. We know that (5.2.1) has a unique solution. This
shows that ([5.2.16|) holds. O

In view of ([5.2.16)), the recursive equation for @), can be rewritten as

Qr(xi,up) = R(z;i,ug) + ’yZafj’“Vw(ajj). (5.2.17)

Jj=1
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Optimal Value Determination:

For a policy m € Il or 7 € II,,, define the associated map 7 : R" — R" via
T.v=r;+vA"V. (5.2.18)

Then it follows from Theorem that T is monotone and is a contraction with respect to the f.,-norm,
with contraction constant ~.

Now we introduce one of the key ideas in Markov Decision Processes. Define the Bellman iteration
map B :R" — R"” via

(Bv)i = max | R(zi,ux) +7 Y aifv; | - (5.2.19)
j=1

Theorem 5.7. The map B is monotone and a contraction with respect to the {s-norm.

Proof. The theorem has two claims: The first claim is that the map B is monotone, meaning that if v; < vy
componentwise, then B(vy) < B(vsa) componentwise. The second claim is that B is a contraction with
respect to the o-norm. Note that, unlike the value iteration map 7. defined in , the map B is not
affine.

Let us begin with the first claim. Suppose v; < vy. Then

n
(BOv))i = max | Rl u) +7 ) affvy
j=1

n
< max R(xi,uk)—k’yg a;‘j’ﬂvgj
u €U —)
j=

= (B(v2)):-

Here we use the fact that afF > 0 for all 4, j. This establishes that B is monotone, which is the first claim.
The proof of the second claim is a bit more elaborate. We begin by establishing that

, — A
g;g)&g(x“w) max (@i, uk)

< max lg(xs, ur) — h(zi,ug)|, Ya; € X. (5.2.20)
U €

To prove ([5.2.20]), we begin with the obvious observation that, if «, 5 are real numbers, then
a—pf<la-B] = a<|a—p[+5

Note that this inequality holds irrespective of the signs of o and 3. Fix x; € X', ux € U and apply the above
inequality with a = g(z;, ux), 8 = h(x;, ug). This gives

g(wi, ur) <|g(@i,ur) — h(zs, ug)| + hzi, ug).
Now take the maximum of both sides over uy € U. This gives

ggﬁg(m,w) < Egg[lg(wi,w)*h(xnw)Hh(zi,uk)}

< max l9(@i, uk) — b, up)| + max h(z;, ug).
Rearranging gives

. _ ) < . _ ) .
ggﬁg(x“uk) ggﬁh(%u;@),ggﬁlg(%uk) h(, ug)|



5.2. MARKOV DECISION PROCESSES 147

By symmetry, we can interchange g and h, which gives

max h(x;, ug) — max g(@i, up) < max lg(i, ur) — M, ug)|.

Combining these two inequalities gives ([5.2.20)).
Now we make use of (5.2.20]) to show that B is a contraction with respect to the {o,-norm. Let vi,vo € R"”

be arbitrary, and fix z; € X. Then, by using the definition of B and ([5.2.20)), we get

n
max R(:Jci,uk)—i-wg a?j’“vlj — max | R(z;,ux) +'y§ al] Vo

[(B(v1))i = (B(v2))il max el
j=1

< gklg)b(l R(x'uuk + ’721041] V15 — x“uk ’Vzalj V2
j
= maxy Za%k(vlj —wg5)| < max y Za |v1; — vaj]
< Allvi — vallso- (5.2.21)

Here we use the facts

|v1j — v25] < ||V — valleo V],Za"’“ =1, Vi, Vu, €U
j=1
Because the inequality (5.2.21f) holds for every index 1, it follows that

[B(v1) = B(vz)[loc < 7[lv1 = Vafcc-
This shows that the map B is a contraction with respect to the /,,-norm, which is the second claim. O

Theorem 5.8. Define v € R"™ to be the unique fized point of B, and define v* € R™ to equal [V*(x;),x; € X,
where V*(x;) is defined in (5.2.9). Then v = v*.

Proof. By definition, for every 7 € IlI4, we have that

n

[T:()li = R@in(z))+ > a "V,

Jj=1

< max |R(z;, ug +7Za“’”V = (B(V)); = Vi, (5.2.22)

ur €U

because Vv is a fixed point of the map B. If 7w € II,,, say
(@) =[ i1 -+ Pim | €S,

then

!
[T=(v)li = de R(zi,w) +Za“‘V
=1

< max |R(z;,ug) +Za“"V
ur €U

= (B(¥)): =V (5.2.23)
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Because ((5.2.22)) and (5.2.23]) hold for every index i, it follows that

T.(v) <v.
Next, because T} is monotone as per Theorem it follows that
T2(V) = T (T (V) < Tr (V) < V.
The reasoning can be repeated to show that
TL(v) < ¥, VI.

Now let [ — oo. Then the left side approaches the fixed point of the map T, which is v,.. Thus we conclude
that, for all policies in II; or II,,, we have that

v, < V. (5.2.24)
Therefore, for each x; € X, we infer that

V*(z;) = max V(z;) < Vj, Vi, or v¥ < v. (5.2.25)

s

To show that v < v*, define a deterministic policy 7 € Il by

7(x;) = arg max | R(x;, ux) + Za“"V . (5.2.26)
up €U

In case of ties, choose any deterministic tie-breaking rule, e.g., choose the uj with the lowest index. Then,
since the right side of (5.2.26) equals (B(v)); = V;, we conclude that

n
Vi = R(wi, w(x:) + Y ag, "V, Vi. (5.2.27)
j=1

Hence T (V) = v. But since T5 is a contraction, it has a unique fixed point, which shows that V; = Vi (x;)
for all i. Therefore, for each index i, we have that

Vi = Va(z;) < V*(x;), Vi, or v < v*.
Taken together with (5.2.24)), this shows that v = v*. O

By replacing v in Theorem by v* (which equals v), we derive the following fundamental result for
Markov Decision Processes.

Theorem 5.9. Define the optimal value function V*(x;) as in (5.2.9). Then

1. The optimal value function V* : X — R is the unique solution of the following recursive relationship,
known as the Bellman Optimality Equation:

V(i) = max R(z;, uy —|—vzau"V . (5.2.28)

2. There is at least one deterministic policy m € 11y such that

Vﬂ—(xi) = V*(J?l), Vie X. (5229)
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Specifically, the policy 7@ defined by restating (5.2.26) with V; replaced by Vi, namely

m*(z;) = arg max | R(z;, ug) + Zau’“V* ) (5.2.30)
up €U

satisfies ((5.2.29)) and is thus an optimal policy.

Note that Item 2 of the theorem states that enlarging the policy space to include probabilistic policies
does not increase the maximum value. Also, there is one common policy that achieves the optimal value for
every state x;. Perhaps neither of these statements is obvious on the surface.

In analogy with the optimal value function, we can also define an optimal action-value function.

Theorem 5.10. Define Q* : X xU — R by

Q* (i, u) = R(x;, up, +7Za“kv (5.2.31)

Then Q*(-,-) satisfies the following relationships:

Q" (wi, ur) = R(ws, ur) +W’Zam maXQ (zj, wr). (5.2.32)
=
V*(z;) = max Q" (x;, ug), (5.2.33)
up €U

Moreover, every policy m € Il such that

7 (z;) = arg max Q*(z;, u) (5.2.34)
up €U

is optimal.
Proof. Since Q*(+,-) is defined by ([5.2.31)), it follows that

* . _ Uk — /* .
max Q" (z;, uy) 71{22)13 R(x;, ug Jr’yZa vV ( =V*(x;),

ur €U

by (5.2.28)). This establishes (5.2.33) and (5.2.34)). Substituting from ({5.2.33) into (5.2.31)) gives (5.2.32). O

Now we define an iteration on action-functions that is analogous to (5.2.19) for value functions. As with
the value function, the action-value function can either be viewed as a map @@ : X x U — R, or as a vector
in RIXIUl Define F : RI¥IXUI 5 RIXIXIUI by

[F(Q)] (s, ur) == R(wi, ug +72a max Q (zj,0). (5.2.35)

Theorem 5.11. The map F is monotone and is a contraction. Therefore for all Qg : X x U — R, the
sequence of iterations {F*(Qo)} converges to Q* as t — oo.

Proof. The proof is very similar to that of Theorem Given a map @ : X xU — R, define the associated
map M(Q) : X — R by
[M(Q)](xl) = ma}]/({ Q(wi, uk),

uR €



150 CHAPTER 5. MARKOV DECISION PROCESSES

and rewrite as
[F(Q)](x:, u) == R(xs,ux) + WZa?j’c IM(Q))(x;). (5.2.36)

Also, if Q,Q" : X xU — R, let Q@ < Q' denote that Q(x;, ux) < Qi(x;,uy) for all z;, ug. Then it is clear that
if Q < Q' then M(Q) < M(Q'). Because a; is always nonnegative, it follows that the map F" is monotone.
Next, as in the proof of Theorem [5.7] for arbitrary maps Q1,Q2 : X x U — R, we have

max Q1 (i, ux) — max Q2(wi, uk)
k

[IM(Q1)](wi) — [M(Q2)](z:)] = uneld

< max [Qq (s, ur) — Q2(w4, ug)|, Vo € X.
uk €U

As a result
[M(Q1) = M(Q2)[lc < [[Q1 — Q2| co-
Substituting this into ([5.2.36) gives
[F(Q1) — F(Q2)[loo <7[Q1 — Q2lloc- (5.2.37)

The desired conclusion now follows. O

If we were to rewrite ([5.2.28)) and (5.2.32)) in terms of expected values, the advantages of the Q-function
would become apparent. We can rewrite (5.2.28]) as

VA(X0) = ax (R(X, U0 + BV (X)X}, (5.2.38)
and (5.2.32) as
Q*(XtuUt) = R(Xt,Ut) +’YE Umaé(u Q*(Xt+1,Ut+1) . (5239)
t+1

Thus in the Bellman formulation and iteration, the maximization occurs outside the expectation, whereas
with the @-formulation and F-iteration, the maximization occurs inside the expectation. As shown in later
chapter, learning Q* is easier than learning V*.

The idea of learning Q* instead of learning V* is introduced in [I72].

Optimal Policy Determination:

Theorems [5.8] and together show the following: Start with any initial guess vy € R"™, and apply the
Bellman iteration B defined in . Then the sequence {vy} with vi; = Bvy converges monotonically
to the optimal value v*. Once v* is determined, then an optimal policy can be determined using .
This approach to determining v* is known as value iteration. While this is a useful result, a shortcoming
is that the intermediate vectors v do not necessarily correspond to any policy. An easy remedy is to choose
the starting point of the iterations vg to be the value of some policy my. Then each successive iteration
vy, also corresponds to a policy m,. In this way, we generate a sequence of suboptimal policies 7 with the
property that the associated value vector v; = v, converges to the optimal value. This approach is known
as policy iteration. This is made precise as follows:

Theorem 5.12. Choose an arbitrary policy my € 114, and compute the corresponding value vr,. At the k-th
iteration, choose an updated policy 711 € g according to

n
me+1(x;) = arg max | R(x;, ug) + VZa;‘j’“ (Ve )il - (5.2.40)

up €U j=1

Then
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1. Vg, 2 V., where the dominance is componentwise.
2. {vp } T V" as k — oo.

The proof is quite straightforward. The key step is to verify that if we define the updated policy 741
according to , then the corresponding value vy, , is just Bvy,; but this is obvious.

All of the material above provides a theoretical foundation for determining optimal values and optimal
policies for MDPs. However, when the size of the state space is very large, as it often is, one is forced to
resort to approximations to find “nearly optimal” values and/or policies. Approaches to do this are discussed
in later chapters.

Example 5.2. Now we return to the game of Blackjack. A detailed discussion of the game is given in [145]
Example 5.1]. To describe the original game briefly, it is played between a player and the “House.” (It is
possible to have more than one player playing against the House, but we don’t study that problem in the
interests of simplicity.) At each turn, the player and the House have the option of drawing a card (“hit”) or
not drawing (“stick”). Each card is counted as its face value, with picture cards counted as 10. An ace can
count as either 1 of 11 at the player’s preference. The objective of the player is to exceed the total of the
House without going over 21.

From the description, it is obvious that if the player’s current total is eleven or less, then the best strategy
is to hit, because there is no chance of losing on the next draw. Hence the issue of what to do arises only
when the player’s total reaches 12 or higher. Indeed, if the target were to be changed to some number N,
then it is clear that if the player’s total is N — 10 or less, then the correct solution is to hit. It can also be
assumed that the probability of any particular card being the next card drawn is the same, no matter what
cards have been drawn until then (infinitely many card decks being used). In the original Blackjack game,
only one card of the House is visible. In what follows, for the purposes of illustration, we eliminate all of
these complications, and introduce a simplified game.

Suppose that, instead of drawing a card, the player rolls a fair four-sided die. Since there are only four
possible outcomes, irrespective of what the target total might be, it is reasonable to suppose that the state P;
of the player lies in the set {0,1,2,3, W, L}, with 0 being the start state. It can be assumed that the current
state is in {0, 1,2, 3}, while W and L are terminal states. To simplify the problem further, suppose that the
House adopts the strategy that it does not roll the die further once its state is in {1, 2,3} (i.e., it does not try
for a win from any of these states). Therefore the state Hy of the house lies in the set {1,2,3}. The overall
state (P, Hy) lies in the Cartesian product {0, 1,2,3, W, L} x {1,2,3}. Out of these, there are twelve possible
current states, namely {0, 1,2,3} x {1,2,3} where the first number is the state of the player and the second
is the state of the House. If the player rolls the die, the possible next states are {1,2,3, W, L} x {1,2,3},
or a total of fifteen states. In this game, as in the snakes and ladders game, the reward is random and is a
function of the next state.

As a part of the problem statement, we need to specify the dynamics of the Markov process. For the
House, it does not play, so its state transition matrix is the 3 x 3 identity matrix, which ensures that
H;.1 = H,. As for the player’s state P;, if the action is to “stick,” then the state transition matrix A° is
the 5 x 5 identity matrix. If the action is to “hit,” then the state transition matrix A is given by

0 1 2 3 W L
00 025 025 025 025 0
110 0 025 025 025 025

AT =1 210 o 0 025 0.25 0.50 |
310 0 0 0 025 0.75
Wl0 0 0 0 1 0
L0 0 0 0 0 1

To complete the problem formulation, we need to specify the reward. Unlike the state transition matrix
above, which is based on nothing more than the assumption that all four outcomes of the die are equally
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likely, the reward is to some extent arbitrary. Let us assign the following rewards:

P, > H; 2
Pt:Ht 1
P, < H 0
P=W1l5
P,=L | =5

With this problem specification, we should strive to find an optimal policy. Note that the action space
U = {H,S} (for “hit” or “stick”) has cardinality two. Hence the number of policies is 2!? = 4,096, which is
already large enough that simply enumerating all possibilities is not practicableﬂ Hence some kind of policy
iteration is the only way.

For evaluating a specific policy, it can be noted that the duration of the game cannot exceed four time
steps. This is because the player’s position has to advance by at least one at each time step. So discount
factors very close to 1 do not make sense. The discount 7 should be chosen much smaller, say 0.5.

Problem 5.1. Suppose that a Markov decision problem has four states and two actions. Suppose further
that the two row-stochastic matrices corresponding to the two actions are as follows:

0.1 0.3 03 0.3 03 02 0 0.5
Aur 03 04 01 02 Aus — 0.1 01 02 06
- 0 04 04 02 |° 102 05 01 0.2

04 02 02 02 0 01 05 04

Suppose further that the reward map R : X xU is as follows (note that we write e.g., (3,1) instead of (x3,u1)
to save space):

R (1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)
2 ) -1 4 3 3 6 -1 -

e Suppose we define a deterministic policy 7 by

In other words, m(x1) = ug, w(x2) = uy, m(x3) = uy,w(xr4) = uz. Compute the corresponding state
transition matrix A™ and reward map R.

e Suppose we define a probabilistic policy 7 by

(03 04 02 06
=107 06 08 04 |

Compute the corresponding state transition matrix A™ and reward map R;.
e How many deterministic policies can there be for this problem?
e With a discount factor of v = 0.9, compute the optimal value and optimal policy using Theorem [5.1
Problem 5.2. Prove Theorem 5111

Problem 5.3. Using the policy iteration method of Theorem [5.12] compute the optimal value function and
optimal policy for the Markov decision process of Problem [5.1]

Problem 5.4. Show that, if 7* is determined from ([5.2.30)), then V.« = V* as defined in ([5.2.28)).

2For the full Blackjack game, the number of policies is 2290 as shown in [145, Example 5.1].
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Notes and References

The material in this chapter is quite standard. A very old reference is [64]. A widely used reference is [I19].
Some applications of MDPs can be found in [27].
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Chapter 6

Reinforcement Learning

The contents of Chapter [5] specifically Section [5.2] are based on the assumption that the parameters of the
Markov Decision Process are all known. In other words, the || possible state transition matrices A%#, as well
as the reward map R : X x Y — R (or its random version), are all available to the agent to aid in the choice
of an optimal policy. One can say that the distinction between MDP theory and reinforcement learning (RL)
theory is that in the latter, it is not assumed that the parameters of the MDP are known. Thus, in RL, one
attempts to learn these parameters based on observations. At this point, one can make a distinction between
“direct” methods and “indirect” methodsﬂ In the “indirect” approach, one observes the trajectory of the
“unknown” MDP, constructs a maximum likelihood estimate of the dynamics using the methods of Section
and then substitutes these estimates of the dynamics into the Bellman Optimality Equation ,
or the F-iteration . The logic is that, after a sufficiently long period of observation, the estimated
parameters would be sufficiently close to the true but unknown parameters; as a result, the solutions of the
fixed-point problems with estimated parameters would also be sufficiently close to the true fixed point. In
the “direct” approach, one directly starts estimating the solution of the fixed-point problems on the basis
of the available data. One hopes to prove mathematically that the “directly estimated” solutions would
converge to the correct solution. In short, there is no attempt to estimate the unknown dynamics of the
MDP.

In the RL literature, a couple of phrases are widely used without always being defined precisely. The first
phrase is “tabular methods.” As we will see, the methods presented in this chapter attempt to form estimates
of the value function, which is a vector in R™, or the action-value function, which is a matrix of dimensions
n x m, for a specific policy. Recall that in many if not most MDPs (or RL problems), the number of actions
m is quite small. However, the number of states n is often huge. Hence, instead of attempting to determine
the n-dimensional value vector, it is often more convenient to find a lower-dimensional approrimation of
this vector. The phrase “tabular methods” thus refers to the situation where one attempts find the full n-
dimensional vector without any reduction in dimension. The alternate is “value” determination with function
approximation.

6.1 Value Determination Using Temporal Differences

In this section we present the “temporal difference method” for determining the value of a discounted Markov
Reward Process when the state transition matriz is unknown. This method was pioneered by Sutton in [144].
Subsequently it was improved in various others papers, which are mentioned at the appropriate place.

The temporal difference method comes in two flavors: In the first, the unknown Markov Process is
assumed to have a known set of absorbing states. Thus the state space X is partitioned as the union of
transient states and absorbing states, and each set is known. However, the dynamics of the Markov process

IThis terminology is quite common in the adaptive control theory literature, and less common in the RL literature.
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are not assumed to be known. This is the version of TD learning studied in [I44], [66]. In the other version,
the Markov process is assumed to be either irreducible or both irreducible and aperiodic. This is the version
studied in [I72] which introduced TD-learning, as well as in [I58] which made some fundamental contributions
to the subject. In all of these references, TD-learning is “tabular,” in the sense that the objective is to learn
the true value of the Markov Reward Process. When the dimension n of the state space is very high, it is
common practice to approximate the value function by a function of a d-dimensional vector, where d < n.
This is the version studied in [I61].

6.1.1 TD()M)-Learning Without Function Approximation

As in Section[5.1} let r denote the reward vector (assumed to be deterministic),  denote the discount factor,
and A the state transition matrix of the Markov process. In this case, the value vector v is specified by
Theorem specifically (5.1.6]), as the unique solution of the equation

v =r+vAv, (6.1.1)

Suppose however that A is not known to the learner. Instead, a single sample path {X;} of the Markov
process is available. With this information, the hope is to construct a sequence {V;} that converges almost
surely to the true solution v of .

As in Chapter [5] it is convenient to view the value both as a vector v of dimension n, as well as a
read-out map V : X — R. Once the elements of X’ are ordered in some fashion as {z1,---,z,}, the two
interpretations are interchangeable. Hence we will use whichever is more convenient to the situation at hand.

The key to the Temporal Difference approach is the following result.

Lemma 6.1. Suppose {X:} is a sample path of a Markov process with an unknown state transition matric
A, and that v is a given (known and deterministic) vector in R™. Then, for each time t, the component
V(Xi41) is an unbiased estimator of the X;-th component of Av, with conditional variance no larger than
A|vl%.

Remarks:

1. In (6.1.1)), the discount factor v is usually chosen by the learner and is thus known. If the reward is
deterministic, then once the sample path traverses every state at least once, the reward vector r is also
known. Thus the only unknown is the state transition matrix A.

2. An “indirect” approach to solving might go like this. After observing a “sufficiently long” sample
path {X;}, the learner can construct a maximum-likelihood estimate of A using the approach from
Section call it A. Then can be solved with A in place of the unknown A. The temporal
difference approach is “direct” in that it generates a sequence of estimates {v;} which converges to the
true value vector as ¢ — co. There is no attempt to generate estimates of A.

3. The time index ¢ plays no role in the lemma or corollary. If {X,} is a sample path of a Markov process
with the (unknown) state transition matrix A, and if X; = z;, X441 = z;, then v; is an unbiased
estimate of the product [Av];.

4. A key attribute of this lemma is that the bound on the conditional variance of the estimate is inde-
pendent of the unknown matrix A.

5. If v is a fixed vector, then this lemma is not all that useful. However, the way in which the lemma is
used is that v; is itself a function of time, and at each step t, the lemma can be used to generate an
unbiased estimate of one component of Avy.

Proof. Let {F:} be the filtration generated by {X;}. Suppose X; = z;, and define &, as the error in
estimating [Av]; at time ¢ + 1; that is

§iv1,0 = V(Xiq1) — [AV];, Vi € [n].
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Then
Pr{Xt+1 = $J|Xy = xl} = Q4y5, \V/j € [n]’

E[V(Xt+1|Xt = jS] = Zaijvj = [AV],L'.
J=1

Since this is true for each state x;, it follows that V(X;41) is an unbiased estimate of [Av];, where X; = x;.
Next, conditioned on the event X; = x;, we have that, with probability a;;,

i T i
§t+1,,;:vjfav:ejvfav,

where e; is the j-elementary unit vector and a’ is the i-row of A. Note that ||e||; = |la’|l1 = 1. Hence, by
Hoélder’s inequality ‘ .
le] VI < [V]so, [a'v] < [[V]so, 6] v = a'v] < 2]V,

CVi(§i1) = ZE[ft2+1,i|Xt = ;] - Pr{X; = x;}
i=1

Y AlIvIZ - Pr{X, =z} = 4| v]%.
i=1

IA

O

Corollary 6.1. Suppose {X;} is a sample path of a Markov process with an unknown state transition matriz
A, and that v is a given (known and deterministic) vector in R™. Then, for each time t and each time T > 1,
the component V(Xyy,) is an unbiased estimator of the X¢-th component of A™v, with conditional variance
no larger than 4||v||%,.

Proof. The proof is the same as that of Lemma after observing that
Pr{Xy 7 = 25| Xy = i} = [AT]35,

Papers by Sutton [144], Tsitsiklis [I58] and Jaakkola et al. [66].

6.2 TD(M)-Learning With Function Approximation
Papers by Tsitsiklis and Van Roy [160, 161, 162} 163].

6.2.1 Discounted Reward Processes

6.2.2 Average Reward Processes

6.3 Simultaneous Value and Policy Approximation
6.3.1 Two Time-Scale Stochastic Approximation: Reprise

Papers by Borkar [2I], and by Lakshminarayanan and Bhatnagar [88]

6.3.2 Average Reward Processes: Reprise

6.3.3 Policy Gradient Theorem
[137, (146, [98, 15, [149).
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6.3.4 Actor-Critic Methods

[RT], ]2, (100, [80]
189, (13} [14], 188, [150, 1511 152} [153]

6.4 ()-Learning

[147, 46, (132, (170, 171, 172]

6.5 Zap ()-Learning
6.5.1 Stochastic Newton-Raphson Approximation

[128, [116].

6.5.2 Zap ()-Learning
[, 40, 41, 104

Notes and References

This part will be written after the contents of the chapter are fleshed out. It will discuss each of the references
above, and their role in the overall RL scene.



Chapter 7

Background Material

The objective of this chapter is to collect in one place the background material required to understand the
remainder of the notes. While much of the chapter consists of standard material that is found elsewhere,
some parts of the chapter are not “background,” because many if not most standard texts do not contain
the material. An example is the material on stopping times and maximum likelihood estimation of Markov
processes in Section Where the material is genuinely background in nature and adequate references are
found elsewhere, the treatment here is rigorous but cursory, and several references are given throughout,
In such a case these notes are not, by themselves, sufficient to gain a mastery over these topics. A reader
who is encountering these background topics for the first time is strongly encouraged to consult the various
references in order to understand the topics more thoroughly.

7.1 Contraction Mapping Theorem

In this section we introduce a very powerful theorem known as the contraction mapping theorem (also known
as the Banach fixed point theorem), which provides an iterative technique for solving noninear equations. It
holds in extremely general settings. We present a version that is sufficient for the present purposes.

Theorem 7.1. Suppose f : R™ — R"™ and that there exists a constant p < 1 such that

1£(x) = £l < pllx —yll, vx,y € R, (7.1.1)
where || - || is some norm on R™. Then there is a unique x* € R™ such that
f(x*) =x". (7.1.2)

To find x*, choose an arbitrary xg € R™ and define x;+1 = £(x;). Then {x;} — =* asl — oco. Moreover, we

have the explicit estimate
!

I* = xil| < = lx1 = ol (7.1.3)
Proof. By definition, we have that
i1 = xull < plixi = xi-1l < -+ < p'flxa = xol|. (7.1.4)
Suppose m > I, say m = [ 4+ r with » > 0. Then
r—1
e =l = lxeer =il <Y pirs — xig]
i=0
r—1 o) 1
< Z;plﬂnxl — %ol < z;pl“nxl —xoll = 75 = ol (7.15)
i= i=

159
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Therefore ||x,, — x| — 0 as min{m,l} — oco. Such a sequence is called a Cauchy sequence. In R", a
Cauchy sequence always converges to a limit. Denote this limit by x*. Then x* = lim;_, o, x;. Now ([7.1.1))
makes it clear that the function f is continuous. Therefore
f(x*) = lim f(x;) = lim x;41 = x*.
l—o00 l— 00

Therefore x* satisfies (7.1.2)). To show that x* is unique, suppose f(y*) = y*. Then it follows from ([7.1.1]
that

[x* = y*ll = [£7) = £y < pllx™ = y7II-

Since p < 1, the only way in which the above inequality can hold is if ||x* —y*|| = 0, i.e., if x* = y*. Finally,
let m — oo in (7.1.5) so that x,, — x* and ||x,, — x;|| = [|x* — x;||. Then (7.1.5)) becomes ([7.1.3)). O

The bound is extremely useful. Note that ||x1 — xo| = ||f(x0) — Xo||. Therefore ||x; — xo|| is a
measure of how far off the initial guess x¢ is from being a fixed point of f. Then gives an explicit
estimate of how far x; is from x*, for each iteration x;. Note that the bound on the right side of
decreases by a factor of p at each iteration.

7.2 Some Elements of Lyapunov Stability Theory

The study of nonlinear differential equations (ODEs) is a centuries-old and well-established subject. In the
context of Reinforcement Learning, nonlinear ODEs arise when studying the convergence properties of the
Stochastic Approximation (SA) algorithm in its various formulations; see Chapter [2| Therefore the present
section presents a tiny slice of this very rich subject, just enough to serve our rather narrow objective.
Authoritative treatments of nonlinear ODEs can be found [58, 166l [76]. Where required, more specific
citations are given.

Throughout, we study ODEs of the form

o(t) = £(6(t)),6(0) = 6, (7.2.1)

where f : R? — R, In some situations, we study a linear ODE of the form

0(t) = A8(t),0(0) = Bq, (7.2.2)

where A € R4, The linear ODE (7.2.2)) always has a unique solution corresponding to each initial condition

6y. It is given by

. Aktk
k!

0(t) = ey, where et = (7.2.3)

k=0

The summation in ([7.2.3)) is well-defined for all ¢, and is called the matrix exponential. However, unless the
function f(-) in (7.2.1) satisfies some assumptions, there is no guarantee that (7.2.1)) has a unique solution.
One of the most widely used sufficient conditions is presented next.

Definition 7.1. A function f : R? — R? is said to be globally Lipschitz continuous with constant L if
I1£(6) — £()l| < L[| — ¢, V0, ¢ € R". (7.2.4)

Note that we have not specified which norm is used in . Since all norms on R are equivalent,
the Lipschitz continuity (or the lack of it) of a function f(-) does not depend on the norm used in (7.2.4).
However, the value of the Lipschitz constant L could depend on the norm used. In RL, the most commonly
used norms are || - ||z and || - || co-
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Theorem 7.2. (See Theorems 2.4.25 and 2.4.57 of [166].) Suppose the function £(-) satisfies (7.2.4) for
some finite constant L. Then, for each 6y € R?, there exists a unique solution s(-,8¢) that satisfies (7.2.1]).
Further, given any € > 0, and T < oo, there exists a § = 0(e,T) such that

[Is(t,80) —s(t, po)ll2 < €Vt € [0,T], if 60 — ¢yll2 < 0. (7.2.5)

The next set of definitions are from the stability theory of ODEs. The interested reader may consult
[166, Chapter 5] for more details.

Definition 7.2. A vector 8 € R? is said to be an equilibrium of (7.2.1) if f(6*) =0

Note that, if 8" is an equilibrium of (7.2.1)), then the solution trajectory s(t,0%) = 8™ for all t > 0. There
are various types of equilibria. The next definition introduces some types that are most relevant to RL.

Definition 7.3. We present several notions of stability for an equilibrium.

1. An equilibrium 0™ of (7.2.1)) is said to be stable if, for every € > 0, there exists a § > 0 such that

Is(t, 80)|l2 < €Vt > 0, if |8 — 67| < 6. (7.2.6)

2. An equilibrium 8 of ([7.2.1)) is said to be globally attractive if

s(t,00) — 0" as t — oo, VO, € RY. (7.2.7)

3. An equilibrium 6" of ([7.2.1)) is said to be globally asymptotically stable (GAS) if it is both stable
and globally attractive.

4. An equilibrium 0" of (7.2.1)) is said to be globally exponentially stable (GES) if there exist
constants y < oo and k > 0 such that

Is(t, 80)l|2 < 1|00 — 07 ||z exp(—rt), ¥t > 0, VO, € R (7.2.8)

Remark:

1. The above definition contains a bare minimum from a very rich set of concepts from nonlinear stability
theory. Thorough treatments can be found in [58) [166, [76].

2. The concept of stability becomes clear if one were to compare (7.2.5) and (7.2.6). Equation (7.2.5)
holds for every finite T, and it is possible that 6(¢,T) — 0 as T — oo. In contrast, (7.2.6) implies
(7.2.5) with the uniform bound §(e,T) = d(e).

3. It is possible for an equilibrium to be globally attractive without being stable. An example, originally
due to Vinogradov, is reproduced in [58, Section 40] and again in [166, Example 5.1.32].

4. If ” is GAS or GES, then 6" is the only solution of £(6) = 0.

Sufficient conditions for GAS and GES are given in terms of the existence of a “Lyapunov function” V
that satisfies appropriate conditions. Suppose V' : R? — R is C! (continuously differentiable). Then the
function V : R? — R associated with V and the ODE (7.2.1) is defined by

V(0) := (VV(0),(8)). (7.2.9)

Note that the same func_tion V associated with a different ODE could have a different V. The rationale
behind the definition of V' is that, along the solution trajectories of (7.2.1)), we have
d .

—V(0(1) = (VV(8),6(1) = (VV(0),£(0)) = V(0(t)). (7.2.10)
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Definition 7.4. A function ¢ : R, — R, is said to belong to class K, denoted by ¢ € K, if ¢(0) = 0,
and ¢(-) is strictly increasing. A function ¢ € K is said to belong to class KR, denoted by ¢ € KR, if in
addition, ¢(r) — oo as r — 0.

Definition 7.5. Suppose 8" is the unique equilibrium of (7.2.1)), and that V : R? — R is continuous. Then

1. The function V is said to be positive definite at 8" if there exists a function ¢ of Class K such that
V(0) = ¢([|6 — 67]|2. (7.2.11)
V' is said to be negative definite if —V is positive definite.

2. The function V is said to be positive definite and radially unbounded if there exists a function

¢ of Class ICR such that (7.2.11) holds.

Now we reproduce some classical results from [I66]. Since we deal with time-invariant systems, the
condition in [I66] that V should be decrescent is automatically satisfied.

Theorem 7.3. (See [166, Theorem 5.5.56].) Suppose £(-) in (7.2.1)) is globally Lipschitz-continuous. and
that 0 is the unique equilibrium of (7.2.1)). Then 0 is globally asymptotically stable if there exists a ct
function V : R? — R, such that V is positive definite and radially unbounded, and V is negative definite.

Theorem 7.4. (See [166, Theorem 5.5.62].) Suppose £(-) in (7.2.1)) is globally Lipschitz-continuous. and

that 0% is the unique equilibrium of (7.2.1). Then the equilibrium 0 of (7.2.1)) is globally exponentially
stable if there exists a C* function V : R — R and constants a,b,c > 0 such that

all@ — 6*(|5 < V(6) <b||6 — 673, V6 € RY, (7.2.12)
V(0) < —c||6 — 0|2, Vo € R™. (7.2.13)

Proof. Le

t 0(t) denote the solution of (7.2.1) with the initial condition 8(0) = 0y. (Thus () is shorthand
for s(t, 6g).)

Recall that

Now (|7.2.11]) and ([7.2.12)) together imply that

LV(00) < 0~ "3 < ~“vi(ow).

In other words,
V(0(t)) < V(0o) exp(—(c/a)t), Vt = 0.

Now we again use ((7.2.11)) to turn this into a bound for ||@(t) — 6*||3.

. V(e(t 1 b .
j0) ~ 013 < YO < Ly (gy) exp(—(c/ape) < 210y — 07 3exp(~(c/apt, vi > 0.
This bound can be readily recast in the form ([7.2.8]). O

Next, we present an improvement of Theorem Unlike Theorems [7.3] and [7.4] which are classical and
of long-standing, Theorem [7.5] below is of quite recent origin; thus, strictly speaking, it does belong under
“Background.” Nevertheless, it is included here to maintain the flow of ideas. This material is taken from
[168].

In order to state this theorem, we introduce the concept of a function of Class 5. It is introduced in [52]
but without giving it a name. The formal definition is given in [I68, Definition 1].
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A Function of Class B

Figure 7.1: An illustration of a function in Class B

Definition 7.6. A function ¢ : Ry — R, is said to belong to Class B if ¢(0) = 0, and in addition, for
arbitrary real numbers 0 < € < M, it is true that

eglglng o(r) > 0.

Note that ¢(-) is not assumed to be monotonic, or even to be continuous. However, if ¢ : Ry — Ry is
continuous, then ¢(-) belongs to Class B if and only if (i) ¢(0) = 0, and (ii) ¢(r) > 0 for all » > 0. Such
a function is called a “class P function” in [55]. Thus a Class B function is slightly more general than a
function of Class P.

As example of a function of Class B is given next:

Example 7.1. Define a function f: Ry — R, by

[0, if 0 € [0,1],
9(6) = { e~ if 9 > 1.

Then ¢ belongs to Class B. A sketch of the function ¢(-) is given in Figure Note that, if we were to
change the definition to:
0, if 6 € [0, 1],

(0) = { 2e=0=Dif g > 1,

then ¢(-) would be discontinuous at 6 = 1, but it would still belong to Class B. Thus a function need not
be continuous to belong to Class B.

Theorem 7.5. Suppose £(-) in (7.2.1) is globally Lipschitz-continuous. and that 0 is the unique equilibrium
of (7.2.1)). Further, suppose that there exists a function V : R — R, and functions 0,1 € KR, ¢ € B such
that

n(]|6 — 6%(12) < V(0) < ¢(]|0 — 67||2), VO € R, (7.2.14)
V(0) < —¢(]|0 — 0%|2), VO € RY, (7.2.15)

Then 0" is a globally asymptotically stable equilibrium of the ODE .
Proof. Let 6(-) denote a solution trajectory of the ODE ([7.2.1). Then implies that V(0(t)) is a

nonincreasing function of ¢, and therefore has a limit as ¢ — oo. Since V(0(t)) = (d/dt)(V(8(t)), this implies
that V(0(t)) — 0 as t — 00, as shown next. Suppose that V(co) =: Vi, > 0. Then the right-side bound in

(7.2.14)) implies that
16 —0%|2 > v (Vo) > 0, VL.
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In turn, this implies that .
V(0(t) < =¥ (Vo)) <0, VL.

This contradicts the fact that V(0(t)) — 0 as t — oo. Therefore V(0(t)) — 0 as t — oo. Now the left
inequality in ((7.2.14]) shows that [|0(t)||2 — 0 as t — oo. O

We conclude this section with a discussion of linear ODEs. Such ODEs arise naturally in studying the
convergence of RL algorithms, specifically several variants of the Stochastic Approximation algorithm, as
shown in Chapter [3|If the object of study is a linear ODE of the form , then the situation is simpler.
The stability of linear ODEs is found in [I66, Sec. 5.4]. The relevant results are summarized below.

Theorem 7.6. (See [166, Theorem 5.4.29].) The equilibrium O of the linear ODE (7.2.2)) is globally expo-

nentially stable if and only all eigenvalues of A have negative real parts.

Note that a matrix whose eigenvalues all have negative real parts is called a Hurwitz matrix.

For linear sytems, a natural choice for a Lyapunov function is quadratic, in the form V(0) = 0’ Pe.
Note that it can be assumed without loss of generality that P is symmetric. Then V(+) is a positive definite
function if and only if P is a positive definite matrix, that is, all of its eigenvalues are positive. Next, the
function V() is also quadratic, and equals —GTQB, where (@ satisfies the Lyapunov Matrix Equation

ATP+ PA=-Q. (7.2.16)

Note that we have written V(H) as fOTQH, with the hope that ) would be positive definite, in which case
V() would be a negative definite function.

Theorem 7.7. (See [166, Theorem 5.4.42].) Given a matriz A € R¥? the following statements are
equivalent:

1. A is a Hurwitz matriz.

2. There exists a positive definite matriz Q@ such that (7.2.16) has a unique solution for P, and that
solution is positive definite.

3. For every positive definite matriz Q, (7.2.16)) has a unique solution for P, and that solution is positive
definite.

Notes and References

The material in this chapter is quite standard. Out of many possible sources, one can consult [I66] because
it contains proofs of both the contraction mapping theorem and all the elements of Lyapunov stability theory
used here.
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