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Abstract

A quantitative COVID-19 model that incorporates hidden asymptomatic patients is devel-

oped, and an analytic solution in parametric form is given. The model incorporates the

impact of lock-down and resulting spatial migration of population due to announcement of

lock-down. A method is presented for estimating the model parameters from real-world

data, and it is shown that the various phases in the observed epidemiological data are cap-

tured well. It is shown that increase of infections slows down and herd immunity is achieved

when active symptomatic patients are 10-25% of the population for the four countries we

studied. Finally, a method for estimating the number of asymptomatic patients, who have

been the key hidden link in the spread of the infections, is presented.

Introduction

COVID-19 infections have breached the five million mark, yet there is neither a vaccine nor a

scalable treatment in sight [1, 2]. Furthermore, a distinctive feature of the COVID-19, in con-

trast to other infectious diseases such as Influenza or SARS, is the presence of a large fraction

of “asymptomatic” patients, who don’t have any obvious symptoms but are still capable of

infecting susceptible individuals through contacts. However, identifying individuals spreading

infections via the asymptomatic pathway is not easy unless extensive contact tracing and test-

ing is performed. A major challenge is the uncertainty in the estimation of asymptomatic frac-

tion, with estimates ranging from 41% to 86% of infected [3, 4]. And along the symptomatic

pathway, 44% [5] to 68% [6] of the infections are spread before the onset of symptoms render-

ing the quarantining people with symptoms less efficient compared to other infectious dis-

eases. These challenges have driven governments to implement non-pharmaceutical

interventions (NPIs) such as social distancing and partial or full lock-downs [7]. An unsaid, a
posteriori, rationale for these lock-downs is that they provide efficient isolation mechanism

for the asymptomatic. However, a dearth of quantitative understanding of the effects of the
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lock-down has triggered debate around the effectiveness, duration and mode (partial vs. full)

of lock-down. Thus, it is even suggested that societies should just move in an unhindered man-

ner, towards the attainment of the “herd-immunity threshold” [8]. This threshold is achieved

when a sufficiently large proportion of a population becomes immune, and as a result, the dis-

ease spread slows down. For COVID-19, estimating the onset of herd immunity remains elu-

sive, and indeed, ascertaining whether herd immunity exists at all! Moreover, high case fatality

rate of 3–10% (vs. 0.05% for seasonal influenza) limits the practicality of herd immunity as an

effective policy tool. Thus, models that can provide quantitative estimates of the disease spread

and the impact of policy measures are expeditiously required.

Similar to other epidemics/pandemic, three different kinds of models are used for COVID-

19: 1) Statistical extrapolation models which fit the observed patterns of infections to make

short-term prediction [9, 10], 2) Agent based models for a qualitative illustration of micro-

scopic dynamics of spreading infections [11], and 3) Compartment models which divide the

population into groups based on the current different disease state of the individual and model

the interaction among them [2, 12–14]. Since 1927 plague in Mumbai, compartmental models

have been a standard guiding tool for policy decisions [15]. The spread of flu-like diseases

(influenza, SARS, COVID-19 etc) is often modelled using three or four compartments: Suscep-

tible-Infected-Recovered (SIR) or Susceptible-Exposed-Infected-Recovered (SEIR). Some vari-

ants, also consider theoretically a simple containment option, of quarantining infected persons

with symptoms. However, all these models assume that only contact between the S and the I
compartments leads to new infections, with the implicit assumption that contact between the S
and E compartments does not lead to any infection. In contrast, an asymptomatic patient with

COVID-19 can, and does, infect susceptible individuals through contact. Thus, epidemiologi-

cal models must consider the distinction between asymptomatic and symptomatic. Moreover,

models should distinguish between lock-down and quarantine as these are two qualitatively

different policy tools the former operating at the level of a society and the latter the level of a

few individuals.

In this paper, we aim to model all these novel aspects of COVID-19 and accomplish three

goals:

1. Formulate a minimal epidemiological model incorporating the above mentioned unique

aspects of COVID-19 disease spread and associated policies. We accomplish this by formu-

lating a SAIR model by including the asymptomatics (A) and suitably adapting the govern-

ing equations. Since lock-down was unique to COVID-19 management, we also include it

in an explicit fashion by using discontinuous in time reproduction rate (the effective rate at

which susceptible population get converted into infected).

2. Establish that the model representatively captures the observed epidemiological data, and

sheds light on the underlying parameters and universalities that govern the dynamics in the

different phases of the pandemic spread and containment. We accomplish this by deriving

a closed-form solution for the SAIR model with and without lock-downs, and using the

solution to estimate the underlying parameters that drive the infection dynamics.

3. Use the model to address pertinent questions beyond what is readily measurable—estimates

of the hidden asymptomatics or at what fraction of symptomatic infections, herd immunity

would be achieved. We show that the for the countries we studied, the herd immunity for

COVID-19 is achieved when the symptomatic infections is around 10–25% of the popula-

tion, which is lower than estimated/expected/what was traditionally assumed.
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COVID-19 specific model

Unique character of infectiousness

We begin by emphasizing the difference between SEIR and SAIR models [12]. A typical SEIR
model assumes a framework of serial, directed transitions across the intermediate health states

of the individuals (Fig 1). In this framework, the infections are caused when a susceptible per-

son comes in contact with a person deemed to be infected person on the basis of the symptoms

(I). However, after this contact, with a certain likelihood the person remains in a pre-symp-

tomatic intermediate state or the exposed individual (E), that is not contagious, before transi-

tioning to a contagious and symptomic state (I). While this framework is acceptable for

influenza or SARS, the epidemiology of COVID-19 is such that there is an alternative pathway

between the susceptible (S) and the recovered states (R) which passes through asymptomatic

individuals (estimated to be around 86%), [3] who never show any symptoms but carry

enough viral load to infect others. Thus a model for COVID-19 should consider two parallel

pathways of infection (Fig 1B).

We develop a generalized version of the model considering the Susceptible, Asymptomatic,

Infected and Recovered compartments (SAIR model) and assuming a homogenously mixed

population segment where COVID-19 is spreading. The system will obey the following SAIR

Fig 1. Schematic illustrating the difference between the standard SEIR model and the SAIR model used in this

work. While the former is a convenient model that is commonly used for other respiratory infections, the latter

captures the epidemiological characteristics of the COVID-19 infection spread.

https://doi.org/10.1371/journal.pone.0242132.g001
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dynamics

_S ¼ � aðtÞ SðI þ AÞ;

_A ¼ aðtÞ SðI þ AÞ � dA � gAþ bðtÞA;

_I ¼ dA � gI;

_R ¼ g ðI þ AÞ:

ð1Þ

where for any variable X time derivative is denoted as _X ¼ dX=dt. We assume that α(t)
denotes the probability with which, when a susceptible person meets an infected or asymptom-

atic person, they become a part of the asymptomatics, which for simplicity includes the pre-

symptomatics and the asymptomatics. δ is the rate at which pre-symptomatics or asymptom-

atic patients get converted into symptomatic ones and γ is the rate at which both asymptomatic

and symptomatic patients recover. β(t) is a migration parameter, the origin and exact func-

tional form of which will be discussed in the next section.

Lock-down for infection containment

In our formulation of the model, we claim that the lock-down can be modeled by considering

a sudden change in the infection rate constant using a Heavyside function as

aðtÞ ¼ a0Hðtlock � tÞ. Here, we note in passing that one can model social distancing as reduc-

tion in value of α or an imperfect lock-down. This term, typically absent in standard models,

denotes the fact that in an idealized lock-down no susceptible person meets an infected person

and thus first order reaction changes to a zero-order reaction. In a minimal model, one may

assume that asymptomatic patients either get converted into symptomatic one with an effec-

tive rate δ or recovers with a rate γ.

Before we proceed to analyse the model, we wish to point out that one may add further

complication to this model by introducing more parameters and compartments. For example,

recovery rate γ and infection rate α need not be same for asymptomatic and symptomatic frac-

tion [12]. However, as there is no biological evidence to the contrary, we assume that both

rates are equal, which leads to an analytically tractable and simplified framework.

Further, during this crisis we learnt that once a lock-down is announced, people migrate

across different segments of a country. Even for a qualitatively correct modeling of disease

spread dynamics, it is important to account for this migration of people. This migration can

indeed happen in many waves. However, for simplicity we assume that it happens once and

only during a short duration after lock-down. Furthermore, one would expect that among

infected population only asymptomatic people are able to travel. Here, it needs to be reminded

that, we are only interested in the influx of the infected population in a given population seg-

ment, and not the details of where they came from. In order to model such a scenario, we take

typical thermodynamic route of dividing the system into two parts: system (Eq (1)) and universe

(given in Eq (2)). Finally, the coupling constant bðtÞ ¼ b1fHðtlock þ � � tÞ � Hðtlock � tÞg and

� is the short period of time post lock-down, in which population migration is allowed/possible.

For the sake conceptual completeness of showing where these migrations happen from, one can

also write the equations for the net of all geographical regions outside the region of interest

(which for the sake of convenience is described as the rest of the Universe (U)). This migration

is a characteristic of the system (country or region under consideration) and parameters β and �

need to be extracted from the data. The universe (rest of the world) can also be assumed for this

purpose to be following a similar SAIR dynamics, but with an outflux term (−β(t)A) in the
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asymptomatic dynamics

_SU ¼ � aðtÞSU ðIU þ AUÞ;

_AU ¼ aðtÞSU ðIU þ AUÞ � dAU � gAU � bðtÞA;

_IU ¼ dAU � gIU;

_RU ¼ g ðIU þ AUÞ:

ð2Þ

Eqs (1) and (2) complete our development of COVID-19 specific model. However, in the rest of

this work, we will focus on solving Eq (1).

Analytical solution of COVID-19 model without lock-downs

In the present work, we solved a phenomenological model of a well-mixed society, with every-

one interacting with everyone else. However, the interactions may be structured by age, local

movement of the population, and many of these can be modelled in the framework of agent

based models. The formulation of the disease specific interactions we developed can also be

integrated into other models which study the interactions at agent level detail, or in tandem

with economic consequences [16], both of which are beyond the scope of the present work.

With an emphasis mainly on the spread of infections at the societal level, we show that the set

of equations we model are sufficient to capture most of the available epidemiological data on

COVID-19.

This system of equations can be solved for pre-lock-down situation in terms of the repro-

duction rate r0 = α0/γ by defining M = I + A.

d log S
dR

¼ � r0;
dM
dS
¼ � 1þ

1

Sr0

: ð3Þ

which can be solved in terms of ~S ¼ S=S0 as

R ¼ � r� 1
0

log ~S; M ¼ 1 � Sþ r� 1
0

log ~S ð4Þ

where M + S + R = 1 when there is no influx of people into a country, S0 denotes the susceptible

population at t = 0 and the recovered population at t = 0 is taken to be 0. Substituting the

expression from Eq (4) in the evolution equation for S gives us the parametric solution in

implicit form as

a0 t ¼
Z ~S

1

ds
s ð� 1þ S0s � r� 1

0
log sÞ

ð5Þ

Assuming that the equation can be converted to an explicit form for ~S as a function of t, it is

possible to substitute this into Eq (4) to obtain an expression for M as a function of t. Finally,

the expression for M(t) can be disambiguated into separate expressions for I(t) and A(t) by

using Eq (1). Specifically, in the equation for _I , we can substitute A = M − I, which gives

_I ¼ � ðdþ gÞIðtÞ þ dMðtÞ:

If we define a new constant δ1 = γ + δ, then the solution of the above equation is

IðtÞ ¼ expð� d1tÞ I0 þ d

Z t

0

MðsÞ expðd1sÞds
� �

ð6Þ

Therefore the key is to turn Eq (5) into an explicit expression, to the extent possible. For this
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purpose, we use Hermite-Hadamard inequality for the logarithm [17]

z � 1

z
� log z � z � 1 ð7Þ

which suggests that we use approximate form of the logarithm as log z = (z − 1)(w1/z + w2),

with the constraint that w1 + w2 = 1. Fig 2 depicts the ability of the approximatrion to capture

log(z) when 0< z< 1. Upon approximating the logarithm, we get a solution in explicit form

as

~S ¼
hð1þ h2 expðh a0tÞÞ
2að1 � h2 expðh a0tÞÞ

þ
b
2a

ð8Þ

where a = (S0 r0 − w2)/r0, b = (r0 + w1 − w2)/r0, d = w1/r0. where h2 = (2a − b − h)/(2a − b + h),

and h is a constant such that and h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ad
p

. Once the evolution equation for S is known

in a closed from, we find the evolution for the remaining variables using Eq (4). Fig 3a and 3b)

depicts a representative temporal variation for the parameters S, A, I and R captured using the

numerical and analytical solution. The analytical solution formulated using the above approxi-

mation to logarithm is found to be in close agreement with the numerical solution of the ODE.

The evolution equations for pre-lock-down and early time limit is easily formulated by

incorporating approximation 1 for the logarithm, leaving us with

~S ¼
r0 � 1

r0ð1 � S0Þ expfa0ð1 � r� 1
0
Þtg � ð1 � r0S0Þ

ð9Þ

and

I ¼
ðS0 � 1Þðr0 � 1Þ expfða0 � gÞtg

2 � 2r0S0 þ 2r0ðS0 � 1Þ expfða0 � gÞtg
ð10Þ

Fig 2. Comparison between the two approximations for log(z). Approximation 1 log(z)� (z − 1) and

approximation 2 is log(z)� (z − 1)(w1/z + w2), where w1 = 1/5 and w2 = 4/5.

https://doi.org/10.1371/journal.pone.0242132.g002
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Analytical solution of COVID-19 model with lock-downs

On the other hand, after an idealized lock-down no susceptible person meets an infected per-

son and thus the first order reaction changes to a zero order reaction. The intermediate time

(tlock < t< tlock + �) solution simplifies to

M ¼ expð� gtÞ½Ilock þ Alockð1þ dÞ expððb1 � dÞtÞ� ð11Þ

Once there is no more flux of asymptomatic individuals (i.e. after tlock + � days), the equations

for M yield an exponential decay given by

M ¼ Mlockþ� expð� gtÞ; R ¼ 1 � M � Slock ð12Þ

Fig 3. Solutions to the SAIR model without lock-down: (a) Numerical solution to the ODE. (b) Analytical solution to the ODE

using approximation 2. The parameters used in this simulation are the ones we obtained from the epidemiological data of Italy

(Table I): α0 = 0.256, γ = 0.03 and δ = 0.09. As one can see, the numerical and analytical solutions yield comparable results.

https://doi.org/10.1371/journal.pone.0242132.g003
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and the infections post lock-down is given by

I ¼ expf� gtgðIlock � LÞ

þL expfð� d1 þ b1ð1 � Hðt � �ÞÞÞtg
ð13Þ

where,

L ¼
dðAlock expf�ðb1 � d1ÞHðt � �ÞgÞ
ðg � d1Þ þ b1ð1 � Hðt � �ÞÞ

ð14Þ

The recovery rate is split into two parts

_R ¼ gI þ gA ¼ _RI þ
_RA ð15Þ

The recovery of infected people is easier to track for any country and hence is the more impor-

tant equation for parameter extraction.

Z t

0

_RI ¼ g

Z t

0

I ð16Þ

Eqs (10), (12), (13) and (16) are the closed-form solutions to the model we developed and are

used in the next section for parameter estimation.

SAIR to SIR

One may think of SIR model as a coarse-grained version of the SAIR model formally. In the

coarse grained picture of SIR model, one does not make a distinction between asymptomatic

and symptomatic. Thus, it is natural to expect that the total infection ~I ¼ Aþ I shall follow

the SIR dynamics. Indeed, upon ignoring the migration effects (β = 0), we arrive at the SIR

model in term of ~I as

_S ¼ � aðtÞS~I

_~I ¼ aðtÞSðAþ IÞ � g~I

_R ¼ g~I

ð17Þ

We would like to insist that despite this formal relationship between the model, the two model

represent fundamentally two different dynamics in reality. This is largely due to the fact that ~I
is not an observable and one can not get any information on it by looking at reported infection

number unless full contact tracing is implemented to test even asymptomatic fraction. Thus,

although it may be possible to arrive at an SIR model from SAIR under certain conditions, the

reverse is not the same. Nevertheless, in these limits where this conversion and comparison to

SIR model is possible, we demonstrate the quality of our approximate solution.

Fig 4 shows that the proposed approximation in Eq (5) yields more accurate results than a

third order Taylor series approximation for the same [18]. A more elaborate contrast between

present result and various other approximations [18–20] is left for future project.

Discussion

Closed form solution

COVID-19 is unique in many ways. In this we work we attempt to capture two major differ-

ences as regards its epidemiology—the dynamical aspects of infections spread through
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pre-symptomatic and asymptomatic persons, and that containments are mainly achieved by

lock-downs at the level of the society rather than quarantines. Our model and its closed form-

solution address these unique aspects that COVID-19 presented itself with. Epidemics like

SARS in 2003, Swine flu in 2009, MERS in 2012 and 2015, could be managed at most with con-

tact tracing and quarantine, and hence addressing a solution for the lock-down did not arise

with earlier epidemics. As can be imagined, the closed form solution makes both the predic-

tion and the assumptions/parameters involved in the prediction transparent, which can other-

wise be buried in the numerics. In addition, since when we work with real data, rather than

use a priori assumptions, the formulation helps an easy extraction of the underlying parame-

ters as it is done below.

Parameters and their universality

The publicly available reported infection and death data from different countries was gathered

from the worldometer site (https://worldometers.info). The infection data from different

Fig 4. SIR model with r0 = 2, I0 = 10−3 and R0 = 0. a) Susceptible fraction b) Infected fraction c) Recovered fraction. The difference of using a third order Taylor series

approximation as given in [18] versus our approximation in Eq (5) is shown.

https://doi.org/10.1371/journal.pone.0242132.g004
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countries that implemented a lock-down had three regimes—rising, intermediate and decreas-

ing. It can be easily assumed that the reported infections are the symptomatic infections, since

most countries have been short of testing resources; as a result, patients were tested for a con-

firmation only after the onset of symptoms. The analytical solutions for the active infections

and recovered populations for both pre- and post- lock-down scenarios discussed above

model these different regimes of the infection spread. These analytical solutions are then fit

onto the reported infections for several countries Fig 5, to give us an estimate of the underlying

parameters that govern the COVID19 infection dynamics. In this section we discuss the esti-

mation procedure for the parameters (α0, γ, δ, β1). We begin with Eq (16) as the data for recov-

ered patients and active infections is readily available and a simple linear fit gives us an

estimate for γ as shown in Fig 6. γ−1 is a measure of the average number of days it takes for a

COVID-19 infected person to recover. The values of γ−1 found for France, Italy, Japan and

Switzerland lie within a universal sensible range (2-4 weeks) observed for COVID-19.

Using Eq (10) and real time infection data, parameter α0 can be estimated as shown in Fig

7. Fig 7 reveals that the three different regimes of the COVID19 infection dynamics could be

modelled by the framework we developed. The parameters α0 representing the rise is similar

Fig 5. Numerical solution of the SAIR model in solid lines plotted along with the infection data from (a) France

and Italy, (b) Japan and Switzerland. The points indicate the 7-day average of the epidemiological data obtained

between the dates 14th February 2020 and 24th of May 2020.

https://doi.org/10.1371/journal.pone.0242132.g005
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for many countries reiterating a universal pattern in the initial pre-lock-down regime. This

can be understood as an intrinsic characteristic dynamics of COVID-19 which exhibits strong

similarities across countries (see Table 1) Using the simplified equations post lock-down (Eqs

(11) and (12)), estimated parameter γ and ð_I þ gIÞ data for different countries, we estimate the

parameters δ and β1, as shown in Figs 8 and 9 respectively. The origin of β1 is the migration of

people during lock-down and can be expected to be a country-specific event dictated by the

prevalent social-political conditions.

Asymptomatic infections

So far we have made predictions based on the COVID19 specific model we developed and vali-

dated its efficacy by showing that the analytical solution provides very good fits to the three dif-

ferent regimes of infection. Following up on these validations from the observed infections, we

use the model to estimate the number of asymptomatic people, an extremely important metric

Fig 6. Estimation of parameter γ using Eq (16). The linear parts of the data are used for obtaining these fits.

https://doi.org/10.1371/journal.pone.0242132.g006
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in quantifying the extent of COVID19 spread. Using our model and the parameters that were

extracted, we could estimate how the number of individuals in the different compartments S,

A, I and R changed with time with or without a lock-down. We estimate the ratio of the asymp-

tomatic to symptomatic individuals (Fig 10), which varies from 1 to 30 depending on the

phase of the pandemic dynamics. Seroprevalence tests on small population samples of a few
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Fig 7. Estimation of parameter α0 using Eq (10). The linear parts of the data were used for obtaining these fits.

https://doi.org/10.1371/journal.pone.0242132.g007

Table 1. Parameters extracted by fitting the analytical solutions to the model we developed to the 7-day average data from the different countries.

Country α0 γ δ β1

France 0.280 ± 0.012 0.021 ± 0.004 0.010 ± 0.001 0.007 ± 0.0005

Italy 0.256 ± 0.021 0.034 ± 0.002 0.091 ± 0.007 0.102 ± 0.002

Japan 0.185 ± 0.013 0.086 ± 0.003 0.022 ± 0.001 0.012 ± 0.004

Switzerland 0.290 ± 0.009 0.028 ± 0.001 0.024 ± 0.002 0.151 ± 0.02

https://doi.org/10.1371/journal.pone.0242132.t001

PLOS ONE COVID-19 specific model and solution

PLOS ONE | https://doi.org/10.1371/journal.pone.0242132 December 16, 2020 12 / 17

https://doi.org/10.1371/journal.pone.0242132.g007
https://doi.org/10.1371/journal.pone.0242132.t001
https://doi.org/10.1371/journal.pone.0242132


hundreds to a few thousands have estimated the asymptomatics to be present in excess of

symptomatics by a factor of 5.7 in Geneva, Switzerland [21], 20 in Wuhan, China [22] to about

50 in Santa Clara, USA [23]. In practice, it has not yet been possible to perform tests on more

than a few thousands from cities with millions in population. In that sense, the reliability of the

serological tests can be established based on the randomness, and representativeness of the

community. However, the predictions of the asymptomatics to symptomatics extracted using

our model is in a comparable range, thus serving as a mutual validation, for our predictions

and the small serological sample sets.

Herd immunity

Lock-down had been the most important non-pharmaceutical intervention against COVID-

19. However, because of the economic losses caused by the lock-down there have been several

proposals to let the infection take its natural course, which would theoretically slowdown suffi-

cient population is infected, popularly known as the attainment of the herd-immunity. The

estimates for the population fraction at which the herd-immunity is achieved [24] for Euro-

pean countries for example, had been around 70%. However, specifically for COVID-19,

because of the large fraction of asymptomatic infections, estimates for the infection fatality

rate, which considers both the asymptomatic and the symptomatic infections, were also made

[25]. However, none of these have been made on an integrated framework, and these estimates

use the asymptomatic to symptomatic ratio derived from other sources. Our model which is

developed on an organic framework which can both estimate the fraction of asymptomatics,

and make predictions for the infections, was used for shedding light on herd-immunity. Our

results show that the herd-immunity, defined as the fraction of population at which symptom-

atic infections reach a peak and beyond which begin decreasing could be achieved at 12–25%

of the population as illustrated in Fig 11) (Table 2). These estimates for herd-immunity which

are in single digit percentages only seem contradictory to estimates of 50-60% [25] until one

realises the large fraction of the infections are asymptomatic accounting for a total infection of

50-56% of the population (Table 2). Thus our model allowed us to make estimates both for the

Fig 8. Estimation of parameter δ using Eqs (12) and (13). The linear parts of the data were used for obtaining these

fits.

https://doi.org/10.1371/journal.pone.0242132.g008
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hidden-asymptomatics and the herd-immunity, and the fraction of the symptomatics who will

burden the health care system.

Conclusion

In conclusion, as a part of our analysis, we are able to provide a method for estimating the

asymptomatic fraction of the population. Finally, by fitting our model to data from countries

where the pandemic appears to have peaked, we are also able to estimate the level of herd-

immunity. We are able to show that herd-immunity is achieved at levels of 10% to 25%, far

lower than the levels suggested in the literature. We find that the SAIR model can be readily

adapted to incorporate the effects of lock-down and the solution to the system of equations

bears striking resemblance to the real-world data. The formal solution allows one to evaluate

Fig 9. Estimation of parameter β1 using Eqs (12) and (13). The linear intermediate parts of the data were used to

obtain these fits.

https://doi.org/10.1371/journal.pone.0242132.g009
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Fig 10. The ratio of asymptomatics to the infected population as a function of time, and for a no-lock-down

scenario.

https://doi.org/10.1371/journal.pone.0242132.g010

Fig 11. Analytical solution of the SAIR model with no lock-down using parameters for France (α0 = 0.28, γ = 0.02,

δ = 0.01. The blue and the red lines indicate the maxima, considering only the symptomatic or the total infections

respectively. The infection rate slows down significantly and a herd-immunity is achieved after the combined

infections reach a peak when the symptomatic infections have crossed� 12% of the total population.

https://doi.org/10.1371/journal.pone.0242132.g011

Table 2. The details of the peak of infections extracted using relevant parameters for the COVID-19 dynamics in the different countries and under a hypothetical

no-lock-down scenario.

Country Imax Mmax Ic (when Imax) Ic (when Mmax) Mc (when Imax) Mc (when Mmax)

Italy 19% 65% 30% 16% 62% 75%

France 13% 63% 28% 12% 58% 69%

Japan 15% 35% 31% 19% 50% 65%

Switzerland 23% 50% 38% 25% 60% 72%

Imax and Mmax denote peak of the active infection and A + I curves respectively. Ic denotes cumulative infection which is tabulated for when Imax and Mmax is achieved in

columns 4 and 5 respectively.

https://doi.org/10.1371/journal.pone.0242132.t002
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the effect of lock-down as a policy tool and can also be integrated into other frameworks which

study the economic consequences of the lock-downs.
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