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A B S T R A C T   

The SARS-CoV-2 is a type of coronavirus that has caused the pandemic known as the Coronavirus Disease of 
2019, or COVID-19. In traditional epidemiological models such as SEIR (Susceptible, Exposed, Infected, 
Removed), the exposed group E does not infect the susceptible group S. A distinguishing feature of COVID-19 is 
that, unlike with previous viral diseases, there is a distinct “asymptomatic” group A, which does not show any 
symptoms, but can nevertheless infect others, at the same rate as infected symptomatic patients. This situation is 
captured in a model known as SAIR (Susceptible, Asymptomatic, Infected, Removed), introduced in Robinson 
and Stillianakis (2013). The dynamical behavior of the SAIR model is quite different from that of the SEIR model. 
In this paper, we use Lyapunov theory to establish the global asymptotic stabililty of the SAIR model, both 
without and with vital dynamics. Then we develop compartmental SAIR models to cater to the migration of 
population across geographic regions, and once again establish global asymptotic stability. 

Next, we go beyond long-term asymptotic analysis and present methods for estimating the parameters in the 
SAIR model. We apply these estimation methods to data from several countries including India, and demonstrate 
that the predicted trajectories of the disease closely match actual data. We show that “herd immunity” (defined 
as the time when the number of infected persons is maximum) can be achieved when the total of infected, 
symptomatic and asymptomatic persons is as low as 25% of the population. Previous estimates are typically 50% 
or higher. We also conclude that “lockdown” as a way of greatly reducing inter-personal contact has been very 
effective in checking the progress of the disease.   

1. Introduction 

1.1. Background 

The mathematical modelling of the spread of epidemics has a long 
history, stretching back over several centuries. The “modern” approach 
to the modelling of epidemics can be said to have begun with Kermack 
and McKendrick (1927), which first enunciated the principle that 
infected persons pass on the disease to susceptible persons at a rate 
proportional to the number of contacts between the two groups. Over 
the years, various refinements of the basic model have been proposed. 
The literature on disease modelling is truly enormous. Indeed, a survey 
paper (Hethcote, 2000) published in 2000 already had more than 200 
references. Today it would be many times that number. Therefore it 
would be futile to attempt a summary of the entire topic of epidemic 

modelling. Rather, in Section 2 we limit ourselves to highlighting those 
aspects of epidemic modelling that are broadly common to most existing 
models, and why these models are not adequate to study the latest 
health-related challenge, namely the onset of the COVID-19 pandemic. 

Traditionally, epidemiologcal models have grouped people into two, 
three or four groups, usually denoted by Susceptible (S), Exposed (E), 
Infected (I), and Removed (R). Note that many authors use the symbol R 
to denote “recovered.” Note that in the epidemiology literature, the 
phrase “compartment” is widely used instead of “groups.” Moreover, we 
prefer to use “groups” because, later in the paper, we study the impact of 
migration on the spread of a pandemic using compartmental models. 
However, in this paper we wish to make a distinction between those who 
recover and are immune to reinfection, and those who die from the 
disease. This distinction becomes particularly important when we 
introduce births and deaths due to natural causes into the model. In 
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traditional models, contact between a member of the infected group I 
and another person belonging to the susceptible group S leads to the 
latter person becoming infected with a certain probability. Depending 
on the model, the susceptible person either becomes infected straight-
away (the SIR model), or enters an intermediate stage called Exposed (E) 
(SEIR model). In the latter scenario, it is assumed that contact between 
persons belonging to the E and S groups does not lead to fresh infections, 
because members of the E group do not carry a sufficient viral load to 
infect others through contact. 

However, one of the characteristic features of the coronavirus 
pandemic is that many of the persons who contract the disease are 
“asymptomatic,” or belong to the group A. A recent paper (Oran & 
Topol, 2020) collates several publicly available data points and states 
that “Asymptomatic persons seem to account for approximately 40% to 
45% of SARS-CoV-2 infections, and that they can transmit the virus to 
others for an extended period of time, perhaps longer than 14 days.” 
Other references estimate the fraction of asymptomatic patients to be 
more than 50% at times (Mizumoto, Kagaya, Zarebski, & Chowell, 
2020), and as high as 75% (Day, 2020). For this reason, asymptomatic 
patients remain “hidden” and cannot be identified except through 
testing the entire population, which is clearly impractical. 

Moreover, asymptomatic patients (A) differ from exposed patients 
(E) in one important respect. Unlike in traditional epidemiological 
models, contact between a person in the A group and another in the S 
group does lead to the latter getting infected, with a certain probability. 
In addition, as in other models, contact between a person in the I group 
and another in the S group also leads to the latter getting infected, with a 
similar probability. To the best of the authors’ knowledge, the first paper 
to formulate and analyze a model that captures this phenomenon is 
Robinson and Stilianakis (2013). However, the analysis of the model in 
Robinson and Stilianakis (2013) is not so complete as is currently 
available for the SEIR model. As shown in Korobeinikov and Maini 
(2004); Korobeinikov and Wake (2002) and reviewed in subsequent 
sections of this paper, the global stability properties of the SEIR model 
are well understood, where those of the SAIR model are still being 
studied. The authors of Robinson and Stilianakis (2013) did not give a 
name to their model. In the present paper, we adopt the model of 
Robinson and Stilianakis (2013) and refer to it as the SAIR (Susceptible, 
Asymptomatic, Infected, Removed) model. Then we carry out a com-
plete analysis of the behavior of this model, both with and without vital 
dynamics, on a par with what is currently known about the SEIR model. 
As shown in later sections, the two dynamical models are quite different, 
as are the solutions. 

1.2. Organization and contributions of the paper 

The paper is organized as follows: We begin by reviewing two clas-
sical models, namely the SIR and the SEIR models, and analyze the 
stability of these models using Lyapunov stability theory. This analysis 
closely follows Korobeinikov and Maini (2004); Korobeinikov and Wake 
(2002). Then we carry out a complete analysis of the SAIR (Susceptible, 
Asymptomatic, Infected, Removed) model, both without and with vital 
dynamics. In order to establish the stability properties of the SAIR 
model, we extend the classical Krasovskii-LaSalle theory of Lyapunov 
stability, from the case where the Lyapunov function V is positive defi-
nite, to the case where V is only positive semidefinite. This extension is 
of independent interest. Then we introduce the idea of “compartmental” 
models, wherein there are multiple compartments within a society, each 
of them having its own SAIR groups, with different levels of interaction 
and other epidemiological parameters. Note that in the epidemiology 

literature, the phrase “compartment” is often used to denote the various 
groups S, E, I, R. However, in the dynamical systems literature, 
“compartmental models” refer to collections of individual dynamical 
systems that interact with each other. We too use the phrase 
“compartment” in this sense, and refer to S, A, I, R as “groups.” We are 
able to extend the earlier stability analysis of SAIR model to a 
two-compartment model without vital dynamics. However, extending 
the SAIR model to a multi-compartment model with vital dynamics re-
mains an open problem. 

In the remainder of the paper, we first present methods for estimating 
the parameters in the SAIR model based on the evolution of the 
pandemic. Then we present the outcomes of applying our theories to 
actual data from the COVID-19 pandemic in eight countries from around 
the world, including India. Then we focus on the progress of the 
pandemic in Delhi, one of the “hotspots” in India. We model the effect of 
a “lockdown” whereby contacts between persons is severely limited, and 
show that quantitative predictions based on our models faithfully repro-
duce actually observed data. Finally, we examine whether the notion of 
“herd immunity” which has been propagated by some persons is real or 
not. We conclude that herd immunity is not only real, but is also ach-
ieved at far lower levels of community infection than was thought 
earlier. We conclude the paper by discussing several interesting prob-
lems that merit the attention of the research community. 

2. Review of the SIR and SEIR models 

As mentioned in the Introduction, the literature on epidemiological 
modelling is vast, and there is no point is even attempting a compre-
hensive review. Rather, we review two classical models known as the 
SIR and SEIR models respectively, and analyze their stability properties 
using Lyapunov theory. The SIR model forms the point of departure for 
the SAIR model, which provides a more realistic model for COVID-19, 
compared to the SEIR model. 

2.1. The SIR model 

2.1.1. SIR Model without vital dynamics 
In the SIR model, the population is divided into three groups, 

denoted as S (Susceptible), I (Infected), and R (Removed). Note that 
many authors use R to denote “Recovered.” However, in our model, the 
group R also includes those who die from the disease. Also, it is assumed 
that the total population size is constant, so that S, I, R represent the 
fraction of the population within each group. Therefore 

S, I,R ≥ 0, S + I + R = 1.

In the simplest models, births and deaths (due to natural causes) during 
the course of the epidemic are not taken into account. In more detailed 
models, births and deaths (due to natural causes) are included, and these 
are called “vital dynamics” in Hethcote (2000). However, it is assumed 
that the births and deaths balance exactly, so that the overall population 
size remains constant. The introduction of vital dynamics significantly 
changes the dynamical behavior of the model. Specifically, without vital 
dynamics, the SIR model exhibits a continuum of equilibria, whereas 
with vital dynamics, the SIR model has one unstable and one attractive 
equilibrium (under suitable conditions). The assumption of constant 
population size can be removed as in Korobeinikov and Wake (2002) by 
replacing the quantity S by another quantity that those authors call P, 
which is less intuitive. It turns out that there is no difference between the 
behavior of the dynamical system whether the population size remains 
constant or not. Therefore we limit ourselves to the case of constant 
population. 

In the absence of vital dynamics, the equations that govern the SIR 
model are 

Ṡ = − βIS, İ = βIS − γI, Ṙ = γI. (1) 
Fig. 1. Flowchart of the SIR model without vital dynamics.  
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Fig. 1 contains a flowchart of these equations. As expected, we have that 
Ṡ+ İ+ Ṙ = 0. Therefore we can ignore anyone of the three equations 
and focus only on the other two. Most authors ignore R and study 

Ṡ = − βIS, İ = βIS − γI, (2)  

where β, γ > 0 are parameters of the disease under study. The logic 
behind (2) is as follows: When a person in group S makes contact with a 
person in group I, the former gets infected with a likelihood of β. Left to 
themselves, the persons in group I move to the group R (get removed) at 
a rate of γ. The ratio β/γ is referred to as the basic reproduction ratio, and 
is denoted by σ.1As we shall see below, if σ ≤ 1, the pandemic does not 
take off, and dies down steadily, whereas if σ > 1, the pandemic initially 
grows before dying down. 

To make these ideas precise, let us analyze the dynamics in (2). 
Because we are ignoring R, this dynamical system evolves over the 
simplex 

S2 = {(S, I) : S ≥ 0, I ≥ 0, S+ I ≤ 1}.

It can be seen that any point (S, 0) where S ∈ [0, 1] is an equilibrium of 
the system (2). Therefore there is a continuum of equilibria. This is 
consistent with the observation that the Jacobian matrix of the right side 
of (2) around any such equilibrium is a singular matrix.2Therefore 
analysis methods based on linearlization around an equilibrium do not 
apply to this system. 

A thorough analysis of this equation is carried out in Hethcote 
(1976); see Equation (2.5) and thereafter. Because we will be making 
use of these ideas in our SAIR model, we briefly reproduce the relevant 
details. 

Theorem 1. (See (Hethcote, 1976, Theorem 2.2).) Consider the system 
(2) starting at an initial condition (I0, S0). If σS0 ≤ 1, then I(t)↓0 as t → ∞. If 
σS0 > 1, then I(t) increases at first and then decreases to 0, while S(t)↓S∞, 
where S∞ is the unique solution in (0, 1/σ) of 

1 − S∞ +
ln(S∞/S0)

σ = 0. (3)   

Proof. By dividing the second equation in (2) by the first, we get 

dI
dS

= − 1 +
1

σS
, or dI = − dS +

dS
σS

. (4)  

If we make the reasonable assumption that R(0) = 0 so that I(0) + S(0)
= 1, then the solution of (4) is 

I = 1 − S +
ln(S/S0)

σ , (5)  

where I0 = I(0) and S0 = S(0). The behavior of the solutions is 
completely captured by the constant σ. When t → ∞, it is evident that Ṡ→ 
0 and İ→0, which in turn implies from (2) that I∞ = 0. Substituting this 
into (5) readily gives (3). 

□ Next we discuss the concept of “herd immunity.” Though this 
term is introduced in Topley and Wilson (1923) (i.e., even earlier than 
the SIR model), the term did not have a precise definition nor analysis 
until the publication of Dietz (1975); Smith (1970), with the latter paper 
being more mathematical. A good summary of the evolution of the 
concept is found in Fine, Eames, and Heymann (2011). In diverse pub-
lications, the term “herd immunity” has been used to mean two appar-
ently different things, namely: (i) the value of S(t) at which the level of 

infection I(t) is maximum, and (ii) S(t) = 1/σ. It is not clear whether the 
research community realized that, in the SIR model, both definitions are 
equivalent. Hence we formally state and prove this. 

Theorem 2. For a given σ, S0 with σS0 > 1, and R0 = 0, the maximum 
value of I(t) occurs when S(t) = 1/σ, and is given by 

Imax = C(σ) − lnS0

σ , (6)  

where 

C(σ) := 1 −
1 + lnσ

σ .

At this time instant, we have that 

I(t) + R(t) = 1 − S(t) = 1 −
1
σ =

σ − 1
σ . (7)   

Proof. Note that I(t) assumes its maximum value when İ(t) = 0. 
Therefore, if I(t) ∕= 0, then İ(t) = 0 if and only if S(t) = γ/β = 1/σ. 
Substituting this value of S into (5) gives 

Imax = 1 −
1
σ +

ln(1/(σS0))

σ ,

which is (6) after collecting terms. Now the fact that S(t) + I(t) + R(t) =
1 for all t implies that, when I(t) = Imax, we have (7). 

□ From Theorem 2, it is clear that the number of infections is 
maximum precisely when S = 1/σ; thus, as indicated above, both usages 
of “herd immunity” are consistent. There is yet another usage of the 
phrase “herd immunity” that is found in the literature, namely: the level 
of I + R = 1 − S (that is, the “immune” or non-susceptible population) at 
which the infection level I(t) begins to decrease monotonically to zero. 
For the sake of clarity, let us denote this value by H (to suggest “Herd”). 
The analysis in Theorem 2 shows that 

H = 1 − 1
/

σ =
σ − 1

σ . (8)  

This particular formula for the herd immunity level is quite widely used 
in epidemiology. For instance, in Angulo, Finelli, and Swerdlow (2020), 
the authors suggest that, in the context of COVID-19, the total of 
recovered and currently infected persons must exceed 55% before 
various containment strategies (such as lockdown) can be relaxed. This 

Fig. 2. Dependence of Imax on I0 for various σ.  

1 Other authors use R0, which we avoid due to its similarity to the symbol R.  
2 Note that if the Jacobian matrix at an equilibrium were to be nonsingular, 

then that equilibrium would be isolated; but there are no isolated equilibria. 
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number is arrived at by taking σ = 2.2 for COVID-19 and applying (8). 
In any infection, it is reasonable to assume that I0 ≪ 1. With this 

assumption, one can rewrite (6) as 

Imax ≈ C(σ) + I0

σ . (9)  

If I0 ≪ 1, then 

lnS0 = ln(1 − I0) ≈ − I0.

Substituting this estimate into (6) gives (9). From (9), it can be seen that 
as the basic reproduction ratio σ increases, the constant C(σ) increases 
towards 1, while the slope of the straight line approximation decreases. 
Fig. 2 shows the dependence of Imax on I0 for σ = 2,5,10. 

We conclude our discussion of herd immunity by revisiting an old 
formula (Dietz, 1975, Eq. (23)), which states (in current notation) that 

σ =
ln(1/S∞)

1 − S∞
. (10)  

The logic behind the above equation is that it is difficult if not impossible 
to infer the basic reproduction ratio σ while an epidemic is in progress. 
However, once it has died down so that S∞ is known, the above formula 
can be used to estimate σ. Now let us relate this formula to the current 
analysis. It is easy to rearrange (3) as 

σ =
1

1 − S∞
[ln(1 / S∞) − ln(S0)].

If I0 ≪ 1 so that S0 ≈ 1, this expression is nearly the same as (10). 
The above analysis shows clearly that, in the absence of vital dy-

namics (natural births and deaths), every (S, 0) with S ∈ [0, 1] is an 
equilibrium. Moreover, for every (S0, I0) such that S0 +I0 = 1, the cor-
responding solution converges to (S∞, 0) (and of course R∞ = 1 − S∞), 
where S∞ is given by (3). This point can be quite far away from (S0, I0). 
In this sense, no equilibrium is stable in the sense of Lyapunov. However, 
the entire set of equilibria 𝒮 := (0,1) × {0}) is globally attractive, in the 
sense that as t → ∞, the distance from (S(t), I(t)) to the set 𝒮 approaches 
zero. Note that, actually, S(t) → S∞ which is in (0, 1/σ). This conclusion 
is arrived at by directly solving the SIR equations. 

2.1.2. SIR Model with vital dynamics 
Now we introduce vital dynamics, that is, births and deaths due to 

natural causes. The equations in this case are as follows: 

Ṡ = − βSI − αS + α, İ = βSI − γI − αI, Ṙ = γI − αR. (11)  

In this equation, α is the rate of birth as well as death. It is assumed that 
all newborns enter the S group, and in each of the groups S, I, R, people 
die at the rate of α. Note that Ṙ now consists of two components: A term 
γI which corresponds to the infected persons being removed from the 
pool of the infected, either through immunity or death, and another term 
αR which corresponds to death due to natural causes. Note that births 
and deaths balance, so that we still have 

Ṡ + İ + Ṙ = 0.

So once again we are able to ignore one of the three equations, namely 
for R. Fig. 3 presents a flowchart of the SIR model with vital dynamics. 

Some papers such as Korobeinikov and Wake (2002) examine the 
case where births and deaths do not balance. In this case, the original 

variables (S, I, R) can no longer be viewed as fractions, because the 
underlying population is itself changing with time. In Korobeinikov and 
Wake (2002), a transformation is presented whereby S is replaced by 
another variable P so that (P, I, R) satisfy P+ I+ R = 1. But P is not the 
same as S. For these reasons, we stay with the assumption of balanced 
births and deaths. After we complete the stability analysis for this situ-
ation, the reader may compare the results with those in Korobeinikov 
and Wake (2002) and see that unbalanced births and deaths do not 
change the qualitative behavior of the dynamical system. 

Now let us determine the equilibria of the system (11). Unlike with 
(2) which has a continuum of equilibria, in this case there are only one or 
two isolated equilibria. Thus the introduction of vital dynamics actually 
simplifies the dynamics, as we shall see. One equilibrium, which is 
referred to as the nonendemic equilibrium, is Sn = 1, In = 0. Another 
one (S*, I*) is known as the endemic equilibrium, and corresponds to I* 
∕= 0, that is, there is a persistent level of infection at the equilibrium. 
Setting İ = 0 and dividing by I* (which is assumed to be nonzero) gives 

S∗ =
γ + α

β
. (12)  

Note that this computation is meaningful only if S* ≤ 1, or equivalently 
β ≥ γ + α. For simplicity we ignore the case β = γ + α and assume in the 
sequel that β > γ + α. In this case the quantity 

σe :=
β

γ + α (13)  

is called the “effective” reproduction rate and is more than one. Also, the 
introduction of vital dynamics decreases σe, because β/(γ + α) < β/γ. 
Next, setting Ṡ = 0 and substituting for S* gives 

I∗ =
α

γ + α −
αS∗

γ + α = α
(

1
γ + α −

1
β

)

> 0. (14)  

Now let us return to the stability of the system (11). The analysis of this 
system has evolved over the years. Initially, the stability of these equi-
libria is analyzed using linearization in Hethcote (1976). It is shown that 
the nonendemic equilibrium is unstable, while the endemic equilibrium 
is (locally) asymptotically stable. In Li and Muldowney (1995), it is 
shown that the nonendemic equilibrium is in fact globally attractive, 
except for the other equilibrium. This is shown by establishing that the 
system does not have any limit cycles, by applying the Poin-
caré-Bendixson theorem (Vidyasagar, 2002, Theorem 3.3.22). However, 
that approach is inherently limited to two-dimensional systems. In 
Mena-Lorca and Hethcote (1992), a Lyapunov function is proposed, but 
it is not very elegant nor easy to analyze. The best solution to date is the 
Lyapunov function proposed in Korobeinikov and Wake (2002), which 
we present and study next. But before that we recall a well-known result 
often paraphrased as “the arithmetic mean is no smaller than the geo-
metric mean.” 

Lemma 1. Suppose x1,…, xn are positive numbers. Then 
(
∏n

i=1
xi

)1/n

≤
1
n

∑n

i=1
xi, (15)  

with equality if and only if all xi are equal. In particular, 

∏n

i=1
xi = 1 ⟹

∑n

i=1
xi ≥ n, (16)  

with equality if and only if xi = 1 for all i. The proof is easy and is 
therefore omitted. 

Now we establish the attractivity of the endemic equilibrium. 

Theorem 3. Define the set 

Fig. 3. Flowchart of the SIR model with vital dynamics.  
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S0
2 := {S> 0, I > 0, S+ I ≤ 1}.

Suppose that σe := β/(γ +α) > 1. Then all trajectories starting in S0
2 

converge to the endemic equilibrium (S*, I*) as t → ∞. 

Proof. We follow Korobeinikov and Wake (2002) and propose the 
Lyapunov function candidate 

V(S, I) = (S − S∗lnS) + (I − I∗lnI), (17)  

defined over the region S0
2. Now 

∂V
∂S

= 1 −
S∗

S
,
∂V
∂I

= 1 −
I∗

I
,

∂2 V
∂S2 =

1
S2,

∂2 V
∂I2 =

1
I2,

∂2V
∂S∂I

= 0.

Therefore the Hessian of V is positive definite and V is strictly convex 
over S0

2. Moreover, its only stationary point is (S, I) = (S∗, I∗) which is 
perforce the unique global minimum.3Next, we compute 

V̇ = (1 − S∗ / S)Ṡ + (1 − I∗ / I)İ.

The computation is tedious but routine, and can be simplified by writing 

α = βS∗I∗ + αS∗, γ + α = βS∗.

When the dust clears, we get 

V̇ = (α+ βS∗I∗)
(

2 −
S∗

S
−

S
S∗

)

.

Now apply Lemma 1 with n = 2 and x1 = S∗/S, x2 = S /S∗. Then it 
follows from (16) that 

2 −
S∗

S
−

S
S∗

≤ 0, and < 0 if S ∕= S∗.

Therefore the function V(⋅, ⋅) − V(S∗, I∗) is positive definite, and V̇ ≤ 0 
everywhere. Moreover V̇ vanishes on the set {(S*, I): I ∈ [0, 1]}. Now a 
routine application of the Krasovskii-LaSalle invariance theorem (see e. 
g. Vidyasagar, 2002, Theorem 5.3.77) shows that the endemic equilib-
rium (S*, I*) is globally attractive over the set S0

2. □ 

2.2. The SEIR model 

The SEIR model differs from the SIR model in that there is an addi-
tional group, known as Exposed (E). These are people whose viral load is 
not sufficient to infect anyone through contact. 

2.2.1. SEIR Model without vital dynamics 
The SEIR model without vital dynamics is described by 

Ṡ = − βIS, Ė = βIS − γE, İ = γE − δI, Ṙ = δI. (18)  

The above equations mean that when a person from group S comes into 
contact with a person from group I, then the former becomes “exposed” 
at a rate of β. Note that the transition is out of group S but to group E, and 

not to group I. The persons in group E become infected at a rate γ, and 
move to group I. Finally, people in group I move to group R at a rate of δ. 
Note that the transition of people is strictly sequential in the order S → E 
→ I → R. A provision to move directly from group E to group R could be 
added with more burdensome notation. Fig. 4 contains a flowchart of 
these equations. 

Note that there is no term of the form ES in the above equations. 
Therefore, contact between a susceptible person and an exposed person 
does not have any consequences. This is precisely the difference between 
previous diseases to which the SEIR model has been applied, and 
COVID-19. As before, we can ignore the equation for Ṙ and focus on the 
other three. However, the equation for Ṙ is useful to infer that at any 
equilibrium, we must have I = 0. It is easy to see that the set of equilibria 
of the system consists of all vectors of the form (S, 0, 0), S ∈ [0, 1]. 

Now let us introduce vital dynamics into the system. This model 
below is analogous to (11). As before, the model consists of adding a 
birth term α to Ṡ, and subtracting a multiple by α in all terms. This gives 

Ṡ = − βIS − αS + α, Ė = βIS − γE − αE, İ = γE − δI − αI.

We can streamline the equations by defining new constants θ = γ + α,
ϕ = δ + α, which turns the above equations into 

Ṡ = − βIS − αS + α, Ė = βIS − θE, İ = γE − ϕI. (19)  

Note that a slightly more general model is used in Korobeinikov and 
Maini (2004). A flowchart of the SEIR model with vital dynamics is 
shown in Figure 5 

As is the case in the SIR model with vital dynamics, there are now just 
two isolated equilibria, one with I∗ = 0 and one with I* ∕= 0, which are 
called the nonendemic and the endemic equilibria, respectively. The 
nonendemic equilibrium is (S∗, E∗, I∗) = (1, 0, 0). To compute the 
endemic equilibrium, we proceed as follows: Suppose I* ∕= 0. Then 

İ = 0 ⟹ γE∗ = ϕI∗ ⟹ E∗ =
ϕ
γ

I∗,

Ė = 0 ⟹ βI∗S∗ = θE∗ =
θϕ
γ

I∗ ⟹ S∗ =
θϕ
βγ

,

Ṡ = 0 ⟹ βI∗S∗ = α(1 − S∗) ⟹ I∗ =
α

βS∗ (1 − S∗) =
αγ
θϕ

(1 − S∗).

(20)  

The expression for I* can be rearranged as 

I∗ =
α
ζ
(1 − S∗), ζ =

θϕ
γ
.

Note that an endemic equilibrium exists only if θϕ ≤ βγ. In this case one 
can define the basic reproduction ratio as (βγ)/(θϕ). We will revisit this 
issue again towards the end of the next section. As before we ignore the 
possibility that θϕ = βγ and assume that θϕ < βγ. 

Theorem 4. Define the set 

S0
3 := {(S,E, I) : S,E, I > 0, S+E + I ≤ 1}.

Then, whenever (S(0),E(0), I(0)) ∈ S0
3, the trajectory (S(t), E(t), I(t)) of the 

system (19) converges to the endemic equilibrium (S*, E*, I*). 

Proof. In analogy with (17), we propose the Lyapunov function 
candidate 

V = (S − S∗lnS) + (E − E∗lnE) + (I − I∗lnI) (21) 

Fig. 5. Flowchart of the SEIR model with vital dynamics.  

Fig. 4. Flowchart of the SEIR model without vital dynamics.  

3 Note that the value of the global minimum is not equal to zero; but this 
hardly matters, because that constant can be subtracted from V without 
affecting anything. 
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As before, this function is strictly convex over S0
3, and has a global 

minimum at (S*, E*, I*). After some character-building computations, it 
can be shown that 

V̇ = ζI∗
(

3 −
S∗

S
−

I
I∗

S
S∗

E∗

E
−

I∗

I
E
E∗

)

+ αS∗

(

2 −
S∗

S
−

S
S∗

)

.

Note that the second term is always nonpositive, by Lemma 1. As for the 
first term, note that the product of the three fractions is one. Hence, by 
Lemma 1, unless all three fractions are equal to one, that is, unless (S,E,
I) = (S∗, E∗, I∗), this term is negative. So V̇ is negative definite, and all 
solutions starting in S0

3 converge to the endemic equilibrium. □ 
Note that, in contrast to the SIR model with vital dynamics, this time V̇ is 
negative definite, and there is no need to invoke the Krasovskii-LaSalle 
theorem. 

Before concluding this section, we point out that the SIR and SEIR 
models discussed here contain what is usually referred to as “bilinear” 
incidence. Specifically, the infection resulting from contact between 
members of S and I is of the form βIS. It is possible to replace this by more 
general “nonlinear” incidence models, which is done in Liu, Hethcote, 
and Levin (1987). In that paper, the term βIS is replaced by βIpSq, and 
some results are proved. Comprehensive results are proved in Kor-
obeinikov and Maini (2004). The authors show that if p ≤ 1, then the 
endemic equilibrium has the region So

2 (in the case of SIR) and So
3 (in the 

case of SEIR) in its domain of attraction, by constructing a Lyapunov 
function that generalizes (21), and showing that V̇ is negative definite. It 
is noteworthy that the value of q > 0 is immaterial to the conclusions. A 
still more general class of incidences is studied in Korobeinikov and 
Maini (2005), and a complete stability analysis is carried out. Another 
related approach is found in O’Regan, Kelly, Korobeinikov, O’Calla-
ghan, and Pokrovskii (2010), which studies the SIR model. In this paper, 
contrary to the usual practice, the equation for Ṡ is ignored and the 
equations for İ, Ṙ are used to construct a Lyapunov function. 

3. The SAIR model 

In the preceding section we reviewed a couple of standard epide-
miological models, and established their stability. In the SEIR model, it 
is assumed that contact between the Susceptible (S) and the Exposed (E) 
groups does not lead to fresh infections. However, one of the dis-
tinguishing features of COVID-19 is the presence of a large fraction of 
“asymptomatic” people who can, and do, infect susceptible people. To 
capture this phenomenon, we divide the population into four groups, 
denoted as Susceptible (S), Asymptomatic (A), Infected (I), and 
Removed (R). We examine the SAIR model both with and without vital 
dynamics, and analyze their stability properties. Note that the SAIR 
model is introduced in Robinson and Stilianakis (2013). However, to 
date it does not seem to have attracted much attention. Perhaps this is 
because, until the advent of COVID-19, there haven’t been any major 
epidemics with large asymptomatic patient populations. Some of the 
papers that cite Robinson and Stilianakis (2013) are Chisholm, Camp-
bell, and Wu (2018); Mathur and Narayan (2018); Saad-Roya, Wing-
reena, Levinc, and Grenfell (2020). These papers do not go beyond the 
original analysis in Robinson and Stilianakis (2013). However, (Chis-
holm et al., 2018) has a good analysis on why ignoring asymptomatic 
patients can lead the policy-makers to under-estimate the severity of the 
pandemic. 

We begin by stating and proving a result of independent interest. 

3.1. An extension of the Krasovskii-Lasalle invariance theory 

In this section we present an extension of the classical Krasovskii- 
LaSalle invariance theory, which is useful in establishing the stability 
properties of various epidemiological models studied here. The 

extension covers the case where a Lyapunov function candidate is only 
positive semidefinite, and not positive definite as is commonly assumed. 
The traditional Krasovskii-LaSalle theory is found in several sources, e. 
g., (Vidyasagar, 2002, Section 5.3), Actually the extension is implicitly 
contained in existing proofs of the theorems given in Vidyasagar (2002, 
Section 5.3), but was apparently not noticed earlier – perhaps because 
the need for it did not arise. However, in the analysis of the SAIR model, 
this extension is very useful. 

The set-up is the standard one. We consider the differential equation 

ẋ = f(x), (22)  

where x ∈ Rn for some integer n, and the vector field f is continuously 
differentiable (so that the equation has a unique solution at least 
locally). Suppose x∗ ∈ Rn satisfies 

f(x∗) = 0,

so that x* is an equilibrium. The objective is to derive conditions under 
which x* is “globally” attractive, in the sense that all solutions starting in 
some suitably large set (not just an immediate neighborhood of x*) 
converge to x*. 

For this purpose we identify a Lyapunov function candidate V : Rn→ 
R that is continuously differentiable, and satisfies the following condi-
tions:  

A1. There is a constant c such that the level set 

ℒV(c) := {x : V(x) ≤ c} (23)  

is compact (closed and bounded).  
A2. V satisfies 

V(x) ≥ V(x∗), ∀x ∈ ℒV(c). (24)    

A3. V̇ satisfies 

V̇(x) ≤ 0 ∀x ∈ ℒV(c). (25)   

Assumption [A2] is the key differentiator, because the usual 
assumption is 

V(x) > V(x∗) ∀x ∈ ℒV(c)\{x∗}.

With these preliminaries, we can now state the extension: 

Theorem 5. Define 

ℳ :=
{

x ∈ ℒV(c) : V̇(x) = 0
}
,

and let Ω denote the largest invariant set of the system (22) contained in ℳ. 
Then x(t) → Ω as t → ∞, whenever x(0) ∈ ℒV(c). In particular, if {x*} is the 
only invariant set of (22) contained in ℳ, then x(t) → x* as t → ∞, 
whenever x(0) ∈ ℒV(c). 

Proof. The proof is fairly straightforward and follows well-established 
lines. Since V̇(x) ≤ 0 for all x ∈ ℒV(c), it follows that the set ℒV(c) is 
invariant for the flow of the differential Eq. (22). Since this level set is 
compact, the limit point set of each trajectory is nonempty, and the 
trajectory converges to its limit set; see Vidyasagar (2002, Definition 
5.2.27) and Vidyasagar (2002, Lemma 5.2.34). Next, we refer to 
Vidyasagar (2002, Lemma 5.3.71). Though this lemma is stated for the 
case where V is positive definite, a perusal of the proof shows that it holds 
even if V satisfies only (24). Hence the desired conclusion follows. □ 

A related result can be found in Khalil (2002, Theorem 4.4, Corollary 
4.1). 
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3.2. An SAIR model without vital dynamics 

As mentioned earlier, the distinguishing feature of the COVID-19 
pandemic is the presence of a large number of asymptomatic patients, 
who do not manifest any external symptoms, but are still capable of 
infecting susceptible persons. To capture this phenomenon, the 
following model is presented in Robinson and Stilianakis (2013):4 

Ṡ = − βAAS − βIIS,
Ȧ = βAAS + βIIS − γAA − δA,
İ = δA − γII,
Ṙ = γAA + γII.

(26) 

In the above model, S, A, I, and R denote the susceptible, asymp-
tomatic, infected, and removed populations respectively. Interactions 
between A and S lead to the person from S moving to A at the rate of βA, 
while interactions between I and S lead to the person from S moving to A 
at the rate of βI. Note that persons from S move only to A and do not 
move directly to group I. The persons in group A move to the group R at 
the rate γA, and to the group I at the rate δ. Finally, persons in group I 
move to group R at the rate γI. Fig. 6 contains a flowchart of the above 
equations. 

An alternative to the above model is to permit some fraction of the 
term βAAS + βIIS to enter the group I directly, instead of passing through 
A as an intermediate stage. There does not appear to be any biological 
justification for this. Another possibility, which is totally unrealistic, is 
to combine A + I into one group, and assume that A and I each make up a 
fixed fraction of the total. This would be just the SIR model “in disguise” 
with A + I playing the role of I. From (26) it can be seen that initially the 
growth would be in group A which leads to growth in group I later on. 
This temporal behavior seems to tally with actually observed evolution 
of the pandemic. So we use the model in (26) throughout. However, we 
point out a variant of the SEIR model that could be interpreted as an 
SAIR model. In this SEIR-variant, (18) is modified to 

Ṡ = − βIS − ϵβES, Ė = βIS + ϵβES − γE, İ = γE − δI, Ṙ = δI, (27)  

where ϵ is a “small” number denoting secondary infections due to in-
teractions between E and S; see van den Driessche and Watmough (2008, 
Section 6.4.2). As soon as the model includes the possibility that in-
teractions between E and S lead to infections, this is the SAIR model, but 
for the restriction that ϵ is “small.” Having said that, we reiterate that 
Robinson and Stilianakis (2013) is apparently the first paper to use the 
acronym SAIR, and to formulate the model as in (26) without insisting that 
βA has to be small compared to βI. 

It is easy to verify that the set 

S3 :=
{
(S,A, I) ∈ R3

+ : S+A+ I ≤ 1
}

(28)  

is an invariant set of (26), and that the set of equilibria is {(S, 0, 0), S ∈
[0, 1]}. 

Theorem 6. Define 

ℳ0 := {(S,A, I) ∈ S3 : A= 0, I = 0}. (29)  

For the system (26), we have that 

(S(t),A(t), I(t))→ℳ0 as t→∞.

Proof. To analyze the stability of this system, we introduce the Lya-
punov function candidate 

V = S + A + I. (30)  

It might be mentioned that the above function does not look very 
“traditional.” Nevertheless, it is positive definite over S3, and has its 
global minimum at (0,0,0). Now 

V̇ = Ṡ + Ȧ + İ = − (γAA+ γII).

Hence V̇ ≤ 0 on S3. Moreover, the set where V̇ vanishes is precisely ℳ0,

and ℳ0 is an invariant set of the system (26). (In fact it is just the set of 
equilibria.) Now the desired conclusion follows from Theorem 5. □ 
Note that the above approach can also be applied to the SIR model using 
the Lyapunov function V = S + I, to show that I(t) → 0 as t → ∞. How-
ever, the simple nature of the SIR model allows us to draw much more 
detailed conclusions as in Hethcote (1976), and presented here as The-
orem 1. 

Now let us impose the simplifying assumptions 

βA = βI = β, γA = γI = γ. (31)  

in (26). This leads to 

Ṡ = − βAS − βIS, Ȧ = βAS + βIS − γA − δA, İ = δA − γI, Ṙ = γA + γI.
(32)  

We refer to this model as the simplified SAIR model, to distinguish it 
from the more general SAIR model of (26). Fig. 7 contains a flowchart of 
the simplified SAIR model. 

There are several noteworthy points about the simplified SAIR 
model, and these are discussed before proceeding to an analysis of this 
model.  

1. It is assumed that the likelihood of fresh infection is the same, 
whether the contact is between A and S, or between I and S. Note that 
in Robinson and Stilianakis (2013), it is not assumed that these two 
rates are the same. This paper considerably predates the emergence 
of COVID-19. After the onset of the COVID-19 pandemic, several 
papers in the literature study “viral shedding” by both asymptomatic 
and infected patients, and conclude that there is no discernible dif-
ference between the two; see for example He, Lau, Wu, and Deng 
(2020); Li, Pei, and Chen (2020); Liu, Yan, and Wan (2020); Wölfel, 
Corman, and Guggemos (2020). Therefore, in the simplified SAIR 
model, we assume that the rate of infection due to S and A in-
teractions is the same as that due to S and I interactions, and the same 
constant β is used to multiply the terms AS and IS.  

2. It is assumed that, irrespective of the cause of infection, all infected 
persons enter only group A; this is similar to the assumption in the 

Fig. 6. Flowchart of the SAIR model without vital dynamics.  Fig. 7. Flowchart of the simplified SAIR model without vital dynamics.  

4 Equations (1)– - (3) of Robinson and Stilianakis (2013) include the possi-
bility that some fraction from group R re-enters the group S. This can perhaps 
be called the SAIRS model. We slightly simplify the model by assuming that 
persons who enter the group R remain there. 
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SEIR model that all infected persons enter group E. Persons in group 
A move to group I with a rate constant of γ.  

3. Persons in both groups A and I move to the “Removed” group R at the 
same rate δ. This assumption is subject to debate. It is observed that 
almost all asymptomatic COVID-19 patients recover. In contrast, a 
fraction of infected patients die, and the rest recover. In this context, 
it is important to recall that the symbol R does notdenote “recov-
ered,” but “removed,” either through recovery or through death. The 
point is that persons in group R are no longer susceptible. Therefore 
it is reasonable to assume that the rate at which persons in the I group 
move to group R and are thus “removed,” either through recovery or 
death, is the same as the rate at which persons in the A group recover 
and thus move to the group R. With reasoning, we use the same rate 
constant δ to multiply A and I. 

These assumptions allow us to derive closed-form solutions to the 
simplified SAIR model, analogous to Theorem 1 for the SIR model. 
Define a new variable M := A+ I. Then it readily follows from (32) that 

Ṡ = − βMS, Ṁ = βMS − γM, Ṙ = γM, (33)  

which is just the “SIR” model of (1) with M playing the role of I. 
Therefore Theorem 1 applies with M replacing I. Define, as before, the 
basic reproduction ratio σ := β/γ. Then, in analogy with (5), with R0 = 0 
we have that 

M = 1 − S +
ln(S/S0)

σ . (34)  

Now it follows from Theorem 1 that if σM0 ≤ 1, then M(t)↓0, while if 
σM0 > 1, then M(t) initially rises before decreasing to zero. In this case, 
the limiting value S∞ can be computed from (3). Note that, because M(t)
= A(t) + I(t), it follows that both A(t) and I(t) approach 0 as t → ∞. This 
is consistent with Theorem 6, which holds even without the simplifying 
assumptions (31). However, while (34) can assist in computing M = A +
I, we would still wish to compute A and I individually. We now show this 
can be done. 

One can substitute from (34) into (33) and observe that β = γσ, to get 
a differential equation that involves only S, namely 

Ṡ = − [β(M0 + S0) − γlnS0] + βS2 − γlnS, (35)  

where the term inside the square brackets is just some constant. Once S( 
⋅ ) is found from (35), one can find M( ⋅ ) by simply substituting into (34). 
Next, upon noting that A = M − I, one can infer from (32) that 

İ = − (γ+ δ)I + δM. (36)  

3.3. SAIR Model with vital dynamics 

Until now we have studied the SAIR model without vital dynamics. 
Next we incorporate vital dynamics into the simplified SAIR model, as 
follows: 

Ṡ = − βAS − βIS − αS + α,
Ȧ = βAS + βIS − γA − δA − αA,
İ = δA − γI − αI.

(37)  

Fig. 8 contains a flowchart of the above set of equations. 
In these equations, β is the infection ratio, α is the birth and death 

rate, γ is the rate at which group A and group I move to group R, and δ is 
the rate at which group A moves to group I. If we define M = A + I and 
gather constants, we get 

Ṡ = − βMS − αS + α, Ṁ = βMS − (γ + α)M. (38)  

This is the same as (11) with I replaced by M. 
The introduction of vital dynamics leads to a nonendemic equilib-

rium where the total infected population M = A + I equals zero, and 
under suitable conditions, an endemic equilibrium. The nonendemic 
equilibrium is (S,A,I) = (1,0,0). As for the endemic equilibrium, S* and 
M* can be determined as in (12) and (14) with I* replaced by M*; thus 

S∗ =
γ + α

β
,M∗ =

α(1 − S∗)

βS∗
= α

(
1

γ + α −
1
β

)

. (39)  

Thus an endemic equilibrium exists only when β > γ + α, and the 
effective reproduction ratio is β/(γ + α). Once M* is determined, we can 
compute A*, I* by setting İ = 0, which gives δA∗ = (γ +α)I∗, or 

A∗ =
γ + α

γ + δ + αM∗, I∗ =
δ

γ + δ + αM∗. (40) 

Now we establish the global asymptotic stability of the SAIR solu-
tion. The conclusion is analogous to Theorem 4. However, the method of 
proof is entirely different. 

Theorem 7. Define the set 

S0
3 :=

{
(S,A, I) ∈ R3

+ : S> 0,A+ I > 0, S+A+ I ≤ 1
}
.

Then, whenever (S(0),A(0), I(0)) ∈ S0
3, the trajectory (S(t), A(t), I(t)) of the 

system (37) converges to the endemic equilibrium (S*, A*, I*). 

Proof. In analogy with (17), define the Lyapunov function candidate 

V = (S − S∗lnS) + (M − M∗lnM). (41)  

Viewed as a function of (S, A, I), this function is convex because V is 
convex in (S, M) and M is linear in (A, I). However, V is positive semi-
definite because it has its global minima along the line {(S,A, I) : S = S∗,

A + I = M∗}, and not at the single point (S*, A*, I*). Next, in analogy with 
earlier arguments, it follows that 

V̇ = (α+ 2βS∗M∗)

(

2 −
S∗

S
−

S
S∗

)

.

Therefore 

ℳ :=
{
(S,A, I) : V̇ = 0

}
= {(S,A, I) : S= S∗}.

Now let us see what trajectories of (37) lie in the set ℳ. If (S(t),A(t), I(t)
) ∈ ℳ for all t, then S(t) = S∗ for all t ≥ 0. In turn this implies that Ṡ(t) =
0 ∀t, or 

α − βS∗M(t) − αS∗ = 0 ∀t ⟹ M(t) = M∗ ∀t.

Therefore the only trajectories of (37) that lie in the set ℳ have S(t) =
S∗,M(t) = M∗ for all t. It now follows from Theorem 5 that S(t) → S* and 
M(t) = A(t) + I(t)→M∗ as t → ∞. Next, let us rewrite the equation for İ as 

İ = δA − (γ + α)I = δM − (γ + δ+ α)I.

Hence, if M(t) → M* as t → ∞, it is a standard exercise in linear system 
theory to show that 

I(t)→
δ

γ + δ + αM∗ = I∗ as t→∞.

Fig. 8. Flowchart of the simplified SAIR model without vital dynamics.  
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Then it is a ready consequence that A(t)→M∗ − I∗ = A∗ as t → ∞. □ 
In Robinson and Stilianakis (2013), the authors introduce vital dynamics 
into the SAIR model (26) without the simplifying assumptions (31). 
They derive formulas for the endemic equilibrium and establish that it is 
locally asymptotically stable by linearizing the model around this equi-
librium. As of now, the problem of introducing vital dynamics into (26) 
and estabishing global asymptotic stability is still open. 

We conclude this section by presenting a formula for the “basic 
reproduction ratio” for the SAIR model. In the SIR model with vital 
dynamics as in (12), the quantity σ defined in (13) is significant in that if 
σ < 1, then endemic equilibrium does not exist. Similarly, in the SEIR 
model with vital dynamics, it follows from (20) that an endemic equi-
librium does not exist unless 

θϕ ≤ βγ ⇔ (α + γ)(δ + α) ≤ βγ.

*** 
In van den Driessche and Watmough (2008, Section 6.4), a very 

general solution is given for the basic reproduction ratio for a wide 
variety of models, which includes both the SEIR and SAIR models. 
Specifically, in van den Driessche and Watmough (2008, Section 6.4.2), 
the authors study the SEIR model with “small” secondary infections, 
which can be interpreted as an SAIR model. Therefore one can replace 
the term ϵβES in van den Driessche and Watmough (2008, Section 6.4.2) 
by ℬAAS and the results still hold. Specifically, after adjusting for current 
notation (and noting that S0 = 1 in that paper), (van den Driessche & 
Watmough, 2008, Eq. (6.6)) becomes 

σ =
βγ

(α + γ)(δ + α)

for the SEIR model, while (van den Driessche & Watmough, 2008, Eq. 
(6.6)) becomes 

σ =
βA(δ + α) + βIγ
(α + γ)(δ + α)

for the SAIR model. In each case, the basic reproduction ratio σ must 
exceed one in order for the pandemic to increase initially, before 
subsiding. 

4. Compartmental SAIR models 

In large and diverse societies, it is not realistic to model the entire 
society as one homogeneous unit. It makes more sense to divide the 
society into a set of relatively homogeneous regions, which we refer to as 
compartments, and create models for each. In such a situation, the 
possibility of migration from one region to another is a distinct possi-
bility, whatever be the “lockdown” policies in effect. One possibility is to 
divide the entire country into m compartments, and to create an over-
arching model. This would lead to a model with an enormous number of 
parameters to be estimated. Instead, we adopt what might be called the 
“thermodynamics” approach, wherein each compartment is deemed to 
interact with the rest of the country, often referred to as the “universe.” 
For another approach to the problem of migration, see Kaushal et al. 
(2020). 

The two-compartment “thermodynamics” model without vital dy-
namics is as follows: 

Ṡ = − βAAS − βIIS,
Ȧ = βAAS + βIIS

− γAA − δA − μA + μUAU ,

İ = δA − γII,
Ṙ = γAA + γII.

(42)  

ṠU = − βAUAUSU − βIUIUSU ,

ȦU = βAUAUSU + βIUIUSU
− γAUAU − δAU + μA − μUAU ,

İU = δAU − γIUIU ,

ṘU = γAUAU + γIUIU .

(43)  

This is just the general (not simplified) SAIR model of (26) with two 
extra terms: It is assumed that there is a migration from the universe U to 
the main compartment with a migration rate of μU, and similarly, there 
is a migration from the main compartment to the universe with a rate of 
μ. If both migration rates are zero, then we get two isolated SAIR models. 
Note too that migration is permitted only from the A and AU groups. 
Clearly no country would permit migration from the infected groups. It 
is possible to make the above model more complex by permitting 
migration also from the S and SU groups. It is left to the reader to show 
that Theorem 8 readily extends to this case as well. 

Theorem 8. Define the set S6 in analogy with (28), and define 

ℳ0 := {(S,A, I, SU ,AU , IU) ∈ S6 : A= I =AU = IU = 0}.

Then the trajectory of (42) and (43) approaches ℳ0 as t → ∞. 

Proof. In analogy with Theorem 6, define the Lyapunov function 
candidate 

V = S + A + I + SU + AU + IU ,

which is positive definite on S6. Then 

V̇ = − (γAA+ γII + γAUAU + γIUIU),

which vanishes only on the set ℳ0. Moreover, ℳ0 consists of the set of 
equilibria of the coupled system, and is thus an invariant set. The desired 
conclusion now follows from Theorem 7. □ 

5. Parameter estimation 

In this section we revisit the SAIR model without vital dynamics (that 
is, without natural births and deaths), and show how the various pa-
rameters can be estimated. 

Recall the general SAIR model: 

Ṡ = − βAAS − βIIS,
Ȧ = βAAS + βIIS − γAA − δA,
İ = δA − γII,
Ṙ = γAA + γII.

(44)  

Note that the only variables we can observe are I and R. Since R stands 
for “removed” and not “recovered,” we could express R as the sum H + D 
where H denotes the fraction that recover, and D denotes the fraction 
that die. Both quantities can be measured separately. From these ob-
servations, we aim to estimate the various quantities in the model. 

In order to simplify the problem of estimating the parameters, we 
make a few assumptions.  

1. It is assumed that βA = βI = β. In other words, it is assumed that 
contact between persons of the S and A has the same likelihood of 
leading to infection as contact between persons of the S and I groups. 
There is some evidence to suggest that indeed viral shedding by 
asymptomatic persons is pretty much the same as that by infected 
persons; see for example Wölfel et al. (2020), He et al. (2020), Liu 
et al. (2020), Li et al. (2020). There also do not appear to be any 
strong biological arguments to say why this should not be the case.  

2. In the case of asymptomatic patients, practically all of them recover, 
and very few if any die. In contrast, most infected patients recover, 
but some die. One could try to capture this situation by writing 

Ḣ = γAA + γH,I I, Ḋ = γD,I I.
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In this notation, it will certainly be the case that γA > γH,I, or to put it 
in words, the fraction of A who recover is higher than the fraction of I 
that recover. However, it is assumed here that 

γA = γH,I + γD,I ,

that, is the recovery rate for the A group is the same as the removal 
rate for the I group, which is the sum of the recovery rate and the 
death rate. With this assumption, we can write 

ṘA = γA, ṘI = γI. (45)    

3. Strictly speaking, in the model (44) we should incorporate a delay 
term to reflect the incubation period of the infection. However, as 
shown in Anderson and May (1991), Keeling and Rohani (2008) and 
reiterated in Robinson and Stilianakis (2013), the introduction of a 
delay term “rarely results in qualitatively different dynamics.” In 
Section 6, it will be seen that in the case of France and Switzerland, 
the lack of a delay term leads to worse estimates. However, this 
appears to be the exception rather than the rule. 

With these simplifications, we arrive at the simplified SAIR model, 
namely 

Ṡ = − βAS − βIS, Ȧ = βAS + βIS − γA − δA, İ = δA − γI, (46)  

in addition to (45). It can be seen that there are only three parameters to 
be estimated here, namely β, γ, δ. Next we discuss the parameters can be 
estimated, in the order γ, δ, β. 

To estimate γ, we start with the second part of (45), namely ṘI = γI. 
Both RI and I can be measured. However, some care is needed in esti-
mating γ. If we were to estimate ṘI at several time instants (say by first- 
order differences), use I at the same time instants, and then use some 
kind of least-squares fit for γ, the results would not be very good. The 
reason is that in reality RI is updated at discrete instants in time (usually 
once a day), and on top of that, the numbers can be adjusted up or down 
due to “reconciliation” of data. Instead, it would be better to write this 
relationship in integral form, as 

RI(T) − RI(0) = γ
∫ T

0
I(t)dt.

In effect one makes a “phase portrait” of RI versus I. Computing γ using a 
least-squares approach with the above relationship for various values of 
T gives an estimate that is more robust to the discrete nature of RI. 

Next we derive a method to estimate δ, using the data after lockdown. 
Suppose a “perfect” lockdown is implemented at time TL, which causes β 
= 0 after that time. In this case, the simplified SAIR model becomes 

Ṡ = 0, Ȧ = − (γ + δ)A, İ = δA − γI.

In particular, it follows that 

A(TL + t) = A(TL)exp( − (γ + δ)t), ∀t ≥ 0.

Also, the last equation in the model can be rewritten as 

İ + γI = δA.

Substituting the expression for A( ⋅ ) and solving for I( ⋅ ) gives 

log
[(

İ + γI
)
(TL + t)

]
= log(δA(TL)) − (γ + δ)t, ∀t ≥ 0.

Therefore, ideally the plot of log[(İ+γI)(TL +t)] should be a straight-line 
with intercept log (δA(TL)) and slope − (γ + δ). By computing the slope 
we can estimate γ + δ, and by combining this with the earlier estimate 
for γ, we can get an estimate for δ. Note in passing that, once there is an 
estimate, it is possible to determine the fraction of asymptomatic pa-
tients by setting 

A(TL + t) = (1 / δ)
(

İ + γI
)
(TL + t), ∀t ≥ 0.

Finally we come to estimating β, which turns out to be the most 
involved part. The solution methodology is based on the “closed-form 
solution” approach already introduced in Section 3. This system of 
equations describing the simplified SAIR model can be solved for pre- 
lockdown situation in terms of the reproduction rate σ = β/γ by 
defining M = I + A, and observing that before lockdown, we have 

dlogS
dR

= − σ, dM
dS

= − 1 +
1

Sσ.

which can be solved in terms of S̃ = S/S0 as 

R = − σ− 1logS̃,M = 1 − S + σ− 1logS̃ (47)  

where M + S + R = 1, S0 = S(0), and R(0) is assumed to be 0. 
Substituting the expression for M from (47) into (44) gives us the 
parametric solution in implicit form as 

βt =
∫

1

S̃ ds
s ( − 1 + Ss − σ− 1logs)

and for the corresponding S, the infections M and I are found using : 

M = 1 − S + σ− 1logS̃, İ = − (δ+ γ)I(t) + δM(t).

If the logarithm is approximated as log(1 − s) ≈ − s, then we get an early 
time solution for S in explicit form as 

S̃ =
σ − 1

σ(1 − S0)exp{β(1 − σ− 1)t} − (1 − σS0)
,

and 

M = 1 − S0S̃ + σ− 1
(

S̃ − 1
)
.

In the early phase, we assume that A and I are approximately equal, so 
that M ≈ 2I. This gives the following expression for the early time 
infections.: 

I(t) =
(S0 − 1)(σ − 1) exp{(β − γ)t}

2(1 − σS0 + σ(S0 − 1) exp{(β − γ)t})
(48) 

Since we can measure I(t) as a function of t, and we have an estimate 
for γ is available at this point, the above equation can be used to estimate 
β. 

6. Numerical results 

Now we present the outcomes of applying the parameter estimation 
techniques. In the first section, we apply our methods to eight countries 
from around the world, while in the second section, we analyze the 
situation in Delhi, which is (unfortunately) emerging as a “hotspot” in 
India. 

Table 1 
Value of removal (recovery+death) time for different countries .  

Country γ− 1  Country γ− 1  

USA 50 ± 3 Brazil 20 ± 1 
Italy 30 ± 2 India 20 ± 2 
Iran 11 ± 1 Japan 11 ± 1 
France 21 ± 2 or 100 ± 4 Switzerland  
35 ± 2 or 19 ± 1     
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6.1. Analysis of eight countries 

Table 1 shows the estimated γ− 1 (with units of days) for various 
countries. 

Fig. 9 shows the values of γ for various countries, by plotting RI(T) 

versus 
∫ T

0 I(t)dt as a function of T. It can be seen that, for six out eight 
countries, the plot is nearly linear, thus indicating a robust estimate for 
γ. However, for France and Switzerland, the graph is far from linear. We 
believe that this is because we ignored the incubation period of the virus. 

Fig. 9. Removal (recovery+death) frequency γ for various countries.  
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If we were to take this into account, then we would have to modify the 
dynamics as a delay-differential equation, in the form 

ṘI(t) = γI(t − τ),

where τ is the incubation period. Thus 

R(T) − R(0) =
∫ T − τ

0
I(t)dt.

Fig. 10 shows the estimates of γ for these two countries using various 
values for the delay τ. It can be seen that, as τ is increased, the plot 
becomes more linear. It is not clear why this should be an issue only for 
two out of eight countries. 

Fig. 11 shows the outcomes for estimating δ for various countries. 
Fig. 12 shows the outcomes for estimating β for various countries. 

This figure shows clearly that the “lockdown” has been implemented 
with quite varied levels of thoroughness in different countries. 

Once we have fitted the parameters, we have solved the simplified 
SAIR model to generate the trajectory of the pandemic. Thus we have 
fitted the past history and made future forecasts for various countries in 
Fig. 13. The quality of our estimates can be seen in this figure. 

Table 2 presents the parameters of our models for all countries, in a 
convenient form. 

6.2. Analysis of Delhi 

The same methods were applied to analyze the situation in Delhi. 
Fig. 14 shows the various plots. The following are the key conclusions:  

• The impact of the lockdown in reducing both β (from 0.26 to 0.09) 
and σ (from 8.1 to 2.8) can be inferred from the data.  

• Future predictions of the progress of the disease show that “herd 
immunity,” in terms of the number of active infections peaking, will 
be achieved when the total of asymptomatic and infected is around 
25% of the population. Given that the estimated value of σ after the 
lockdown is 2.8, classical SIR theory, based on ignoring asymptom-
atic patients, would predict that herd immunity is achieved at a level 
of (σ − 1)/σ or 64.29%. This shows that the computation of herd 
immunity must be modified for the SAIR model, and that the level for 
the SIR model is overly pessimistic. However, as of now, there is no 
explicit expression for the onset of herd immunity in the case of the 
SAIR model.  

• The above prediction completely ignores any kind of advances in the 
treatment of the disease. Obviously, the predictions will turn out to 
be overly pessimistic if any advances are made in prevention and 
cure of COVID-19. 

7. Discussion and future research 

In this paper, we have attempted to achieve two objectives. In the 
first objective, we undertook the task of completely analyzing the SAIR 
model which was introduced in Robinson and Stilianakis (2013) to 
incorporate asymptomatic patients. As a part of this, we established the 
global attractivity of the equilibria in the SAIR model, both with and 
without vital dynamics. Further, we extended the SAIR model to a 
compartmental model to accommodate migration. The major difficulty 
with the SAIR model is that it is not possible to observe the asymp-
tomatic patients. Therefore, we provided a method for estimating the 
various parameters in a simplified SAIR model. The second objective 
was to validate our model by fitting the observed data. Our analysis 
shows that the model built upon our estimated parameters does an 
excellent job of explaining the evolution of the pandemic across several 
countries. We have also applied a similar analysis to the situation in 
Delhi. This analysis shows clearly the impact of implementing the 
“lockdown” in the Delhi area. 

There is no shortage of interesting open problems to be tackled. We 
list some of them below: 

Nonlinear Observers for the SAIR model: Perhaps the most interesting 
one is to design a nonlinear observer for the SAIR model. In the SIR 
model, which is the simplest, the medical system can measure both 
Infected (I) and Removed (R) populations; since S + I + R = 1, in effect S 
can also be inferred. Hence the SIR model corresponds to a system in 
which all states can be measured. In the SEIR model, it follows from the 
above logic that the sum S + E can be inferred from measurements of I 
and R. There is not much incentive to infer the values of S and E indi-
vidually, because in the SEIR model, it is assumed that contact between 

Fig. 10. Delay difference plots for : France(left) and Switzerland(right), in order to find the correct γ .  

Fig. 11. Time t = 0 is 14th February 2020. Extracting δ (using the decaying 
exponential in the analytical solution 10–30 days post lockdown). 
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Fig. 12. Time t = 0 is 14th February 2020. Extracting β (using the analytical solution at early time).  
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members of the S and E groups does not lead to fresh infections. The 
situation is different in the SAIR model. As before, it is possible to infer 
the value of S + A from the measurements of I and R. But the difference 
now is that there is a requirement to infer S and A individually, because 
contact between these two groups does lead to fresh infections. In control 
theory, there is a well-developed method of designing observers for 
inferring state variables that cannot be measured directly. While the 
theory is quite complete for linear systems, there are some results for 
nonlinear observers as well. It would be worthwhile to develop such 
observers for the SAIR model. 

Lyapunov stability analysis of SAIR and compartmental models with vital 
dynamics: Several methods of stability analysis in the literature are based 
on “closed-form solutions” of the system at hand. The Lyapunov func-
tions proposed here in Theorems 6 and 8 are new and can be applied to 
arbitrarily large concatenations of systems. However, this class of Lya-
punov functions cannot be readily extended when vital dynamics are 
present. This problem is worth studying, because the introduction of 
vital dynamics actually makes the more realistic, by eliminating a con-
tinuum of equilibria, and resulting in just a few isolated equilibria. 

Refinements of the SAIR model: It is possible to develop still finer 

models of the pandemic by introducing additional categories such as 
Quarantined, Healed, Ailing, Recognized (or Detected), Threatened, etc. 
The paper (Park, Cornforth, Dushoff, & Weitz, 2020) proposes what 
might be called an SEAIR model, but the level of analysis is not nearly so 
thorough as it is in the present paper. In Giordano, Blanchini, and Bruno 
(2020), eight different categories are introduced. By introducing more 
categories, we will get a more realistic model of disease progression. On 
the other hand, the number of parameters to be estimated increases 
drastically. The ideal trade-off between these two conflicting consider-
ations remains to be explored. 

Sensitivity to estimation errors: Given that the estimates for the various 
parameters are based on rather noisy and unreliable data, it would be 
desirable to carry out simulation studies to ascertain how sensitive the 
conclusions are to these error sources. For instance, in the estimates for 
Delhi, the values of σ (the basic reproduction ratio) are well away from 1 
both before and after the lockdown. Hence we can be sure that the 
lockdown has had a beneficial effect, and moreover, this conclusion is 
robust against errors in the data and the consequent errors in parameter 
estimation. When it comes to applying epidemic models to real data, the 
literature is in the starting phase. We cite (Lavezzo, Franchin, & 

Fig. 13. Time t = 0 is 14th February 2020. Numerical solution to the SAIR model using the estimated paramters β, δ and γ.  

Table 2 
Parameters extracted by fitting the analytical solutions to the model we developed to the 7-day average data from the different 
countries. The ”–” (blanks) indicate that the parameter could not be estimated as country has not yet entered the region of 
exponential decay post lockdown.  

Country β γ δ σ 

USA 0.250 ± 0.02 0.020 ± 0.001 – 12.5 ± 1.625 
India 0.242 ± 0.03 0.0486 ± 0.002 – 4.979 ± 0.821 
Brazil 0.351 ± 0.03 0.0484 ± 0.003 – 7.252 ± 1.066 
Iran 0.52 ± 0.02 0.086 ± 0.004 0.031 ± 0.001 6.046 ± 0.338 
France 0.280 ± 0.012 0.046 ± 0.004 0.010 ± 0.001 6.08 ± 0.789 
Switzerland 0.290 ± 0.009 0.0502 ± 0.001 0.071 ± 0.002 5.77 ± 0.321 
Italy 0.256 ± 0.021 0.034 ± 0.002 0.091 ± 0.007 7.529 ± 1.054 
Japan 0.185 ± 0.013 0.086 ± 0.003 0.022 ± 0.001 2.151 ± 0.225  
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Ciavarella, 2020; Verity, Okell, & Dorigatti, 2020) are two early exam-
ples. Another paper (Day, 2020) states that the COVID-19 was elimi-
nated in a small Italian village thanks to identifying and isolating 
asymptomatic patients. The same paper also has the highest estimate 
currently available (75%) for the fraction of asymptomatic patients. For 
the most part, such applications are based on SIR models. As more and 
more such papers appear, it would be worthwhile to quantify the im-
provements in the accuracy of the predictions made by using SAIR-like 
models instead of SEIR-like models. 
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