
 1 Copyright © 2011 by ASME

COMPUTATIONAL FLUID DYNAMICS USING GRAPHICS PROCESSING UNITS:
CHALLENGES AND OPPORTUNITIES

S. Pratap Vanka
Dept. of Mechanical Science and Engineering

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
spvanka@illinois.edu

Aaron F. Shinn
Dept. of Mechanical Science and Engineering

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
afshinn2@illinois.edu

 Kirti C. Sahu

Dept. of Chemical Engineering
Indian Institute of

Technology Hyderabad
Andhra Pradesh, India

ksahu@iith.ac.in

ABSTRACT
A new paradigm for computing fluid flows is the use of
Graphics Processing Units (GPU), which have recently become
very powerful and convenient to use. In the past three years, we
have implemented five different fluid flow algorithms on GPUs
and have obtained significant speed-ups over a single CPU.
Typically, it is possible to achieve a factor of 50-100 over a
single CPU. In this review paper, we describe our experiences
on the various algorithms developed and the speeds achieved.

INTRODUCTION

This paper describes some of our recent experiences of
using Graphics Processing Units as a paradigm for performing
large-scale scientific computations. In particular we are
interested in computational fluid dynamics (CFD), which is
important to a large number of mechanical, aerospace, chemical
and biomedical industries. Beginning with essentially no
background in using GPUs for CFD, we have, over the years,
implemented several methodologies of CFD on a GPU, and
studied a number of flow problems. The objective of this paper
is to provide our assessment of learning, implementing, and
applying the codes to problems of our interest. The currently
observed performances are sufficiently impressive and
attractive to pursue this new paradigm as a tool for CFD.
Further code optimizations and tuning of the data structures
may permit further speed-ups. It is also necessary to mention

here that the technology is continually improving, and new
hardware platforms as well as software are being developed.
Hence many of the experiences reported here are being quickly
superseded with new products and compilers being released by
GPU vendors such as NVIDIA. Our current experiences relate
to NVIDIA GPUs (specifically the Tesla C1060 and C2070)
and programming them using CUDA (Compute Unified Device
Architecture).

DESCRIPTION OF GPU ARCHITECTURE

The GPU can be thought essentially as a massively
parallel computer, capable of simultaneously executing
instructions on a large number of arithmetic units. However,
because of the special architecture of the GPU, it is necessary
to devise the numerical algorithm as well as the program
structure such that the communication and computation as well
as data access are executed optimally. The architecture of a
GPU is quite different than that of a CPU. A GPU is designed
with more transistors dedicated to computation and less
resource dedicated to data caching and flow control compared
with a CPU, resulting in significant computational speed-up
[1]. The GPU is designed to be a parallel processor by using
massive multithreading, where a single thread can be thought of
as the smallest unit of execution that executes instructions in a
program. Instructions for the GPU are written in a “kernel"
which is similar to a function in the C programming language.

Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition
IMECE2011

November 11-17, 2011, Denver, Colorado, USA

IMECE2011-65260

 2 Copyright © 2011 by ASME

When a kernel is executed on a GPU, each thread executes the
statements in that kernel, where each thread maps to a different
element of data. Thus, the GPU architecture can be classified as
SIMD (single-instruction, multiple-data) or SIMT (single-
instruction, multiple-thread [1]). The number of threads needed
for a particular kernel depends on the data size to be processed,
since the threads map to the data element indices. Threads are
organized into “blocks," and all blocks belong to a “grid" as
shown in Fig. 1. Before a kernel is executed on a GPU, the
dimensions of the blocks and grid must be set explicitly by the
programmer, as these are not automatically set by the GPU. It
should be noted that the GPU is used as a co-processor in
conjunction with the CPU.

Typically, the “main" program executes on a CPU,
and the GPU is utilized by launching kernels from the main
program. Thus, usage of the CPU is not eliminated but rather is
minimized. A GPU contains multiprocessors, where each
contains streaming processors or “cores." For example, the
Tesla C1060 has 30 multiprocessors, each with 8 streaming
processors, and thus has a total of 240 streaming processors.
The streaming processors are responsible for processing the
thread blocks. When a block is processed, the threads in the
block are divided into groups of threads (called warps), and the
streaming processor launches the threads in a warp in parallel
[1]. The blocks are independent of each other and there is no
synchronization among blocks, so the only way to ensure all
blocks have executed is to wait until the kernel has finished and
control has been returned to the main program.

In addition to the architectural differences between
CPUs and GPUs, the memory bandwidth is another important
difference. Modern GPUs have memory bandwidths an order of
magnitude greater than CPUs; this is due to CPUs having to
satisfy constraints of legacy applications and operating systems,
which makes increasing memory bandwidth difficult, whereas
GPUs have less legacy constraints resulting in more memory
bandwidth [2]. This increase in memory bandwidth is another
factor contributing to the favorable performance of GPUs.

FIGURE 1. THREAD HIERARCHY OF THE GPU [1].

The memory spaces (RAM) of the CPU and GPU are separate,
and explicit copy operations must be performed to move data
to/from the GPU. Global memory is the largest memory space

on the GPU (4 GB for Tesla C1060, 6 GB for Tesla C2070) but
it is not cached, and thus has long access times. Each thread has
its own registers and local memory, which are used for storing
local variables declared within the kernel. All threads on a
given block have access to the block's shared memory.
However, a thread on a given block cannot access another
block's shared memory.

Shared memory is cached, and can be accessed much
faster than global memory, but it is limited in size. In order to
use shared memory, data must first be transferred from global
memory to shared memory; computations are then performed
using shared memory and the results are written back to global
memory. This introduces extra computational complexity in the
algorithm, but this can be offset by the potential gains of using
a cached memory space. This benefit is realized if the data
loaded into shared memory are reused many times during
kernel execution. Texture memory is a read-only cached
memory space that can be accessed by all threads, which offers
avenues for performance optimization. For example, data
structures in global memory can be read through texture
memory via texture fetching, which decreases the access time.
The Tesla C2070 (Fermi architecture) also has L1 and L2
caches. While limited in size, these caches provide another
avenue for rapid memory access.

BRIEF OVERVIEW OF SELECTED PREVIOUS WORKS

The use of GPUs for CFD applications is rapidly
getting popular, and a number of researchers have found this
paradigm to be beneficial. With the availability of small
clusters of GPUs, performances of several tens of teraflops are
possible on low footprint and low energy consuming
“supercomputers”. A variety of scientific applications have
been programmed on GPUs by a number of researchers, and
their references can be found on several websites, especially at
the NVIDIA website. Here we present some earlier works, and
some recent works concerning CFD applications on GPUs. This
list is by no means meant to be complete. In addition, note that
comparisons to single-core CPU simulations can exaggerate the
GPU speedup. Comparisons to multi-core CPU
implementations would be better (although the present authors
admit that we did not adhere to this practice since a multi-core
CPU version of our codes was not developed).

Before the advent of CUDA, programmers had to cast
their applications in terms of graphics processing operations.
Early work of this type was done by Scheidegger et al. [3],
where they presented a GPU implementation of the SMAC
method (Simplified Marker And Cell) to solve the 2D
incompressible Navier-Stokes equations on structured grids.
Central differences and a hybrid donor cell scheme were used
in their approach. Texture memory was used to store the data
structures; for example, floating-point textures called pixel
buffers (or “pbuffers") were used to store the velocity fields.
The Jacobi iteration scheme was used as a fragment program
for the solution of the pressure-Poisson equation. In their study,
two GPUs were tested: a GeForce FX 5900 (NV35) and a
GeForce 6800 Ultra (NV40). The CPU used was a 2 GHz
Pentium IV. The CPU performed better than the GPU only
when a very small mesh was used, and this occurred when
using the NV35. They explain that convergence is rapid in this
case and that the pbuffer switches “probably overshadowed”
the GPU parallelism. Their approach was, on average,

 3 Copyright © 2011 by ASME

approximately 16 times faster than the CPU version. They
studied a variety of flows, such as a lid-driven cavity, rising
smoke at high Reynolds number, and flow past the outline of a
car at low Reynolds number.

Elsen et al. [4] used a GPU to simulate the inviscid
flow in simple and complex geometries by numerically solving
the compressible Euler equations. Compared to the CPU, they
achieved GPU speed-ups of over 40 times for simple
geometries and 20 times for complex geometries. The complex
geometries consisted of a NACA 0012 airfoil and a hypersonic
vehicle at Mach 5. Their comparisons were based on a 2.4 GHz
Intel Core 2 Duo (single core used) and NVIDIA 8800GTX.
They used the Navier-Stokes Stanford University Solver
(NSSUS), which is capable of solving the 3D Unsteady
Reynolds Averaged Navier-Stokes (URANS) equations. This
code uses the finite-difference method with a vertex-centered
solution on multi-block meshes. Temporal evolution of the
solution toward a steady-state was accomplished using an
explicit five-stage Runge-Kutta scheme. The code also
incorporated a geometric multigrid scheme to accelerate
convergence. For their study, only the steady solution of the
compressible Euler equations was sought. They used the
BrookGPU language to implement NSSUS (which was
originally in Fortran) on a GPU.

Brandvik and Pullan [5] presented results for 2D and
3D Euler solvers implemented on the GPU. Their original
implementation on the CPU of the Euler solvers was written in
Fortran. They used the Euler solvers to simulate turbine flows:
the 2D solver was used to simulate the flow through a transonic
turbine cascade and the 3D code was used to simulate
secondary flow development in a low speed linear turbine
cascade. The 2D solver was programmed for the GPU using the
BrookGPU language, and performed 29 times faster than the
CPU version. They also used BrookGPU for the 3D solver,
which performed only 3 times faster than the CPU version. A
CUDA implementation of the 3D solver yielded better
performance with a speed-up of 16 over the CPU. A 2.33 GHz
Intel Core 2 Duo processor was used for the CPU solvers,
where only a single core was utilized. The 3D CUDA solver
used an NVIDIA 8800 GTX graphics card and the 2D and 3D
BrookGPU solvers used an ATI 1950XT graphics card. Their
2D and 3D codes solved the compressible Euler equations
using the finite volume method with structured grids, where the
variables were stored at the cell vertices. The spatial derivatives
were discretized via second-order central differences and the
temporal derivatives were discretized to first-order accuracy.
There was no multigrid method employed in their approach.

In another work by Brandvik and Pullan [6], they
present a three-dimensional Navier-Stokes solver implemented
on multiple GPUs using MPI. Instead of implementing in a
particular language targeted at a particular hardware, they
instead generalized their solver by expressing the subroutines in
the Python scripting language. They developed a source-to-
source compiler used to convert these subroutines into source
code to be compiled for a given target architecture (multi-core
CPUs, NVIDIA GPUs, etc.). This novel approach clearly has
the advantage of making the code more flexible and it provides
longevity to the code since it will be easier to adapt to future
architectures.

Cohen and Molemaker [7] present a GPU
implementation using CUDA for solving the incompressible

Navier-Stokes equations with the Boussinesq approximation.
They present results for the simulation of the Rayleigh-Benard
convection problem and compare their GPU implementation to
a multithreaded Fortran solver running on an eight-core CPU.
Using double precision, the GPU-based solver was
approximately eight times faster. Shinn and Vanka [8] were the
first to implement the SIMPLE algorithm on a GPU. Using
CUDA, they wrote a 2D solver with multigrid Full
Approximation Scheme (FAS) used to accelerate convergence
of all flow variables (u, v, and p). The code was tested for the
benchmark 2D driven cavity problem and compared to a CPU
version of the code written in Fortran. It was found that the
speedup scales with the problem size. For a problem size of 512
x 512 grid cells, the GPU was an order-of-magnitude faster
than the CPU for a range of Reynolds numbers. Steady-state
calculations of driven cavity flow with 4096 x 4096 could be
performed in a minute of GPU time.

Shinn et al. [9] performed one of the first Direct
Numerical Simulations using GPU hardware. The fractional-
step method with finite volume spatial discretization was used
to solve the incompressible Navier-Stokes equations, and was
implemented on a GPU using CUDA. A geometric multigrid
method was used to accelerate the pressure-Poisson solution.
They simulated turbulent flow in a square duct at a bulk
Reynolds number of 5480 using a mesh resolution of 26.2
million cells. This problem was selected not only to validate the
GPU-based solver but also to test the capability of the GPU, as
this was the largest problem that could fit on a single Tesla
C1060. The salient features of this canonical flow were
captured and compared well with previous data. The GPU-
based solver was over an order of-magnitude faster compared
with the CPU-based version. Chaudhary et al. [10] extended
this solver to include magneto-hydrodynamics and used it to
study the magnetic field effects on turbulent flow in a square
duct. Direct Numerical Simulations were performed at a bulk
Reynolds number of 5500 at different Hartmann numbers to
vary the magnetic field.

Thibault and Senocak [11] presented the first
implementation of a 3D incompressible Navier-Stokes solver
on multiple GPUs. Using CUDA, a fractional-step procedure
was used to solve the equations and the pressure-Poisson
equation was solved using Jacobi iteration with no multigrid
scheme. The spatial terms were discretized with second-order
accurate central differences and an explicit, first-order accurate
Euler scheme was used for temporal advancement. They
validated their GPU implementation and assessed speedup via
the problem of laminar flow in a lid-driven cavity.

Griebel and Zaspel [12] were the first to implement a
two-phase Navier-Stokes solver on a GPU, where they used a
level set technique for the two-phases and a fractional step
method to solve the Navier-Stokes equations. They
implemented the solver on multiple GPUs and communicated
GPU data between CPUs using Message Passing Interface
(MPI). They ported a solver for the pressure-Poisson equation
(a Jacobi-preconditioned conjugate gradient solver) and the
level set reinitialization to the GPU using CUDA. In order to
minimize the overhead from data communication, they
exploited the asynchronous communication feature of CUDA,
where data can be copied while computations are being
performed. This can effectively hide the communication time.

 4 Copyright © 2011 by ASME

This was done using “streams” where one stream managed
communication while the other managed computation.

Other than finite-difference and finite-volume
methods, there has been progress in implementing the Lattice-
Boltzmann Method (LBM) for simulating fluid flows on GPUs.
Early work by Li et al. [13] provided an implementation of the
LBM on a GPU. Their implementation was capable of dealing
with complex boundaries (both moving and deformable), which
were managed using a voxelization algorithm. All calculations
were performed on a GPU in real time and their simulations
were second-order accurate in time and space. Their LBM code
was programmed in Cg and OpenGL and used an NVIDIA
GeForce FX 5900 Ultra GPU. The CPU used was a 2.53 GHz
Pentium IV. They simulated a number of complex geometries
on the GPU, such as a vase, a sphere, and a swimming jellyfish.
It was found that their GPU implementation was 8 to 15 times
faster than the CPU counterpart.

Tolke [14] used the 2D Lattice Boltzmann Method on
a GPU by programming in CUDA. The implementation was
tested by simulating the fluid flow through a porous medium,
which consisted of a grid of 324 circular cylinders, equally
spaced in the horizontal and vertical directions. The GPU
implementation was over 10 times faster relative to the CPU.
Peng et al. [15] developed a 3D Lattice Boltzmann Method
algorithm for a GPU using CUDA. They compared an NVIDIA
GPU (GeForce 8800 GTS) with an AMD CPU (Sempron
3500+) and found that the GPU performed 8.76 times faster
than the CPU. As an example of a complex geometry, they used
their LBM implementation for the simulation of fluid flow
through fractured glass.

Recently, Marsh [16] used CUDA to implement a
hybrid molecular dynamics/Lattice Boltzmann Method on
GPUs. Flow through a nano-scale straight channel and a
nanoscale bellow channel were investigated. In the hybrid
method, a molecular dynamics solver was used in the near-wall
region and a Lattice Boltzmann solver was used away from the
wall. The GPU provided a speed-up factor of 5-10 for the
molecular dynamics solver and 50-75 for the Lattice Boltzmann
solver compared to a CPU. The large speed-up for the Lattice
Boltzmann method is indicative of the fact that this method is
easier to parallelize (or, strictly speaking, multithread)
compared to molecular dynamics. As an extension of this work,
Sahu and Vanka [17] implemented a two-phase LBM on a GPU
and observed a speed-up factor of 25 over a CPU.

IMPLICATIONS OF GPU FOR CFD

As mentioned above, several researchers have
ported/developed numerical algorithms on GPUs. In order to
take full advantage of the speeds offered by GPUs, a number of
modifications have to be made to any existing CFD legacy
code. In many situations, the algorithm/code may have to be
rewritten specifically suited to GPUs, otherwise the maximum
possible speed is not achieved. Here we describe some of our
experiences. First, explicit time-marching algorithms are the
most convenient ones to be ported on to the GPU. This is
because there is no iteration, and the new value of a variable
depends only on the old time values. Hence, the update of a
given variable can be done independent of variables being
updated on other threads. There is no recursive relation
between the variables on the threads, since they are all known
at the old time step. However, even for explicit algorithms, a

few changes may be needed for efficiently implementing on the
GPU. These relate to the use of shared memory and the layout
of data structures. Memory coalescing and block size influence
the speed achieved. Memory coalescing is guaranteed if the
data is accessed such that sequential threads access sequential
nodal data. With the Fermi architecture, the requirements to
achieve coalescing are more relaxed [18]. In addition, data
should be, where possible, copied to shared memory and re-
used as much as possible. Threads belonging to the same block
can make use of the shared memory for that block which can
sometimes be used to enhance the algorithm efficiency by
reducing the number of global memory accesses.

Even explicit algorithm based CFD codes need to be
reorganized to take advantage of the GPU architecture. When
an implicit algorithm is used, the efficiency as well as the
convergence is impacted. Implicit algorithms directly ported to
a GPU will not work because of the mixed implicit and explicit
updates. It is necessary to remove any recursive updates, so the
algorithm can be run on parallel threads. As an example,
consider the Gauss-Seidel algorithm. Because of the recursive
relation, it is necessary to “color” the nodes such that values of
one color are not related within themselves. For a five point
stencil of a 2D Poisson equation, two colors will generate sets
in which each variable is not connected to its own members.
Each color is then processed sequentially. However, one should
not use the modulo operator to skip nodes of a different color.
That would waste the threads, and also the data are not
consecutively placed. Instead, one must reorganize the data to
obtain the best and most use of the threads and memory. For
higher-order stencils, more colors will be needed, and that may
complicate the code structure. For line inversions, which are
also recursive, it is necessary to have a second dimension along
which the lines can be organized in colors. Two colors for a
second-order stencil can be generated in which lines of cells are
not connected with each other. Thus, each line, though
recursive within itself, can be solved on one thread.

Lattice Boltzmann algorithms are the easiest ones to
develop on the GPU because of their inherent data parallel
nature. A Lattice Boltzmann algorithm consists of three steps:
collision, streaming, and calculation of flow variables. The
collision step and calculation of flow variables are very much
local operations. They can be performed independently on all
threads. However, it is necessary to select the number of lattice
points, and the layout such that the block size is optimal, and
also the threads access adjacent data. This can be done by “un-
rolling” the density function vector, and writing one array for
each of the components. This will increase the program length,
but can bring efficiency. The streaming step, where the density
function is advected to the neighbor lattice points, is the
“tricky” part. Here, there is no computation, and the step
requires pure data replacement. Use of shared memory is
advantageous here, in which chunks of data are simultaneously
copied from and to the global memory. Lattice Boltzmann
algorithms have also been extended to two-phase flows, but
require calculation of derivatives of some functions. These
derivative calculations require values at neighbor locations, and
can degrade performance. Our recent observation has been that
single phase algorithms with combined collision and
equilibrium calculations can achieve a speed-up of 50-75 over a
CPU, whereas two-phase algorithms run slower (only about 25
times faster than a CPU). These speed differences are however

 5 Copyright © 2011 by ASME

a function of other variables such as CPU compiler, hardware,
and also multiple or single core CPU.

OUR RECENT RESEARCH
Recently, we have implemented five different algorithms on the
GPU, and compared their performance with those of a CPU. In
most cases, the speed-ups have been very attractive. Large-
scale CFD calculations with up to 25 million nodes could be
performed on a single Tesla GPU and in real compute times
that are fairly competitive with a supercomputer facility. In this
section, we describe these efforts and present both the
computational performance and the computed flow problems.

Fractional Step Method for DNS/LES of Turbulent
Flows
Our first code developed on a GPU was for conducting direct
and large eddy simulations of turbulent flows. Such DNS/LES
are very computationally intensive, requiring massive amounts
of storage and CPU time. We have considered only
incompressible flows, for which a fractional step algorithm has
been used. In this algorithm, the momentum and energy
equations are solved by an explicit algorithm with second-order
temporal and spatial accuracy. The finite volume method with a
staggered grid is used. As the momentum equations are updated
explicitly, no iterations are required, and there are no recursive
steps. However, if an implicit formulation is used either for all
convective and diffusive fluxes, or just for diffusive fluxes, a
special algorithm is needed. The most time consuming step is
the pressure-Poisson equation, which is fully implicit. The
pressure-Poisson equation requires convergence to a high
degree (mass error), and consumes nearly 80% of the total time.
In our serial method, we have used Successive Over-Relaxation
(SOR) which has a better convergence rate than a pure explicit
Jacobi scheme. However, since the grids used are very fine, we
have accelerated this using geometric multigrid on a structured
grid. Several levels of finite volume grids nested within a fine
grid are used. The traditional SOR is not parallelizable; hence
we have used a red-black coloring scheme [19] to separate the
unknowns in two independent subsets. The mesh is “colored”
like a checkerboard and the red cells are updated, then the black
cells (or vice-versa). The multigrid is implemented with a V-
cycle, and consists of restriction, relaxation and prolongation.

The solution of the pressure-Poisson equation is done
to a high accuracy, typically three or four orders of magnitude
reduction in error at every time step. Our current
implementation, uses a modulo operator, where the threads that
are red are skipped when the black colored cells are solved and
vice-versa. In an effort to decrease memory access times in the
SOR implementation, textures were used to fetch the pressure
data from global memory, which decreased overall code
execution time by approximately 10 percent. Also, we explored
using shared memory in the SOR algorithm but did not see
much benefit, either due to low data reuse or a sub-optimal
implementation. Global memory was used for all other array
accesses in the other kernels.
 To understand how GPU threads map to computational
cells, consider Fig. 2, which shows a mesh of the internal cells
with dimensions of nx[level] x ny[level] x nz[level]. The arrays
nx[level], ny[level], and nz[level] contain the number of mesh
cells in each direction for the given mesh level in the multigrid
V-cycle. The indices of the internal cells range from (i, j, k) =

(2, 2, 2) to (i, j, k) = (nx[level]+1, ny[level]+1, nz[level]+1).
The boundary cells (which are not shown in Fig. 2) lie along
the planes i = 1, j = 1, k = 1 and planes i = nx[level] + 2, j =
ny[level] + 2, k = nz[level] + 2. The GPU grid dimensions are
(gx, gy, gz) and each block has dimensions (bx, by, bz). The
GPU grid dimensions gx and gy were calculated by dividing
the dimensions of the computational mesh on the current mesh
level by the block size. Thus, while performing multigrid, the
GPU grid dimensions are changed to accommodate the size of
the current computational mesh level. This idea is shown in the
example code of Fig. 3, where the execution configuration in
the main program (on the CPU) is changed as a function of the
mesh level when calling a kernel for the GPU. This example is
for the “down-leg” of a V-cycle, where the grid levels start at
the finest level (n=1) and descend to the coarsest level
(n=ngrid).

FIGURE 2. CORRESPONDANCE BETWEEN GPU GRID AND

COMPUTATIONAL MESH.

The GPU grid and computational mesh have the same
dimensions in the x- and y-directions, so that the threads map
one-to-one with the cells. However, due to the fact that the
GPU grid can only have a z-dimension equal to one (gz=1)
requires the threads to be reused for other cells in that direction.
This is done by operating on slices of the computational mesh,
where a thread for an (i, j) location updates one cell in each
slice. Thus a single thread operates on multiple cells, moving in
the k direction in a column for fixed (i, j). No threads are
assigned to the boundary cells, since no updating is performed
there.
 The mapping concept shown in Fig. 2 is implemented in
the kernel code shown in Fig. 3. The thread indices (tx, ty, tz)
are computed from the built-in GPU variables threadIdx,
blockIdx, blockDim, which are the thread index in a given
block, block index of a given block, and block dimension of a
given block, respectively. The thread indices always start at
zero, so they are incremented by two in order to map them to

 6 Copyright © 2011 by ASME

the computational mesh indices. In order to update all the cells
in the mesh, a loop that goes over all slices was used inside the
kernel to allow a thread for an (i, j) location to update one cell
in each slice. As the slice index varies in the loop, so does the k
index for the cells that the thread operates on. Also, note that
the (i,j,k) indices are mapped to a single cell number “m”. This
is used to access the data stored in 1D arrays. The array “begin”
contains the beginning cell number for each grid level for
multigrid, and is used as an offset in the mapping to access a
given grid level.

 int main(void)
 {
 ...
 for(n = 1; n<=ngrid; n++)
 {
 dim3 block(bx,by,bz);
 dim3 grid(nx[n]/bx,ny[n]/by);
 kernel<<<grid, block>>>(...);
 }
 ...
 } // end main

 __global__ void kernel(...)
 {
 // global thread indices
 tx = threadIdx.x + blockIdx.x * blockDim.x;
 ty = threadIdx.y + blockIdx.y * blockDim.y;
 tz = threadIdx.z;
 // convert thread indices to mesh indices
 i = tx + 2;
 j = ty + 2;
 for(slice=0; slice<=nz[n]/blockDim.z-1;
 slice++)
 {
 k = tz + slice * blockDim.z + 2;
 m = i + (j-1)*(nx[n]+2) +
 (k-1)*(nx[n]+2)*(ny[n]+2) + begin[n] - 1;
 ...
 computations
 ...
 } // end slice
 } // end kernel

FIGURE 3. EXAMPLE OF KERNEL CODE USED IN SOLVER.

Performance is very sensitive to block size, so this is

another area of code optimization. Block sizes must evenly
divide into the mesh dimensions for each mesh level for
multigrid. A block size that can accommodate the coarsest level
could be selected, which would accommodate all finer mesh
levels. However, this may not yield optimal GPU performance
since the block size is small (smaller than the warp size). A
compromise between accommodating each mesh level and
performance was found by using two block sizes: a block size
for the finer meshes and a block size for the coarser meshes.
Most of the computation occurs on the finer meshes (first one
or two mesh levels in the V-cycle), and thus the block sizes for
these levels were tuned for optimal performance. It was found
that for most problems a good block size is (bx, by, bz) = (32,
1, 8). This can change from problem to problem, so it is best to
experiment to determine the optimal sizes. For the coarser
meshes, a smaller block size was used so that the mesh
resolution would be evenly divisible by the block size. The

smaller block size delivers poor performance, but this only
occurs on the coarse levels, which do not have appreciable
computing times, so the effect is small.

The performance of the solver on a CPU (written in
Fortran) versus on a GPU (written in CUDA) is compared for
two different problems in Tables 1 and 2. The CPU was a 2.6
GHz AMD Phenom quad-core processor (single core used) and
the GPU was a Tesla C2070 (Fermi architecture). The CUDA
3.2 compiler was used for the GPU executables and the gfortran
compiler with the -02 optimization was used for the CPU
executables. Table 1 shows the simulation performance of
laminar flow in a lid-driven cavity at a Reynolds number of
1000 based on the lid speed and cavity edge length. Table 2
shows the simulation performance of DNS of turbulent flow in
a square duct at a Reynolds number of 360 based on the friction
velocity and hydraulic diameter.

Lattice Boltzmann Method for Two-Phase Flows
A second example we show here is the implementation of a
two-fluid LBM. In a single phase LBM, only one set of
equations for the density function is collided and streamed, then
the flow variables are evaluated from this density function and
its moments. In the two-fluid LBM, two density functions are
collided and streamed, then are used to compute the flow
variables. One of the density functions is used to compute an
interface variable, which gives the fluid density. The second
function gives the velocity and pressure field. This method is
based on the method of He et al. [20]. We had applied this

TABLE 1. PERFORMANCE FOR SIMULATION OF
LAMINAR FLOW IN LID-DRIVEN CAVITY. TIMINGS

TAKEN FOR FIRST 100 TIME-STEPS OF SIMULATION.

 mesh CPU time

(seconds)
GPU time
(seconds)

speedup
(CPU/GPU)

16x16x16 0.46 0.34 1.35

32x32x32 4.49 0.82 5.48

64x64x64 46.15 2.84 16.25

128x128x128 420.20 17.38 24.18

TABLE 2. PERFORMANCE FOR DNS OF TURBULENT
FLOW IN A SQUARE DUCT. TIMINGS TAKEN FOR FIRST

100 TIME-STEPS OF SIMULATION.
 mesh CPU time

(seconds)
GPU time
(seconds)

speedup
(CPU/GPU)

128x32x32 27.63 2.03 13.61

256x64x64 275.96 12.76 21.63

512x64x64 569.04 24.53 23.20

512x128x128 1997.05 97.26 20.53

 7 Copyright © 2011 by ASME

method earlier, implemented on a CPU, to study buoyancy-
driven flow in a tilted channel. It is now implemented on a
GPU, with a speed-up factor of 25 over a 3.2 GHz single core
CPU. A further increase in speed is possible by unrolling the
density function array in nine (or 27) individual arrays, as
shown recently by Kuznik et al. [21].

Multigrid Acceleration of the SIMPLE Algorithm
The SIMPLE algorithm solves the two- (and three-)
dimensional fluid flow equations using an implicit relaxation
procedure. In contrast with a time-marching procedure such as
the fractional step method, the SIMPLE algorithm solves
directly for the steady state (or quasi-steady) flow fields by
iteratively updating the velocities and pressure fields. The
coupled equations are solved sequentially by updating the
velocities using the momentum equations and the pressure field
using a pressure correction equation derived from the
continuity and truncated momentum equations. The SIMPLE
algorithm solves the discrete equations over the complete flow
domain in a decoupled manner using single (or multigrid)
iterative procedures. Both staggered and collocated
arrangements of the flow variables have been used, the latter
arrangement utilizing a momentum-interpolation procedure to
avoid checkerboard pressure splitting. The computational steps
in the SIMPLE algorithm are as follows:
Begin iterations

a) Solve x-momentum equation over entire flow domain
b) Solve y-momentum equation over entire flow domain
c) Compute mass residuals in the momentum velocities
d) Solve pressure-correction equation to annihilate the

mass residuals
e) Update the velocities and pressures based on pressure

corrections computed in step (d)
f) Solve other scalar transport equations, if any

Repeat steps (a) to (f) until convergence of all equations is
acheived. Steps (a), (b), (d) and (f) involve the solution of a set
of linear equations with coefficients linking a local value with
its neighbors. The set of linear equations can be solved
iteratively with single or multigrid versions of standard iterative
solvers such as the Gauss-Seidel or Thomas algorithm. The
system of equations is usually diagonally dominant and positive
definite if appropriate discretizations are employed.

The multigrid method has been included inside
SIMPLE at two levels in the algorithm. First, the linear solver
used to solve the set of discrete linear equations with a given
set of coefficients can be accelerated by using the multigrid
method. This resolves the low frequencies in the linear
equations, providing good feedback between the momentum
and continuity equations. However, it does not resolve
efficiently the low frequency errors in the coupling between the
momentum and continuity equations. A second stage of
multigrid acceleration that provides the most benefit and
resolves the low frequency errors in the inter-equation coupling
is over the entire iterative sequence. Here we have incorporated
the MG method for the entire sequence of equations using the
Full Approximation Scheme (FAS), which is suited to
nonlinear equations.

Table 3 presents timings for the multigrid procedure
implemented on the CPU. We present results for different
Reynolds numbers and different mesh sizes. Here we have used

the traditional Gauss-Seidel iterative scheme with a fixed
number of sweeps and fixed number of V-cycles. The computer
times are presented together with the convergence levels
achieved.

Before timing tests are performed on the GPU, an
optimization study was conducted to determine the best block
size to use when calling a GPU kernel. GPU performance is
sensitive to the block size, and thus is important to tune for
maximum performance. To achieve a good convergence rate,
the grid must be sufficiently coarsened in the V-cycle, and here
we take the coarsest grid to be 4x4. To accommodate the 4x4
mesh we take a block size of 4x4 and a GPU grid size of 1x1
(the grid has only one block). However, this block size is by no
means optimal, as will be shown. Thus for finer meshes we use
a better block size to achieve better performance, and on
coarser meshes we default to using the 4x4 block size. Here we
take “fine mesh” to mean a mesh that is evenly divisible by the
better block size, and any mesh that is not is considered a
“coarse mesh” and uses the 4x4 block size. A performance
study was conducted using a variety of block sizes for the “fine
mesh”; the “coarse mesh” block size was held fixed at 4x4. The
result of this study is presented in Table 4, where a 1024x1024
mesh with 9 grid levels at Re=100 was used as the test case. It
was found that the 32x1 block size performs best, which is not
too surprising since there are 32 threads in a “warp” which is
the maximum number of threads that can be launched in
parallel in a given block at one time.

Finally, in Table 5, we present the performance of the
multigrid procedure on the GPU. The optimal block size of
32x1 was used. Since the convergence rate can be different on
the GPU and on the CPU, we have performed a fixed number
of V-cycles on both CPU and the GPU. The levels of
convergence achieved are given for different Reynolds numbers
and mesh sizes. In addition, we have performed calculations
with the biggest grids possible on the GPU. Our present code
requires 24 arrays on the GPU, and for a 4 GB Tesla C1060
processor we have been able to perform calculations on a 4096
x 4096 grid (with 11 levels). The computer times required for
such a large problem are indeed small and very attractive even
for more complex practical flows.

CONCLUSIONS
Graphics Processing Units have recently evolved as a new
paradigm for scientific computations. They are essentially
multi-core machines with a large number of compute units
sharing a common memory. They can be viewed as single
instruction multiple data computers. Their cost/performance
ratio, and low power consumption makes them attractive for
high-resolution fluid flow computations. However, in order to
exploit the inherent architecture of the device, the numerical
algorithm, as well as data structures must be carefully tailored
to minimize the memory access and any recursive relations in
the algorithm. In the past three years, we have developed five
different CFD algorithms, and have found speed-ups over a
CPU of factors between 10-25, with a possibility of another
factor of four gain through optimization. This makes GPUs
very attractive for computing industrial fluid flows. However,
porting legacy codes automatically is not easy.

 8 Copyright © 2011 by ASME

TABLE 3. MULTIGRID CPU TIMES FOR ERROR < 10-3.

 Re=100 Re=400 Re=1000 Re=2000

mesh levels time (s) ncyc error time (s) ncyc error time (s) ncyc error time (s) ncyc error

64x64 5 2.60E-2 6 3.31E-4 5.50E-2 12 6.59E-4 9.30E-2 20 7.84E-4 0.12 25 7.43E-4

128x128 6 0.14 7 4.66E-4 0.22 11 7.01E-4 0.49 25 7.88E-4 0.71

36 8.19E-4

256x256 7 0.71 8 9.93E-4 0.97 11 5.85E-4 2.03 23 7.92E-4 3.53 40 8.65E-4

512x512 8 5.19 11 5.31E-4 5.66 12 5.46E-4 9.90 21 7.30E-4 17.46 37 7.51E-4

 TABLE 5. MULTIGRID GPU TIMES FOR ERROR < 10-3.

 Re=100 Re=400 Re=1000 Re=2000

mesh levels time (s) ncyc error time (s) ncyc error time (s) ncyc error time (s) ncyc error

64x64 5 2.23E-2 6 5.11E-4 4.66E-02 12 7.92E-4 7.65E-2 20 9.47E-4 9.63E-2 25 9.65E-4

128x128 6 4.11E-2 7 5.73E-4 6.44E-02 11 8.90E-4 0.15 25 9.06E-4 0.21

36 9.60E-4

256x256 7 0.11 8 8.05E-4 0.15 11 7.69E-4 0.32 23 9.18E-4 0.55 40 9.94E-4

512x512 8 0.48 11 3.69E-4 0.52 12 8.06E-4 0.91 21 9.48E-4 1.61 37 9.79E-4

1024x1024 9 1.91 12 9.13E-4 2.07 13 7.54E-4 3.67 23 9.42E-4 5.57 20 9.40E-4

4096x4096 11 55.75 18 9.45E-4 52.66 17 7.69E-4 99.15 32 9.88E-4 139.42 45 9.98E-4

TABLE 4. EFFECT OF BLOCK SIZE ON GPU PERFORMANCE FOR 1024x1024
MESH WITH 9 GRID LEVELS AT Re=100.

 fine mesh coarse mesh

GPU time (s) bx by bx by
22.93 1 4 4 4
9.13 4 1 4 4
5.26 4 4 4 4

22.66 1 8 4 4
5.27 8 1 4 4
4.13 8 8 4 4
3.27 16 1 4 4
3.40 16 16 4 4
3.19 32 1 4 4
3.29 64 1 4 4

 9 Copyright © 2011 by ASME

A significant rewrite of the algorithm and the code may be
necessary. While this may be a hurdle to cross, the time
investment may be worthwhile because multi-core architectures
of one form or the other are going to be the necessary trend for
high resolution / high performance computing.

REFERENCES
[1] NVIDIA, 2010, CUDA C programming guide, version 3.2.
[2] Kirk, D. B. and Hwu, W. W., 2010, Programming
massively parallel processors: A hands-on approach, Morgan
Kaufmann Publishers, Burlington, MA.
[3] Scheidegger, C. E., Comba, J. L. D., and da Cunha, R. D.,
2005, “Practical CFD simulations on programmable graphics
hardware using SMAC,” Computer Graphics Forum, 24(4), pp.
715-728.
[4] Elsen, E., LeGresley, P., and Darve, E., 2008, “Large
calculation of the flow over a hypersonic vehicle using a GPU,”
J. Comput. Physics, 227(24), pp. 10148-10161.
[5] Brandvik, T. and Pullan, G., 2008, “Acceleration of a 3D
Euler solver using commodity graphics hardware,” 46th AIAA
Aerospace Sciences Meeting.
[6] Brandvik, T. and Pullan, G., 2009, “An accelerated 3D
Navier-Stokes solver for flows in turbomachines,” ASME
Turbo Expo 2009.
[7] Cohen, J. M., and Molemaker, M. J., 2009, “A fast double
precision CFD code using CUDA,” 21st International
Conference on Parallel Computational Fluid Dynamics.
[8] Shinn, A. F., and Vanka, S. P., 2009, “Implementation of a
semi-implicit pressure-based multigrid fluid flow algorithm on
a graphics processing unit,” Proceedings of the ASME 2009
IMECE.
[9] Shinn, A. F., Vanka, S. P., and Hwu, W. W., 2010, “Direct
numerical simulation of turbulent flow in a square duct using a
graphics processing unit (GPU),” 40th AIAA Fluid Dynamics
Conference.
[10] Chaudhary, R., Vanka, S. P., and Thomas, B. G., 2010,
“Direct numerical simulations of magnetic field effects on
turbulent flow in a square duct,” Phys. Fluids, 22(7), pp. 1-15.
[11] Thibault, J. and Senocak, I., 2009, “CUDA
implementation of a Navier-Stokes solver on multi-GPU
desktop platforms for incompressible flows,” 47th AIAA
Aerospace Sciences Meeting.
[12] Griebel, M. and Zaspel, P., 2010, “A multi-GPU
accelerated solver for the three-dimensional two-phase
incompressible Navier-Stokes equations,” Comput. Sci. Res.
Dev., 25(1-2), pp. 65-73.
[13] Li, W., Fan, Z., Wei, X., and Kaufman, A., 2005, “GPU-
based flow simulation with complex boundaries,” GPU Gems
II, Chapter 47, Addison Wesley.
[14] Tolke, J., 2010, “Implementation of a Lattice Boltzmann
kernel using the compute unified device architecture developed
by NVIDIA,” Computing and Visualization in Science, 13(1),
pp. 29-39.
[15] Peng, L., Nomura, K., Oyakawa, T., Kalia, R., Nakano, A.,
and Vashishta, P., 2008, “Parallel Lattice Boltzmann flow

simulation on emerging multi-core platforms,” Euro-Par2008 -
Parallel Processing, Lecture Notes in Computer Science, vol.
5168, pp. 763-777, Springer Berlin / Heidelberg.
[16] Marsh, D., 2010, “Molecular dynamics-Lattice Boltzmann
hybrid method on graphics processors,” Master's thesis,
University of Illinois at Urbana-Champaign, Urbana, IL.
[17] Sahu, K., and Vanka, S. P., 2011, “A multiphase Lattice
Boltzmann study of buoyancy-induced mixing in an inclined
channel,” submitted to Computers and Fluids.
[18] NVIDIA, 2011, CUDA C programming guide, version 4.0.
[19] Yavneh, I., 1994, “On red black SOR smoothing in
multigrid,” SIAM J. Sci. Comput, 17(1), pp. 180-192.
[20] He, X., Chen, S., and Zhang, R., 1999, “A Lattice
Boltzmann scheme for incompressible multiphase flow and its
application in simulation of Rayleigh-Taylor instability,” J.
Comput. Physics, 152(2), pp. 642-663.
[21] Kuznik, F., Obrecht, C., Rusaouen, G., Roux, J.J., 2010,
“LBM based flow simulation using GPU computing
processor,” Computers and Mathematics with Applications,
59(7), pp. 2380-2392.

