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Motivation and strategy

@ We began by saying that Maxwell's laws of electrodynamics predict
speed of light to be a constant, something that does hold across all
inertial frames in Galilean relativity

@ In order to make these laws hold true in all inertial frames, we had to
introduce Lorentz transformations

@ We introduced tensors that reside in Minkowski space and obey
Lorentz transformation rules

@ But Newton'’s old laws are not invariant under Lorentz
transformation. So we redefined momentum and energy such that
they become tensors and hence satisfy Lorentz transforms

@ Now we express the Maxwell’s laws in tensor form so that it can be
seen that they satisfy Lorentz transform
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Maxwell's equation

@ The postulates of relativity were inspired by the need of Maxwell’s
equations and the constancy of speed of light

V.-E=4mp (1)
V-B=0 (2)
10B

VxEle 0 (3)
10E 4w
VxB- oo =— (4)

@ These are the Maxwell equations in vacuum. We can use the vector
potential A to express the magnetic field

B=VxA (5)

@ because V- (VxA)=0 = V-B =0, so Eq. 2 is satisfied
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Potential

@ The electric field can be expressed in terms of potential as follows

10A
E=—Vo— o (6)

@ It can be checked that this satisfies Eq. 3

1V xA 10B

@ If we plug them into the other 2 inhomogeneous equations (eq. 1 and
4), then we get

2519 v Ay _
V2t -5 (V-A) = —4mp (8)
op  LOPA oo a, 100 47
VA- Som =V (VAL o) (9)

@ Here we have used the vector identity
V x(VxA)=V(V-A)-V2A
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Gauge transformation

@ There is an inherent freedom in choosing the potentials. For ex. the
vector potential can be changed by an arbitrary field VW, because
V x VU = 0. So lets define a new vector potential A’ = A + V¥

@ We can see that this still gives us the old magnetic field
VXA =Vx(A+VV)=VxA=B (10)

@ In order to get the same electric field as Eq. 6, the scalar potential

will have to be changed by ¢/ = ¢ — %%—“t’. Lets check if this gives

back the same electric field

oy LOA 19Vy 10A 190Vy
Vo c ot Vo c Ot c Ot c Ot (11)
10A
= — - = 12
¢= 5 (12)

e Changing from (¢, A) — (¢', A’) is called a gauge transformation
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Lorentz gauge

@ Let W be adjusted such that the potential fields satisfy “Lorentz
gauge” condition

19¢
VAo =0 (13)

@ Can we always find a W which can satisfy this condition?

@ Suppose we start with potentials (¢, A) which do not obey Lorentz
gauge. Then we need a V¥ such that

) 109 2y 100 1OV
VA+C8t—V A+vw+cat Sz =0 (14)
1 0°v 19¢
2 _——_— = — . _ —
— VIV - 52 V-A — 5 (15)

@ Solving Eq. 15 (which should be possible) will provide us with such a
WV such that our potentials satisfy the Lorentz gauge.
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Charge

@ Consider that we have some volume element with charge density p,
moving with velocity u in a frame of reference.

@ Let this element have a charge density pg in it's rest frame (which is
an invariant)

@ When observed from a reference frame in which this volume element
is moving with velocity u, parallel length of this volume will be
contracted, while the perpendicular lengths will remain unchanged.

So the volume will be
2
dV = dvo\[1- (16)

@ However, it is experimentally verified that the total charge is an
invariant. So pdV = podVjy. This implies

p=—2— (17)
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Current density

The current density of a moving charge is given by j = pu.

Now consider a 4-vector defined as J* = pgU*. pg is the rest charge
density which is an invariant. U* we have defined before as dX*/dr.

We can see that J* will be a contravariant vector.

The time element of J* is

50 = cpo(dt/dr) = —L2 — ¢p (18)

So the time component is directly proportional to the charge density

The space component is

J' = po(dX'/d7) = pou'(dt/dT) = pu’; i=1,2,3  (19)
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Charge conservation

@ So J* is the charge-current density 4-vector

@) D w

@ Now consider the charge conservation equation

op ]
L= 21
8t+v j=0 (21)

@ This can be simply written as

o(cp) i om
o) Taxi —axn =% i=123 (22)

@ We have written this equation in tensor form. This means that this
equation will hold in any inertial frame, as the quantities will obey

. . U
Lorentz transformations, i.e. % =0
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Potential 4-vector

@ Using Lorentz gauge Egs. 8 and 9 can we written as

1 0%¢
1 9%°A 4
2 .
VA= G = ) (24)

@ The operator on the lhs V2 — (1/c?)9?/0t? is called as the
d’'Alembertian operator and represented by [12.

@ We have already created a charge-current density 4-vector
I = (cpj).
@ Now we can define the potential 4-vector A* = (¢, A)
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d'Alembertian
@ In 4-vector notation, the d'Alembertian operator can be written as

o 0
OXH XV

o If we transform it to frame S’ then

@ B
D’Z:g’“’ 0 0 _gW(@X ><8X> g 0 (26)

02 = g (25)

o) o) Gd X' )\ oX"™ | oXx oXP
o 0
— s A—Llyarpa—1\B
D 27)

e Consider g“”(/\_l)g(/\_l)’g. If & = 8 =0 then this becomes
2 +92v2/c? = —1. If a = 3 = 1 then this is 72 —y?v?/c? = 1. If
a = = 2,3, then this is 1. In rest all combinations it can be
checked that this is 0. This shows that

o 0
2 _ _af
2 =8 xa axo (28)
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d’'Alembertian

@ So the d'Alembertian is a scalar operator. Using this we can express
the Maxwell’s equations in a 4-vector form as

2AF = —%TJ“ (29)

@ Since J¥ is contravariant, so A is also a contravariant vector.

@ The Lorentz gauge condition can be written as

OAH

@ What about the electric and magnetic field vectors?
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Electromagnetic tensor

@ Define the 2nd-rank antisymmetric tensor

FHVY = QHAY — 9 Al (31)
DAY DAH
X, 90X, (32)

o X, = guX" = (—ct,x,y,z). Lets calculate some elements of F/”.

OAY  DA°
00 _ 9A” _0_ fll 22 33
A 8Xo =0=F"=F“=F (33)
0At QA0 A ol
01 _ — = ad —_— =
= oXo 90Xy  O(—ct) Ox Ex (34)
2 0
Fo2 _ 0A°  OA°  0A, 1)) _ (35)

0Xo 90Xz 0 ( — Ct) dy
e ey 0825



Electromagnetic tensor

@ Continue with calculation of F#¥ tensor

OA* OA° _ 0A, 99 _ .

03 _ _ _ _ -

P = 0Xo 0X3 6(—ct) 0z “ (36)
0A%2  0Al DA, 0A

F12 — - =Y _ZX_B
oX1 00X, ox dy (37)
IA3  O0Al DA 0A

13 _ _ — z _ X — _

o= oX1 90Xz ox 0z By (38)

3 2
£23 _ 0A 0A°  0A; O0A, _B, (39)

0X, 0X3 9y 0z
@ Since FM¥ is an anti-symmetric tensor, we have derived all its
components
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Electromagnetic tensor

@ FM can be represented as a matrix as follows, where the first index is
row number and second index is column number

0 E E E
-E. 0 B, -B,
~E, -B, 0 B,
~E, B, —-B, 0

Frv = (40)

@ FH" is derived from the tensors 0" and AY, and so we can be certain
that it is also a 2nd rank covariant tensor

@ How to write Maxwell's equations in terms of FH¥?
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Covariant ED

@ Consider the equation
OF*P  4g o
— = — 41
oXxs c J (41)

o If &« =0, this becomes

OF%  9E, O0E, OE, 4r

oXF ~ ox "oy "oz~ <P (42)

@ This is nothing but Poissons equations V - E = 47p (one of the
Maxwell equations)

o If @ =1 then it becomes

OFY¥  —10E, <8BZ aBy) 4rr .

oXB — ¢ ot

= 4
Oy 0z ¢’ (43)

@ One can see that this is nothing but the x-component of the
Ampere's law V x B — (1/c)(0E/0t) = (47 /c)j. a = 2,3 give the
other 2 components
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Covariant ED

@ Now consider the equation

8PW+6P“+8FW
X\ 0X,  0X,

If all 3 indices (u,v, \) are same, then this is just 0 = 0

=0 (44)

@ Consider y =v =1, A =0. Then this becomes
OF10  9Fol
=0 45
X X (45)

@ This is trivially true due to anti-symmetric property of F. Any
combination involving 2 indices same will have this property

In all three indices are different but none of them is 0, then we get

OF? | OF*  0F" 0B, 0B, 0B

X T ox, Tox, 0z " ox "y
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Covariant ED

@ Now consider all 3 indices different, but one of them is 0. Ex.
p=Lv=2A=0

OF? OF® OF" _ 108, 0E , 0K

X o T, T cat ox Tay 0 WD)
108, -
~ 5, T (VxE):=0 (48)

@ This is the last of the Maxwell's equations

@ The point of this formulation is that Maxwell's equations are written
in terms of tensors which by definition transform according to the
Lorentz transform. This implies that Maxwell's equations are
automatically invariant under Lorentz transform, as required by first
postulate of relativity
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Transform of E and B

@ Electric and magnetic fields do not become 4-vectors by themselves.
Instead they are components of a 2nd rank contravariant tensor F*.
So we can write their transformation rules for a 2nd rank tensor

axX' ™\ [oX'B

F'ef — FOm = N§NSFOT 4

(6X5>(8Xn) (49)
@ Lets try some fields

E = Fo1 _ /\0/\1 Fon (50)
= AIATFOL + /\0/\1F10 = 2E, — (v*v?/?)E, (51)
E) = F'% = N\JA2FO" (52)
= ASA3FO% 4 AIASF12 (53)
=~E, + (—yv/c)B, = v(E, — 5B;) (54)

@ Here B =v/c
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Transform of E and B

@ We can calculate in the same way for all the fields to get

E, = Ex (55)
E}// = ’Y(Ey — BB;) (56)
E; =~(E: + BBy) (57)
B, = By (58)
B, = (B, + BE;) (59)
B, =(B: — BEy) (60)
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General transform

o Consider a general 3D velocity v between the two reference frames
gives

E =E, =By

=Y (El+—xBJ B1=7(Bl—§xE)
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General 3D transform

if the reference frame S’ is moving with some 3D velocity

@ In general ,
v w.r.t. S then the transformation can be derived as
1 B- 1
B — V[B luxg -t ")"( 1)] (61)
c v2
1 (E-v)v, 1
E'=~|E+ = B ——1 2
s|es twxmy s B2 ) (62)

@ Inverse transform is obtained by simply interchange primed and
unprimed quantities, and changing sign of v.

Kirit Makwana Relativistic Electrodynamics October 1, 2020 22 /28



HW

PROBLEM 4.5 The electric field at a point P which is situated at a
distance r perpendicular to an infinite linear charge distribution
with the density o per unit length is 20r/r>. Apply suitable Lorentz
transformation formulae to show that the magnetic field B at the
same location due to an infinitely long rectilinear current j is
B = 2(j x r)ler’.

Solution Let the velocity with which the linear charge distribution
moves to give rise to the rectilinear current be v. Then j = yo,v, where
0y is the linear rest charge density, that is, the density per unit length
measured in the rest frame. In the frame where the observer moves at a
velocity v along with the current direction, the electro-static field is
transverse and is equal to

20,r

E| =
L
2

Thus,

B¢=Y( Y E =Ex%or=2(yaov)xr
¢ ¢ r? or?
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That is,
_ 2(jxr)

EI'2

where j = ov with o representing the linear charge density as
measured by the moving observer.
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HW

PROBLEM 4.8 Starting from Maxwell's equation, prove that
9J /9%, = 0.
Solution The Maxwell’s equation is

Fy _tn

J,
xy ¢ !
So
PPy _ 490y
Jx,dx, ¢ Ox,

Since Fjq is antisymmetric, whereas 9%/dx,dx, is symmetric in 4 and
@, the left-hand side is zero. It is therefore proved that a.J, ”/ﬁxﬂ =0.
PROBLEM 4.9 An observer O finds himself to be in an electric field
E = (0, E, 0) with no magnetic field. Another observer O’ moves at a
velocity v = (v, 0, 0) relative to O. Show that O’ measures electric and
magnetic fields E’, B’ which are connected by the relation
v
B+ - xE=o0

Solution We have

By =B, =0

E\,=E, =0
since the electric field vector is perpendicular to the relative velocity vector-
But

B, = y[Bl+X>< E'): 0
c

since there is no magnetic field in the frame of 0. So, we get

’ v .
Bi+ D xE=0
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HW

8. Describe the motion of a particle with charge e and mass mg in a
uniform electric field Ey. The initial velocity of the particle is v,
perpendicular to the field. Eliminate the time ty, obtain the
trajectory of the particle in space and discuss the shape of the path

8. Let the electric field E, be in the x-direction and the initial velocity
of the charged particle be in the y-direction. Then the charge moves
in the xy-plane. The equation of motion is given by

py

dt

so that p, = (eEot + a) and p, = po. Here ‘@’ is a constant and py is
the initial momentum. Since initially the momentum is in the
y-direction

dp;
Lr = Ry, =0
dt 0

pr=0 and p,=muy=poatt=0.
Therefore a = 0, so that p, = eEgt and p, = po.
The total energy of such particle is
W= (pzc2 + mgc‘)v2 = (m‘%c‘ +c%pg + c”e’E%t’)
Now since p = mv and W = mc, we have

_ P2
v—Wc

80 that

Kirit Makwana Relativistic Electrodynamics

Writing, W& = (mic* + c?p3) = constant, we have the equations of

motion

de by

T+ (emt]” “y
and

o e

[ (et 1o
Integrating (A-9)

x o W+ ] a1
where for i the constant of i is fixed to be zero

choosing the suitable starting x-coordinate.
From (A-10) on integration, we further obtain

o a— D
y = 2 gyt [ Bt g
) o
Tt follows from (A-12) that
o gfceEgt || 1 2 V2
cosh[smh [70 - er[wD + (ceE,,;)]”
Therefore from (A-11) we obtain the equation of the particle trajectory.

x = Yo o (eEoy o)
ek, Poc
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Equivalence principle

o Consider 2 objects of mass my and my falling freely under the
influence of gravity

GM GM
may = S myay = (63)
r r
GM
= a1 =a = >y (64)

@ Objects of different material, sizes, composition, etc. all fall at same
rate in a gravitational field - weak equivalence principle
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Equivalence principle

@ Consider an observer inside an elevator that is falling freely. All
objects inside the elevator will move at same acceleration, and so the
observer will think that he is at rest

@ Inversely, imagine the elevator in free space, but accelerating with
constant acceleration g. An observer will think that he is under the
influence of gravity

@ Einstein's equivalence principle - An observer falling freely under
gravity will find all non-gravitational physics indistinguishable from
such physics in absence of gravity.

@ Lead to discovery of general theory of relativity
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Further courses

EP3887 - General Relativity
EP4258 - Gravitation and cosmology

EP3277 - Relativistic Quantum Mechanics; and further particle
physics courses

EP3100 - Advanced Special Relativity

e EP2218 - Electrodynamics; and radiation physics courses
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