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Interval

Consider the norm of the position 4-vector of a particle

s2 = XµXµ = gµνX
µX ν = x2 + y2 + z2 − c2t2 (1)

We have seen earlier that this quantity remains the same across
different inertial reference frames. Now consider an interval between 2
events ∆X = (c∆t,∆x ,∆y ,∆z). Its norm is

∆s2 = ∆Xµ∆Xµ = ∆x2 + ∆y2 + ∆z2 − c2∆t2 (2)

If ∆s2 > 0 then the interval is called space-like, if < 0 its called time
like, and = 0 is called lightlike.
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Differential

Now define its differential

ds2 = dXµdXµ = dx2 + dy2 + dz2 − c2dt2 (3)

This will also be an invariant. Now define the “proper-time
differential”

dτ2 = −ds2

c2
= dt2 − 1

c2
(dx2 + dy2 + dz2) (4)

The importance of invariant quantities is their value does not depend
on frame of reference
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Proper time interval

In a frame comoving with the particle, the particle will be at rest and
its dx = dy = dz = 0. Therefore this invariant proper-time
differential is the time interval measured in a frame co-moving with
the particle. Hence its name.

dτ2 = dt2
{

1− 1

c2

[
(
dx

dt
)2 + (

dy

dt
)2 + (

dz

dt
)2
]}

(5)

= dt2
(

1− u2

c2

)
(6)

here u is the velocity of the particle in the frame where the time
interval is measured as dt

dτ = dt
√

1− u2/c2, this shows the time dilation effect in the frame
of observer compared to frame of particle.
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4-velocity

Define the 4-velocity as the derivative of the 4-position with proper
time differential

Uµ =
dXµ

dτ
=

d

dτ


ct
x
y
z

 =
dt

dτ


c
ux
uy
uz

 (7)

Here ux ,y ,z are the velocity of the particle measured in the observer
frame. The norm of this 4-velocity is

gµνU
µUν =

1

1− u2

c2

(u2 − c2) = −c2 (8)

This norm is invariant in different reference frames
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Momentum conservation

Momentum should be defined such that it is conserved in all inertial
reference frames

Consider a group of n particles in a frame

n∑
j=1

mj

dXµ
j

dt
= const. (9)

Here j is not a tensor index, it is just a label of the particle, so we are
explicitly writing the summation sign. When µ = 0, this equation
reduces to

∑n
j=1 cmj = const., which is just conservation of mass

When µ = 1, 2, 3, this expresses conservation of momentum along the
three space dimensions.
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Momentum conservation

Expressing this in terms of proper time differential

n∑
j=1

mj

dXµ
j

dτ

√
1−

u2j
c2

= const. (10)

In terms of the co-ordinates in another frame S ′, this becomes

n∑
j=1

mj(Λ−1)µν

(
dX

′ν
j

dτ

)√
1−

u2j
c2

= const. (11)

Considering the fact that Λ−1 is a constant matrix (not changing in
time) and can be inverted, it implies this matrix can be absorbed into
the r.h.s. constant

n∑
j=1

mj

(
dX

′µ
j

dτ

)√
1−

u2j
c2

= const. (12)
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Momentum

The momentum should be conserved in S ′ frame as well, which can
be written as

n∑
j=1

m′j
dX

′µ
j

dτ

√
1−

u
′2
j

c2
= const. (13)

Note here that we have allowed for the mass of the particle mj to be
different in the S ′ frame (m′j). This is required as we will see

The constants in Eq. 12 and 13 need not be the same. We multiply
by a constant λ to make them equal such that

n∑
j=1

{
mj

√
1−

u2j
c2
− λm′j

√
1−

u′2j
c2

}
dX

′µ
j

dτ
= 0 (14)
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Mass

Since the particle velocities
dX

′µ
j

dτ are independent of each other, this
means

mj

√
1−

u2j
c2

= λm′j

√
1−

u′2j
c2

= m0j (15)

m0j is the mass of a particle where the particle velocity uj is zero (rest
mass).

Either frame S or S ′ can be the rest frame and in those cases the rest
mass should come out same. This means λ = 1.

The momentum conservation law becomes

n∑
j=1

m0j
1√

1− u2j
c2

dXµ
j

dt
= const. (16)
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Newton’s law

Now we know that the following 4-vector is conserved (each
component)

Pµ = m0U
µ (17)

The spatial components 1-3 are γm0u, where γ is the Lorentz factor
derived from the 3-velocity of the particle u. This can be interpreted
as the relativistic momentum

The time component is γm0c . What is this?

Classical Newton’s law is F = dp/dt. Lets try to write Newton’s law
in 4-vector form

Fµ =
d

dτ
(Pµ) (18)

Here Fµ is a 4-vector force. Now consider the dot-product of this
force with Uµ

gµνF
µUν = m0gµν

d

dτ
(Uµ)Uν (19)
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Newton’s law

It follows that

gµνF
µUν = m0

d

dτ
(gµνU

µUν)−m0gµνU
µ d

dτ
(Uν) (20)

Now we have seen that gµνU
µUν = −c2, which is a constant so

d
dτ (gµνU

µUν) = 0

gµνF
µUν = m0gµν

d

dτ
(Uµ)Uν (21)

= −m0gµνU
µ d

dτ
(Uν) (22)

= −m0gµνU
ν d

dτ
(Uµ) (23)

The last step just involves interchanging µ and ν since gµν is
symmetric. From 21 and 23, we can see that gµνF

µUν = 0
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Work

Separating the space and time components of this equation gives

F 1U1 + F 2U2 + F 3U3 = F 0U0 (24)

The first term on the LHS can be written as

F 1U1 =
d

dτ
(P1)U1 =

dx

dτ

d

dτ

(
m0U

1

)
(25)

=
1√

1− u2

c2

ux
d

dτ

(
m0√

1− u2

c2

ux

)
(26)

The RHS is

F 0U0 =
dP0

dτ

d

dτ
(ct) =

1√
1− u2

c2

d

dτ

(
m0c

2√
1− u2

c2

)
(27)
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Work

Equating the 2 sides we get

u · d
dt

(
m0u√
1− u2

c2

)
=

d

dt

(
m0c

2√
1− u2

c2

)
(28)

Here u represents the 3D velocity of the particle. Also we have replace
d/dτ with d/dt as they are present on both sides of the equation

The time derivative on the LHS is the 3D force vector, and so the
LHS can be written as F · u
This is the rate at which work is done by the force on the particle and
should be the rate of change of its energy. So we can write

dE

dt
=

d

dt

(
m0c

2√
1− u2

c2

)
(29)
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Energy

Integrating this w.r.t. time we get

E =
m0c

2√
1− u2

c2

+ E0 (30)

If we want this to represent the kinetic energy (lets call it T) of the
particle, then T=0 when u = 0, so E0 = −m0c

2.

T = m0c
2

(
1√

1− u2

c2

− 1

)
(31)

When u/c � 1 (non-relativistic limit), we can Taylor expand around
u2/c2 = 0 to get

T ≈ m0c
2

(
1 +

1

2

u2

c2
+

3

8

u4

c4
+ ...− 1

)
(32)

Ignoring higher order terms, we get back the non-relativisitic kinetic
energy (1/2)m0u

2
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Rest mass

The kinetic energy T is defined as γm0c
2 −m0c

2. This constant can
be thought of as a rest mass energy (the energy in a particle at rest).
Then the total energy is

E = T + m0c
2 = γm0c

2 (33)

Going back to the momentum vector which can be written as

Pµ = m0U
µ =


m0γc
m0γux
m0γuy
m0γuz

 =

(
E
c

m0γu

)
(34)

This shows that the 4-momentum vector consists of 2 parts. The
time-like component is proportional to the total energy, while the
space-like part is the 3D momentum vector. So this can also be called
as the energy-momentum 4-vector
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Energy-momentum relation

We can now write the following relation between the 3D momentum
and energy

p = m0γu =
Eu

c2
(35)

=⇒ p2c2 = E 2u2/c2 (36)

= E 2 − E 2(1− u2

c2
) = E 2 − E 2/γ2 (37)

(38)

Since E 2 = γ2m2
0c

4, we get p2c2 = E 2 −m2
0c

4 or E 2 = p2c2 + m2
0c

4

The energy of a particle tends to infinity as u tends to c . That is why
it is not possible to accelerate a material particle to speed of light or
beyond.
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Energy

In some books, the term γm0 is represented simply as mass m. This
gives the relation E = mc2

In some treatments, m0 is simply written as m, so there is only one
mass and that is the rest mass. In that case E = γmc2.

The important quantity is E 2 − p2c2 which is a Lorentz invariant and
equal to m2

0c
4.

A photon has energy E = hν, and its mass is zero. So it has a
momentum p = hν/c .
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Transformation of 4-momentum

The transformation of 4-vectors follows the Lorentz transform. So

P ′µ = ΛµνP
ν ; Pµ = (Λ−1)µνP

′ν (39)

This gives

p′x = γv (px − vE/c2) (40)

p′y = py (41)

p′z = pz (42)

E ′

c
= γv (

E

c
− v

c
px) (43)

Here v is the velocity of the frame S ′ w.r.t. S and γv is used to
denote the gamma factor that is defined using this velocity v .
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Inverse Transformation

The inverse transformation is given by

px = γv (p′x + vE ′/c2) (44)

py = p′y (45)

pz = p′z (46)

E

c
= γv (

E ′

c
+

v

c
p′x) (47)
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Energy-mass relation

Consider a body at rest in S ′ frame so that p′ = 0, and E ′ = m0c
2.

So in frame S , using the inverse transform, its momentum and energy
is

px = γvm0v (48)

E = γvm0c
2 (49)

Now lets say this body emits some radiation of energy E ′r in frame S ′

while staying at rest in S ′. So the total momentum of the radiation
should be 0 in order to conserve momentum

In frame S the momentum and energy of this radiation will be

pxr = γv
v

c2
E ′r ; Er = γvE

′
r (50)
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Energy-mass relation

Since the particle continues to stay at rest in frame S ′, it means that
the particle continues to move with speed v in frame S .

Before emission of radiation, momentum was γvm0v

After emission, total momentum is γvm
′
0v + γv

v
c2
E ′r , equating the 2

we get

γvm0v = γv
v

c2
E ′r + γvm

′
0v (51)

Here, the third term is the momentum of the body in frame S after
radiation is emitted. Since the body continues to be at rest in S ′, this
implies its velocity continues to remain v in frame S . Now if Eq. 51
is to hold, we have to take a different m′0 for the body after the
radiation is emitted.
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Energy-mass relation

The change in the rest mass of the body is given by ∆m = m′0 −m0

∆m = −E ′r
c2

(52)

The energy lost as radiation results in a decrease of the rest mass.
This is the basis of nuclear physics
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Nuclear reactions

Mass of nuclear particles is measured in terms of a.m.u (atomic mass
units) also called as Dalton

1a.m.u = 1D = 1.66053907× 10−27kg (53)

1 a.m.u is equivalent to

E = mc2 (54)

= (1.66053907× 10−27) ∗ (3× 108)2 (55)

= 1.4924× 10−10J (56)

= 1.4924× 10−10/(1.6E − 19) = 931.5× 106eV (57)

= 931.5MeV (58)
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Radioactive decay

Consider the reaction

235
92 U +1

0 n→144
56 Ba +89

36 Kr + 310n (59)

m0(23592 U) = 235.043943a.m.u. (60)

m0(10n) = 1.008665a.m.u (61)

m0(14456 Ba) = 143.922953a.m.u (62)

m0(8936Kr) = 88.91763a.m.u (63)

∆m =235.043943 + 1.008665− 143.922953− 88.91763 (64)

− 3× 1.008665 (65)

= 0.18603a.m.u (66)

E = ∆mc2 = 0.18603 ∗ 931.5 = 173MeV (67)
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