Four momentum

Kirit Makwana

September 24, 2020

Interval

- Consider the norm of the position 4-vector of a particle

$$
\begin{equation*}
s^{2}=X^{\mu} X_{\mu}=g_{\mu \nu} X^{\mu} X^{\nu}=x^{2}+y^{2}+z^{2}-c^{2} t^{2} \tag{1}
\end{equation*}
$$

- We have seen earlier that this quantity remains the same across different inertial reference frames. Now consider an interval between 2 events $\Delta X=(c \Delta t, \Delta x, \Delta y, \Delta z)$. Its norm is

$$
\begin{equation*}
\Delta s^{2}=\Delta X^{\mu} \Delta X_{\mu}=\Delta x^{2}+\Delta y^{2}+\Delta z^{2}-c^{2} \Delta t^{2} \tag{2}
\end{equation*}
$$

- If $\Delta s^{2}>0$ then the interval is called space-like, if <0 its called time like, and $=0$ is called lightlike.

Differential

- Now define its differential

$$
\begin{equation*}
d s^{2}=d X^{\mu} d X_{\mu}=d x^{2}+d y^{2}+d z^{2}-c^{2} d t^{2} \tag{3}
\end{equation*}
$$

- This will also be an invariant. Now define the "proper-time differential"

$$
\begin{equation*}
d \tau^{2}=-\frac{d s^{2}}{c^{2}}=d t^{2}-\frac{1}{c^{2}}\left(d x^{2}+d y^{2}+d z^{2}\right) \tag{4}
\end{equation*}
$$

- The importance of invariant quantities is their value does not depend on frame of reference

Proper time interval

- In a frame comoving with the particle, the particle will be at rest and its $d x=d y=d z=0$. Therefore this invariant proper-time differential is the time interval measured in a frame co-moving with the particle. Hence its name.

$$
\begin{align*}
d \tau^{2} & =d t^{2}\left\{1-\frac{1}{c^{2}}\left[\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}\right]\right\} \tag{5}\\
& =d t^{2}\left(1-\frac{u^{2}}{c^{2}}\right) \tag{6}
\end{align*}
$$

- here u is the velocity of the particle in the frame where the time interval is measured as $d t$
- $d \tau=d t \sqrt{1-u^{2} / c^{2}}$, this shows the time dilation effect in the frame of observer compared to frame of particle.

4-velocity

- Define the 4 -velocity as the derivative of the 4 -position with proper time differential

$$
U^{\mu}=\frac{d X^{\mu}}{d \tau}=\frac{d}{d \tau}\left(\begin{array}{c}
c t \tag{7}\\
x \\
y \\
z
\end{array}\right)=\frac{d t}{d \tau}\left(\begin{array}{c}
c \\
u_{x} \\
u_{y} \\
u_{z}
\end{array}\right)
$$

- Here $u_{x, y, z}$ are the velocity of the particle measured in the observer frame. The norm of this 4 -velocity is

$$
\begin{equation*}
g_{\mu \nu} U^{\mu} U^{\nu}=\frac{1}{1-\frac{u^{2}}{c^{2}}}\left(u^{2}-c^{2}\right)=-c^{2} \tag{8}
\end{equation*}
$$

- This norm is invariant in different reference frames

Momentum conservation

- Momentum should be defined such that it is conserved in all inertial reference frames
- Consider a group of n particles in a frame

$$
\begin{equation*}
\sum_{j=1}^{n} m_{j} \frac{d X_{j}^{\mu}}{d t}=\text { const } \tag{9}
\end{equation*}
$$

- Here j is not a tensor index, it is just a label of the particle, so we are explicitly writing the summation sign. When $\mu=0$, this equation reduces to $\sum_{j=1}^{n} c m_{j}=$ const., which is just conservation of mass
- When $\mu=1,2,3$, this expresses conservation of momentum along the three space dimensions.

Momentum conservation

- Expressing this in terms of proper time differential

$$
\begin{equation*}
\sum_{j=1}^{n} m_{j} \frac{d X_{j}^{\mu}}{d \tau} \sqrt{1-\frac{u_{j}^{2}}{c^{2}}}=\text { const } \tag{10}
\end{equation*}
$$

- In terms of the co-ordinates in another frame S^{\prime}, this becomes

$$
\begin{equation*}
\sum_{j=1}^{n} m_{j}\left(\Lambda^{-1}\right)_{\nu}^{\mu}\left(\frac{d X_{j}^{\prime} \nu}{d \tau}\right) \sqrt{1-\frac{u_{j}^{2}}{c^{2}}}=\text { const. } \tag{11}
\end{equation*}
$$

- Considering the fact that Λ^{-1} is a constant matrix (not changing in time) and can be inverted, it implies this matrix can be absorbed into the r.h.s. constant

$$
\begin{equation*}
\sum_{j=1}^{n} m_{j}\left(\frac{d X_{j}^{\prime \mu}}{d \tau}\right) \sqrt{1-\frac{u_{j}^{2}}{c^{2}}}=\text { const. } \tag{12}
\end{equation*}
$$

Momentum

- The momentum should be conserved in S^{\prime} frame as well, which can be written as

$$
\begin{equation*}
\sum_{j=1}^{n} m_{j}^{\prime} \frac{d X_{j}^{\prime \mu}}{d \tau} \sqrt{1-\frac{u_{j}^{\prime 2}}{c^{2}}}=\text { const } \tag{13}
\end{equation*}
$$

- Note here that we have allowed for the mass of the particle m_{j} to be different in the S^{\prime} frame $\left(m_{j}^{\prime}\right)$. This is required as we will see
- The constants in Eq. 12 and 13 need not be the same. We multiply by a constant λ to make them equal such that

$$
\begin{equation*}
\sum_{j=1}^{n}\left\{m_{j} \sqrt{1-\frac{u_{j}^{2}}{c^{2}}}-\lambda m_{j}^{\prime} \sqrt{1-\frac{u_{j}^{\prime 2}}{c^{2}}}\right\} \frac{d X_{j}^{\prime \mu}}{d \tau}=0 \tag{14}
\end{equation*}
$$

Mass

- Since the particle velocities $\frac{d X_{j}^{\prime \mu}}{d \tau}$ are independent of each other, this means

$$
\begin{equation*}
m_{j} \sqrt{1-\frac{u_{j}^{2}}{c^{2}}}=\lambda m_{j}^{\prime} \sqrt{1-\frac{u_{j}^{\prime 2}}{c^{2}}}=m_{0 j} \tag{15}
\end{equation*}
$$

- $m_{0 j}$ is the mass of a particle where the particle velocity u_{j} is zero (rest mass).
- Either frame S or S^{\prime} can be the rest frame and in those cases the rest mass should come out same. This means $\lambda=1$.
- The momentum conservation law becomes

$$
\begin{equation*}
\sum_{j=1}^{n} m_{0 j} \frac{1}{\sqrt{1-\frac{u_{j}^{2}}{c^{2}}}} \frac{d X_{j}^{\mu}}{d t}=\text { const } \tag{16}
\end{equation*}
$$

Newton's law

- Now we know that the following 4-vector is conserved (each component)

$$
\begin{equation*}
P^{\mu}=m_{0} U^{\mu} \tag{17}
\end{equation*}
$$

- The spatial components 1-3 are $\gamma m_{0} \mathbf{u}$, where γ is the Lorentz factor derived from the 3 -velocity of the particle \mathbf{u}. This can be interpreted as the relativistic momentum
- The time component is $\gamma m_{0} c$. What is this?
- Classical Newton's law is $\mathbf{F}=d \mathbf{p} / d t$. Lets try to write Newton's law in 4-vector form

$$
\begin{equation*}
F^{\mu}=\frac{d}{d \tau}\left(P^{\mu}\right) \tag{18}
\end{equation*}
$$

- Here F^{μ} is a 4 -vector force. Now consider the dot-product of this force with U^{μ}

$$
\begin{equation*}
g_{\mu \nu} F^{\mu} U^{\nu}=m_{0} g_{\mu \nu} \frac{d}{d \tau}\left(U^{\mu}\right) U^{\nu} \tag{19}
\end{equation*}
$$

Newton's law

- It follows that

$$
\begin{equation*}
g_{\mu \nu} F^{\mu} U^{\nu}=m_{0} \frac{d}{d \tau}\left(g_{\mu \nu} U^{\mu} U^{\nu}\right)-m_{0} g_{\mu \nu} U^{\mu} \frac{d}{d \tau}\left(U^{\nu}\right) \tag{20}
\end{equation*}
$$

- Now we have seen that $g_{\mu \nu} U^{\mu} U^{\nu}=-c^{2}$, which is a constant so $\frac{d}{d \tau}\left(g_{\mu \nu} U^{\mu} U^{\nu}\right)=0$

$$
\begin{align*}
g_{\mu \nu} F^{\mu} U^{\nu} & =m_{0} g_{\mu \nu} \frac{d}{d \tau}\left(U^{\mu}\right) U^{\nu} \tag{21}\\
& =-m_{0} g_{\mu \nu} U^{\mu} \frac{d}{d \tau}\left(U^{\nu}\right) \tag{22}\\
& =-m_{0} g_{\mu \nu} U^{\nu} \frac{d}{d \tau}\left(U^{\mu}\right) \tag{23}
\end{align*}
$$

- The last step just involves interchanging μ and ν since $g_{\mu \nu}$ is symmetric. From 21 and 23 , we can see that $g_{\mu \nu} F^{\mu} U^{\nu}=0$

Work

- Separating the space and time components of this equation gives

$$
\begin{equation*}
F^{1} U^{1}+F^{2} U^{2}+F^{3} U^{3}=F^{0} U^{0} \tag{24}
\end{equation*}
$$

- The first term on the LHS can be written as

$$
\begin{align*}
F^{1} U^{1} & =\frac{d}{d \tau}\left(P^{1}\right) U^{1}=\frac{d x}{d \tau} \frac{d}{d \tau}\left(m_{0} U^{1}\right) \tag{25}\\
& =\frac{1}{\sqrt{1-\frac{u^{2}}{c^{2}}}} u_{x} \frac{d}{d \tau}\left(\frac{m_{0}}{\sqrt{1-\frac{u^{2}}{c^{2}}}} u_{x}\right) \tag{26}
\end{align*}
$$

- The RHS is

$$
\begin{equation*}
F^{0} U^{0}=\frac{d P^{0}}{d \tau} \frac{d}{d \tau}(c t)=\frac{1}{\sqrt{1-\frac{u^{2}}{c^{2}}}} \frac{d}{d \tau}\left(\frac{m_{0} c^{2}}{\sqrt{1-\frac{u^{2}}{c^{2}}}}\right) \tag{27}
\end{equation*}
$$

Work

- Equating the 2 sides we get

$$
\begin{equation*}
\mathbf{u} \cdot \frac{d}{d t}\left(\frac{m_{0} \mathbf{u}}{\sqrt{1-\frac{u^{2}}{c^{2}}}}\right)=\frac{d}{d t}\left(\frac{m_{0} c^{2}}{\sqrt{1-\frac{u^{2}}{c^{2}}}}\right) \tag{28}
\end{equation*}
$$

- Here u represents the 3D velocity of the particle. Also we have replace $d / d \tau$ with $d / d t$ as they are present on both sides of the equation
- The time derivative on the LHS is the 3D force vector, and so the LHS can be written as F.u
- This is the rate at which work is done by the force on the particle and should be the rate of change of its energy. So we can write

$$
\begin{equation*}
\frac{d E}{d t}=\frac{d}{d t}\left(\frac{m_{0} c^{2}}{\sqrt{1-\frac{u^{2}}{c^{2}}}}\right) \tag{29}
\end{equation*}
$$

Energy

- Integrating this w.r.t. time we get

$$
\begin{equation*}
E=\frac{m_{0} c^{2}}{\sqrt{1-\frac{u^{2}}{c^{2}}}}+E_{0} \tag{30}
\end{equation*}
$$

- If we want this to represent the kinetic energy (lets call it T) of the particle, then $\mathrm{T}=0$ when $u=0$, so $E_{0}=-m_{0} c^{2}$.

$$
\begin{equation*}
T=m_{0} c^{2}\left(\frac{1}{\sqrt{1-\frac{u^{2}}{c^{2}}}}-1\right) \tag{31}
\end{equation*}
$$

- When $u / c \ll 1$ (non-relativistic limit), we can Taylor expand around $u^{2} / c^{2}=0$ to get

$$
\begin{equation*}
T \approx m_{0} c^{2}\left(1+\frac{1}{2} \frac{u^{2}}{c^{2}}+\frac{3}{8} \frac{u^{4}}{c^{4}}+\ldots-1\right) \tag{32}
\end{equation*}
$$

- Ignoring higher order terms, we get back the non-relativisitic kinetic energy $(1 / 2) m_{0} u^{2}$

Rest mass

- The kinetic energy T is defined as $\gamma m_{0} c^{2}-m_{0} c^{2}$. This constant can be thought of as a rest mass energy (the energy in a particle at rest). Then the total energy is

$$
\begin{equation*}
E=T+m_{0} c^{2}=\gamma m_{0} c^{2} \tag{33}
\end{equation*}
$$

- Going back to the momentum vector which can be written as

$$
P^{\mu}=m_{0} U^{\mu}=\left(\begin{array}{c}
m_{0} \gamma c \tag{34}\\
m_{0} \gamma u_{x} \\
m_{0} \gamma u_{y} \\
m_{0} \gamma u_{z}
\end{array}\right)=\binom{\frac{E}{c}}{m_{0} \gamma \mathbf{u}}
$$

- This shows that the 4 -momentum vector consists of 2 parts. The time-like component is proportional to the total energy, while the space-like part is the 3D momentum vector. So this can also be called as the energy-momentum 4-vector

Energy-momentum relation

- We can now write the following relation between the 3D momentum and energy

$$
\begin{align*}
\mathbf{p} & =m_{0} \gamma \mathbf{u}=\frac{E \mathbf{u}}{c^{2}} \tag{35}\\
\Longrightarrow p^{2} c^{2} & =E^{2} u^{2} / c^{2} \tag{36}\\
& =E^{2}-E^{2}\left(1-\frac{u^{2}}{c^{2}}\right)=E^{2}-E^{2} / \gamma^{2} \tag{37}
\end{align*}
$$

- Since $E^{2}=\gamma^{2} m_{0}^{2} c^{4}$, we get $p^{2} c^{2}=E^{2}-m_{0}^{2} c^{4}$ or $E^{2}=p^{2} c^{2}+m_{0}^{2} c^{4}$
- The energy of a particle tends to infinity as u tends to c. That is why it is not possible to accelerate a material particle to speed of light or beyond.

Energy

- In some books, the term γm_{0} is represented simply as mass m. This gives the relation $E=m c^{2}$
- In some treatments, m_{0} is simply written as m, so there is only one mass and that is the rest mass. In that case $E=\gamma m c^{2}$.
- The important quantity is $E^{2}-p^{2} c^{2}$ which is a Lorentz invariant and equal to $m_{0}^{2} c^{4}$.
- A photon has energy $E=h \nu$, and its mass is zero. So it has a momentum $p=h \nu / c$.

Transformation of 4-momentum

- The transformation of 4 -vectors follows the Lorentz transform. So

$$
\begin{equation*}
P^{\prime \mu}=\Lambda_{\nu}^{\mu} P^{\nu} ; \quad P^{\mu}=\left(\Lambda^{-1}\right)_{\nu}^{\mu} P^{\prime \nu} \tag{39}
\end{equation*}
$$

- This gives

$$
\begin{align*}
p_{x}^{\prime} & =\gamma_{v}\left(p_{x}-v E / c^{2}\right) \tag{40}\\
p_{y}^{\prime} & =p_{y} \tag{41}\\
p_{z}^{\prime} & =p_{z} \tag{42}\\
\frac{E^{\prime}}{c} & =\gamma_{v}\left(\frac{E}{c}-\frac{v}{c} p_{x}\right) \tag{43}
\end{align*}
$$

- Here v is the velocity of the frame S^{\prime} w.r.t. S and γ_{v} is used to denote the gamma factor that is defined using this velocity v.

Inverse Transformation

- The inverse transformation is given by

$$
\begin{align*}
p_{x} & =\gamma_{v}\left(p_{x}^{\prime}+v E^{\prime} / c^{2}\right) \tag{44}\\
p_{y} & =p_{y}^{\prime} \tag{45}\\
p_{z} & =p_{z}^{\prime} \tag{46}\\
\frac{E}{c} & =\gamma_{v}\left(\frac{E^{\prime}}{c}+\frac{v}{c} p_{x}^{\prime}\right) \tag{47}
\end{align*}
$$

Energy-mass relation

- Consider a body at rest in S^{\prime} frame so that $\mathbf{p}^{\prime}=0$, and $E^{\prime}=m_{0} c^{2}$.
- So in frame S, using the inverse transform, its momentum and energy is

$$
\begin{align*}
& p_{x}=\gamma_{v} m_{0} v \tag{48}\\
& E=\gamma_{v} m_{0} c^{2} \tag{49}
\end{align*}
$$

- Now lets say this body emits some radiation of energy E_{r}^{\prime} in frame S^{\prime} while staying at rest in S^{\prime}. So the total momentum of the radiation should be 0 in order to conserve momentum
- In frame S the momentum and energy of this radiation will be

$$
\begin{equation*}
p_{x r}=\gamma_{v} \frac{v}{c^{2}} E_{r}^{\prime} ; \quad E_{r}=\gamma_{v} E_{r}^{\prime} \tag{50}
\end{equation*}
$$

Energy-mass relation

- Since the particle continues to stay at rest in frame S^{\prime}, it means that the particle continues to move with speed v in frame S.
- Before emission of radiation, momentum was $\gamma_{v} m_{0} v$
- After emission, total momentum is $\gamma_{v} m_{0}^{\prime} v+\gamma_{v} \frac{v}{c^{2}} E_{r}^{\prime}$, equating the 2 we get

$$
\begin{equation*}
\gamma_{v} m_{0} v=\gamma_{v} \frac{v}{c^{2}} E_{r}^{\prime}+\gamma_{v} m_{0}^{\prime} v \tag{51}
\end{equation*}
$$

- Here, the third term is the momentum of the body in frame S after radiation is emitted. Since the body continues to be at rest in S^{\prime}, this implies its velocity continues to remain v in frame S. Now if Eq. 51 is to hold, we have to take a different m_{0}^{\prime} for the body after the radiation is emitted.

Energy-mass relation

- The change in the rest mass of the body is given by $\Delta m=m_{0}^{\prime}-m_{0}$

$$
\begin{equation*}
\Delta m=-\frac{E_{r}^{\prime}}{c^{2}} \tag{52}
\end{equation*}
$$

- The energy lost as radiation results in a decrease of the rest mass. This is the basis of nuclear physics

Nuclear reactions

- Mass of nuclear particles is measured in terms of a.m.u (atomic mass units) also called as Dalton

$$
\begin{equation*}
\text { 1a.m.u }=1 D=1.66053907 \times 10^{-27} \mathrm{~kg} \tag{53}
\end{equation*}
$$

- 1 a.m.u is equivalent to

$$
\begin{align*}
E & =m c^{2} \tag{54}\\
& =\left(1.66053907 \times 10^{-27}\right) *\left(3 \times 10^{8}\right)^{2} \tag{55}\\
& =1.4924 \times 10^{-10} \mathrm{~J} \tag{56}\\
& =1.4924 \times 10^{-10} /(1.6 E-19)=931.5 \times 10^{6} \mathrm{eV} \tag{57}\\
& =931.5 \mathrm{MeV} \tag{58}
\end{align*}
$$

Radioactive decay

- Consider the reaction

$$
\begin{array}{r}
{ }_{92}^{235} U+{ }_{0}^{1} n \rightarrow{ }_{56}^{144} \mathrm{Ba}+{ }_{36}^{89} \mathrm{Kr}+3{ }_{0}^{1} n \\
m_{0}\left({ }_{92}^{235} U\right)=235.043943 \text { a.m.u. } \\
m_{0}\left({ }_{0}^{1} n\right)=1.008665 \text { a.m.u } \\
m_{0}\left({ }_{56}^{144} \mathrm{Ba}\right)=143.922953 \text { a.m.u } \\
m_{0}\left({ }_{36}^{89} \mathrm{Kr}\right)=88.91763 \text { a.m.u } \tag{63}
\end{array}
$$

$$
\begin{align*}
\Delta m= & 235.043943+1.008665-143.922953-88.91763 \tag{64}\\
& -3 \times 1.008665 \tag{65}\\
& =0.18603 \text { a.m.u } \tag{66}
\end{align*}
$$

$$
\begin{equation*}
E=\Delta m c^{2}=0.18603 * 931.5=173 \mathrm{MeV} \tag{67}
\end{equation*}
$$

HW

-...... нumuvisuve Mechanucs
Solution Let the original rest mass of the excited atom be M_{0} and the rest mass after transition to the lower state be M_{0}^{\prime}. So according to be problem

$$
\left(M_{0} c^{2}-M_{0}^{\prime} c^{2}\right)=\Delta W
$$

(3.127)

The emitted photon with momentum hv/c will produce a recoil of equal momentum in the atom and hence from the conservation of momentum

$$
\begin{equation*}
\frac{h v}{c}=p^{\prime} \tag{3.128}
\end{equation*}
$$

where

$$
p=\left(\frac{M_{0}^{\prime} v}{1-v^{2} / c^{2}}\right)^{1 / 2}=M^{\prime} v
$$

Again using the principle of conservation of energy before and after emission, we obtain

$$
\begin{equation*}
M_{0} c^{2}=M^{\prime} c^{2}+h v \tag{3.129}
\end{equation*}
$$

Further the total energy of the atom after it goes over to the lower state is

$$
\begin{equation*}
\left(M^{\prime} c^{2}\right)^{2}=p^{\prime 2} c^{2}+\left(M_{0}^{\prime} c^{2}\right)^{2} \tag{3.130}
\end{equation*}
$$

Where the momentum at this stage is $p^{\prime}=M^{\prime} v$
Now from (3.128), we get

$$
M^{\prime} c^{2}=M_{0} c^{2}-h v
$$

Hence using (3.129) and (3.130) we obtain

$$
\left(M^{\prime} c^{2}\right)^{2}=\left(M_{0} c^{2}-h v\right)^{2}=p^{\prime 2} c^{2}+M_{0}^{2} c^{4}
$$

It follows therefore from (3.127) and (3.128)

$$
M_{0}^{2} c^{4}+h^{2} v^{2}-2 h v M_{0} c^{2}=h^{2} v^{2}+\left(M_{0} c^{2}-\Delta W\right)^{2}
$$

which finally leads to the simple relation

$$
h v=\Delta W\left(1-\frac{\Delta W}{2 M_{0} c^{2}}\right)
$$

HW

PROBLEM 3.11 An unstable neutral particle decays into two charge PROBLEM 3.10 MeV and 30 MeV and momged particles or $200 \mathrm{MeV} / \mathrm{c}$ and $240 \mathrm{MeV} / \mathrm{c}$, respectively. Determine the masece of the denta
 products. If the angle rest mass of the neutral particle, (b) its momentum, and (c) its kinetio energy.
Solution We have

$$
\begin{gathered}
E^{2}=m_{0}^{2} c^{4}+p^{2} c^{2} \\
T=\frac{m_{0} c^{2}}{\sqrt{1-v^{2} / c^{2}}}-m_{0} c^{2}=E-m_{0} c^{2}
\end{gathered}
$$

or

$$
\begin{aligned}
T^{2} & =E^{2}+m_{0}^{2} c^{4}-2 m_{0} c^{2} E \\
& =p^{2} c^{2}+2 m_{0}^{2} c^{4}-2 m_{0} c^{2} E
\end{aligned}
$$

or

$$
p^{2} c^{2}-T^{2}=2 m_{0} c^{2} E-2 m_{0}^{2} c^{4}
$$

Hence

$$
=2 m_{0} c^{2}\left(E-m_{0} c^{2}\right)=2 T m_{0} c^{2}
$$

$$
\begin{equation*}
m_{0}=\frac{p^{2} c^{2}-T^{2}}{2 T c^{2}} \tag{3.145}
\end{equation*}
$$

Therefore, the rest mass of the first particle is

$$
\begin{aligned}
m_{01} & =\frac{\left\{(300)^{2}-(190)^{2}\right\} \times 1.6 \times 10^{-6}}{2 \times 190 \times 9 \times 10^{20}} \mathrm{~g} \quad\left(\because 1 \mathrm{MeV}=1.6 \times 10^{-6} \mathrm{erg}\right) \\
& =25.2 \times 10^{-26} \mathrm{~g} \\
& =\frac{25.2 \times 10^{-26}}{9.1 \times 10^{-28}} m_{e}=277 m_{e}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
m_{02} & =\frac{\left\{(240)^{2}-(30)^{2}\right\} \times 1.6 \times 10^{-6}}{2 \times 30 \times 9 \times 10^{20} \times 9.1 \times 10^{-28}} m_{e} \\
& 1844 m_{e}
\end{aligned}
$$

If p is the momentum of the parent particle, then from the principle of conservation of momentum, we have

Figure 3.18

$$
\begin{aligned}
p & =\sqrt{p_{1}^{2}+p_{2}^{2}+2 p_{1} p_{2} \cos 45^{\circ}} \\
& =\sqrt{(300)^{2}+(240)^{2}+2 \cdot 300 \cdot 240 \cdot \frac{1}{\sqrt{2}}} \mathrm{MeV} / \mathrm{c}
\end{aligned}
$$

$$
500 \mathrm{MeV} / \mathrm{c}
$$

Total energy of the first particle $=$ kinetic energy + rest energy

$$
=(190+277 \times 0.511) \mathrm{MeV}
$$

since the rest energy of an electron is 0.511 MeV . Similarly, the total energy of the second particle
$=(30+1844 \times 0.511) \mathrm{MeV}$
So the total energy of the parent particle

$$
\begin{aligned}
& =(190+277 \times 0.511)+(30+1844 \times 0.511) \\
& =1304 \mathrm{MeV} \\
& \quad E^{2}-p^{2} c^{2}=m_{0}^{2} c^{4}
\end{aligned}
$$

So (rest mass) $)^{2}$ of the parent particle $=m_{0}^{2}$

$$
=\frac{\left\{(1304)^{2}-(500)^{2}\right\} \times(1.6)^{2} \times 10^{-12}}{81 \times 10^{40}} \mathrm{~g}^{2}
$$

Hence

$$
\frac{m_{0}^{2}}{m_{e}^{2}}=\frac{\left\{(1304)^{2}-(500)^{2}\right\} \times(1.6)^{2} \times 10^{-12}}{81 \times 10^{40} \times(9.1)^{2} \times 10^{-56}} \square 552.3 \times 10^{4} \mathrm{~g}^{2}
$$

Therefore,

$$
m_{0}=2350 m_{e}
$$

The kinetic energy $=$ total energy - rest energy

$$
=1304-2350 \times 0.511=103 \mathrm{MeV}
$$

HW

11. If a charged π-meson of rest mass 273.2 electron masses decays at rest into a muon of rest mass 206.8 electron masses and a neutrino of zero rest mass, show that the kinetic energies of the muon and neutrino are 4.1 MeV and 29.8 MeV , respectively.
12. Since the π-meson decays at rest, the total momentum is zero. Hence p_{μ} and p_{v} are equal and opposite.

From the principle of conservation of energy

$$
m_{\pi} c^{2}=\left(p_{\mu}^{2} c^{2}+m_{\mu}^{2} c^{4}\right)^{1 / 2}+p_{\mu} c
$$

In terms of MeV

$$
\begin{array}{r}
273.2 \times 0.511=\left\{p_{\mu}^{2} c^{2}+(206.8 \times 0.511)^{2}\right\}^{1 / 2}=p_{\mu} c \\
\left\{273.2 \times 0.511-p_{\mu} c\right\}^{2}=(206.8 \times 0.511)^{2}+p_{\mu}^{2} c^{2} \\
(273.2 \times 0.511)^{2}+p_{\mu}^{2} c^{2}-2 \times 273.2 \times 0.511 p_{\mu} c \\
=(206.8 \times 0.511)^{2}+p_{\mu}^{2} c^{2} \\
2 \times 273.2 \times 0.511 p_{\mu} c=\left\{(273.2)^{2}-(206.8)^{2}\right\} \times(0.511)^{2}
\end{array}
$$

or
or
or

Hence

$$
\begin{aligned}
p_{\mu} c=p_{v} c & =\frac{\left\{(273.2)^{2}-(206.8)^{2}\right\} \times(0.511)^{2}}{2 \times 273.2} \\
& =29.8 \mathrm{MeV}
\end{aligned}
$$

This is the energy of the neutrino. The total energy of the muon is

$$
\left\{(206.8 \times 0.511)^{2}+(29.8)^{2}\right\}^{1 / 2}
$$

Hence the kinetic energy = total energy - rest energy

$$
\begin{aligned}
& =\left\{(206.8 \times 0.511)^{2}+(29.8)^{2}\right\}^{1 / 2}-206.8 \times 0.511 \\
& =4.1 \mathrm{MeV}
\end{aligned}
$$

