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Postulates of relativity

In the absence of a preferred “ether” frame of reference, Einstein
decided to make all inertial frames equivalent resulting in the first
postulate of relativity

1st postulate - All laws of physics remain invariant in all inertial
frames

This includes Maxwell’s laws of electrodynamics as well. This implied
a constant speed of light in vacuum, which was the second postulate
of Einstein

2nd postulate - The velocity of light in empty space is a constant,
independent of direction of propagation and also of the relative
velocity between between source and observer
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Consequences of these postulates
The constancy of speed of light in all inertial frames has tremendous
consequences

Observer at O is stationary while O ′ is on a moving train. A’ and B’
are the ends of the train. Suppose in frame of O sees the endpoints of
the train A′ and B ′ coincide with points A and B, When this happens
lightning strikes at these co-incident points. It leaves a mark on both
the train tracks and the train.
Light from these lightning reaches O simultaneously since O is at the
midpoint of A− B and therefore O concludes that the lightning
strikes happened simultaneously, since speed of light is constant.
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Consequences of these postulates

Now look from the point of view of O’ who sees that the lightning
marks are equidistant from him. However, light from B ′ reaches O ′

before the light from A′.

However, if he thinks speed of light is constant irrespective of
direction of motion, then O ′ concludes that the strike at B ′ happened
before the strike at A′

Simultaneity of time is frame-dependent. t ′ = t does not hold.
Similarly the Galilean transformation x ′ = x − vt also does not hold
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Derivation of Lorentz transformation

Consider the space-time coordinates of an event (x , y , z , t) in frame
S , which is measured at coordinates (x ′, y ′, z ′, t ′) in frame S ′. There
is some transformation law between these coordinates

x ′ = Φ1(x , y , z , t) (1)

y ′ = Φ2(x , y , z , t) (2)

z ′ = Φ3(x , y , z , t) (3)

t ′ = Φ4(x , y , z , t) (4)

Consider a particle moving along the x axis in frame S with a
constant velocity. Its trajectory will be x = c0 + c1t

By Newton’s first law and first postulate of relativity, the particle
should have a constant velocity in x direction in frame S ′ also.
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Linearity of the transform

The x ′ velocity in frame S ′ will then be

dx ′

dt ′
=

dx ′

dt
/(
dt ′

dt
) =

∂Φ1
∂x

dx
dt + ∂Φ1

∂t
∂Φ4
∂x

dx
dt + ∂Φ4

∂t

(5)

=
c1

∂Φ1
∂x + ∂Φ1

∂t

c1
∂Φ4
∂x + ∂Φ4

∂t

(6)

In order for this to be constant, we require that ∂Φ1
∂x and the other

partial derivatives are constant, implying that the transform is linear.
In other words the transform is given by

x ′ = a11x + a12y + a13z + a14t + a15 (7)

y ′ = a21x + a22y + a23z + a24t + a25 (8)

z ′ = a31x + a32y + a33z + a34t + a35 (9)

t ′ = a41x + a42y + a43z + a44t + a45 (10)

where all the a’s are constants
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Derivation of Lorentz transform

By our setup, the origin O(x = 0, y = 0, z = 0) at t = 0 transforms
to the origin O ′(x ′ = 0, y ′ = 0, z ′ = 0) at t ′ = 0. This means the
constants a15 = a25 = a35 = a35 = 0.

Consider the motion of O in S ′ frame. Put x = y = z = 0 in Eq.7-10.
This gives

x ′ = a14t; y ′ = a24t; z ′ = a34t; t ′ = a44t (11)

The velocity of O in frame S ′ should simply be along the negative x
axis. Thus a24 = a34 = 0

x ′ = a11x + a12y + a13z + a14t (12)

y ′ = a21x + a22y + a23z (13)

z ′ = a31x + a32y + a33z (14)

t ′ = a41x + a42y + a43z + a44t (15)
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Derivation of Lorentz transform

Consider the same physical system but just inverting the x , x ′ and
z , z ′ axes. The y transformation will become

y ′ = −a21x + a22y − a23z (16)

But y ′ should remain unaffected by rotation of x ′ and z ′ axis. So
a21 = a23 = 0. Similarly a12 = a13 = a31 = a32 = 0

x ′ = a11x + a14t (17)

y ′ = a22y (18)

z ′ = a33z (19)

t ′ = a41x + a42y + a43z + a44t (20)

Kirit Makwana Lorentz transformations September 7, 2020 8 / 19



Derivation of Lorentz transform

Inverting the matrix of linear tranformations Eqs. 18-19, we get the
inverse transform

x = ∆−1(a22a33a44x
′ + a14a33a42y

′ + a14a22a43z
′ − a14a22a33t

′)
(21)

y = a−1
22 y

′ (22)

z = a−1
33 z

′ (23)

t = ∆−1(−a22a33a41x
′) + ∆−1(a11a22a33t

′) (24)

By first law of relativity, the transformation from x to x ′ should follow
similar equations as from x ′ to x . So a42 = a43 = 0.
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Derivation of Lorentz transform

Now consider the following setup where frame S is moving with
velocity v ′ relative to S ′. They are related by rotation of x and z axis

In fig (b) physically S is just the frame S ′ of Fig. (a). Therefore
v ′ = v .

Now consider the point y = 1, x = z = 0. This will transform to
y ′ = a22. Now imagine inverting the x , x ′ and z , z ′ axis like before
and consider going from S to S ′ as the inverse transform. So now
y = 1 and use the inverse transform equations 18-21, i.e. y ′ = a−1

22 .
This means a22 = ±1, and keeping non-relativistic limit in mind
a22 = a33 = 1.
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Derivation of Lorentz transform

So the transform equations now are

x ′ = a11x + a14t (25)

y ′ = y (26)

z ′ = z (27)

t ′ = a41x + a44t (28)

The transform of O (putting x = 0) will be x ′ = a14t. Also x ′ = −vt ′

and t ′ = a44t. This means a14 = −va44

Now consider the inverse transforms (22-25) and the motion of O ′

(x’=0) in S . Then x = vt = −∆−1a14t
′, t = ∆−1a11t

′. This gives
a14 = −va11

So a11 = a44 ≡ α, and a14 = −vα
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Derivation of Lorentz transform

We are left with the following transformation laws

x ′ = α(x − vt) (29)

y ′ = y (30)

z ′ = z (31)

t ′ = a41x + αt (32)

Now consider that as the 2 frames coincide at t = 0, a flash is
emitted in all directions from the point O. This will give rise to
spherical wavefronts in both frames S and S ′ as per the second
postulate of Einsteins relativity.
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Derivation of Lorentz transform

Consider the event of light reaching a detector at point (x1, y1, z1) at
time t1 in frame S . This event will satisfy the condition
x2

1 + y2
1 + z2

1 − c2t2
1 = 0

The transform of this event in frame S ′ will have coordinates
(x ′1, y

′
1, z
′
1, t
′
1). But due to constant speed of light, in frame S ′ also

these coordinates will obey x ′21 + y ′21 + z ′21 − c2t ′21 = 0.
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Derivation of Lorentz transform

Now consider another point in spacetime that does not fall on the
wavefront (x2, y2, z2, t2). Let this point obey
x2

2 + y2
2 + z2

2 − c2t2
2 = A0, where A0 is some non-zero value.

It can be seen that we can displace this point by y2 + δy and z2 + δz ,
such that x2

2 + (y2 + δy)2 + (z2 + δz)2 − c2t2
2 = 0

This displaced point lies on the wavefront and its transform will also
obey x ′22 + (y ′2 + δy ′)2 + (z ′2 + δz ′)2 − c2t ′22 = 0

But we already know that y and z coordinates do not change under
the transformation.

Using this, we can show that x ′22 + y ′22 + z ′22 − c2t ′22 = A0

What this means is that x2 + y2 + z2 − c2t2 remains same under the
Lorentz transformation for points not just on the wavefront but for all
points. This is called Lorentz invariance
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Derivation of Lorentz transform
Invariance

x2 + y2 + z2 − c2t2 = x ′2 + y ′2 + z ′2 − c2t ′2 (33)

Putting y ′ = y and z ′ = z , we get

x2 − c2t2 = x ′2 − c2t ′2 (34)

Substituting the Lorentz transform on the RHS gives

x2 − c2t2 = (α2 − c2a2
41)x2 − c2α2(1 − v2

c2
)t2 − 2α(αv + a41c

2)xt

(35)

Since this is true for all x and t, the coefficients of each independent
term should be equal, implying

α = (1 − v2

c2
)−1/2 (36)

a41 =
−αv
c2

=
−v/c2√

1 − v2

c2

(37)
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Derivation of Lorentz transform

Thus the Lorentz transform equations become

x ′ =
x − vt√
1 − v2

c2

(38)

y ′ = y (39)

z ′ = z (40)

t ′ =
t − vx

c2√
1 − v2

c2

(41)

Kirit Makwana Lorentz transformations September 7, 2020 16 / 19



Non-relativistic limit

The non-relativistic limit is when the relative velocity is much smaller
than speed of light. This is simply obtained by putting v/c = 0 in the
equations

x ′ = x − vt (42)

y ′ = y (43)

z ′ = z (44)

t ′ = t (45)

In this limit we recover the Galilean transformation
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Derivation of Lorentz transform

The inverse transforms are obtained by plugging these constants in
Eqs. 21-24

x =
x ′ + vt ′√

1 − v2

c2

(46)

y = y ′ (47)

z = z ′ (48)

t =
t ′ + vx ′

c2√
1 − v2

c2

(49)

As expected this is just replacing v with −v
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Homework problem solution
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