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Abstract. First principles electronic structure calculations reveal both SnP and

SnSb to be stable in the NaCl structure. In SnSb, a first order phase transition from

NaCl to CsCl type structure is observed at around 13GPa, which is also confirmed

from enthalpy calculations and agrees well with experimental and other theoretical

reports. Calculations of the phonon spectra and hence the electron-phonon coupling,

λep, and superconducting transition temperature, Tc, at zero pressure for both the

compounds and at high pressure for SnSb were performed. These calculations report

Tc of 0.614K and 3.083K for SnP and SnSb respectively, in the NaCl structure, in good

agreement with experiment whilst at the transition pressure, in the CsCl structure, a

drastically increased value of Tc around 9.18K (9.74K at 20 GPa) is found for SnSb

together with a dramatic increase in the electronic density of states at this pressure.

The lowest energy acoustic phonon branch in each structure also demonstrate some

softening effects, which are well addressed in this work.
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1. Introduction

Understanding the material properties under pressure is always an interesting

phenomenon in condensed matter physics, which may cause metal-insulator

transitions[1], interband electron transitions[2, 3], Lifshitz transitions[4, 5] etc. Due to

this physical properties such as the electronic specific heat, superconducting transition

temperature and magnetic behaviours might alter with pressure.

In many 11-type compounds, pressure leads to a phase change from NaCl-type to

CsCl-type structure. For instance, in the lanthanide monophosphides LnP (Ln=La, Ce,

Pr, Nd, Sm, Gd, Tb, Tm and Yb), the phase change occurs at pressures around 25-

50GPa[6]. In the case of the calcium chalcogenides (CaS, CaSe and CaTe), it is observed

at 40GPa, 38GPa and 33GPa, respectively[7]. A similar transition is also observed

in IIIB-nitrides (ScN, YN) and IIIA-nitrides (GaN, InN)[8]. In the case of AgBr, an

intermediate KOH-type structure is also observed from 8 to 35GPa[9] between the

NaCl-type and CsCl-type structures. Recent theoretical study[10] on similar type of

compound, SnAs, reported a phase transition at around 37 GPa from NaCl to CsCl

type structure.

SnP was synthesised by Donohue[11] in NaCl and tetragonal structures and was

found to be superconducting only in NaCl type structure. The relative phase stability

of SnP in NaCl and tetragonal structures is quite unclear[12]. SnSb is useful in energy

storage applications[13] and also posses NaCl type structure as ground state and it is

observed to undergo a phase change at high pressures from NaCl to CsCl type structure.

DFT calculations by Shrivastava et al.[14] has shed light on the effect of pressure on the

electronic structure of SnSb, further demonstrating the structural change that occurs.

It is well known that pressure has a substantial effect on the superconducting

properties of elements and compounds[15, 16]. Recently, a high Tc value of 203 K

is achieved at a pressure of 200 GPa by Drozdov et al.[17] in H2S, highlighting the

importance of pressure. In our recent study[10] on SnAs, increase in the Tc and electron

phonon coupling is observed under high pressure in the CsCl structure compared to zero

pressure NaCl structure. Besides inducing superconductivity, pressure can also enhance

the Tc, which motivate us to investigate the effect of pressure on the superconducting

properties of SnP and SnSb, a structurally similar compounds to SnAs.

Present manuscript focuses mainly on the ground state, electronic structure,

mechanical, vibrational and superconducting properties of investigated compounds.

Computational details, which were used to study the above mentioned properties, are

given in the following section (section 2). Results and discussions are presented in

section 3. Overall conclusions are given in last section (section 4).

2. Computational details

We have used plane wave pseudopotential method (PWSCF) which is implemented in

QUANTUM ESPRESSO [18] code for structural and volume optimization of the present
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compounds. The same method is also used to get pressure dependent lattice parameter

and enthalpy values. The enthalpy values are calculated with H = E + PV , where

E is the energy of the system at particular pressure(P ) and volume (V ) in variable-

cell relaxation procedure which is inbuilt with in QUANTUM ESPRESSO [18] code.

More details on enthalpy calculations can be found in ref[19]. Calculations of band

structure, density of states, Fermi surface and elastic constants are performed by using

Full-Potential Linearized Augmented Plane Wave (FP-LAPW) method as implemented

in WIEN2k [20] code. We have used local density approximation (LDA)[21] for the

exchange correlation potential. Throughout the calculations, the RMT (radius of muffin

tin spheres) value for each atom was fixed as 2.1 a.u, 2.4 a.u and 2.5 a.u for P, Sn and Sb

atoms respectively. For the energy convergence, the criterion RMT*Kmax=7 was used,

where Kmax is the plane wave cut-off. The potential and charge density were Fourier

expanded up to Gmax=12 a.u−1. All electronic structure calculations are performed

with 44×44×44 grid of k points in the Monkhorst-Pack[22] scheme which gives 2168

and 2300 k-points for NaCl and CsCl-type structures respectively in the irreducible

part of the Brillouin Zone (BZ). Tetrahedron method [23] was used to integrate the

Brillouin zone. Energy convergence up to 10−5 Ry is used to get proper convergence

of the self consistent calculation. Birch-Murnaghan [24] equation of state was used to

fit the total energies as a function of primitive cell volume to obtain the bulk modulus

and the equilibrium lattice parameter for the investigated compound. We have checked

the effect of spin-orbit coupling (SOC) and have not found any significant changes at

the Fermi level with the inclusion of SOC. Further calculations are performed without

including SOC.

To compute phonon dispersions and electron-phonon interactions, PWSCF [18]

(plane wave self consistent field) method is used. The LDA exchange correlation

functional is used in the present calculations for both the compounds. The electron

ion interaction is described by using norm-conserving pseudopotentials. The maximum

plane wave cut-off energy (ecutwfc) used is 120 Ry and the electronic charge density is

expanded up to 480 Ry. A 16 × 16 × 16 k-points grid within the BZ is used for the

phonon calculations. Gaussian broadening of 0.005 Ry (dgauss) and a 8×8×8 uniform

grid of q-points are used for phonon calculations.

3. Results and discussions

Total energy calculations are performed to confirm the ground state of SnP and SnSb.

From the previous literature ground state of SnP is unclear, and to confirm the same,

we have calculated total energy as a function of relative volume in NaCl and tetragonal

phases of SnP and are plotted in Fig. 1(a), which reveal the ground state of SnP to

be NaCl structure. As discussed above, SnSb crystallize in NaCl structure and might

undergo a similar phase change as reported for other compounds with the same structure.

From the total energy calculations, as given in Fig. 1(b), SnSb is found to be stable

in NaCl structure with lower energy value compared to CsCl structure. Both SnP and
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SnSb are having a stable ground state with NaCl-type cubic structure (space group

Fm3̄m (No. 225)) with following atomic positions: P/Sb (0.00, 0.00, 0.00) and Sn

(0.50, 0.50, 0.50). Again from Fig. 1(b) it is also observed that SnSb might undergo

a phase transition from NaCl-type to CsCl-type (space group Pm3̄m (No. 221)) at a

compression around V/V0=0.86. The calculated lattice parameter and bulk modulus

values are given in Table 1 for both SnP and SnSb compounds in NaCl-type structure.

It is already known that LDA might underestimate the lattice parameter and the same

will be overestimated with Generalized Gradient Approximation (GGA). In our case

LDA lattice parameter is close to experimental value as given in Table 1 and we further

proceeded with rest of the calculations using LDA. Calculated bulk modulus value is

around 86 and 63 GPa for SnP and SnSb respectively. For SnP no other reports are

available to compare the bulk modulus value, but for SnSb calculated value is more

than that observed by Shrivastava et. al[14] and Dabhi et. al[25]. This difference might

be due to the usage of different approximations (GGA) for the exchange correlation

potential. We have also calculated the change in enthalpy as a function of pressure to

compute the exact transition pressure for SnSb and the same is given in Fig. 1(c) and it

is observed that the phase transition occurs around 13 GPa, which is a first order phase

transition with volume collapse around 6.31%, in good agreement with other theoretical

work[14].

Now we move ahead to analyse the electronic structure properties of stable NaCl-

type SnP and SnSb at zero pressure. All the electronic structure calculations are

performed at the equilibrium lattice parameter. The calculated band structure and

atom/orbital projected density of states(DOS) are presented to clarify the characters of

the bands and are presented in Fig. 2 and Fig. 3 respectively. The band structure of

SnP (Fig. 2(a)) is similar to that found for SnAs[10]. As we move from SnP to SnSb,

Fermi level is found to shift towards lower energy region resulting in addition of an extra

band crossing the EF in SnSb (see Fig. 2(b)) compared to SnP, which is having hole

nature due to the band crossing from valence band to conduction band. In both the

compounds, the band at Γ point is found to posses P/Sb-p character and at L point

around 1 eV has Sn-p character. There is a gap in the density of states at around -9.5

eV in SnP and -8.5 eV in SnSb. The peak in the total DOS before the gap is due to

’s’ states of P/Sb atoms. The peak after the gap is due to ’s’ states of Sn in both the

compounds. There is flat portion in the total DOS before the EF which is due to ’p’

sates of P/Sb atom. At EF , ’p’ sates of P/Sb atom are contributing more to the total

DOS. The peak after the EF is due to ’p’ sates of P/Sb atom with admixture of ’s’

states of Sn atom. The total DOS at Fermi level (N(EF )) is found to be 0.623 and

0.891 states/eV/f.u for SnP and SnSb respectively. We have also observed the covalent

nature of bonding between the P/Sb and Sn atoms in this compound. The calculated

Sommerfield coefficient (γ) is given in Table 1. along with the experimental value. No

other reports are available to compare our calculated γ values.

It is very interesting to know about the Fermi surfaces which has specific importance

on the physical properties of a metal through its impact on electron screening. The
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calculated Fermi surfaces (FS) at zero pressure is given in Fig. 4(a) for SnP and in Fig.

4(b, c) for SnSb, where we find multiple sheets due to a band crossing EF at different

high symmetry points in both the compounds. An electron pocket at Γ point and sheets

near X and K points are observed in both the compounds. From the keen observation

of FS, parallel sheets along X-Γ direction are observed in both the compounds resulting

in nesting feature along this direction in the present compounds.

To understand the mechanical stability of present compounds at zero pressure,

we have calculated the elastic constants and the calculated single and poly crystalline

constants are given in Table 2. The calculated single crystalline elastic constants are

satisfying the Born’s stability criteria, C11 > 0, C44 > 0, C11 > C12, and C11 +2C12 > 0

indicating the mechanically stable nature of the present compounds at zero pressure.

The polycrystalline elastic constants can be calculated from the single crystalline elastic

constants using the empirical relations which can be found elsewhere [26, 27, 28, 29]. The

calculated Young’s modulus (E) is 75.85 and 51.94 GPa for SnP and SnSb respectively.

The presence of elastic anisotropy[26] in the present compounds is also confirmed by

calculating the anisotropy factor(A). Calculated positive value of Cauchy’s pressure

(C12 − C44) indicate the ductile nature of the present compounds, and the same is also

confirmed from the calculated Pugh’s ratio (GH

B
) [30]. The value of Pugh’s ratio is less

than 0.57 which is known as critical number to separate brittle and ductile nature. The

Poisson’s [31] ratio (σ) indicate the stability of the crystal against shear and takes value

in between -1 to 0.5, where -1 and 0.5 serve as lower and upper bounds respectively.

From our calculations, Poisson’s ratio value for the present compounds is closer to the

upper limit indicating the stiffness of the present compounds. Debye temperature (ΘD)

is one of the important parameter and it determines the thermal characteristics of the

materials. The Debye temperature can be obtained from the mean sound velocity, which

gives the explicit information about lattice vibration and can be computed directly

from ΘD = h
k

[

3n
4π

(

ρNA

M

)]1/3
vm. The calculated Debye temperature value for SnSb is in

agreement with the earlier theoretical[25] work which is given in the same table.

Now we proceed further with the computation of vibrational properties, which can

be used to check the dynamical stability of the present compounds at zero pressure

NaCl structure. We have calculated the phonon dispersion curves along different high

symmetry directions and the same is given in Fig. 5 along with the phonon density of

states (PDOS). The primitive cell of the present compounds have one formula unit with

two atoms which gives six phonon branches including three acoustic and three optical

branches. The absence of imaginary phonon frequencies indicate the dynamical stability

of the present compounds at zero pressure. In SnP, from Fig. 5(a), acoustic and optical

modes are well separated due to large difference in atomic masses of Sn and P. From

the same plot, major peak in the total PDOS is found near the frequency of 240 cm−1

which is due to ’P’ atom as shown in the atom projected PDOS. It is also observed that

the optical modes are due to the lighter ’P’ atom and the remaining acoustic modes

are due to the heaver ’Sn’ atom. In the case of SnSb, from Fig. 5(b), we observe an

interaction of higher frequency acoustic mode with the optical modes along Γ-X, K-Γ,
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at L and W points at different frequencies. We also observe degenerate LA2 mode along

L-Γ-X and this degeneracy is lifted out in other directions. An anomaly (dip) in the

degenerate LA2 mode is observed along Γ-X direction which may have significant effect

in the physical properties of SnSb which is not observed in the case of SnP. The same

anomaly is observed in the iso-structural SnAs compound[10] and some of the Heusler

compounds such as Ni2MnGa [32], Ni2MnIn [33], Ni2MnX (X= Sn, Sb) [34], Ni2VAl and

Ni2NbX (X=Al, Ga, Sn) [35], which are having same FCC structure. The softening in

the acoustic mode leads to Kohn anomaly, which is due to the interaction of electronic

states with phonon at the EF together with parallel sheets in the FS topology. In SnSb

also this interaction might be a reason for the anomaly. To check the atomic contribution

for this phonon plot, we have calculated total PDOS and are plotted in Fig. 5(b). From

this figure, major peak in the total PDOS observed around 120 cm−1 is due to both Sn

and Sb atoms, which are having almost equal contribution (which is due to the nearly

same atomic mass) around this frequency range (see Fig. 5(d)).

Having determined the phonon structure as discussed above, the electron-phonon

coupling can be calculated to explore the superconducting properties. As discussed

in section 1, present compounds are found to have superconducting nature in NaCl

structure which is the ground state. The electron phonon coupling constant (λep)

is extracted from the Eliashberg function (α2F(ω)) which can be used to determine

the superconducting transition temperature (Tc) of a conventional phonon mediated

superconductor. The Tc of the present compound is calculated by using Allen-Dynes [36]

formula, T c =
ωln

1.2
exp(− 1.04(1+λep)

λep−µ∗(1+0.62λep)
), where ωln is logarithmically averaged phonon

frequency, λep is electron phonon coupling constant and µ∗ is Coulomb pseudopotential.

The representation of α2F (ω) is α2F (ω) = 1
2πN(ǫf )

∑

qj
νqj
~ωqj

δ(ω − ωqj). This function is

often very similar to the phonon DOS (F (ω) =
∑

qj δ(ω − ωqj)) and differs from the

phonon DOS by having a weight factor 1/2πN(ǫf ) inside the summation. In the above

formula N(ǫf ) is the electronic density of states at the EF and νqj is the phonon line

width which can be represented as νqj = 2πωqj

∑

knm |gqj(k+q)m,kn|
2δ(εkn − εF )δ(ε(k+q)m −

εF ), where Dirac delta function express the energy conservation conditions and g is

the electron phonon matrix element. λep can be expressed in terms of α2F (ω) as

λep = 2
∫

dω
ω
α2F (ω) =

∫

λ(ω)dω, where λ(ω) = 2α2F (ω)
ω

. The calculated Eliashberg

function is plotted in Fig. 5(a) and 6(b) for SnP and SnSb respectively, where we find

peaks at frequency around 220, 230 cm−1 in SnP and around 120, 70 cm−1 in SnSb.

The height of the peak indicate the high phonon linewidth and high electron phonon

coupling constant at that frequency region and is found to decrease gradually to lower

frequencies. The calculated Tc values of the investigated compounds are 0.614 and 3.083

K with a value of λep around 0.41 and 0.68 for SnP and SnSb respectively by considering

the µ∗ value to be 0.13. These calculated values are in good agreement with the other

reported values[25] and are given in Table 3. In addition, we have calculated phonon

linewidth for all phonon modes along high symmetry directions for both SnP and SnSb

at zero pressure and are given in Fig. 7(a) and 7(b). We find the optical phonon modes

to contribute more for the electron phonon coupling as compared to acoustic phonon
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modes in both the compounds which is already confirmed from Eliashberg function plot.

From the above discussions superconducting nature is confirmed in both the

compounds at zero pressure NaCl structure. From the calculated total energy and

enthalpy calculations (as discussed from Fig. 1) phase transition is observed only in

SnSb from NaCl to CsCl-type structure. So, it is quite reasonable to study the pressure

effect on the above mentioned properties of SnSb which are presented in next section.

3.1. Pressure effect on SnSb

As we already discussed above, from the enthalpy calculations, SnSb undergoes a phase

transition from NaCl to CsCl structure at around 13 GPa. We have calculated the

band structure of NaCl-type and CsCl-type structures at transition pressure (13 GPa)

and are given in Fig. 2(c) and 2(d). As pressure increases widening of valence band

region is observed in NaCl-type structure together with the band shifting at Γ point.

As pressure increases from 0 to 13 GPa, the band at Γ point is shifted towards the EF ,

resulting in decrease of Sb-p character with pressure. Due to this, the occupied area

of the band which cross the EF at Γ point is decreased which might have an effect on

the size of electron pocket at the Γ point in the FS. At the transition, around 13 GPa,

lattice parameter for CsCl-type structure is found to be 3.548 Å. The band structure

scenario of CsCl-type structure is completely different in comparison with NaCl-type

structure (see Fig. 2(d)). In CsCl-type structure, six bands are found to cross at EF ,

whereas in NaCl-type structure it is only two which implies the significant change on

the FS topology in CsCl-type compared to NaCl-type structure. Upto a pressure of 20

GPa we have not found any change in the band structure topology in CsCl-type SnSb,

and hence no change in FS is observed.

Calculated FS for NaCl-type at 13 GPa is given in Fig. 4(d, e), where we can see

the decrease in the size of the electron pocket at Γ point (Fig. 4(e)) which is due to

the band shifting at this pressure. At the same pressure, FS topology of CsCl-type is

given in Fig. 6 along with the corresponding Brillouin zone. From this figure, we have

observed six FS corresponding to six bands crossing the EF , which is evident from band

structure plots in Fig. 2(d) and might lead to drastic changes in Tc. Among these six

FS’s, third one (Fig. 6(c)) has parallel sheets around M point, along R-M, X-M and

Γ-M. Beyond this pressure no FS topology change is observed in CsCl-type upto the

final pressure (studied up to 20 GPa).

Calculated total electronic density of states as a function of pressure is given in Fig.

3(c), As pressure increases, the total DOS in both the structures is found to decrease

monotonically. At the transition pressure total density of states is found to be increased

by around 12% compared to zero pressure structure, which certainly might alter the Tc

in CsCl structure.

To check the mechanical stability of CsCl-type SnSb at transition pressure we have

calculated the single and poly crystalline elastic constants at 13 GPa and are given in

Table 2. These values are satisfying the mechanical stability criteria at this pressure
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indicating the stable nature of CsCl-type structure at this pressure. The calculated

bulk modulus is found to be 113 GPa which is large compared to the zero pressure

NaCl-type structure. The calculated single crystalline elastic constants as a function

of pressure is plotted in Fig. 8(a) for both NaCl and CsCl-type SnSb, where we can

observe C11 and C12 to be more sensitive to pressure compared to C44. We have also

observed the decrease in the value of C11 and increase in C12 and C44 in CsCl-type

structure when compared to NaCl-type structure at transition pressure. From the same

figure, non-monotonic variation in C11, C12 and C44 is observed in CsCl-type structure

with increase in pressure upto 20 GPa. This non-monotonic behaviour may further lead

to changes in the other physical properties in the CsCl-type SnSb under pressure.

Pressure effect on the vibrational properties is always an interesting phenomenon

which can be used to understand the dynamical behaviour of the system under the

application of pressure. We have calculated phonon dispersion curves at transition

pressure for both the phases of SnSb. For NaCl-type at the transition pressure (red

colour dotted line) softening in the lower acoustic mode is observed near Γ, X and K

high symmetry points as shown in Fig. 5(b). There are some interesting features in

the dispersions that alter both between the two structures and with the application of

pressure. In the NaCl structure, there is a degeneracy in the LA2 mode along L-Γ-X

which is lifted out in other directions but the same degeneracy still remain through the

application of pressure. The calculated phonon dispersion for CsCl-type SnSb at the

transition pressure is given in Fig. 5(c), where we have observed a similar degeneracy

in the CsCl structure along the Γ-X direction that still remains under pressure. An

interaction of the higher frequency acoustic modes with the optical modes is seen at

various points in the BZ for both structures. In the NaCl structure, pressure acts to lift

this interaction quite considerably, pulling apart the acoustic and optical modes whilst

in the CsCl structure the application of further pressure has little effect on the interplay

between the acoustic and optical branches.

The calculated Eliashberg function is found to decrease at 13 GPa compared to

zero pressure in NaCl-type SnSb indicating the decrease in the electron-phonon coupling

constant at this pressure compared to zero pressure which may further lead to decrease

in the Tc for the NaCl-type structure at this pressure. From Fig. 5(c), we have observed

overlapping of acoustic and optical modes at different high symmetry directions. Phonon

softening around ’M’ high symmetry point is observed in CsCl-type SnSb. From the

Eliashberg function plotted in Fig. 5(b) and 5(c), it can be seen that the Tc of CsCl

type SnSb would be higher. In addition, we have calculated the phonon linewidth plots

(which is proportional to λep) for all the modes and are plotted in Fig. 7(d) for 13

GPa and in Fig. 7(e) for 20 GPa respectively along high symmetry directions. From

the plots we could observe the optical modes to contribute more towards λep than the

acoustic modes. Though we observe a peak around the frequency region corresponding

to the phonon softening around ’M’ point, the major peak in the Eliashberg function

arises from the optical modes, which is further confirmed from the phonon linewidth.

At the transition pressure (13 GPa), when we compared phonon dispersion plots
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for both NaCl and CsCl structures, frequency of higher optical modes decreased in

CsCl-type structure compared to NaCl-type structure. In addition, a softening nature

is observed in CsCl-type near Γ point along Γ-M. In the same way maximum peak in

the total PDOS is observed at high frequency optical region in NaCl-type and the same

peak is found to be broadened in CsCl-type. In NaCl-type, total PDOS corresponding

to acoustic modes is found to be flat but the same in CsCl-type is found to have multiple

peaks. As pressure increases up to 20GPa we have observed hardening in the frequencies

of all modes in CsCl-type.

To check the superconducting nature in CsCl phase we have calculated the

superconducting properties of CsCl-type SnSb at transition pressure (13 GPa).

Surprisingly we have observed high Tc value in the CsCl-type structure around 9.18

K with higher λep of 1.55. These values are also given Table 3. The reason may be due

to the increase in the total electronic DOS in CsCl-type when compared to NaCl-type

which will lead to increase the probability of electron-phonon interaction which again

may be a reason for the increase in the λep and Tc in CsCl-type compared to NaCl-type.

We have also calculated the variation of Tc, λep and ωln with pressure for both NaCl

and CsCl-type and are plotted in Fig. 8(b). As pressure increases Tc and λep decreases

monotonically in NaCl-type but in CsCl-type it is found to have non-monotonic variation

with pressure. Eventhough we have not observed any non-monotonic variation in total

electronic DOS and change in FS topology with increasing pressure in CsCl-type, but

observed non-monotonic variation in λep and Tc. This behaviour may be mainly phonon

driven and may not be electron driven in the CsCl-type SnSb which is similar to CsCl-

type SnAs[10]. It is also found that Tc follows ωln behaviour in CsCl-type but the same

is not observed in NaCl-type. From the present work, CsCl phase is found to have

higher Tc and λep values compared to NaCl-type indicating the strong coupling nature

in CsCl phase.

4. Conclusions

Density functional calculations are performed for both SnP and SnSb compounds which

confirm the stable NaCl ground state in both the compounds. Fermi surface nesting

feature is observed in both the compounds at zero pressure. Phase transition from

NaCl to CsCl-type structure is observed at around 13 GPa (V/V0=0.86) in SnSb. At

the transition pressure, change in the band structure and FS topology is observed in

NaCl-phase together with a softening in the acoustic mode in NaCl type SnSb and the

same softening nature in the CsCl-type SnSb is also observed in the acoustic mode at

the same transition pressure. Sudden drop in the Tc and λep is observed in NaCl-type

with increasing pressure. At the transition pressure two fold increase in the Tc (Tc of

9.18 K) is observed in CsCl phase with high λep of 1.55 indicating strongly coupled

superconducting nature in CsCl phase which needs to be verified experimentally.
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Table 1. Calculated lattice parameter (a) in Å, bulk modulus (B) in GPa, total

density of states (N(EF )) in states/eV/f.u and Sommerfield coefficient (γ) in the

units of mJ/molK2 for SnP at zero pressure and SnSb at zero pressure and at the

transition pressure compared with other values.

Parameters Calculated Experimental other theory

SnP NaCl-type

a 5.489 5.5359[11]

B 86

N(EF ) 0.623

γ 1.47

SnSb NaCl-type

a 6.050 6.092[37] 6.1807[14],6.173[25]

B 63 52.7[14], 53.1[25]

N(EF ) 0.891 0.95[14], 1.04[25]

γ 2.10

SnSb CsCl-type

a 3.548 3.7937[14]

B 113 53.8[14]

N(EF ) 1.017 -

γ 2.40

Table 2. Calculated single crystalline elastic constants and mechanical properties of

SnP and SnSb at zero pressure NaCl-type structure and SnSb in CsCl-type structure at

transition pressure. Where B is bulk modulus, E is Young’s modulus, A is Anisotropy

factor, CP is Cauchy’s pressure, σ is Poisson’s ratio, GH is Voigt-Reuss-Hill modulus,

vl, vt, vm are the longitudinal, transverse and mean sound velocities respectively and

ΘD is Debye temperature. Other values are given in brackets

Parameters SnP(NaCl-type) SnSb (NaCl-type) SnSb (CsCl-type at 13 GPa)

C11 (GPa) 112.96 86.44 159.36

C12 (GPa) 72.85 51.60 89.88

C44 (GPa) 35.07 20.23 59.73

B (GPa) 86.21 63.22 113.03

E (GPa) 75.85 51.94 126.28

A 1.75 1.16 1.72

CP (C12 − C44) 37.78 31.37 30.15

Pugh’s ratio 0.32 0.30 0.42

σ 0.35 0.36 0.31

vl (km/s) 9.06 7.01 11.56

vt (km/s) 4.32 3.25 6.02

vm (km/s) 4.86 3.66 6.74

ΘD (K) 332 227(213[25]) 377
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Table 3. Superconducting properties of SnP at zero pressure NaCl-type structure,

SnSb at zero pressure and at the transition pressure (13 GPa) in CsCl-type structure.

Other values are given in brackets.

Parameters SnP (NaCl-type) SnSb NaCl-type at zero pressure SnSb (CsCl-type at 13 GPa)

Tc (K) 0.614 3.083 (3.1[25]) 9.18 (9.74 at 20 GPa)

λep 0.41 0.68(0.70[25]) 1.55 (1.21 at 20 GPa)

ωln 242.97 124.75 84.88(121.81 at 20 GPa)

(a) (b)

(c)

Figure 1. Total energy as a function of V/V0 for (a) SnP where circle and square

symbols represent NaCl and tetragonal phases respectively, (b) SnSb where circle and

square symbols represent NaCl and CsCl phases respectively. (c) Change in enthalpy

during phase change from NaCl to CsCl type at the pressure of 13 GPa in SnSb(colour

online).
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(a) (b)

(c) (d)

Figure 2. (a) Band structure for SnP at zero pressure, (b) Band structure for SnSb

at zero pressure and (c) at transition pressure (13 GPa) in NaCl-phase. (d) Band

structure for SnSb in CsCl-type at transition pressure (13 GPa)(colour online).
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(a) (b)

(c)

Figure 3. Total and atom projected density of states (a)at zero pressure for SnP, (b)

at zero pressure for SnSb in NaCl-type and (c) variation of total density of states with

pressure in SnSb(colour online).
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(a) (b) (c)

(d) (e) (f)

Figure 4. (a) Fermi surface for SnP at zero pressure. Fermi surface of SnSb (b, c) at

zero pressure and (d, e) at transition pressure (13 GPa). (f) Brillouin zone with high

symmetry points for NaCl-type structure(colour online).
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(a) (b)

(c) (d)

Figure 5. (a)Phonon dispersion along with total phonon density of states and

Eliashberg function for SnP in NaCl phase at zero pressure. (b) Phonon dispersion

along with total phonon density of states and Eliashberg function for SnSb in NaCl-

phase at 0 and 13 GPa. (c) Phonon dispersion along with total phonon density of

states and Eliashberg function for SnSb in CsCl-phase at 13 and 20 GPa, (d) Atom

projected phonon density of states for NaCl phase at zero pressure (solid lines) and 13

GPa (dotted lines) and CsCl phase at 13 (solid lines) and 20 GPa (dotted lines)(colour

online).
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6. Fermi surface for CsCl-type SnSb at transition pressure (13 GPa)(a) for

band no. 13, (b)for band no. 14, (c) for band no. 15, (d)for band no. 16, (e)for band

no. 17, (f)for band no. 18 and (g) brillouin zone for CsCl-type(colour online).
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(a) (b)

(c) (d)

(e)

Figure 7. Phonon linewidth along with phonon dispersion plots for (a)SnP, (b) NaCl

type SnSb at zero pressure, (c) NaCl type SnSb at 13 GPa, (d)CsCl type SnSb at 13

GPa and (e)CsCl type SnSb at 20 GPa(colour online).
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(a) (b)

Figure 8. (a)Elastic constants as a function of pressure for SnSb. (b) Pressure

dependence of Tc, λep and ωln for NaCl-type up to 13 GPa and CsCl-type above 13

GPa for SnSb(colour online).


