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Abstract. A detailed study on the ternary Zr-based intermetallic compound Zr2TiAl

has been carried out using first principles electronic structure calculations. From the

total energy calculations, we find an antiferromagnetic L11-like (AFM) phase with

alternating (111) spin-up and spin-down layers to be a stable phase among some

others with magnetic moment on Ti being 1.22µB . The calculated magnetic exchange

interaction parameters of the Heisenberg Hamiltonian and subsequent Heisenberg

Monte Carlo simulations confirm that this phase is the magnetic ground structure

with Neel temperature between 30 and 100 K. The phonon dispersion relations further

confirm the stability of the magnetic phase while the non-magnetic phase is found to

have imaginary phonon modes and the same is also found from the calculated elastic

constants. The magnetic moment of Ti is found to decrease under pressure eventually

driving the system to the non-magnetic phase at around 46 GPa, where the phonon

modes are found to be positive indicating stability of the non-magnetic phase. A

continuous change in the band structure under compression leads to the corresponding

change of the Fermi surface topology and Electronic Topological Transitions (ETT)

in both majority and minority spin cases, which are also evident from the calculated

elastic constants and density of states calculations for the material under compression.
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1. Introduction

Zirconium and titanium alloys are of great interest due to a variety of structural and

electronic transitions in these materials. They are widely used in aerospace industry due

to their light weight, static strength, stiffness and oxidation resistance.[1, 2, 3, 4, 5, 6, 7]

This especially concerns their aluminides, Zr3Al and Ti3Al, which are important in high

temperature applications.[8, 9, 10, 11, 12]

Titanium rich and zirconium ternary aluminides can be obtained by mixing Zr3Al

and Ti3Al. Banerjee[13] and Yang et al.[14] confirmed that the Zr atom indeed gets

substituted at Ti sites in Ti3Al. Ravi et al.[15, 16] have reported the site preference

of Zr atoms in Ti3Al and the phase stability of Ti2ZrAl compound. Recently, Zr-rich

ternary intermetallic compound Zr2TiAl has been synthesized by Sornadurai et al. using

the arc-melting, vacuum annealing technique.[17] However, no further experimental

or theoretical studies have been conducted for Zr2TiAl. These points are the main

motivation of this investigation. Zr2TiAl has X2YZ type Heusler structure,[17] which

is quite different from binary aluminides, and thus interesting physical properties can

exists in this case. In particular, as is known, X2YZ type Heusler compounds can

exhibit unusual magnetic properties.[18] For instance, Cu2MnAl and Cu2MnSn have a

high value of the saturation magnetization and Curie temperature.[19, 20]

Some Zr based compounds like ZrMn2 and ZrFe2 have a large magnetic moment

as found for Zr, which are coupled anti-parallel to the magnetic moments of Fe and

Mn. [21] The electronic structure and physical properties of the solids change under

pressure leading to semi metal to metal transition, magnetic to non-magnetic nature

and brittle to ductile nature etc. The magnetic moment, which is one of the physical

property of the solid will vanish under pressure. In the case of 3d transition metals like

Fe, Co and Ni, the magnetic moment becomes zero at 18 GPa, 150 GPa and 250 GPa

respectively.[22] It is also observed that as pressure increases phase change[23] from an

antiferromagnetic (AFM) phase to nonmagnetic in CaFe2As2 and AFM2 to AFM1 in

BaFe2As2. In the case of CsCl-type FeSe a transition from AFM phase to NM phase is

observed with intermediate FM phase.[24] In recent studies,[25] hcp Co is observed to

become non-magnetic at a pressure of 180 GPa with a series of Electronic Topological

Transitions (ETT) at different pressures. Non-monotonic variation of the density of

states and superconducting transition temperature (TC) [26, 27, 28, 29] is observed

under pressure. Recently change in the FS topology and non-monotonic variation in the

density of states and single crystalline elastic constants is found to lead to the ETT’s

in Nb based superconducting compounds[30] under compression. The main aim of the

present paper is to study the magnetic behaviour of the present compound and its

pressure dependence.

The paper is organized as follows: Section 2 presents computational details of the

first-principles calculations. The results and discussions are presented in section 3.

The pressure effect on varies properties of Zr2TiAl is discussed in section 4. Finally,

conclusions are presented in section 5.
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2. Computational details

Several first-principles methods based on density functional theory (DFT) have been

used in the present work to calculate the electronic structure, elastic constants,

vibrational and magnetic properties of Zr2TiAl. The Full-Potential Linearized

Augmented Plane Wave (FP-LAPW) method as implemented in the WIEN2k [31, 32]

code is used to calculate the electronic structure and Fermi surface properties with spin

polarization. We have used PBE-GGA [33] (Perdew-Burke-Ernzerhof parametrization

of the Generalized Gradient Approximation) approximation for the exchange correlation

potential. Throughout the calculations, the RMT (radius of muffin tin spheres) value for

each atom was fixed as 2.39 a.u for Zr atom, 2.45 a.u for both Ti and Al atoms. The

plane wave cut-off has been chosen to satisfy RMT*Kmax=9. The potential and charge

density were Fourier expanded up to Gmax=9 a.u−1. All the electronic properties like

density of states and the Fermi surface have been calculated using 44× 44× 44 k-point

grid of the Monkhorst-Pack [34] mesh, which yields 2168 k-points in the irreducible

part of the Brillouin Zone (BZ). This ensures accurate determination of the Fermi level

and ground state properties. The Brillouin zone integration have been done by the

tetrahedron method[35]. The Birch-Murnaghan [36] equation of state has been used to

fit the total energies as a function of primitive cell volume to obtain the bulk modulus

and the equilibrium lattice parameter for the investigated compound.

Phonon dispersions and electron-phonon interaction were calculated using the plane

wave ultrasoft pseudopotential method (PWSCF) which is implemented in QUANTUM

ESPRESSO code.[37] The GGA-PBE exchange correlation functional is used in these

calculations for all the compounds. The maximum plane wave cut-off energy (ecutwfc)

was 50 Ry and the electronic charge density was expanded up to 500 Ry. Gaussian

broadening of 0.01 Ry and a 4 × 4 × 4 uniform grid of q-points are used for phonon

calculations.

The exact muffin-tin orbital (EMTO) method [38, 39] has been used to calculate the

magnetic exchange interaction parameters of the Heisenberg Hamiltonian,[40, 41, 42] as

implemented in the Lyngby version of the Green’s function EMTO code.[44] The self-

consistent electronic structure calculations at a fixed lattice constant of 6.8 Å have been

done in the local density approximation using Perdew and Wang functional,[43] as well

as using the GGA-PBE one. In the Brillouin zone integration, a 20×20×20 Monkhorst-

Pack grid have been used.[34] All the calculations have been done with lmax = 3

for partial waves and the electronic core states were recalculated at every iteration

during the self-consistent calculations for valence electrons. The electronic structures

of magnetically random systems were obtained in the coherent potential approximation

(CPA).[45, 46]
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3. Results and discussions

3.1. Ground state properties

In order to study the ground state properties, the total energy of Zr2TiAl has been

calculated in four different magnetic states: ferromagnetic (FM), two AFM, AFM1 and

AFM2, as well as non-spin-polarized or nonmagnetic (NM) one. The calculated AFM

structures are shown in Fig. 1. For AFM1, the spin orientation of Ti (111) planes is anti-

parallel to each other between the adjacent Ti (111) planes (Fig. 1a). In case of AFM2,

the spin orientation of first two Ti planes is parallel to each other and anti-parallel to

next two Ti planes as shown in Fig. 1(b).

The total energies are shown in Fig. 2(a). As one can see, the AFM1 state has the

lowest energy among the considered structures with a magnetic moment of 1.22 µB at Ti

site. The total energy increases in the sequence: AFM1 → AFM2 → FM → NM. The

energy difference between AFM1 and AFM2 is 0.76 mRy/f.u., while it is 2.22 mRy/f.u.

between AFM1 and FM and 9.17 mRy/f.u. between AFM1 and NM states. This result

is highly unexpected since none of the alloy components is magnetic.

The calculated lattice parameter (a) and bulk modulus values using the Birch-

Murnaghan equation of state are given in Table 1. The calculated lattice parameter

is in good agreement with the experiment[17]. Sieberer et. al. [47] concluded that if

both LDA and GGA predict a magnetic ground state at equilibrium lattice constant,

then the system is magnetic. From Table 1 we can observe that both LDA and GGA

predict a magnetic moment for Ti atom in the system indicating the magnetic nature

of present compound. We further performed the electronic structure calculations using

the optimized lattice parameter.

3.2. Magnetic ordering from exchange interaction parameters

In order to confirm the magnetic ground state structure, we have also performed ab initio

calculations of the magnetic exchange interaction parameters of Heisenberg Hamiltonian:

H = −

∑

p

Jp
∑

ij∈p

eiej (1)

using the EMTO Green’s function technique.[44] Here, Jp are the magnetic exchange

interactions at the coordination shell p and ei is the unit vector of the direction of the

magnetic moment at site i. More details regarding the method used in the magnetic

exchange interaction calculations can be found in reference [48].

The calculations have been done at the fixed lattice constant of 6.83 Å, which

is slightly below the room-temperature experimental one, since the magnetic phase

transition is expected to be at a relatively low temperature as is the case in the present

calculations. The magnetic exchange interactions on Ti sublattice have been obtained

in three different magnetic states: FM, disordered local moment (DLM) paramagnetic,

and AFM1 using both LDA and GGA-PBE functionals for the exchange correlation

potential. The DLM paramagnetic state has been modelled by using the CPA.
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In general, one can hardly expect magnetism in Zr2TiAl to be of a Heisenberg type,

when magnetic exchange interactions are independent of the magnetic configuration of

the system. Even in the case of bcc Fe, magnetic exchange interactions exhibit a quite

strong dependence on magnetic state.[49] Nevertheless, as one can see in Fig. 3, the

magnetic interactions of Ti atoms in Zr2TiAl are very similar in all three magnetic

states, with the strongest ferromagnetic and antiferromagnetic interactions at the first

and second coordination shell, respectively. This is so in spite of the fact that the

magnetic moment of Ti strongly depends as on the magnetic state as well as on the

exchange-correlation potential: it has the lowest value in the DLM-LDA calculations,

which is 0.40 µB, and highest in the AFM-GGA one, which is 1.22 µB.

The effect of the exchange-correlation potential on the magnetic moment is

quite pronounced. The GGA magnetic moments are appreciably higher than the

corresponding LDA ones (for the same lattice constant, as has been indicated above). In

present case GGA values for both AFM and DLM cases are 1.22 µB and 0.73 µB and the

LDA values for both AFM and DLM cases are 0.94 µB and 0.40 µB respectively. This of

course affects the values of the magnetic exchange interactions, which are substantially

larger in the GGA calculations. Since it is not clear which functional is the best for

magnetic properties, the range of interactions determines the uncertainty in the present

ab initio calculations.

In order to identify the magnetic ground structure and the magnetic phase

transition temperature, we have performed Heisenberg Monte Carlo simulations using

the first 21 exchange DLM and AFM interaction parameters, both LDA and GGA, with

a simulation box containing 6912 atoms of the fcc underlying lattice (12×12×12(×4)).

The lowest transition temperature, 30 K, is obtained for the DLM-LDA interactions,

while the highest one, 100 K, for the DLM-GGA interactions. Both AFM-LDA and

AFM-GGA interactions yield practically the same transition temperature of about 60

K. This is an interesting result taking into consideration a quite large difference between

interactions. Owing to the magnetic state and exchange-correlation dependence of the

magnetic exchange interactions, one can expect that Neel temperature of Zr2TiAl is in

between 30 and 100 K. It is quite low but it is consistent with the relative small total

energy differences of magnetic structures presented above.

The magnetic ground state structure is AFM1 in all the cases. It has L11 structure

(CuPt-type of ordering) of alternating spin-up and spin-down (111) layers in the [111]

direction. The first eight spin-spin correlation functions of this structure are 0, -1, 0, 1,

0, -1, 0, 1 and its combination with the magnetic exchange interactions in Fig. 3 allows

one to understand the origin of this type of magnetic ordering in Zr2TiAl. Let us note

that in the case of AFM-LDA and DLM-LDA interactions, it is not enough to consider

just the first two strongest interactions in order to get the AFM1 ground state. More

distant interactions provide quite substantial and decisive contribution.

Finally, we have also estimated the AFM1-FM energy difference using different sets

of interactions and found that it is -1.02, -0.72, -0.30, and -0.03 mRy for the AFM-GGA,

DLM-GGA, AFM-LDA, and DLM-LDA interactions, respectively. The GGA results are
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in reasonable agreement with the direct total energy calculations (one should keep in

mind that since magnetic exchange interactions are dependent on the magnetic state,

they cannot provide accurate energy difference for two different magnetic states).

3.3. Electronic structure

The calculated band structures are given in Fig.4 for AFM1, AFM2 and FM states in the

supercell as shown in Fig.1. In AFM1 case the majority and minority band structures

are degenerate and we have plotted only majority spin bands in Fig.4(a). The Fermi

level is aligned to 0 eV. From the band structure we have observed five bands to cross

Fermi level (EF ) and are given in different colours in AFM1. Similarly, band structure

of AFM2 state is given in Fig.4(b), which is almost similar to AFM1 with a change

in the band structure topology along W-L and X-W-K directions where the bands are

compressed near EF in comparison with AFM1 band structure. For the same supercell

FM calculations are done and the calculated majority and minority band structures are

given in Fig.4(c) and 4(d). The number of bands to cross Fermi level (EF ) is different in

both majority (five bands) and minority spin (four bands) cases of FM state which are

indicating the non-degenerate behaviour in the band structure topology. In FM case

we find absence and presence of bands near the EF around Γ point in majority and

minority spin cases respectively. For further calculations we proceed with the initial

Heusler structure(with space group Fm3̄m) as the energy difference between FM and

AFM is very low.

The calculated energy bands corresponding to both majority and minority spin case

for the ferro magnetic phase of Zr2TiAl for normal Heusler structure(with space group

Fm3̄m) are shown in Fig.5(a,b) along the high symmetry directions of the cubic FCC

(face centred cubic) Brillouin zone (BZ). We have observed that in both majority and

minority spin channels only one band is crossing the Fermi level (EF ) and indicate the

metallic nature of the investigated compound. The valence band has a band width of

around 7 eV in both majority and minority spin. It may be seen that the low lying band

(at -5 eV ), which give rise to the low energy tail in the density of states is mainly of

Al-s states. The higher lying bands in the vicinity of Fermi level are primarily Zr-d and

Ti-d derived states. The band which is crossing the EF from valence band to conduction

band in the case of majority spin is of hole nature and in the case of minority spin it

is having same nature with a pocket at the Γ point. From the keen observation of the

band structure, we have found almost non-dispersive band just below the EF in both

majority and minority spin cases. In majority spin case it is observed along L-Γ-X

and the same is observed in minority spin case along W-L and W-K directions. This

feature is particularly called as van Hove singularity which might result in a peak in the

electronic density of states.

Further to know the electronic density of states (DOS) at the EF in the present

investigated compound, we have calculated the total, atom projected and orbital

projected density of states using tetrahedron method [35] and are given in Fig.6. For
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both majority and minority spin there is a separation between bonding and anti bonding

regions and the Fermi level lies in the bonding region and lies very close to the pseudo

gap. The total DOS (N(EF )) value for the majority spin is 2.677 states/eV/f.u. and

for the minority spin it is 2.630 states/eV/f.u. It is evident that the low lying bands in

both majority and minority spin are mainly due to Al-s orbitals as stated earlier and are

well separated from the higher lying p-d band gap indicating a weak hybridization with

higher bands in both majority and minority spin. From the calculated atom projected

DOS, we can see that at EF , the major contribution is from the Ti atom in the majority

spin, especially Ti dt2g states. In the minority spin especially deg states of Zr atom

contribute more at the EF . As previously discussed the peak below the EF in majority

spin case and on the EF in the minority spin case are due to van Hove singularity in

the band structure.

To analyse the Fermi surface topology of the bands which cross the EF in both spin

cases we have calculated Fermi surfaces (FS) for the corresponding bands and are shown

in the Fig.5(c,d). As we already discussed, the FS for majority spin have a hole sheet

(Fig.5(c)) which is due to the band crossing the EF from valence band to conduction

band along W-L and X-W-K directions as shown with dotted line in Fig.5(a). In this FS

we have openings at X and L points in the BZ where the band crossing is absent in the

BZ. In the case of minority spin we have single FS (Fig.5(d)) which have pocket around

Γ point due to the band crossing at the same Γ point from valence band to conduction

band. This Γ point pocket is covered with a sheet except at the square face of the BZ

which is due to the band crossing EF along W-L and W-K directions from valence band

to conduction band which is shown with dotted line in Fig.5(b).

To discuss the bonding in the present compound, we have calculated difference

charge density and spin charge density and are given in Fig.7. Pauling electro negativity

values for the constituent atoms are 1.33, 1.54 and 1.61 for Zr, Ti and Al atoms

respectively. There is a possibility of charge transfer from Zr and Ti to Al due to

its high electro negativity values. Due to this charge transfer the Ti3+ state would be

formed, which is due to the loss of three valence electrons and has only one free electron.

Due to this free electron a possible spin magnetic moment will arise which could be a

reason for the present magnetic moment at Ti site. We have also calculated the Bader

charge[51] to identify the charge flow among the constituent elements as given in Table

3. The calculated values are 0.47e for each Zr atom, 0.12e for Ti and -1.07e for Al

at ambient. This shows the charge flow from Zr and Ti elements to Al. As Al is the

most electronegative element in this compound and will pickup 0.47e from each Zr and

0.12e from Titanium. The latter again follows from the electro negativities, as Zr is

more electro positive than Ti. From the calculated spin charge density plots we can

observe that the magnitude of the spin density is more at the Ti atoms site rather than

other atoms. This indicates that the effect of Ti is more rather than other elements

contributing to the magnetic nature in the present compound.

To check the mechanical stability of the present compound we have calculated the

elastic constants for both magnetic and non-magnetic cases and are given in the Table.2
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at ambient condition. The calculated single crystalline elastic constants C11, C12 and

C44 are found to satisfy the Born mechanical stability criteria [50] i.e. C11 > 0, C44 > 0,

C11 > C12, and C11 + 2C12 > 0, in magnetic case. But in the case of non-magnetic case

these criteria are not fulfilled. This further confirms the mechanically stable nature of

the present compound in magnetic case.

In order to comment on the phase stability of the investigated compound, we

have calculated the phonon dispersion relations along the high symmetry directions

of the Brillouin zone at ambient condition for both magnetic and non-magnetic phases

illustrated in Fig.8 along with the partial phonon density of states. In each plot there

are 12 phonon branches as the unit cell of Zr2TiAl contains four atoms. There are

three acoustic and nine optical branches. The absence of imaginary modes in the

magnetic phase as shown in Fig.8(a) indicates the stability in the magnetic phase

at ambient conditions, whereas the instability in the non-magnetic phase at ambient

conditions is observed with the presence of imaginary mode along Γ- X - W direction

as shown in Fig.8(b). By comparing these phonon dispersion plots in both the cases at

ambient condition, frequency hardening is observed in magnetic phase rather than in

non-magnetic phase. In both phases the higher frequency optical modes at nearly 265

cm−1 are separated with a gap of 80 cm−1 from other lower frequency modes. From the

calculated partial phonon density of states we can say that the vibrational energies are

higher in magnetic phase compared to the non-magnetic phase. Again from the partial

phonon density of states, the higher frequency optical modes are due to the light Al

atoms in both magnetic and non magnetic case. In the magnetic case the modes near

the frequency 175 cm−1 are separated from higher and lower frequency branches and

are due to the contribution of the Ti atoms. In lower frequency region the contribution

of all atoms is same in both magnetic and non-magnetic case.

As shown and already discussed, the magnetic phase is found to be stable at ambient

condition, but under pressure we find a second order phase transition from magnetic to

non-magnetic phase, where we find the magnetic moment of Ti to vanish as shown in

Fig.1(b) at a pressure of 46 GPa. A detailed discussion of the pressure effect on the

above mentioned properties is given in the next section.

4. Pressure effect

The calculated effects of applied pressure on the band structure of Zr2TiAl are illustrated

in Fig.9 for both majority and minority spins. Here we have applied uniform compression

in all the crystallographic directions. With increasing pressure the number of bands

crossing EF is increased from one to three in both spin cases upto the final compression.

This indicates the Electronic topological transitions (ETT) in the present compound

at different compressions. The corresponding change in the FS topology at each

compression is given in the Fig.10. As pressure increases the EF shift towards either

higher or lower energy region. This shift in the EF can cause changes in the band

structure which again leads to a change in the FS topology. In our case we find EF
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to shift towards the valence region in majority spin case and towards the conduction

region in the minority spin case which is evident from Fig.9. Due to this, the number

of bands to cross EF is increasing at particular pressures in both the spin cases. The

topology of the FS depends on the area occupied by the band near EF . As pressure

increases, there is a change in the occupied area of the band at EF which leads to a

change in the FS topology. From Fig.10, it is observed that a continuous change in

the topology of FS at all the compression along with the addition of new FS sheets at

certain compressions lead to ETT’s. From Fig.9, it is observed that the additional band

to cross the EF in majority spin case occurs at V/V0=0.96 (pressure of 4.22 GPa) along

Γ-X direction. Due to this, we find an additional FS which is evident from the Fig.9

at the same compression. The complete band structure at this compression is given in

Fig.11 and the corresponding FS topology can be found in Fig.10. From this, we found

small pockets along Γ-X in the first FS which is evident from Fig.10 at this compression

compared to ambient. At the same point the second band is also found to cross the

EF which is evident from the zoomed figure from Fig.11 and the corresponding FS is

shown in Fig.10. For higher compressions, the FS topology change still continues, and

at V/V0=0.92 (pressure 9.45 GPa) for minority spins two additional bands found to

cross the EF and due to this two additional FS sheets are found, see Fig.9. From Fig.12,

where the complete band structure is given at this compression and corresponding FS

topology can be seen in Fig.10., the changes in the band structure and FS topology

are observed at L point where the new bands are added as shown from the zoomed

band structure in Fig.12. The FS for these new bands are given in Fig.10. Above this

compression at V/V0=0.85 (pressure of 21 GPa) in majority spin case another band

is found to cross the EF at Γ point. Due to this an extra FS sheet is found at the Γ

point which is evident from Fig.10. At the final compression V/V0=0.75 (pressure of 46

GPa) it is found that the band structure and FS for both majority and minority spin

cases is found to be same indicating the non-magnetic nature of the present compound

at this compression. The complete band structure given for this compression in Fig.13

(corresponding FS can be see in Fig.10). This non-magnetic nature is again confirmed

from the calculated magnetic moment of the Ti, which is found to be 0 µB at this

compression as shown in Fig.1(b).

These changes in the FS topology are again an indication of some anomalies in the

system. For further investigations we have also calculated the DOS under compression

and the results are given in Fig.14(a). Non-monotonic variations in the DOS under

compression in both majority spin and minority spin are found. Recently it was shown

that the Fermi surface topology change and non monotonic variation in the DOS can

be used to predict the ETT’s in the Nb based superconducting compounds[30]. In the

present compound this could be a reason for second order magnetic to non-magnetic

phase transition.

To confirm the signatures of ETT’s we have also calculated the single crystalline

elastic constants and shear modulus (Cs = (C11 − C12)/2) for all the compressions and

the values are plotted in Fig.14. From the above discussion, we have observed ETT’s at



11

V/V0=0.96(for majority spin), V/V0=0.92(for minority spin) and V/V0=0.85(majority

spin) and in remaining compressions a continuous change in the band structure and FS

topology is also observed. The ETT’s due to the majority spin (V/V0=0.96, 0.85) can

be directly observed from the softening of Cs elastic constant at that compression from

Fig.14(a). The remaining ETT due to the minority spin (V/V0=0.92) is not observed

directly form the Cs but it can be observed form the calculated total DOS in minority

spin case at that compression where we can see the decrease in the total DOS value from

Fig. 14(a). A sudden drop in the total magnetic moment is observed at V/V0=0.92 and

0.85 due to complete occupancy of minority spin at V/V0=0.92 and majority spin case

at V/V0=0.85. The resulting decrease in the magnetic moment is the primary reason

for the destabilization of magnetic phase in Zr2TiAl at high compressions. Again to

confirm the non-magnetic phase at V/V0=0.75 we have calculated the phonon dispersion

relations at the same compression and they are given in Fig.8(b) (red coloured dotted

line), where we observed the phonon hardening and the disappearance of imaginary

mode.

5. Conclusions

We have investigated the electronic, magnetic, elastic, and vibrational properties of the

Zr2TiAl compound at ambient pressure as well as under compression. The obtained

structural parameters are in good agreement with the existing experimental data. We

have determined that Zr2TiAl has antiferromagnetic ground state with ordering spin-

up and spin-down Ti (111) layers with the magnetic moment of Ti atoms 1.22 µB.

The magnetic ground state is also confirmed in the Monte Carlo simulations using

different sets of magnetic exchange interactions. The theoretically determined Neel

temperature is between 30 to 100 K depending on the exchange correlation functional.

The stability of the magnetic phase is also confirmed from the calculated elastic

constants and phonon dispersion relations. We have also observed the magnetic to

non-magnetic phase transition under compression due to the disappearance of the Ti

magnetic moment, which tends to zero at V/V0=0.75 (≈ 46 GPa). Three ETT’s are

observed at V/V0=0.96, 0.92 and 0.85, due to which a sudden drop in the magnetic

moment of Ti atom is observed under compression.
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Table 1. Ground state properties of Zr2TiAl at ambient pressure combined with

experimental reports.

Parameters LDA LDA-mag GGA GGA-mag Experimental[17]

Lattice parameter a (Å) 6.668 6.712 6.813 6.841 6.8400

Bulk modulus B (GPa) 115 110 102 97 –

Magnetic moment of Ti τ (µB) – 0.8 – 1.22 –

Table 2. Calculated elastic constants at ambient condition for both magnetic and

non-magnetic phases.

Parameters Magnetic case Non-magnetic case Experiment

C11 (GPa) 109 94 -

C12 (GPa) 90 100 -

C44 (GPa) 58 53 -

Table 3. Calculated Bader charge for all the compressions.

V/V0 Zr1 Zr2 Ti Al

1.00 0.47 0.47 0.12 -1.07

0.98 0.46 0.46 0.13 -1.06

0.96 0.45 0.45 0.14 -1.05

0.94 0.44 0.44 0.15 -1.04

0.92 0.42 0.42 0.17 -1.01

0.90 0.41 0.41 0.18 -0.99

0.85 0.36 0.36 0.21 -0.93

0.80 0.30 0.30 0.24 -0.83

0.75 -0.01 -0.01 0.48 -0.46
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(a) (b)

Figure 1. Calculated AFM structures: (a) AFM1: Anti-parallel spin alignment

between two Ti (111) planes in the [111] direction; (b) AFM2: Double ferromagnetically

aligned (111) Ti planes, which are antiferromagnetically aligned to the next two

ferromagnetically aligned Ti(111) planes in the [111] direction.
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(a)

(b)

Figure 2. (a)Total energy variation with V/V0 for Zr2TiAl in AFM1, AFM2,

Ferromagnetic and non-magnetic cases, (b) magnetic moment of Ti under compression

for Zr2TiAl.
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Figure 3. Magnetic exchange interactions on the Ti sublattice in Zr2TiAl in three

different states: DLM, FM, and AFM. The coordination shells are labelled by the usual

fcc indices.
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(a) (b)

(c) (d)

Figure 4. Band structure for Zr2TiAl (a) at ambient AFM1 state in super cell case,

(b) AFM2 state in super cell case and Ferromagnetic state in super cell case(c) majority

spin (d) minority spin.



20

(a) (b)

(c) (d) (e)

Figure 5. Band structure for Zr2TiAl at in Ferromagnetic state without extended

cell (a) majority band, (b) minority band. Fermi surface for Zr2TiAl at Ferromagnetic

state (d) majority case, (e) minority case and (f) Brillouin zone.
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Figure 6. Density of states at ambient for Zr2TiAl for both majority and minority

spins.
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(a) (b)

(c) (d)

Figure 7. Difference charge density plot for Zr2TiAl (a) in 2D and (b) in 3D spin

charge density (c) in 2D and (d) in 3D.
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(a) (b)

Figure 8. Phonon dispersion plots along with partial phonon density of states

at ambient (a) magnetic case and (b) non magnetic case (black continuous line for

V/V0=0.1, red dotted line for V/V0=0.75) for Zr2TiAl.
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Figure 9. Band structure for Zr2TiAl under compression is given near the vicinity of

the Fermi level (0 eV). The bands which cross the EF indicated with colour.
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Figure 10. Fermi surface of Zr2TiAl under compression.
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Figure 11. Majority spin band structure for Zr2TiAl at V/V0=0.96 (with zoom at

the EF ).

Figure 12. Minority band structure for Zr2TiAl at V/V0=0.92 (with zoom at the

EF ).

(a) (b)

Figure 13. Band structure for Zr2TiAl at V/V0=0.75 (a) majority spin band, (b)

minority spin band.
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(a) (b)

Figure 14. (a)Total electronic density of states for Zr2TiAl under compression for

both majority and minority spin case along with the shear modulus (Cs) elastic

constant under compression. (b) Single crystalline elastic constants under pressure.


