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a b s t r a c t

In this work a long-standing problem related to the continuity of R-implications,
i.e., implications obtained as the residuum of t-norms, has been solved. A complete
characterization of the class of continuous R-implications obtained from any arbitrary
t-norm is given. In particular, it is shown that an R-implication IT is continuous if and
only if T is a nilpotent t-norm. Using this result, the exact intersection between the
continuous subsets of R-implications and (S,N)-implications has been determined, by
showing that the only continuous (S,N)-implication that is also an R-implication obtained
from any t-norm, not necessarily left-continuous, is the Łukasiewicz implication up to an
isomorphism.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Fuzzy implicationswere introduced and studied in the literature as a generalization of the classical implication operation.
Following are the two main ways of defining an implication in the Boolean lattice (L,∧,∨,¬):

p→ q ≡ ¬p ∨ q, (1)
p→ q ≡ max{t ∈ L | p ∧ t ≤ q}, (2)

where p, q ∈ L and the relation ≤ is defined in the usual way, i.e., p ≤ q iff p ∨ q = q, for every p, q ∈ L. The implication
(1) is usually called the material implication, while (2) is from the intuitionistic logic framework, where the implication is
obtained as the residuum of the conjunction, and is often called as the pseudocomplement of p relative to q (see [1]). It is
important to note that, despite their different formulas, the expressions (1) and (2) are equivalent in the Boolean lattice
(L,∧,∨,¬). Interestingly, in the fuzzy logic framework, where the truth values can vary in the unit interval [0, 1], the
natural generalizations of the above definitions, viz., (S,N)- and R-implications, are not equivalent. This variety has led to
some intensive research on fuzzy implications for nearly three decades.

1.1. Main focus of this work

Quite understandably then, themost established andwell-studied classes of fuzzy implications are the above (S,N)- and
R-implications (cf. [2–4]). Still, many open problems remain unsolved, see [5–7]. One of them is related to the continuous
subsets of these families. Only recently a characterization of continuous (S,N)-implications was given in [8].
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However, a similar complete characterization regarding the continuous subset of R-implications has not been available so
far. It is only known that in the class of R-implications obtained from left-continuous t-norms, the only continuous elements
are those that are isomorphic to the Łukasiewicz implication, i.e., those R-implications obtained as residuals of nilpotent
t-norms. In particular, the following question has remained unanswered so far:

Does there exist a continuous R-implication obtained from a non-left-continuous t-norm?

In this work we answer the above poser in the negative, by showing that the continuity of an R-implication forces the
left-continuity of the underlying t-norm and hence show that an R-implication IT is continuous if and only if T is a nilpotent
t-norm.
Further, using this result, we are also able to resolve another question related to the intersections between the families

of continuous R- and (S,N)-implications, which is also a generalization of an original result of Smets and Magrez [9], see
also [2,3]. In particular, we show that the only continuous (S,N)-implication that is also an R-implication obtained from any
t-norm, not necessarily left-continuous, is the Łukasiewicz implication up to an isomorphism.
Note that this result also has applications in other areas of fuzzy logic and fuzzy set theory. For instance, in the many

fuzzy logics based on t-norms, viz., BL-fuzzy logics [10], MTL-algebras [11] and their other variants, the negation is obtained
from the t-norm itself and is not always involutive. However, the continuity of the residuum immediately implies that the
corresponding negation is continuous, and hence involutive (see Theorem 2.8 and Remark 3.4).
Fuzzy inference mechanisms that use t-norms and their residual fuzzy implications as part of their inference scheme

have many desirable properties (see, for instance, [12,13]). Based on the results contained in this paper one can choose this
pair of operations appropriately to ensure the continuity of the ensuing inference.

1.2. Outline of the work

In Section 2 we cover some relevant preliminaries related to basic fuzzy logic connectives. In Section 3 we introduce
in detail the family of R-implications, also called residual implications, and list out all the important results leading up to
the main characterization result, whose generalization forms the main focus of this work. Section 4 contains some analysis
required for the main results in this work, wherein we discuss the relationship between continuity and monotonicity of
partial functions of residual implications. Section 5 contains the main results of this work, wherein we show that if the R-
implication obtained from a t-norm is continuous then the underlying t-norm is necessarily left-continuous and hence is
nilpotent. In Section 6, after giving a very short but necessary introduction to the family of (S,N)-implications, this main
result is made use of in determining the exact intersection between the continuous subsets of R-implications and (S,N)-
implications.

2. Preliminaries

We assume that the reader is familiar with the classical results concerning basic fuzzy logic connectives, but tomake this
work more self-contained, we introduce basic notations used in the text and we briefly mention some of the concepts and
results employed in the rest of the work.
By Φ we denote the family of all increasing bijections ϕ: [0, 1] → [0, 1]. We say that functions f , g: [0, 1]n → [0, 1],

where n ∈ N, areΦ-conjugate, if there exists ϕ ∈ Φ such that g = fϕ , where

fϕ(x1, . . . , xn) := ϕ−1 (f (ϕ(x1), . . . , ϕ(xn))) ,

for all x1, . . . , xn ∈ [0, 1]. Equivalently, g is said to be theΦ-conjugate of f or isomorphic to f .

2.1. T -norms and T-conorms

Definition 2.1 (cf. [2,14,3]).
(i) A function T : [0, 1]2 → [0, 1] is called a t-norm, if it ismonotonic increasing in both variables, commutative, associative
and has 1 as the neutral element.

(ii) A function S: [0, 1]2 → [0, 1] is called a t-conorm, if it is monotonic increasing in both variables, commutative,
associative and has 0 as the neutral element.

(iii) A t-norm T is said to be border continuous, if it is continuous on the boundary of the unit square [0, 1]2, i.e., on the set
[0, 1]2 \ (0, 1)2.

(iv) A t-norm T is said to be left-continuous, if it is left-continuous in each component.
(v) A t-norm T is said to be nilpotent, if it is continuous and if each x ∈ (0, 1) is a nilpotent element of T , i.e., if there exists
an n ∈ N such that x[n]T = 0, where

x[n]T :=
{
1, if n = 0,
T (x, x[n−1]T ), if n ≥ 1.

(vi) A t-norm T is said to be Archimedean if for every x, y ∈ (0, 1) there is n ∈ N such that x[n]T < y.
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Remark 2.2 (See [14], p. 17). For the border continuity of a t-norm T , it is sufficient to require the continuity on the upper
right boundary, since from the monotonicity we get

lim
x→0+

T (x, y) ≤ lim
x→0+

T (x, 1) = lim
x→0+

x = 0 = T (0, y), y ∈ [0, 1].

Remark 2.3. From the commutativity, the left-continuity of a t-norm T is equivalent to the left-continuity of T with respect
to the first or the second variable. Moreover, T (x, 1) = 1 and T (x, 0) = 0 for every x ∈ [0, 1], thus a t-norm T is left-
continuous if and only if for any y ∈ (0, 1) and every increasing sequence (xn)n∈N, where xn ∈ [0, 1), we have

lim
n→∞

T (xn, y) = T ( lim
n→∞

xn, y).

Proposition 2.4. If T is an Archimedean t-norm, then T (x, y) < min(x, y), for all x, y ∈ (0, 1).

Proof. Let T be an Archimedean t-norm. If, on the contrary, there exist some x0, y0 ∈ (0, 1) such that x0 ≥ y0 and
T (x0, y0) = y0 = min(x0, y0), then we will prove, by induction, that for every n ∈ Nwe have

x0
[n]
T ≥ y0. (3)

Indeed, firstly see that

x0
[0]
T = 1 > T (x0, y0) = y0,

x0
[1]
T = x0 ≥ T (x0, y0) = y0.

Let us assume that (3) holds for some n ∈ N. Then by the monotonicity of T and our inductive assumption we get

x0
[n+1]
T = T (x0, x0

[n]
T ) ≥ T (x0, y0) = y0,

which implies that T is not Archimedean, a contradiction. �

2.2. Negations from t-conorms and t-norms

Fuzzy negations are, once again, generalizations of classical negations.

Definition 2.5. A function N: [0, 1] → [0, 1] is called a fuzzy negation, if it is decreasing and satisfies the boundary
conditions N(1) = 0 and N(0) = 1. A fuzzy negation N is called strong, if it is an involution, i.e., N ◦ N = id[0,1].

One can associate a fuzzy negation to any t-norm or t-conorm as given in the definition below.

Definition 2.6 (See [14], p. 232 or [6]). Let T be a t-norm. A function NT : [0, 1] → [0, 1] defined as

NT (x) := sup{t ∈ [0, 1] | T (x, t) = 0}, x ∈ [0, 1] (4)

is called the natural negation of T .

Remark 2.7. (i) It is easy to prove that NT is a fuzzy negation. In the literature NT is also called the contour line C0 of T
(see [15,16]).

(ii) Since for any t-norm T we have T (x, 0) = 0 for all x ∈ [0, 1], the appropriate set in (4) is non-empty.
(iii) Notice that if T (x, y) = 0 for some x, y ∈ [0, 1], then y ≤ NT (x). Moreover, if z < NT (x), then T (x, z) = 0. If T is

left-continuous then T (x, y) = 0 for some x, y ∈ [0, 1] if and only if y ≤ NT (x).

The next result will be required later on.

Theorem 2.8 ([17, Theorem 2.14]). Let T be any t-norm.

(i) If NT is continuous, then it is strong.
(ii) If NT is discontinuous, then it is not strictly decreasing.

2.3. Fuzzy implications

In the literature, especially at the beginnings, we can find several different definitions of fuzzy implications. In this article
we will use the following one, which is equivalent to the definition introduced by Fodor and Roubens [2], Definition 1.15
(see also [18], p. 50).
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Definition 2.9 ([2,7]). A function I: [0, 1]2 → [0, 1] is called a fuzzy implication if it satisfies the following conditions:

I is decreasing in the first variable, (I1)
I is increasing in the second variable, (I2)
I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0. (I3)

The set of all fuzzy implications will be denoted by F I.

Additional properties of fuzzy implications were postulated in many works (see, for example, [19,2,3]). The most
important of them are presented below.

Definition 2.10. A fuzzy implication I is said to have
(i) the left neutrality property, if

I(1, y) = y, y ∈ [0, 1]. (NP)

(ii) the exchange principle, if for all x, y, z ∈ [0, 1],

I(x, I(y, z)) = I(y, I(x, z)). (EP)

(iii) the identity principle, if

I(x, x) = 1, x ∈ [0, 1]. (IP)

(iv) the ordering property, if

I(x, y) = 1⇐⇒ x ≤ y, x, y ∈ [0, 1]. (OP)

Just as in the case of t-norms or t-conorms, a fuzzy negation can be obtained from fuzzy implications too as follows.

Definition 2.11. Let I be a fuzzy implication. The function NI defined as NI(x) := I(x, 0) for all x ∈ [0, 1], is a fuzzy negation
and is called the natural negation of I .

3. R-implications

From the isomorphism that exists between classical two-valued logic and classical set theory one can immediately note
the following set theoretic identity:

P ∪ Q = P \ Q = ∪ {T | P ∩ T ⊆ Q } ,

where P,Q are subsets of some universal set. The above identity gives one way of defining the Boolean implication and
is employed in the intuitionistic logic. Fuzzy implications obtained as the generalization of the above identity form the
family of residuated implications, usually called as R-implications in the literature. It is important to note that the name
‘R-implication’ is a short version of ‘residual implication’, and IT is also called as the residuum of T (see [2,14,3]).

Definition 3.1 (cf. [19,2,3,7]). A function I: [0, 1]2 → [0, 1] is called an R-implication, if there exists a t-norm T such that

I(x, y) = sup {t ∈ [0, 1] | T (x, t) ≤ y} , (5)

for all x, y ∈ [0, 1]. If an R-implication is generated from a t-norm T , then we will often denote this by IT .

Example 3.2. The Łukasiewicz implication

ILK(x, y) = min(1, 1− x+ y), x, y ∈ [0, 1],

is an R-implication obtained from the nilpotent (Łukasiewicz) t-norm

TLK(x, y) = max(x+ y− 1, 0), x, y ∈ [0, 1]. (6)

For more well-known R-implications along with their t-norms fromwhich they have been obtained, we refer the readers to
other sources, notably [2,14,7].

Proposition 3.3 ([7, Proposition 2.5.10]). If IT is an R-implication based on some t-norm T , then the Φ-conjugate of IT is also
an R-implication generated from theΦ-conjugate t-norm of T , i.e., if ϕ ∈ Φ , then (IT )ϕ = ITϕ .

Hence an R-implication obtained from any nilpotent t-norm is aΦ-conjugate of the Łukasiewicz implication ILK.

Remark 3.4. Note, firstly, that the natural negation obtained from an R-implication is also the associated negation of the
underlying t-norm, i.e., NT (x) = IT (x, 0) for all x ∈ [0, 1]. Moreover, if IT is continuous then NT is continuous and hence is
strong by Theorem 2.8.
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Theorem 3.5 (cf. [2], [6, Theorem 5.5]). If T is any t-norm, then IT ∈ F I and it satisfies (NP) and (IP). Moreover, if T is left-
continuous, then IT satisfies (EP) and (OP).

Proposition 3.6 ([6, Proposition 5.8]). For a t-norm T the following statements are equivalent:

(i) T is border continuous.
(ii) IT satisfies the ordering property (OP).

For R-implications generated form left-continuous t-norms many characterization results are available, see for
example, [2,7]. Now we state the following main characterization result whose generalization forms the focus of this work.

Theorem 3.7 (cf. [20], Corollary 2; [7], Theorem 2.5.33). For a function I: [0, 1]2 → [0, 1] the following are equivalent:

(i) I is a continuous R-implication based on some left-continuous t-norm.
(ii) I isΦ-conjugate with the Łukasiewicz implication, i.e., there exists ϕ ∈ Φ , which is uniquely determined, such that

I(x, y) = ϕ−1(min(1− ϕ(x)+ ϕ(y), 1)), (7)

for all x, y ∈ [0, 1].

Wewould like to note that the proof of the above result is dependent onmany other equivalence results concerning fuzzy
implications, especially concerning R-implications and their contrapositivity, see, for instance, the corresponding proofs
in [20,7]. For more facts related to R-implications see [2,6,7]. Later on we show that from the obtained results in this work,
we obtain what is perhaps the first direct proof of the above result (see Corollary 5.4).

4. Continuous partial functions of R-implications

Note that from Theorem 3.5 we can consider, for any fixed α ∈ [0, 1), the decreasing partial function
IT (·, α): [α, 1] → [α, 1], which wewill denote by gTα . Observe that g

T
α is decreasing and such that g

T
α (α) = 1 and g

T
α (1) = α.

Remark 4.1. If the domain of gTα is extended to [0, 1], then this is exactly what are called contour lines byMaes and De Baets
in [15,21]. If α = 0, then gT0 is the natural negation associated with the t-norm T (see [6]).

Theorem 4.2. Let T be any t-norm. For any fixed α ∈ [0, 1), if gTα is continuous, then g
T
α is strictly decreasing.

Proof. Let T be any t-norm and α ∈ [0, 1) be fixed. We know that gTα is decreasing. On the contrary, let us assume that g
T
α

is constant on some interval [x0, y0] for some α < x0 < y0 < 1, i.e., there exists p ∈ [α, 1] such that

gTα (x0) = g
T
α (y0) = p.

Let us fix arbitrarily z ∈ (x0, y0).
Firstly, consider the case p = 1. Then

gTα (z) = IT (z, α) = sup{t ∈ [0, 1] | T (z, t) ≤ α} = 1,

thus T (z, 1− ε) ≤ α for any ε ∈ (0, 1). Hence

gTα (1− ε) = sup{t ∈ [0, 1] | T (1− ε, t) ≤ α} ≥ z,

for all ε ∈ (0, 1− α). However, by the continuity of gTα , as ε→ 0+, we get

α = gTα (1) = g
T
α ( lim
ε→0+

1− ε) = lim
ε→0+

gTα (1− ε) ≥ lim
ε→0+

z = z,

a contradiction to the fact that α < x0 < z.
If p = α, then

gTα (z) = IT (z, α) = sup{t ∈ [0, 1] | T (z, t) ≤ α} = α,

thus T (z, α + ε) > α for all ε ∈ (0, 1− α). Hence

gTα (α + ε) = sup{t ∈ [0, 1] | T (α + ε, t) ≤ α} ≤ z,

for all ε ∈ (0, 1− α). Once again, by the continuity of gTα we have, as ε→ 0+, that

1 = gTα (α) = g
T
α ( lim
ε→0+

α + ε) = lim
ε→0+

gTα (α + ε) ≤ lim
ε→0+

z = z,

a contradiction to the fact that z < 1.
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Finally, let p ∈ (α, 1). Then, by the definition of gTα , we have

T (z, p+ ε) > α ≥ T (z, p− ε),

for any ε > 0 such that p+ ε ≤ 1 and p− ε ≥ α. Therefore

IT (p+ ε, α) ≤ z ≤ IT (p− ε, α),

hence

gTα (p+ ε) ≤ z ≤ g
T
α (p− ε).

Since gTα is continuous, we have, as ε→ 0+, that

gTα (p) = z.

Now this happens for every z ∈ (x, y), which contradicts the fact that gTα is a function itself. Hence g
T
α is strictly decreasing.

�

In fact, the above result essentially states that, if the ‘‘generalized’’ inverse of a monotone function is continuous, then it
is strictly decreasing (see Remark 3.4(ii), [5], also Theorem 11, [15]).

5. Main results: Continuous R-implications

The main result of this work is the generalization of Theorem 3.7, viz., we show that the left-continuity of the underlying
t-norm is implied and need not be assumed. Thus we give a complete characterization of the class of all continuous R-
implications by showing that it is equivalent to the class of fuzzy implications which are Φ-conjugate to the Łukasiewicz
implication.

Theorem 5.1. Let T be a t-norm and IT the R-implication obtained from it. If IT is continuous, then T is border continuous.

Proof. On the contrary, let us assume that IT is continuous and T is not border continuous. Then, by Remark 2.2, there exist
y0 ∈ (0, 1) and an increasing sequence (xn)n∈N, where xn ∈ [0, 1), such that limn→∞ xn = 1, but

lim
n→∞

T (xn, y0) = y′ < y0 = T (1, y0).

This implies, in particular, that

IT (y0, y′) = sup{t ∈ [0, 1] | T (y0, t) ≤ y′} = 1.

Now, by (I1) and (IP) of IT (cf. Theorem 3.5) we have that

1 = IT (y0, y′) ≤ IT (y′, y′) = 1,

i.e., IT (x, y′) = 1 for all x ∈ [y′, y0]. Note that IT (·, y′) = gTy′ . Since IT is continuous we have that g
T
y′ is also continuous and

from Theorem 4.2 we see that it is strictly decreasing. However, from the above, we see that gTy′ is constant on [y
′, y0], a

contradiction. Thus T is border continuous. �

Theorem 5.2. Let T be a t-norm and IT the R-implication obtained from it. If IT is continuous, then T is Archimedean.

Proof. Let T be a t-norm. On the contrary, let us assume that IT is continuous and T is non-Archimedean. Then, by the
Definition 2.1(viii) there exist x0, y0 ∈ (0, 1) such that for all n ∈ Nwe have that x0

[n]
T ≥ y0.

Let us denote

X0 := {z ∈ [0, 1] | x0
[n]
T > z for all n ∈ N}.

Observe, that X0 6= ∅ since for all y < y0 we have that x0
[n]
T > y for all n ∈ N. Further, let

z0 := sup X0.

See that 0 < z0 ≤ x0 and z0 − ε ∈ X0 for all ε ∈ (0, z0]. Also, if t > z0, then there exists m ∈ N such that x0
[m]
T ≤ t , which

implies that

z0 − ε < x0
[m+1]
T = T (x0, x0

[m]
T ) ≤ T (x0, t),

for any t > z0. Hence

IT (x0, z0 − ε) = sup{t ∈ [0, 1] | T (x0, t) ≤ z0 − ε} ≤ z0,
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for all ε ∈ (0, z0]. From the continuity of IT we get

IT (x0, z0) = IT (x0, lim
ε→0+

z0 − ε) = lim
ε→0+

IT (x0, z0 − ε) ≤ lim
ε→0+

z0 = z0.

Now, by (I1) and (IP) of IT (cf. Theorem 3.5) we have that

z0 ≥ IT (x0, z0) ≥ IT (1, z0) = z0,

i.e., IT (x, z0) = z0 for all x ∈ [x0, 1]. Note that IT (·, z0) = gTz0 . Since IT is continuous we have that g
T
z0 is also continuous

and from Theorem 4.2 we see that it is strictly decreasing. However, from the above, we see that gTz0 is constant on [x0, 1], a
contradiction. Thus T is Archimedean. �

Wenote that based on Theorem5.2we getwhat is perhaps – to the best of the author’s knowledge – the first independent
proof of Theorem 3.7. Before, proving this result we recall some known results in the following remark.

Remark 5.3 (cf. [14]).

(i) A left-continuous T that is Archimedean is necessarily continuous (see [14], Proposition 2.16).
(ii) A continuous Archimedean t-norm T is either strict or nilpotent.
(iii) If a continuous Archimedean t-norm T has zero divisors then it is nilpotent (see [14], Theorem 2.18).
(iv) A nilpotent t-norm T is aΦ-conjugate of (isomorphic to) the Łukasiewicz t-norm (6).

Corollary 5.4. Let T be a left-continuous t-norm and IT the R-implication obtained from it. Then the following are equivalent:

(i) IT is continuous.
(ii) T is isomorphic to TLK.

Proof. (i) H⇒ (ii): Let T be left-continuous and IT be continuous. Then, from Theorem 5.2, we see that T is Archimedean
and hence by Remark 5.3(i) T is necessarily continuous. Further, by Remark 5.3(ii), T is either strict or nilpotent. Now, from
Remark 3.4, since IT is continuous NT is strong and hence from Remark 2.7(iii) we see that T has zero divisors. Finally, from
Remark 5.3(iii) and (iv), it follows that T is nilpotent and hence is isomorphic to TLK.
(ii) H⇒ (i): The converse is obvious, since the R-implication obtained from any nilpotent t-norm is a Φ-conjugate of the
Łukasiewicz implication ILK. Since ILK is continuous, anyΦ-conjugate of it is also continuous. �

Based on the above results, we are ready to present our main result showing that if IT is continuous, then the left-
continuity of T need not be assumed but follows as a necessity.

Theorem 5.5. Let T be a t-norm and IT the R-implication obtained from it. If IT is continuous, then T is left-continuous.

Proof. Let T be a t-norm such that IT is continuous. From Theorems 5.1 and 5.2 we see that T is border continuous and
Archimedean.
On the contrary, let us assume that T is non-left-continuous. From Remark 2.3 there exist x0 ∈ (0, 1], y0 ∈ (0, 1) and an

increasing sequence (xn)n∈N, where xn ∈ [0, 1), such that limn→∞ xn = x0, but

lim
n→∞

T (xn, y0) = z ′ < z0 = T (x0, y0).

Since T is border continuous it suffices to consider the case when x0 ∈ (0, 1).
Firstly observe that

IT (y0, z ′) = sup{t ∈ [0, 1] | T (y0, t) ≤ z ′} = x0, (8)

since from the monotonicity of T we have T (y0, xn) ≤ z ′ for every n ∈ N and T (y0, x0) = z0 > z ′.
Next, from Proposition 2.4, by the Archimedeanness and monotonicity of T , we see that for any arbitrary ε ∈ (0, 1− x0)

we have that

T (x0, 1− ε) < min(x0, 1− ε) = x0. (9)

Now, by (8) and (9) we get

T (x0, 1− ε) < IT (y0, z ′),

for any ε ∈ (0, 1− x0), thus

T (x0, 1− ε) < sup{t ∈ [0, 1] | T (y0, t) ≤ z ′},

hence

T (y0, T (x0, 1− ε)) ≤ z ′
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By the associativity of T we get

T (T (x0, y0), 1− ε) ≤ z ′,

i.e.,

T (z0, 1− ε) ≤ z ′.

for any ε ∈ (0, 1− x0). This implies that

lim
ε→0+

T (z0, 1− ε) ≤ z ′ < z0 = T (z0, 1),

i.e., T is not border continuous, a contradiction to Theorem 5.1 and hence T is left-continuous. �

From Theorems 3.7 and 5.5 we obtain the following result.

Corollary 5.6. For a function I: [0, 1]2 → [0, 1] the following statements are equivalent:
(i) I is a continuous R-implication based on some t-norm.
(ii) I isΦ-conjugate with the Łukasiewicz implication, i.e., there exists ϕ ∈ Φ , which is uniquely determined, such that I has the
form (7) for all x, y ∈ [0, 1].

6. Intersection between continuous R- and (S,N)-implications

It is well-known in the classical logic that the unary negation operation¬ can combine with any other binary operation
to generate rest of the binary operations. This distinction of the unary ¬ is also shared by the Boolean implication→, if
defined in the following usual way: p→ q ≡ ¬p ∨ q. A generalization of this formula to the fuzzy logic gives the family of
(S,N)-implications.

Definition 6.1 (cf. [19,2,22,8]). A function I: [0, 1]2 → [0, 1] is called an (S,N)-implication, if there exist a t-conorm S and a
fuzzy negation N such that

I(x, y) = S(N(x), y), x, y ∈ [0, 1].

Moreover, if an (S,N)-implication is generated from S and N , then we will denote this by IS,N . Firstly note that IS,N ∈ F I
for any t-conorm S and any fuzzy negationN . In the class of continuous (S,N)-implicationswe have the following important
result.

Proposition 6.2 ([8, Proposition 5.4]). For a function I: [0, 1]2 → [0, 1] the following statements are equivalent:
(i) I is a continuous (S,N)-implication.
(ii) I is an (S,N)-implication generated from some continuous t-conorm S and some continuous fuzzy negation N.

The intersections between the families and subfamilies of R- and (S,N)-implications have been studied bymany authors,
see e.g. [23,9,2,6]. As regards the intersection between their continuous subsets only the following result has been known
so far:

Theorem 6.3. The only continuous (S,N)-implications that are also R-implications obtained from left-continuous t-norms are
the fuzzy implications which areΦ-conjugate with the Łukasiewicz implication.

Now, from Corollary 5.6 and Proposition 6.2 the following equivalences follow immediately:

Theorem 6.4. For a function I: [0, 1]2 → [0, 1] the following statements are equivalent:
(i) I is a continuous (S,N)-implication that is also an R-implication obtained from a left-continuous t-norm.
(ii) I is a continuous (S,N)-implication that is also an R-implication.
(iii) I is an (S,N)-implication that is also a continuous R-implication.
(iv) I isΦ-conjugate with the Łukasiewicz implication, i.e., there exists ϕ ∈ Φ , which is uniquely determined, such that I has the

form (7).

7. Conclusions

In this paper, we have shown that the continuous R-implications cannot be obtained frompurely left-continuous t-norms
and that the only continuous R-implications are those that areΦ-conjugate to the Łukasiewicz implication. Using this result
we have been able to answer another question related to the intersection between the continuous sub-families of (S,N)- and
R-implications. Also, from the results obtained during the course of proving the main theorem, we are able to give a direct
proof of the fact that if the residual IT obtained from a left-continuous T is continuous, then T is necessarily continuous and
hence nilpotent.
We believe that this work will have positive implications in the research areas of t-norm based fuzzy logics and fuzzy

inference mechanisms. We also hope that this work will further help in solving many of the open problems still remaining
with regard to these two basic families of fuzzy implications.
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