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ABSTRACT. Order-theoretic explorations of algebraic structures are known to lead to hitherto hidden

insights. Two such relations that have stood out are those of Mitsch and Clifford – the former for the

generality in its application and the latter for the insights it offers. In this work, our motivation is to

study the converse: we want to explore the extent of the utility of Mitsch’s order and the applicability

of Clifford’s order. Firstly, we show that if the Mitsch’s poset is either bounded or a chain, arguably a

richer order theoretic structure, the semigroup reduces to one of a simple band. Secondly, noting that

the special semigroups on which Clifford’s relation does give rise to an order has not been characterised

so far, we solve this problem by proposing a property called Quasi-Projectivity that is essential in this

context and also give necessary and sufficient conditions for the Clifford’s relation to give a total and

compatible order, even if the semigroup is not commutative. Further, by showing some interesting

connections between this relation and the orders obtained by Green’s relations, we further reaffirm

the importance and naturalness of the order proposed by Clifford. Finally, by discussing the Clifford’s

relations on ordered semigroups, we present some novel perspectives and also show that some of the

assumptions in the often cited results of Clifford’s are not necessary. On the whole, our study argues

favourably towards Clifford’s than that of the Mitsch’s relation, in so far as the structural information

gained about the underlying semigroup.

c©2023
Mathematical Institute

Slovak Academy of Sciences

1. Introduction

The study of semigroups from an order-theoretic perspective has proven to be an effective and a
complimentary tool to Green’s relations in unearthing hitherto hidden insights on the underlying
structure, see for instance the works of [1, 16, 18, 20] and of Clifford [2–5, 7]. Towards this end,
many relations have been proposed by researchers [8,14,16,18,19] at various times and the special
semigroups on which such relations impose a partial order have also been characterised.

Among the various order relations proposed, two stand out – that of Mitsch [14] and Clifford [4].
The former since it defines an order on any semigroup and the latter due to the many structural
insights it offers1 , especially from the topological perspective, see, for instance, [13].

2020 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n: Primary 06F05, 06A06, 06A11; Secondary 06A05, 06A12.

K e y w o r d s: Ordered semigroups and monoids, Clifford’s relation, Green’s relation, quasi-projectivity.
c Corresponding author.
1 Also see Section 6.
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1.1. Motivation for this work

On the one hand, while the relation defined by Mitsch [14] does lead to a partial order on any
semigroup – albeit by making it a monoid if there is no suitable local left identity for each element,
very few works have appeared presenting a deeper exploration on the algebraic properties that
can be unearthed if one obtains richer order-theoretic structures. This forms the first of our twin
motivations for this submission.

On the other hand, the relation proposed by Clifford [4] has had phenomenal impact, especially
in the field of topological groups.2 However, it should be noted that Clifford in his seminal work
[4] begins by assuming this relation to be a partial order, and to the best of the authors’ knowledge,
there exist no works that discuss the conditions or the special semigroups for which the relation
defined therein gives rise to an order. Further, in the main result of that work (see Theorem 6.2),
the order is expected to be a total order. Once again, it is not known when the Clifford’s order
relation gives rise to a total order. These observations lead us to the second motivation for this
work.

1.2. Outline of this submission

In this submission we begin by studying the class of semigroups which leads to a bounded poset
or a chain with respect to Mitsch’s order relation. Our study shows that such semigroups reduce
to that of bands, where every element is idempotent.

Following this, we discuss a special kind of semigroup, which we call the Quasi-Projective semi-
group. We then show that such special semigroups completely characterise the class of semigroups
for which Clifford’s relation becomes an order. Interestingly, we show that the Green’s relations,
which are only quasi-orders, become an order precisely on such semigroups, lending more credence
to the claim of Clifford’s order being the natural order on a semigroup.

Further, we also study the conditions under which Clifford’s order (i) is compatible with the
semigroup operation and (ii) gives rise to either a trivial or a total order. In the final section, we
present some nascent perspectives that can be gained by imposing Clifford’s order, even if there
already exists an order on the underlying base set of the semigroup, by showing that some of the
assumptions in Clifford’s seminal results are only sufficient but not necessary.

2. Mitsch’s relation and Richer posets

In the sequel, S will always denote a semigroup and S1 denotes the set S if S has an identity
and the set S with an identity adjoined in the other case.

Mitsch [14] proposed the following relation on a semigroup S and showed that it always leads
to a partial order.

Definition 2.1. Let S be a semigroup. The relation ≤M on S defined as follows: For every
a, b ∈ S,

a ≤M b ⇐⇒
{
a = xb = by,

xa = a,
for some x, y ∈ S1 . (1)

Theorem 2.2 ([14: Theorem 3]). The relation ≤M defined in (1) is a partial order on S.

2 For an interesting review-cum-commentary of his works, we refer the readers to [12].
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Consider the semigroup S = ((0, 1),×) where × is the usual product. Clearly, for no a ∈ (0, 1)
there exists an x ∈ (0, 1) such that x× a = a. Thus we adjoin an identity, a two-sided one in this
case, and let S1 = (0, 1] to obtain a Mitsch poset3, i.e., an order according to ≤M, on (0, 1). Clearly,
this shows the importance of this property, in ensuring reflexivity, which we capture separately for
use in the sequel.

Definition 2.3. A semigroup S is said to satisfy the Local Left Identity property

if for every a ∈ S, there exists an x ∈ S s.t. xa = a. (LLI)

In a follow up paper, Mitsch [15] discussed some special posets obtainable from ≤M and char-
acterised the kind of semigroups that would give a total order w.r.t. ≤M. We refine this result
further and, in fact, show that any bounded Mitsch poset necessarily implies that every element
of the semigroup is idempotent.

Towards this end, we recall the following result of Mitsch [15]. Let ES denote the set of all
idempotent elements of S. The relation ≤ES

on ES is defined as follows: For every e, f ∈ ES ,

e ≤ES
f ⇐⇒ e = ef = fe . (2)

Clearly, the relation ≤ES
is a partial order on ES . It can be easily seen that the Mitsch order ≤M

coincides with ≤ES
on the set of idempotents of any S.

Lemma 2.4 ([15: Lemma 2.1 (i)]). In a Mitsch poset (S,≤M), if a ∈ ES and x ≤M a, then
x ∈ ES.

Lemma 2.5. Let S be a semigroup such that (S,≤M) is bounded above poset. Then there exists
an element x0 ∈ S such that x0 is an identity element, i.e., S is a monoid. Moreover, the identity
element is a maximum element.

P r o o f. Since the poset (S,≤M) is bounded above, for all a ∈ S there exists a unique 1 ∈ S such
that a ≤M 1, by reflexivity property we have 1 ≤M 1, i.e.,

1 = x01 = 1y0, x01 = 1 for some x0, y0 ∈ S. (3)

We know that 1 is the maximum element and hence a ≤M 1 for all a ∈ S, which implies that,
there exist x, y ∈ S such that a = x1 = 1y, xa = a =⇒ x0a = x01y. Then by (3) we have
x0a = 1y =⇒ x0a = a. Thus x0 is a left neutral element. Similarly, we can prove that y0 is a right
neutral element.This implies that x0 = y0, i.e., S has an identity element x0 (say).

Now, we claim that x0 = 1, the maximum element of the Mitsch poset. Since x0 ≤M 1 by the
definition of order in (1), there exist x, y ∈ S such that x0 = x1 = 1y, xx0 = x0, which implies
that x0 = x, from whence we obtain x0 = 1. �
Remark 2.6. The converse of Lemma 2.5 need not be true, i.e., order obtained from a monoid
need not be bounded above. For example, let S be a set of 2 × 2 integer matrices with the usual
multiplication, where

S = {0, I, A,B,C,D} =

{
0, I,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 0
0 −1

)
,

(
1 0
0 −1

)}
.

It is clear that the multiplication operation forms a semigroup with the identity element I. But,
it can be easily seen in the Figure 1, I is not a maximum element.

((0, 1],×) is an example of an infinite monoid which is not bounded above and no two elements
are comparable. On the other hand, if we consider ([0, 1],×) then 0 becomes the minimum element

3 Note that by a Mitsch poset we refer to any semigroup with the order on it defined by ≤M.
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Clearly, the relation ≤ES
is a partial order on ES . It can be easily seen that the Mitsch order ≤M

coincides with ≤ES
on the set of idempotents of any S.

Lemma 2.4 ([15], Lemma 2.1 (i)). In a Mitsch poset (S,≤M), if a ∈ ES and x ≤M a then
x ∈ ES.

Lemma 2.5. Let S be a semigroup such that (S,≤M) is bounded above poset. Then there exists
an element x0 ∈ S such that x0 is an identity element, i.e., S is a monoid. Moreover, the identity
element is a maximum element.

Proof. Since the poset (S,≤M) is bounded above, for all a ∈ S there exists a unique 1 ∈ S such
that a ≤M 1, by reflexivity property we have 1 ≤M 1, i.e.,

1 = x01 = 1y0, x01 = 1 for some x0, y0 ∈ S. (3)

We know that 1 is the maximum element and hence a ≤M 1 for all a ∈ S, which implies that,
there exist x, y ∈ S such that a = x1 = 1y, xa = a =⇒ x0a = x01y. Then by (3) we have
x0a = 1y =⇒ x0a = a. Thus x0 is a left neutral element. Similarly, we can prove that y0 is a
right neutral element. This implies that x0 = y0, i.e., S has an identity element x0( say ).

Now, we claim that x0 = 1, the maximum element of the Mitsh poset. Since x0 ≤M 1 by the
definition of order in (1), there exist x, y ∈ S such that x0 = x1 = 1y, xx0 = x0, which implies
that x0 = x, from whence we obtain x0 = 1. �
Remark 2.6. The converse of Lemma 2.5 need not be true, i.e., order obtained from a monoid
need not be bounded above. For example, let S be a set of 2 × 2 integer matrices with the usual
multiplication, where

S = {0, I, A,B,C,D} =

{
0, I,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 0
0 −1

)
,

(
1 0
0 −1

)}
.

It is clear that the multiplication operation forms a semigroup with the identity element I. But, it
can be easily seen in the Figure 1, I is not a maximum element.

((0, 1],×) is an example of an infinite monoid which is not bounded above and no two elements
are comparable. On the other hand, if we consider ([0, 1],×) then 0 becomes the minimum element
and so is comparable to every element in (0, 1] w.r.t. ≤M, as indicated in its Hasse diagram in
Figure 1.

I D

A B C

0

(S,≤M, 0)

(0 . . . 0.5 . . . 1]

0

(S,≤M)

Figure 1. The Hasse diagram for ≤M.

Theorem 2.7. Let S be a semigroup. Then the following conditions are equivalent.

(i) The Mitsch poset (S,≤M) is a bounded above.

Figure 1. The Hasse diagram for ≤M.

and so is comparable to every element in (0, 1] w.r.t. ≤M, as indicated in its Hasse diagram in
Figure 1.

Theorem 2.7. Let S be a semigroup. Then the following conditions are equivalent:

(i) The Mitsch poset (S,≤M) is a bounded above.

(ii) The semigroup S is a band and (ES ,≤ES
) is bounded above.

P r o o f. (i) ⇒ (ii): From Lemma 2.5 we know that the Mitsch poset (S,≤M) has the identity
element 1 ∈ ES as its maximum element. Since a ≤M 1 for all a ∈ S by Lemma 2.4 we see that S
is an idempotent monoid, i.e., S = ES .

Since the partial order ≤M defined in (1) coincides with the order on ES , i.e., ≤M=≤ES
on

ES , we have that (ES ,≤ES
) is bounded above.

(ii) ⇒ (i): Trivially. �

Corollary 2.8. Let S be a semigroup. A poset (S,≤M) is bounded above if and only if S is an
idempotent monoid.

Clearly, the examples given in Remark 2.6 are not idempotent semigroups. Mitsch in [15] also
gave the following necessary and sufficient condition on a semigroup for a Mitsch poset defined on
it to be a chain.

Theorem 2.9 ([15: Theorem 2.3]). A semigroup S is totally ordered w.r.t. ≤M if and only if S
is one of the following:

(i) S = ES and (ES ,≤ES
) is chain,

or

(ii) S = ES ∪ {a} for some a /∈ ES such that ea = ae = e for every e ∈ ES, and ES is a chain
with greatest element a2.

Note that the condition (ii) given in Theorem 2.9 is superfluous. Let a 6∈ ES as given and let
b ∈ ES . Clearly, a 6≤M b, since if that were the case, by Lemma 2.4 we would have that a ∈ ES , a
contradiction to our assumption. Thus b ≤M a for every b ∈ ES and hence a is the upper bound of
S. However, from Theorem 2.7 we see that a is the identity element and hence a2 = aa = a ∈ ES ,
i.e., S = ES .

The revised version of Theorem 2.9 is given below:

Theorem 2.10. A semigroup S is totally ordered w.r.t. ≤M if and only if S = ES and (ES ,≤ES
)

is chain.
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Note that not every band gives a total order w.r.t. ≤M. For instance, let X,Y be non-empty
sets and S = X × Y . Let us define the binary operation F on S by

F ((x, s), (t, y)) = (x, y).

Then S is a band and the partial order w.r.t. ≤M is trivial.

In the following, we present a complete characterization of the class of bands which become a
total order w.r.t. ≤M.

Theorem 2.11. A band S is totally ordered with respect to its ≤ES
if and only if S is commutative

and one of the following holds:

(i) S is a left singular semigroup, (i.e., ab = a),
or

(ii) S is a right singular semigroup (i.e., ab = b).

P r o o f. Suppose that (ES ,≤ES
) is totally ordered. Then for any e, f ∈ ES , either e ≤ES

f or
f ≤ES

e, which implies that e = ef = fe or f = fe = ef . Thus ef = fe and ef ∈ {e, f} for all
e, f ∈ ES . �

Theorem 2.12. Let S be a semigroup. Then the following conditions are equivalent:

(i) ≤M is a total order.

(ii) S is commutative and locally internal, i.e., x · y ∈ {x, y}.

On the one hand, we observe from Theorem 2.7 and Theorem 2.12 that linearity, or even
boundedness of Mitsch’s poset, offers a lot of information about the semigroup. On the other
hand, quite quixotically, Mitsch’s relation does not lead to interesting order theoretic structures
from non-idempotent semigroups and thus blurring the utility of studying this relation on them.

On the contrary, as we will see in the following sections, Clifford’s relation offers information at
different granularities depending on the properties of the semigroups.

3. Quasi-projective semigroup

In this section, we begin by defining yet another special property of a semigroup, called the
quasi-projectivity property which, in conjunction with (LLI), plays a major role in the sequel. We
show that while such semigroups are different from already known special semigroups, these are
still found in abundance. We conclude this section by characterising these semigroups interms of
the Green’s L-relations.

Definition 3.1. Let S be a semigroup. It is said to satisfy the Quasi-Projection property, if for
any a, b, c ∈ S,

abc = c =⇒ bc = c . (QP)

Some well-known semigroups that satisfy both (LLI) and (QP) are (R≥0,+) and (N,×). A few
not-so-common examples of such semigroups are presented below. If a semigroup S satisfies (QP)
we also term it as a QP-semigroup.

Example 3.2. The following semigroups Si satisfy both the (QP) and (LLI) properties on the
given sets.
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(i) Let S1 =
{

1
n : n = 1, 2, 3, . . .

}
∪ {0} and the semigroup operation be given by

ab =





0, if ab = 0,

1

n + m− 1
, if a = 1

n and b = 1
m .

(ii) Let S2 6= ∅ be s.t. |S2| > 2 and let 0, 1 ∈ S2 be arbitrary but fixed and define the semigroup
operation on S by

ab =





0, if a, b ∈ S2 \ {1},
a, if b = 1,

b, if a = 1.

(iii) Let us define the functions from {1, 2, 3} to {1, 2, 3} as follows:

A =
(
1 2 3
1 1 1

)
, B =

(
1 2 3
1 1 2

)
, C =

(
1 2 3
1 1 3

)
,

D =
(
1 2 3
2 2 1

)
, E =

(
1 2 3
2 2 2

)
, F =

(
1 2 3
2 2 1

)
.

Let S3 = {A,B,C,D,E, F} be a semigroup under the composition of functions, whose Cayley
table we give below for ready reference:

◦ A B C D E F

A A A A E E E

B A A A E E E

C A B C D E F

D A A A E E E

E A A A E E E

F A B C D E F

(iv) S4 = Z and the semigroup operation is given by ab = |a|b, where | · | is the absolute value.
p S such that xy 6= y for any x, y ∈ S vacuously satisfies (QP).

(v) Every positive semigroup4 , semilattice or a right regular band is a QP-semigroup.

Remark 3.3.

(i) Not all regular, completely regular, quasi-separative or weakly-separative5 semigroups satisfy
(QP). Please see Example 3.4 (i).

(ii) A semigroup S does not satisfy (QP) if it has an identity e and if there exist x, y ∈ S \ {e}
such that xy = e. Clearly, a group will never satisfy (QP) and hence not all separative
semigroups satisfy (QP).

(iii) Not all bands, i.e., where every element is idempotent, satisfy (QP) (see Example 3.4 (i)).
While commutative bands are semilattices and hence satisfy (QP), commutativity is not
necessary for a band to satisfy (QP) (see Example 3.4(ii)).

Example 3.4 ([9: Example 1]).

(i) Consider the 2× 2 integer matrix semigroup

S = {I, E, F} =
{(

1 0
0 1

)
,
(
1 0
1 0

)
,
(

1 0
−1 0

)}

4 A semigroup that has an identity element e, has no non-trivial invertible elements and satisfies the left cancellation

law [17].
5 See Drazin [9] for the definitions and relations among these special semigroups.
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with multiplication. It can be easily verified that every element of S is idempotent and hence
S is a band, from whence it follows that S is also regular, completely regular, separative,
quasi-separative and weakly-separative.

However, S does not satisfy (QP), since EFE = E but FE 6= E.

(ii) Let S 6= ∅ and define the semigroup operation by xy = y for all x, y ∈ S. Clearly, S is a
non-commutative band but satisfies (QP).

3.1. Green’s relation and (QP)

The five relations of Green [10] are known to give a peek into the structure of a semigroup
by characterising the elements based on the principal ideals generated by them. In the following
we show that QP-semigroups are precisely those for whom the Green’s L-equivalence classes are
singletons.

Definition 3.5 ([10: page 164]). Let S be a semigroup.

(i) The principal left ideal generated by an a ∈ S is given by (a)L = Sa ∪ {a}.
(ii) The Green’s L-relation on S is defined as follows for any a, b ∈ S:

aLb ⇐⇒ (a)L = (b)L. (4)

Clearly, if S satisfies (LLI) or is a monoid, then (a)L = Sa for every a ∈ S. Also it is clear that
the L-relation is an equivalence relation on S and we denote the L-equivalence class of an a ∈ S
by La, i.e., La = {b ∈ S | (a)L = (b)L}.

Definition 3.6. A semigroup S is called an L-trivial semigroup if the Green’s L-equivalence
classes are trivial, i.e., La = Lb ⇐⇒ a = b.

The proof of the following lemma is straightforward:

Lemma 3.7. Let S be a semigroup that satisfies (LLI) and let a, b ∈ S be arbitrary. Then the
following conditions are equivalent:

(i) Sa = Sb.

(ii) La = Lb.

Theorem 3.8. Let S be a semigroup that satisfies (LLI). Then the following conditions are
equivalent:

(i) S is a QP-semigroup.

(ii) S is L-trivial.

P r o o f. (i) ⇒ (ii): Suppose La = Lb for some a, b ∈ S. Then clearly a ∈ Lb and b ∈ La which
implies that xb = a and ya = b for some x, y ∈ S. Thus,

a = xb =⇒ ya = y(xb) = b.

Now, from (QP) we have xb = b and hence a = b.

(ii) ⇒ (i): Let x, y, z ∈ S such that xyz = z. Then we have , Sz = S(xyz) ⊆ S(yz) ⊆ Sz, i.e.,
S(yz) = Sz. By Lemma 3.7, we have Lyz = Lz. Since S is L-trivial we have yz = z. �
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4. Clifford’s relation on a semigroup

In this section, we begin by recalling the order relation defined by Clifford in [4] and show the
important role played by (LLI) and (QP) in this setting6 . Further, we show that the order of
Clifford arises naturally from the Greens’s L-relation.

Theorem 4.1. Let S be a semigroup. The Clifford’s relation �7 on S is defined as follows: For
any a, b ∈ S,

a � b ⇐⇒ there exists x ∈ S such that xb = a. (5)

The following are equivalent:

(i) (S,�) is a poset.

(ii) S satisfies both (QP) and (LLI).

(iii) S is L-trivial and satisfies (LLI).

P r o o f. (i) ⇒ (ii): Since (S,�) is a poset, we have a � a for every a ∈ S, hence by the definition
of �, for every a ∈ S there exists an x ∈ S such that xa = a, i.e., S satisfies (LLI).

Towards showing that S satisfies (QP), for some a, b, c ∈ S let abc = c. Hence, by the definition
of order we have that c � bc. However, since bc = bc, trivially, once again by the definition of order
bc � c, from whence by anti-symmetry we have bc = c.

(ii) ⇒ (i): That the reflexivity of � follows from (LLI) and its transitivity follows from asso-
ciativity is easy to see. That (QP) implies antisymmetry can be seen as follows: Let a, b ∈ S
such that a � b and b � a. Then there exist x, y ∈ S such that xb = a and ya = b from whence
a = xb⇒ ya = y(xb) = b and by (QP) xb = b and hence a = b. Thus (S,�) is a poset.

(iii) ⇔ (ii): Follows from Theorem 3.8. �

Remark 4.2. Figure 2 gives the Hasse diagrams of the Clifford’s posets presented in Example 3.2.
If a Clifford’s poset is bounded with 0, 1 ∈ S as the minimum and maximum elements, respectively,
then we write (S,�, 0, 1).

(i) It is easy to see that the Clifford’s posets (S1,�, 0, 1) and (S2,�, 0, 1) from Examples 3.2 (i)
and (ii) are bounded, with the former being a chain and the latter only a lattice, while (S3,�)
from Example 3.2(iii) is neither bounded above nor bounded below.

(ii) The Clifford’s poset (S4,�, 0) from Example 3.2(iv) is bounded below but not above. 0
is the minimum element while 1,−1 are the maximal elements. Further, it is only a meet
semi-latiice in which

x ∧ y =





0, if (x ∈ N and y ∈ N−)

or (x ∈ N− and y ∈ N),

l.c.m.{x, y}, otherwise,

where N− is the set of negative integers. Once again, note that, according to the usual
ordering, (Z,≤) is neither bounded below nor above.

The following lemma is useful in the Remark 4.4 that follows it.

Lemma 4.3. Let S be a semigroup that satisfies (LLI). Then the following statements are equiv-
alent:

6 A part of this result has been proven in [11] in the context where S = [0, 1].
7 To remain consistent with the notations we should have used ≤C . However, for better readability, considering the

extensive use of this symbol in the sequel, we instead use �.
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1

1
2

1
n

0

(S1,�)

a. . . b c . . .

0

1

(S2,�)

B C

A E

D F

(S3,�)

1

2 3 5 7 . . .

−1

−2 −3 −5 −7 . . .

4 6 10 15 . . . −4 −6 −10 −15 . . .

8 12 20 30 . . . −8 −12 −20 −30 . . .

0

(S4,�)

Figure 2. The Hasse Diagrams of the Clifford’s posets obtained from Examples 3.2.

(ii) The Clifford’s poset (S4,�, 0) from Example 3.2(iv) is bounded below but not above. 0 is
the minimum element while 1,−1 are the maximal elements. Further, it is only a meet
semi-latiice in which

x ∧ y =





0, if (x ∈ N and y ∈ N−)

or (x ∈ N− and y ∈ N),

l.c.m.{x, y}, otherwise,

where N− is the set of negative integers. Once again, note that, according to the usual
ordering, (Z,≤) is neither bounded below nor above.

The following lemma is useful in the Remark 4.4 that follows it.

Lemma 4.3. Let S be a semigroup that satisfies (LLI). Then the following statements are equiv-
alent:

Figure 2. The Hasse diagrams of the Clifford’s posets obtained from Examples 3.2.

(i) Sa ⊆ Sb,

(ii) a ∈ Sb,

(iii) a = xb for some x ∈ S.

Remark 4.4. Consider the order relation based on Green’s L-relation given as follows. If S is a
semigroup, then

a ≤L b ⇐⇒ S1a ⊆ S1b , (6)

where S1 denotes the set S if S has an identity and the set S with an identity adjoined in the
other case. The following two observations are noteworthy:

(i) One can derive the Clifford’s order relation from the above, as shown below:

a ≤L b ⇐⇒ S1a ⊆ S1b ⇐⇒ a ∈ S1b

⇐⇒ a = xb for some x ∈ S1 ⇐⇒ a � b .
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(ii) It is well known that ≤L is only a pre-order on S, i.e., it is only reflexive and transitive,
while it does become an order on the set of L-equivalence classes. Theorem 4.1 shows that if
S satisfies (QP) and (LLI) then ≤L is an order on S, from whence it also follows that the
corresponding L-equivalence classes are singletons.8

5. Clifford’s relation as a natural partial order

What constitutes a natural partial order on a semigroup has seen different interpretations - from
defining it to be natural if the order is defined from the semigroup operation, see for instance, Mitsch
[14] to insisting on some specific compatibility/monotonicity-type conditions, see for instance [6,12].
However, all of them, in one way or the other, seem to insist on the partial order to have the
following properties w.r.t. the semigroup operation and some special subsets:

Coincidence on (ES ,v): Let ES denote the set of idempotents of S. Then the natural partial
order v defined on ES is as follows:

e v f ⇐⇒ ef = fe = e, e, f ∈ ES .

A partial order ≤ on S to be natural is expected to coincide with the order v when restricted
to ES .

Dependence on special properties: A partial order, if applicable only to a special semigroup,
should quintessentially depend on the properties of that special semigroup. For instance, the
order relations defined by those of Nambooripad [16], Conrad [8] and Sussman [19] make
use of the properties of regularity, weak-separativity and quasi-separativity of semigroups,
respectively.

Compatibility: A partial order ≤ on S should be compatible with the semigroup operation, i.e.,
if a ≤ b then ac ≤ bc and ca ≤ cb for any c ∈ S.

In the following we show that the Clifford’s order relation is natural in every sense of its in-
terpretation. In fact, Remark 4.4 makes yet another argument substantiating the Clifford’s order
relation as the natural order.

5.1. Coincidence of � on (ES ,v)

Lemma 5.1. The relation � coincides with v on ES.

P r o o f. If ES = ∅ then it is vacuously true. Let ES 6= ∅ and e � f for some e, f ∈ ES . Then
there exists a g ∈ ES such that e = gf . Now,

e = gf =⇒ ef = gf2 = gf = e.

Then, gf = e⇒ (gf)e = e2 = e, by (QP), we have fe = e. Thus e = ef = fe and hence e v f .

On the other hand, let e v f , which by definition of v implies e = ef and hence, clearly,
e � f . �

8 Note that if S satisfies (LLI), the set S1 in the definition of ≤L in (6) can be replaced by S itself.
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5.2. Compatibility of � on S

a = xb =⇒ ac = (xb)c = x(bc) =⇒ ac � bc.

However, � need not be compatible from the left. While commutativity of S is sufficient, it is not
necessary, for instance, see Example 3.2 (iii).

In the following, we give a necessary and sufficient condition for this.

Proposition 5.2. Let S be a semigroup and let � as defined in (5) be a partial order on S. The
following statements are equivalent:

(i) � is compatible with the semigroup operation.

(ii) For all c, y, b ∈ S there exists an element z ∈ S such that cyb = zcb.

P r o o f. (i) ⇒ (ii): Let c, y, b ∈ S be arbitrary. Let a = yb ∈ S. This implies by (5) that a � b
and hence by the compatibility of � we have that

ca � cb =⇒ cyb � cb =⇒ cyb = zcb

for some z ∈ S, once again by the definition of (5).

(ii) ⇒ (i): Let a � b. It is sufficient to prove that ca � cb for any c ∈ S. Now, there exist a
y ∈ S such that a = yb. By the hypothesis, for each c, y, b ∈ S there exist an element z ∈ S such
that cyb = zcb. Hence, ca = cyb = zcb, which implies that ca � cb. �

6. Clifford’s order and some special posets

In the very same work [4] where Clifford had introduced his order relation (5), he has also proven
his now famous results on the structure of semigroups that give rise to a total order. We give these
results below for ready reference and also to highlight its importance.9 .

Lemma 6.1 (cf. [4: Lemma 1.1]). Let S be a commutative semigroup that is totally ordered w.r.t.
the Clifford’s relation (5). If P 6= ∅ is a proper, absorbent prime ideal10 of S then P, S \ P are
subsemigroups that are totally ordered w.r.t. (5) and S is the ordinal sum of S \ P and P in that
order.

Theorem 6.2 (cf. [4: Theorem 1]). Every commutative semigroup that is totally ordered w.r.t. the
Clifford’s relation (5) is uniquely expressible as the ordinal sum of a totally ordered set of ordinally
irreducible such semigroups.

However, so far, there has been no work discussing the conditions under which the Clifford’s
relation gives rise to a total order. In this section, we not only present an answer to this poser but
also discuss the context in which we may obtain further special order theoretic structures, viz., a
discrete or a bounded poset.

Theorem 6.3. Let S be a semigroup that satisfies (LLI). Then the following are equivalent:

(i) S is L-trivial and the principal left ideals form a chain with respect to inclusion.

(ii) (S,�) is a totally ordered poset.

9 In Section 7.1 we show that even when the Clifford’s order is not total the results may still hold.
10 Please see Section 7.2 for the definitions of these terms.
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P r o o f. (i)⇒ (ii): Since S is an L-trivial semigroup that satisfies (LLI), by Theorem 4.1, (S,�) is
a poset. Since all principal left ideals form a chain with respect to inclusion and by the L-triviality
of S we have the following equivalences for any a, b ∈ S:

Sa ⊆ Sb or Sb ⊆ Sa⇐⇒ a ∈ Sb or b ∈ Sa

⇐⇒ a = xb or b = ya for some x, y ∈ S

⇐⇒ a � b or b � a.

i.e., (S,�) is a totally ordered poset.

(ii) ⇒ (i): Let (S,�) be a totally ordered poset. Then for any a, b ∈ S either a � b or b � a,
which implies that xb = a or ya = b for some x, y ∈ S and hence, the principal left ideals form a
chain with respect to inclusion. �

An alternate form of Theorem 6.2 purely in terms of the algebraic properties of a semigroup is
given below:

Theorem 6.4. Let S be a commutative QP-semigroup in which the principal left ideals form a
chain with respect to inclusion. Then S is uniquely expressible as the ordinal sum of a totally
ordered set of ordinally irreducible such semigroups.

A partial order on S is said to be trivial if all elements of S are incomparable.

Proposition 6.5. Let S be a semigroup. The following are equivalent:

(i) The Clifford’s poset (S,�) is trivial.

(ii) The semigroup S is right singular, i.e., xy = y for all x, y ∈ S.

P r o o f. (i) ⇒ (ii): Suppose that the semigroup operation is not a right projection map. Then
there exist x, y ∈ S and t 6= y ∈ S such that xy = t. Hence, by definition of order in (5), we have
t � y, which is a contradiction.

(ii) ⇒ (i): Follows trivially. �
Proposition 6.6. Let (S,�) be a poset. The following are equivalent:

(i) S is bounded above.

(ii) There exits a unique 1 ∈ S such that S1 = S.

P r o o f. (i) ⇒ (ii): Since the poset (S,�) is bounded above, there exists a unique 1 ∈ S such that
a � 1 for all a ∈ S. By definition of order in (5), for every a ∈ S there exists x ∈ S such that
x1 = a, which implies that S ⊆ S1. Clearly, S1 ⊆ S, hence S1 = S.

(ii) ⇒ (i): Since S1 = S, for every a ∈ S there exists x ∈ S such that x1 = a. Hence, by (5),
we have a � 1 for all a ∈ S. �
Lemma 6.7. Let S be a commutative semigroup such that the Clifford’s poset (S,�) is bounded
above. Then S is an integral ordered monoid.11

P r o o f. Let 1 be the upper bound of S. We claim that 1 is the identity of S.

From Proposition 6.6 we know that there exists a w ∈ S s.t. w1 = 1. Let a ∈ S be arbitrary.
Since a � 1, we have that there exists an x ∈ S s.t. x1 = a. Now, x1 = x(w1) = w(x1) = wa = a,
i.e., w is the left identity and by commutativity of S also its right and the unique identity.

Finally, since w1 = 1w = 1 we have that 1 � w, from whence we obtain that w = 1 and that S
is an integral monoid. �
11 A monoid where the operation is compatible w.r.t. the order and the identity is also the top element.
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The results of this section show that, unlike in the case of the order from Mitsch, the Clifford’s
relation allows a large enough class of semigroups to exhibit various rich order theoretic structures.

7. Clifford’s relation on an ordered semigroup

As has already been mentioned, an order theoretic exploration of an algebraic object allows one
to glean hitherto unknown insights. In the following we consider a particular situation which offers
yet novel perspectives.

It is often the case that a semigroup S may already have been endowed with an order, consider
for instance, the case of S = (N,+) with the usual order on N. Note that this order may be
different from the one we may obtain employing the many (ordering) relations proposed in the
literature, based on the type of semigroup S is. Clearly, one always gets an order from the relation
defined by Mitsch [14].

In this context, we present two results in this section, the first of which enables us to gain some
alternate perspectives on the semigroup and the second allows us to construct examples showing
that the assumption of total order in Lemma 6.1 and Theorem 6.2 are only sufficient and not
necessary.

The results of this section show that Clifford’s order not only leverages existing underlying
orders but also offers sufficient structural information about a semigroup even when the obtained
poset is not grandiose.

7.1. Semigroups and orders: An alternate perspective

In this section, we present a result which is quite interesting in its own right. Firstly, it shows
that if the semigroup operation satisfies a particular type of boundedness w.r.t. any order on S,
then it satisfies (5) and hence may lead to, arguably, a richer kind of order-theoretic structure.
Secondly, it also shows that w.r.t. the new order, the semigroup itself may augment its algebraic
characteristics.

Proposition 7.1. Let (S,≤) be a semigroup with a partial order ≤. If the semigroup operation
satisfies one of the following inequalities:

xy ≤ y for every x, y ∈ S, (7)

xy ≥ y for every x, y ∈ S, (8)

then S satisfies (QP).

P r o o f. Let a, b, c ∈ S. If possible, let a(bc) = c but bc = d 6= c. If xy ≥ y for every x, y ∈ S, then
we have that bc = d > c, from whence we obtain a(bc) = ad ≥ d > c, a contradiction. Thus bc = c
and S satisfies (QP). �

In the rest of the section, we present some illustrative examples that highlight different aspects
of the above result.

Example 7.2. Note that in the above, even if S satisfies (LLI), � need not coincide with ≤. For
instance, consider the monoid S = {0, .1, . . . , .9, 1} with the operation ∗ given as:

x ∗ y =

{
0, if x + y < 1,

min(x, y), otherwise.
(9)
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Figure 3. The Clifford’s posets from Examples 7.2 and 7.3.

Example 7.2. Note that in the above, even if S satisfies (LLI), � need not coincide with ≤. For
instance, consider the monoid S = {0, .1, . . . , .9, 1} with the operation ∗ given as:

x ∗ y =

{
0, if x + y < 1 ,

min(x, y), otherwise .
(9)

We clearly see that with the usual ordering on S, which is a chain, x∗ y ≤ y and hence the monoid
(S, ∗) satisfies (QP). Further, since (S, ∗) satisfies (LLI) the Clifford’s relation � gives rise to a
partial order on S. However, the Clifford’s order can be seen to be different as given in the Hasse
diagram in Figure 3.

On the other hand, if we consider (N∪ 0,+) we see, that x + y ≥ y and hence it satisfies (QP)
and the obtained order � is the dual of the natural order.

Example 7.3. Consider the semigroup (N∪{0},×) with the usual order ≤ on N. It is easy to see
that it does not satisfy either (8) or (7). For instance, let y > 0. If x = 0 then xy 6≥ y, while if
x > 0 then xy 6≤ y. However, (N ∪ {0},×) is a QP-semigroup.

While (N,≤) is only a bounded below chain, the poset P = (N ∪ {0} ,�×, 0, 1) (see Figure 3 ) is
bounded (both above and below) with 1 and 0 as the maximum and minimum elements. In fact, it
is the bounded lattice with the meet and join operations given as the g.c.d. and l.c.m. of any two
numbers.

The following example plays a dual role - not only does it show that neither of the conditions
(8) and (7) is necessary, but allows us to illustrate another perspective.

Example 7.4. Consider the lattice (S = {0,m, n, e, p, s, k, t, 1},≤, 0, 1) whose Hasse diagram is
given in Figure 4 and the operations U and UE defined on S1 in Table 1. Note that while the
original lattice (S,≤) is only bounded it is neither modular (consider the sublattice {0,m, e, s, k})
nor a chain, whereas the obtained Clifford’s posets (S,�U ) and (S,�UE

) are modular and a chain,
respectively.

Figure 3. The Clifford’s posets from Examples 7.2 and 7.3.

We clearly see that with the usual ordering on S, which is a chain, x ∗ y ≤ y and hence the monoid
(S, ∗) satisfies (QP). Further, since (S, ∗) satisfies (LLI) the Clifford’s relation � gives rise to a
partial order on S. However, the Clifford’s order can be seen to be different as given in the Hasse
diagram in Figure 3.

On the other hand, if we consider (N ∪ 0,+) we see, that x + y ≥ y and hence it satisfies (QP)
and the obtained order � is the dual of the natural order.

Example 7.3. Consider the semigroup (N ∪ {0},×) with the usual order ≤ on N. It is easy to
see that it does not satisfy either (8) or (7). For instance, let y > 0. If x = 0 then xy 6≥ y, while if
x > 0 then xy 6≤ y. However, (N ∪ {0},×) is a QP-semigroup.

While (N,≤) is only a bounded below chain, the poset P = (N∪{0} ,�×, 0, 1) (see Figure 3 ) is
bounded (both above and below) with 1 and 0 as the maximum and minimum elements. In fact,
it is the bounded lattice with the meet and join operations given as the g.c.d. and l.c.m. of any
two numbers.

The following example plays a dual role - not only does it show that neither of the conditions
(8) and (7) is necessary, but allows us to illustrate another perspective.

Example 7.4. Consider the lattice (S = {0,m, n, e, p, s, k, t, 1},≤, 0, 1) whose Hasse diagram is
given in Figure 4 and the operations U and UE defined on S1 in Table 1. Note that while the
original lattice (S,≤) is only bounded it is neither modular (consider the sublattice {0,m, e, s, k})
nor a chain, whereas the obtained Clifford’s posets (S,�U ) and (S,�UE

) are modular and a chain,
respectively.

Example 7.4 also allows to make an interesting observation. Note that while U1 and U2 are
ordered monoids w.r.t. (S,≤), they become integral ordered monoids w.r.t. the Clifford’s poset
(S,�) obtained.
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Table 1. The Functions U and UE give order semigroups on (S,≤).

U 0 m n e p s k t 1

0 0 0 0 0 p s k t 1

m 0 m m m p s k t 1

n 0 m n n p s k t 1

e 0 m n e p s k t 1

p p p p p 1 1 1 1 1

s s s s s 1 1 1 1 1

k k k k k 1 1 1 1 1

t t t t t 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

UE 0 m n e p s k t 1

0 0 0 0 0 p s k t 1

m 0 m m m p s k t 1

n 0 m n n p s k t 1

e 0 m n e p s k t 1

p p p p p p s k t 1

s s s s s s s k t 1

k k k k k k k k t 1

t t t t t t t t t 1

1 1 1 1 1 1 1 1 1 1
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U 0 m n e p s k t 1
0 0 0 0 0 p s k t 1
m 0 m m m p s k t 1
n 0 m n n p s k t 1
e 0 m n e p s k t 1
p p p p p 1 1 1 1 1
s s s s s 1 1 1 1 1
k k k k k 1 1 1 1 1
t t t t t 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

UE 0 m n e p s k t 1
0 0 0 0 0 p s k t 1
m 0 m m m p s k t 1
n 0 m n n p s k t 1
e 0 m n e p s k t 1
p p p p p p s k t 1
s s s s s s s k t 1
k k k k k k k k t 1
t t t t t t t t t 1
1 1 1 1 1 1 1 1 1 1

Table 1. The Functions U and UE give order semigroups on (S,≤).
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1
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([0, 1],�∗, 1, 0.5)

Figure 4. (a) – (c) The lattice (S1,≤, 0, 1) and Clifford’s order obtained from the
operations given in Table 1. (d) Clifford’s poset obtained on [0, 1] by the operation
(10).

Example 7.4 also allows to make an interesting observation. Note that while U1 and U2 are
ordered monoids w.r.t. (S,≤), they become integral ordered monoids w.r.t. the Clifford’s poset
(S,�) obtained.

7.2. On the Necessity of a Total Order from Clifford’s Relation. We begin this subsection
with a result which characterises some special ordered monoids in terms of its constitutent QP-
subsemigroups. It also paves the way to construct examples that show that some of the assumptions
in Lemma 6.1 and Theorem 6.2 are not necessary.

Figure 4. (a)–(c) The lattice (S1,≤, 0, 1) and Clifford’s order obtained from the operations

given in Table 1. (d) Clifford’s poset obtained on [0, 1] by the operation (10).

7.2. On the necessity of a total order from Clifford’s relation

We begin this subsection with a result which characterises some special ordered monoids in
terms of its constitutent QP-subsemigroups. It also paves the way to construct examples that
show that some of the assumptions in Lemma 6.1 and Theorem 6.2 are not necessary.

Theorem 7.5. Let (S, ·,≤) be an ordered monoid with identity e. If e is comparable with all
elements of S w.r.t. ≤, then S can be written as the disjoint union of two QP-subsemigroups.
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P r o o f. Let (S, ·,≤) be an ordered monoid with identity e. Let us denote by S+ the set of all
elements greater than e, i.e., S+ = {x ∈ S : e ≤ x}. Let S− = S \ S+ = {x ∈ S : x < e}.

Let x, y ∈ S+, i.e., e ≤ x and e ≤ y. By the compatibility of · w.r.t. ≤ we have that e ≤ x =
xe ≤ xy and therefore xy ∈ S+. Clearly, S+ inherits the associative property from S so (S+, ·) is
a semigroup.

From the above it can be seen that for any x, y ∈ S+ we have, that y = ey ≤ xy and by
Proposition 7.1, we see that · satisfies (QP) on S+.

Similarly, one can show that (S−, ·) is also a QP-semigroup. Thus S = S+ ∪ S− is a disjoint
union of its QP-subsemigroups. �
Corollary 7.6. Every totally ordered monoid is a disjoint union of QP-semigroups.

Corollary 7.7. Let S be an ordered semigroup with identity e. If e is either the top or the bottom
element of S then S is a QP-semigroup.

Example 7.8.

(i) The additive groups of Z, R, and Q are all ordered groups under the usual ordering and by
Theorem 7.5 can be written as disjoint union of two QP-semigroups, viz., of the negative
and non-negative elements.

(ii) Consider the ordered monoid S =([0, 1], ∗,≤, e = 0.5) where ≤ is the usual order and ∗ is
given as follows:

x ∗ y =





0, if (x, y) ∈ {(0, 1), (1, 0)}
xy

xy + (1− x)(1− y)
otherwise

.

That ∗ does not satisfy (QP) on [0, 1] is clear since 0.1 ∗ (0.9 ∗ 0.9) = 0.9 but 0.9 ∗ 0.9 =
81
82 = 0.987 6= 0.9. However, the above result shows that ([0, 0.5), ∗) and ([0.5, 1], ∗) are both
QP-semigroups.

In fact, it can be seen that ([0, 0.5], ∗) and ([0.5, 1], ∗) are both QP-monoids with 0.5 as
the identity.

It can be surmised from [4] that the author considered only semigroups that were totally ordered,
w.r.t. Clifford’s relation (5), due to the terse structural reduction obtained in terms of irreducible
subsemigroups of the same kind. However, based on the above results, we can construct examples
that show that the assumption of total order w.r.t. (5) in Lemma 6.1 and Theorem 6.2 is not
necessary.

We recall some of the definitions that will be used in the immediate sequel. An ideal P of S is
prime if S \ P is a subsemigroup of S. If a, b ∈ S are such that ab = a, a is said to absorb b. An
ideal P of S will be called absorbent if a ∈ P and b 6∈ P imply ab = a.

Now, let us consider the following ordered monoid S = ([0, 1], ∗,≤, e = 0.5) where

x ∗ y =





1, if x, y ∈ [0.5, 1],

min(x, y), if x, y ∈ [0, 0.5],

max(x, y), otherwise.

(10)

Let S+ = [0.5, 1] and S− = [0, 0.5). It is clear from Theorem 7.5 that S+ is a QP-subsemigroup.
In fact, it can be seen that SS+ = S+S ⊆ S+ and hence is an ideal. Further, S \ S+ = S− is a
subsemigroup of S and hence S+ is, in fact, a prime ideal and by the definition of ∗ in (10) S+ is
also absorbent. It is easy to see now that S is, in fact, an ordinal sum of S \ S+ and S+ as given
in Lemma 6.1.
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Now, S itself satisfies both (LLI) and (QP) and hence gives rise to a poset w.r.t. the Clifford’s
relation (5). However, this order is not a total order as can be seen from the Hasse diagram given
in Figure 4 (d). Note that no two elements x, y ∈ (0.5, 1) are comparable between themselves.

8. Some concluding remarks

The study contained in this paper can be seen as an exploration of semigroups that are linear
w.r.t. some known and useful order relations, namely those of Mitsch and Clifford. As the results
in this work show, mere boundedness w.r.t. Mitsch’s relation seems to be very stringent on the
semigroup and does not lead us to any further insights into the structure of the semigroup. In the
case of Clifford’s relation, even when it does not make the semigroup linear, we seem to be able to
extract a lot of structural information.

In conjunction with the interesting connections between Clifford’s relation and Green’s L-equiv-
alences that have been shown, the current study nudges the Clifford’s relation towards preeminence
among all the orders defined on semigroups.
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