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Abstract

Recently, Yager [R. Yager, On some new classes of implication operators and their role in approximate reasoning,
Information Sciences 167 (2004) 193–216] has introduced a new class of fuzzy implications, denoted Jf, called the f-gen-
erated implications and has discussed some of their desirable properties, such as neutrality, exchange principle, etc. In this
work, we discuss the class of Jf implications with respect to three classical logic tautologies, viz., distributivity, law of
importation and contrapositive symmetry. Necessary and sufficient conditions under which Jf implications are distributive
over t-norms and t-conorms and satisfy the law of importation with respect to a t-norm have been presented. Since the
natural negations of Jf implications, given by N Jf ðxÞ ¼ Jf ðx; 0Þ, in general, are not strong, we give sufficient conditions
under which they become strong and possess contrapositive symmetry with respect to their natural negations. When
the natural negations of Jf are not strong, we discuss the contrapositivisation of Jf. Along the lines of Jf implications, a
new class of implications called h-generated implications, Jh, has been proposed and the interplay between these two types
of implications has been discussed. Notably, it is shown that while the natural negations of Jf are non-filling those of Jh are
non-vanishing, properties which determine the compatibility of a contrapositivisation technique.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Fuzzy implication operators play an important role both in Approximate Reasoning and Fuzzy Control
Theory. The most established and well-studied classes of fuzzy implications are R-, S- and QL-implications
(see, for example, [15,16,19,25] for their definitions and properties). Recently, Yager [31] has introduced a
new class of implications, denoted Jf, called the f-generated implications – which in general are different from
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the above categories (see [3,4]) – and discussed their desirable properties as listed in [19], such as neutrality,
exchange principle, etc.

1.1. Motivation for this work

Lately there has been a spate of works that discusses and explores the validity of many classical logic tau-
tologies in fuzzy logic, especially those that involve fuzzy implications. Three such classical logic tautologies
involving fuzzy implications that have obtained maximum attention from researchers are those that deal with
the distributivity of fuzzy implications over t-norms and t-conorms, the satisfaction of the law of importation
with respect to a t-norm and contrapositive symmetry.

Recently there has been a lot of discussion [7,12–14,22,26] centred around a paper by Combs and Andrews
[11] where they attempt to exploit the equivalence

ðp ^ qÞ ! r � ðp ! rÞ _ ðq! rÞ ð1Þ

towards eliminating combinatorial rule explosion in fuzzy systems. (1) is only one of four such equations as
listed in [17], which deals with the distributivity of implication operators with respect to t-norms and t-con-
orms, the rest of them being

ðp _ qÞ ! r � ðp ! rÞ ^ ðq! rÞ; ð2Þ
r! ðs ^ tÞ � ðr! sÞ ^ ðr! tÞ; ð3Þ
r! ðs _ tÞ � ðr! sÞ _ ðr! tÞ: ð4Þ

In [26], Trillas and Alsina have investigated the conditions under which the following general form of (1),
where p,q, r 2 [0, 1]

JðT ðp; qÞ; rÞ � SðJðp; rÞ; Jðq; rÞÞ ð5Þ
holds for the classes of R-, S- and QL-implications, where T and S denote any t-norm and t-conorm respec-
tively. The generalisations of Eqs. (2)–(4) are as follows:

JðSðp; qÞ; rÞ � T ðJðp; rÞ; Jðq; rÞÞ; ð6Þ
Jðr; T 1ðs; tÞÞ � T 2ðJðr; sÞ; Jðr; tÞÞ; ð7Þ
Jðr; S1ðs; tÞÞ � S2ðJðr; sÞ; Jðr; tÞÞ; ð8Þ

where p,q, r, s, t 2 [0, 1].
Conditions under which Eqs. (6)–(8) hold for R- and S-implications have appeared in [7]. Except for the

case when J is an R-implication obtained from a strict t-norm T and S1 = S2 is a nilpotent t-conorm in (8),
in all the other cases, if J is an R- or an S-implication, the t-norm T and the t-conorm S do get fixed to
TM(x,y) = min(x,y) and SM(x,y) = max(x,y), respectively. Also Eq. (7) has been discussed in [1,2] under
the assumptions that T = T1 = T2 is a strict t-norm and the implication J is continuous except at (0,0).

The above equations play an important role in lossless rule reduction in Fuzzy Rule Based Systems
[5,6,24,29]. Thus it becomes both interesting and important to discuss the validity of these distributive equa-
tions for a given fuzzy implication in the hope of obtaining t-norms T and t-conorms S other than TM and SM,
respectively. We will see below that the family of f-generated implications has more solutions to (7) than an
R- or an S-implication. On the other hand, for Yager’s f-generated implication too the solution to (8) is not
fully settled. Thus it is worthwhile to study the distributivity of Jf over t-norms and t-conorms.

The equation (x ^ y)! z � (x! (y! z)), known as the law of importation, is another desirable tautology
in classical logic. The general form of the above equivalence is given by

JðT ðx; yÞ; zÞ � Jðx; Jðy; zÞÞ; x; y; z 2 ½0; 1�;
where T is a t-norm and J a fuzzy implication. In A-implications defined by Turksen et al. [28], the general
form of the law of importation, with T as the product t-norm TP(x,y) = x Æ y, was taken as one of the axioms.
Baczyński [1] has studied the law of importation in conjunction with Eq. (7) and has given a characterisation.
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Bouchon-Meunier and Kreinovich [23] have characterised fuzzy implications that have the law of importation
as one of the axioms along with Eq. (7).

They have considered the minimum t-norm TM for T and claim that Mamdani’s choice of implication
‘‘min’’ is ‘‘not so strange after all’’. Ref. [8] discusses the validity of this tautology for R-, S- and QL-impli-
cations and its possible applications in Approximate Reasoning are explored.

Contrapositive symmetry is yet another classical tautology desirable for fuzzy implications. Contraposi-
tive symmetry plays a significant role in classical logic structures wherein ‘‘proof by contradiction’’ is a com-
monly employed method to validate conjectures. Works in [9,10,20] discuss ways of imparting
contrapositive symmetry with respect to any arbitrary strong negation N. Also contrapositive symmetry
of fuzzy implications has been studied in a functional equation framework in [2] along with the law of
importation and Eq. (7).

This work, where we discuss the class of Jf implications with respect to three classical logic tautologies, viz.,
distributivity over t-norms and t-conorms, law of importation and contrapositive symmetry, can be seen as
part of the above efforts.

Yager in [31] has done an extensive analysis of the impact of this new class of implications in Approximate
Reasoning by introducing concepts like strictness of implications and sharpness of inference, among others.
This work can also be seen as a continuation of the above study on the classical tautologies satisfied by
Yager’s f-generated implications that have an influence in Approximate Reasoning. For more recent works
on the role of fuzzy logic operators in computing with words see [27,32].

1.2. Outline of this work

Firstly, by discussing the four different general forms of distributive equations we show that the Yager’s
class of f-generated implications does have more solutions for one of them than that possessed by R-, S- or
QL-implications. We also give necessary and sufficient conditions under which the class of Jf implications sat-
isfies the law of importation. Following this, we give sufficient conditions under which the natural negations of
Jf implications are strong and the implications Jf possess contrapositive symmetry with respect to their natural
negations.

Since the natural negations of Jf implications, in general, are not strong we discuss the contrapositivisation
of Jf implications using the techniques proposed in [10]. We have shown that, in general, only the upper con-
trapositivisation is N-compatible with Jf.

Finally, taking cue from the f-generated implications Jf, we also present a new class of implications, Jh,
called h-generated implications and show that they have some very useful properties, viz., their natural nega-
tions are non-vanishing, and hence the lower contrapositivisation is N-compatible with Jh.

The paper is organised as follows. In Section 2, we recall the class of f-generated fuzzy implications Jf pro-
posed by Yager in [31] and also some relevant results on t-norms and t-conorms. In Section 3, we investigate
the distributivity of Jf over t-norms and t-conorms, while in Section 4, the law of importation with respect to a
t-norm T is explored and in Section 5, the contrapositive symmetry of Jf implications is discussed. In Section 6,
we present a new class of implications, Jh, called h-generated implications and discuss their properties vis-á-vis
contrapositivisation. Section 7 gives some concluding remarks.

2. Preliminaries

To make this work self-contained, we briefly mention some of the concepts and results employed in the rest
of the work.

2.1. Negations

Definition 1 [19, Definition 1.1, p. 3]. A negation N is a function from [0, 1] to [0, 1] such that

• N(0) = 1; N(1) = 0;
• N is non-increasing.

932 J. Balasubramaniam / Information Sciences 177 (2007) 930–946
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Definition 2. A negation N is said to be

• non-vanishing if N(x) 5 0 for any x 2 [0, 1), i.e., N(x) = 0 iff x = 1;
• non-filling if N(x) 5 1 for any x 2 (0,1], i.e., N(x) = 1 iff x = 0.

A negation N that is not non-filling (non-vanishing) will be called filling (vanishing).

Definition 3 [19, Definition 1.2, p. 3]. A negation N is called strict if in addition N is strictly decreasing and
continuous.

Note that if a negation N is strict it is both non-vanishing and non-filling, but the converse is not true.

Definition 4 [19, Definition 1.2, p. 3]. A strong negation N is a strict negation N that is also involutive, i.e.,
N(N(x)) = x, "x 2 [0,1].

2.2. T-Norms and T-conorms

Definition 5 [18, Definition 1.1, p. 4]. A function T from [0, 1]2! [0,1] is called a triangular norm (shortly
t-norm) if, for all x,y,z 2 [0,1],

T ðx; yÞ ¼ T ðy; xÞ; ðT1Þ

T ðx; T ðy; zÞÞ ¼ T ðT ðx; yÞ; zÞ; ðT2Þ

T ðx; yÞ 6 T ðx; zÞ whenever y 6 z; ðT3Þ

T ðx; 1Þ ¼ x: ðT4Þ

Definition 6 [18, Definition 1.13, p. 11]. A function S : [0, 1]2! [0, 1] is called a triangular conorm (shortly
t-conorm) if, for all x,y,z 2 [0, 1], it satisfies

Sðx; yÞ ¼ Sðy; xÞ; ðS1Þ

Sðx; Sðy; zÞÞ ¼ SðSðx; yÞ; zÞ; ðS2Þ

Sðx; yÞ 6 Sðx; zÞ whenever y 6 z; ðS3Þ

Sðx; 0Þ ¼ x: ðS4Þ

Definition 7 [18, Definition 2.9, p. 26; Definition 2.13, p. 28]. A t-norm T (t-conorm S resp.) is said to be

• Continuous if it is continuous in both the arguments.
• Idempotent if T(x,x) = x (S(x,x) = x) for all x 2 [0, 1].
• Archimedean if T (S resp.) is such that for every x,y 2 (0,1] (x,y 2 [0, 1) resp.) there is an n 2 N with

xðnÞT < y ðxðnÞS > yÞ.
• Strict if T (S resp.) is continuous and stricly monotone, i.e., T(x,y) < T(x,z) (S(x,y) < S(x,z)) whenever

x > 0 (x < 1 resp.) and y < z.
• Nilpotent if T (S resp.) is continuous and if each x 2 (0,1) is such that xðnÞT ¼ 0 ðxðnÞS ¼ 1Þ for some n 2 N.

Table 1 lists the basic t-norms and t-conorms along with their properties.

Theorem 1 [18, Theorem 5.1, p. 122]. T is a continuous Archimedean t-norm iff T has a continuous additive

generator, i.e., there exists a continuous, strictly decreasing function f :[0,1]! [0,1] with f(1) = 0, which is

uniquely determined upto a positive multiplicative constant, such that for all x,y 2 [0,1]

J. Balasubramaniam / Information Sciences 177 (2007) 930–946 933
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T ðx; yÞ ¼ f ð�1Þðf ðxÞ þ f ðyÞÞ; ð9Þ

where f (�1) is the pseudo-inverse of f and is defined as

f ð�1ÞðxÞ ¼
f �1ðxÞ if x 2 ½0; f ð0Þ�;
0 if x 2 ½f ð0Þ;1�:

�
ð10Þ

Note that if f(0) =1 then T is strict and if f(0) <1 then T is nilpotent.

Definition 8 [18, Definition 3.39, p. 79]. A multiplicative generator of a t-conorm S is a strictly decreasing
function / : [0, 1]! [0, 1], which is left-continuous in 1 and satisfies /(0) = 1, such that for all x,y 2 [0, 1] we
have

Sðx; yÞ ¼ /ð�1Þð/ðxÞ � /ðyÞÞ;

where /(�1) is the pseudo-inverse of /.

For more details on the pseudo-inverses of monotone functions see, for example, [18], Section 3.1.

2.3. Yager’s class of implication operators

Definition 9 [19, Definition 1.15, p. 22]. A function J from [0, 1]2 to [0, 1] is called a fuzzy implication if for all
x,y,z 2 [0,1] it has the following properties:

Jðx; zÞP Jðy; zÞ if x 6 y; ðJ1Þ
Jðx; yÞ 6 Jðx; zÞ if y 6 z; ðJ2Þ
Jð0; yÞ ¼ 1; ðJ3Þ
Jðx; 1Þ ¼ 1; ðJ4Þ
Jð1; 0Þ ¼ 0: ðJ5Þ

Definition 10 (cf. [25]). A fuzzy implication J is said to have

• the neutrality property or is said to be neutral if

Jð1; yÞ ¼ y; y 2 ½0; 1�; ðNPÞ
• the exchange property if

Jðx; Jðy; zÞÞ ¼ Jðy; Jðx; zÞÞ; x; y; z 2 ½0; 1�: ðEPÞ

Definition 11 [31, p. 196]. An f-generator is a function f : [0,1]! [0,1] that is a strictly decreasing and con-
tinuous function with f(1) = 0. Also we denote its pseudo-inverse by f (�1) given by (10).

Table 1
Examples of t-norms and t-conorms and their properties

t-Norm T t-Conorm S Properties

TM: min(x,y) SM: max(x,y) Continuous, idempotent
TP: x Æ y SP: x + y � x Æ y Strict
TLK: max(x + y � 1,0) SLK: min(x + y, 1) Nilpotent

T D :
y if x ¼ 1
x if y ¼ 1
0 otherwise

8<
: SD :

x if y ¼ 0
y if x ¼ 0
1 otherwise

8<
: Archimedean, not continuous

934 J. Balasubramaniam / Information Sciences 177 (2007) 930–946
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J f ðx; yÞ ¼ f ð�1Þðx � f ðyÞÞ; x; y 2 ½0; 1�;

with the understanding that 0 ·1 = 0, is called an f-generated implication.

It can easily be shown, as in [31, p. 197], that Jf is a fuzzy implication.

Remark 13. Note that since x 6 1) x Æ f(y) 6 f(y) 6 f(0) we have Jf(x,y) = f (�1)(x Æ f(y)) = f�1(x Æ f(y)) for all
x,y 2 [0, 1]. Also as can be seen from Theorem 1 and as noted in [31], the f-generators can be used as additive
generators for generating t-norms.

The following properties of Jf have already been discussed by Yager (see [31, p. 197]):

• Neutrality: Jf(1,x) = f (�1)(1 Æ f(x)) = f (�1)(f(x)) = x.
• Exchange principle: Jf (x,Jf(y,z)) = f (�1)(x Æ f (Jf(y,z))) = f (�1)(x Æ f(f (�1)(y Æ f(z)))) = f (�1)(x Æ y Æ f(z)) =

Jf(y,Jf(x,z)).

Table 2 gives a few examples from the above class Jf (see [31, pp. 198–200]).

3. On the distributivity of f-generated implications Jf over t-norms and t-conorms

In this section, we study the distributivity of the f-generated implications Jf over t-norms and t-conorms, by
studying the conditions under which Jf implications satisfy Eqs. (5)–(8).

3.1. On Eqs. (5) and (6)

Theorem 2 (cf. [7, Theorems 5 and 6]). Any neutral fuzzy implication J that is one-to-one in the first variable,

when the second variable is in (0,1), reduces

(i) (5) to (1) and satisfies (1);

(ii) (6) to (2) and satisfies (2).

Proposition 14 [7, Propositions 3 and 6]. Let J be a binary operator on [0,1]. Then the following are equi-

valent:

• J is non-increasing in the first variable;

• J satisfies (1), i.e., (5) with T = TM and S = SM;
• J satisfies (2), i.e., (6) with T = TM and S = SM.

Lemma 1. Let Jf be an f-generated implication. Jf is one-to-one in the first variable, while the second variable lies

in (0,1).

Proof. Let y 2 (0, 1) be fixed and let x1,x2 2 [0,1] such that Jf (x1,y) = Jf (x2,y). Now since f(y) 2 (0,1) we
have

Table 2
Examples of some Jf implications with their f-generators

Name f(x) f(0) Jf(x,y)

Yager �lnx 1 yx

Frank � ln sx�1
s�1

� �
; s > 0; s 6¼ 1 1 logs{1 + (s � 1)1�x Æ (sy � 1)x}

Trigonometric cos p
2 � x
� �

1 cos�1 x � cos p
2 � y
� �� �

Yager’s class (1 � x)k; k > 0 1 1� x
1
k � ð1� yÞ

J. Balasubramaniam / Information Sciences 177 (2007) 930–946 935
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J f ðx1; yÞ ¼ J f ðx2; yÞ ) f �1ðx1 � f ðyÞÞ ¼ f �1ðx2 � f ðyÞÞ
) x1 � f ðyÞ ¼ x2 � f ðyÞ
) x1 ¼ x2: �

Theorem 3. Let Jf be an f-generated implication. Then Jf satisfies (5) if and only if S = SM and T = TM.

Proof. ():) Let Jf satisfy (5). Since Jf is neutral and one-to-one in the first variable with the second variable in
(0,1), by Theorem 2(i) we have that S = SM and T = TM.

((:) On the other hand, since Jf is a fuzzy implication it has (J1) and thus by Proposition 14 J satisfies (5)
with S = SM and T = TM. h

Theorem 4. Let Jf be an f-generated implication. Then Jf satisfies (6) if and only if S = SM and T = TM.

Proof. Again by the one-to-oneness of Jf in the first variable and Theorem 2(ii). h

3.2. On Eqs. (7) and (8)

To discuss Eqs. (7) and (8) w.r.to Jf we consider two cases under each of them, viz., when f(0) =1 and
f(0) <1.

First we note that, since Jf is neutral, i.e., Jf (1, y) = y, "y 2 [0, 1], we have that T1 = T2 = T in (7) and
S1 = S2 = S in (8). Hence when Jf satisfies (7) and (8) they reduce to (11) and (12), respectively

J f ðr; T ðs; tÞÞ � T ½J f ðr; sÞ; J f ðr; tÞ�; ð11Þ
J f ðr; Sðs; tÞÞ � S½J f ðr; sÞ; J f ðr; tÞ�: ð12Þ

Proposition 15 [7, Propositions 9 and 12]. Let J be a binary operator on [0,1]. Then the following are
equivalent:

• J is non-decreasing in the second variable;

• J satisfies (3), i.e., (11) with T = TM;

• J satisfies (4), i.e., (12) with S = SM.

3.2.1. On Eqs. (7) and (8) when f(0) =1
In the following result we show that Jf implications obtained from f-generators, such that f(0) =1, satisfy

(11) for t-norms other than min.

Theorem 5. Let Jf be obtained from an f-generator where f(0) =1. Then Jf satisfies the distributive law (11) if

(i) T = TM, or

(ii) T is the t-norm obtained using f as the additive generator, i.e., T(x, y) = f (�1)(f(x) + f(y)).

Proof

(i) Since Jf is an implication operator, and thus has (J2), from Proposition 15 we see that Jf satisfies (11)
when T = TM.

(ii) Let T be the t-norm obtained using f as the additive generator, i.e., T(x,y) = f (�1)(f(x) + f(y)). Since
f(0) =1 we know that f (�1) = f�1, f � f�1 = id and we have

936 J. Balasubramaniam / Information Sciences 177 (2007) 930–946
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J f ðr; T ðs; tÞÞ ¼ f �1ðr � f ðT ðs; tÞÞÞ
¼ f �1ðr � f � f �1ðf ðsÞ þ f ðtÞÞÞ
¼ f �1ðr � ðf ðsÞ þ f ðtÞÞÞ * f � f �1 ¼ id

¼ f �1ðr � f ðsÞ þ r � f ðtÞÞ
¼ f �1ðf � f �1ðr � f ðsÞÞ þ f � f �1ðr � f ðtÞÞÞ
¼ f �1ðf ðJ f ðr; sÞÞ þ f ðJ f ðr; tÞÞÞ
¼ T ½J f ðr; sÞ; J f ðr; tÞ�: �

In [7] it was shown that when J is an R- or an S-implication (7) holds if and only if T1 = T2 = TM. Along
similar lines the same can be proven when J is a QL-implication too. As noted earlier, since (7) has an impor-
tant role to play in rule reduction, from Theorem 5, we note that when J is an f-generated implication, there
exist other choices for T than min, unlike in the case of R-, S- and QL-implications.

Example 1 shows that if the t-norm T in (11) is such that its generator is different from the f-generator used
to obtain Jf then (11) may not be satisfied.

Example 1. Let f(x) = �lnx, then f(0) =1, Jf(x,y) = JY(x,y) = yx, the Yager’s implication [30]. Considering f

as an additive generator we get the product t-norm TP(x,y) = x Æ y. Now, let T be the Łukasiewicz t-norm
TLK(x,y) = max(0,x + y � 1).

Now, letting r = s = t = 0.4, we have JY(r, s) = JY(r, t) = 0.40.4 = 0.693 while TLK(s, t) = max(0, 0.4 + 0.4 �
1) = 0. Hence JY(r,TLK(s, t)) = 00.4 = 0 while TLK[JY(r, s), JY(r, t)] = TLK(0.693, 0.693) = 0.386, i.e
JY(r,TLK(s, t)) 5 TLK[JY(r, s),JY(r, t)], when r = s = t = 0.4.

Again by (J2) and Proposition 15 we see that Jf satisfies (12) when S = SM. From Example 2 it is reasonable
to surmise that a result similar to Theorem 5 may not be possible.

Example 2. Let f(x) = �lnx, then f(0) =1, Jf(x,y) = JY(x,y) = yx, the Yager’s implication [30].

• Considering f as an additive generator we get the product t-norm TP whose dual t-conorm with respect to
1 � x is the strict Algebraic Sum t-conorm SP(x,y) = x + y � x Æ y.

• Let us define an increasing continuous function / : [0,1]! [0,1) from f(x) = �lnx as follows: /(x) =
exp{�f(x)} = exp{lnx} = x. Now, considering / as an additive generator of a t-conorm, we get the nil-

potent Łukasiewicz t-conorm SLK(x,y) = min(x + y, 1).

From Table 3 it is clear that (12) does not hold when J is JY and S is either the Łukasiewicz t-conorm SLK

or the Algebraic Sum t-conorm SP with r = 0.3, s = t = 0.1.
Hence, determining t-conorms S such that (12) holds when J = Jf is worthy of exploration in view of the

importance of (12) in the field of rule reduction.

3.2.2. On Eqs. (7) and (8) when f(0) <1
Again by the neutrality of Jf it is enough to consider (11) and (12). Towards investigating (11) when

f(0) <1 we need the following modified versions of Theorems 7 and 8 in [7] and the lemma given below.

Theorem 6 (cf. [7, Theorems 7 and 8]). Any neutral fuzzy implication J such that J(Æ, 0) is onto reduces

• (7) to (3) and satisfies (3), i.e., J satisfies (7) only if T1 = T2 = TM;

• (8) to (4) and satisfies (4), i.e., J satisfies (8) only if S1 = S2 = SM.

Table 3
Examples of t-conorms (both nilpotent and strict) which do not satisfy (12) with JY

S S(s, t) J(r, s) = J(r, t) LHS (12) RHS (12)

SLK 0.2 0.50011 0.6170 1
SP 0.19 0.50011 0.607612 0.751186
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Lemma 2. Let f(0) <1. Then Jf(Æ, 0) is onto.

Proof. To show that Jf(Æ, 0) is onto we need to show that for every y 2 [0, 1] there exists x 2 [0, 1] such that
Jf (x, 0) = y. Let y 2 [0, 1] be arbitrary. Then

J f ðx; 0Þ ¼ y ) f �1ðx � f ð0ÞÞ ¼ y

) x � f ð0Þ ¼ f ðyÞ

) x ¼ f ðyÞ
f ð0Þ :

Now 1 P y P 0) f(1) 6 f(y) 6 f(0) <1) 1 P x P 0. Thus for any y 2 [0,1] there exists x ¼ f ðyÞ
f ð0Þ such that

Jf(x,0) = y and so Jf(Æ, 0) is onto. h

From Theorem 6 and Lemma 2 we have the following:

Theorem 7. Let Jf be an f-generated implication with f(0) <1. Then Jf satisfies (7) if and only if T1 = T2 = TM.

Proof. ():) Let Jf satisfy (7). Then T1 = T2 by the neutrality of Jf. Then by the ontoness of Jf (Æ, 0) and The-
orem 6 we have that T1 = T2 = TM.

((:) On the other hand, if T1 = T2 = TM in (7), since Jf is a fuzzy implication and so has (J2) we have by
Proposition 15 that Jf satisfies (11). h

Theorem 8. Let Jf be an f-generated implication with f(0) <1. Then Jf satisfies (8) if and only if S1 = S2 = SM.

A summary of the above results is given in Table 5 in Section 7.

4. On the law of importation J(T(x,y), z) = J(x,J(y,z))

In this section we consider the following general form of law of importation:

JðT ðx; yÞ; zÞ ¼ Jðx; Jðy; zÞÞ; x; y; z 2 ½0; 1�; ðLIÞ
where T is a t-norm and J is a fuzzy implication.

Theorem 9. Jf satisfies the law of importation (LI) if and only if T = TP, the product t-norm.

Proof. ((:) Let T be the product t-norm. Then,

RHS ðLIÞ ¼ J f ðx; J f ðy; zÞÞ

¼ f �1½x � f ðJ f ðy; zÞÞ�

¼ f �1½x � f � f �1ðy � f ðzÞÞ�

¼ f �1½x � ðy � f ðzÞÞ�

¼ J f ðx � y; zÞ ¼ LHS ðLIÞ:

():) Let Jf obey the law of importation (LI). Let z 2 (0, 1) then f(z) 2 (0,1). Now for any x,y 2 [0, 1], we have

J f ðT ðx; yÞ; zÞ ¼ J f ðx; J f ðy; zÞÞ
) f �1½T ðx; yÞ � f ðzÞ� ¼ f �1½x � f � f �1ðy � f ðzÞÞ�
) f � f �1½T ðx; yÞ � f ðzÞ� ¼ f � f �1½x � y � f ðzÞ�
i:e:; ½T ðx; yÞ � f ðzÞ� ¼ x � y � f ðzÞ
i:e:; T ðx; yÞ ¼ x � y: �

By the commutativity of a t-norm T it is obvious that if a fuzzy implication J has (LI) then it has (EP).
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5. Contrapositive symmetry of f-generated implications

In the framework of classical two-valued logic, contrapositiviy of a binary implication operator is a tautol-
ogy, i.e., a ) b � :b ) :a. In fuzzy logic, contrapositive symmetry of a fuzzy implication J with respect to
strong negation N – CP(N) – plays an important role in the applications of fuzzy implications, viz., Approx-
imate Reasoning, Deductive Systems, Decision Support Systems, Formal Methods of Proof, etc. (see also
[20,21]).

Definition 16. A fuzzy implication J is said to have contrapositive symmetry with respect to a strong negation
N, denoted CP(N), if

Jðx; yÞ ¼ JðNðyÞ;NðxÞÞ; x; y 2 ½0; 1�: ðCPÞ

Definition 17. Let J be any fuzzy implication. The natural negation of J, denoted by NJ, is given by
J(x,0) = NJ(x), "x 2 [0,1]. Clearly NJ(0) = 1 and NJ(1) = 0.

Usually, the contrapositive symmetry of a fuzzy implication J is studied with respect to its natural negation,
denoted CP(NJ), provided NJ is strong. Also in the setting of fuzzy logic, contrapositive symmetry is the cha-
racterising property of strong fuzzy implications obtained from a t-conorm and a strong negation, which are
defined as follows:

Definition 18 [19, Definition 1.16, p. 24]. An S-implication JS,N is obtained from a t-conorm S and a strong
negation N as follows:

J S;N ðx; yÞ ¼ SðNðxÞ; yÞ; x; y 2 ½0; 1�: ð13Þ
The following theorem characterises S-implications:

Theorem 10 [19, Theorem 1.13, p. 24]. A fuzzy implication J is an S-implication for an appropriate t-conorm SJ

and a strong negation N if and only if J has CP(N), the exchange property (EP) and is neutral (NP), where

SJ(x, y) = J(N(x), y).

In general, the natural negation NJ of J need not be strong. Even if NJ is strong J still may not have CP(NJ).
For example, consider the fuzzy implication J Kðx; yÞ ¼ ½1� xþ x � y2�

1
2. The natural negation of JK is

NJK
ðxÞ ¼ J Kðx; 0Þ ¼ ½1� x�

1
2 which is not a strong negation and hence JK does not have CP(NJK

). On the other

hand, though the natural negation of the implication J GGðx; yÞ ¼ min 1; 1�x
1�y

n o
, N JGG

ðxÞ ¼ 1� x, is a strong
negation JGG does not have CP(1 � x).

In this section, we analyse the nature of the natural negations of Jf, NJf , under different boundary condi-
tions on the underlying generator f and give a sufficient condition under which N Jf is strong and Jf has
CP(NJf ).

5.1. The family of Jf implications and CP(N)

The natural negation of Jf, given by N Jf ðxÞ ¼ J f ðx; 0Þ ¼ f ð�1Þðx � f ð0ÞÞ, is quite evidently a negation. To dis-
cuss the nature of N Jf we consider the following two cases:

Case I: f(0) <1
If f(0) <1 then N Jf ðxÞ ¼ J f ðx; 0Þ ¼ f �1ðx � f ð0ÞÞ, "x 2 (0,1). Since f and, thus, f�1 are strictly decreasing

continuous functions, we have that NJf is a strict negation. For N Jf to be strong, we need that
NJf ðN Jf ðxÞÞ ¼ x; 8x 2 ½0; 1�, which is not the case always (see Example 3).

Example 3. Consider the f-generated implication JfY
ðx; yÞ ¼ 1� x

1
kð1� yÞ obtained from the Yager’s class of f-

generators f(x) = (1 � x)k with f(0) = 1 <1 (see Table 2). Now, if k = 0.5, i.e.1k ¼ 2, then
NJfY
ðxÞ ¼ JfY

ðx; 0Þ ¼ 1� x2 is a strict negation. That it is not strong can be seen by letting x = 0.5 in which
case N JfY

ðNJfY
ðxÞÞ ¼ 1� ½1� x2�2 ¼ 1� ð1� 0:25Þ2 ¼ 0:4375 6¼ 0:5 ¼ x. On the other hand, if k = 1, then

NJfY
ðxÞ ¼ JfY

ðx; 0Þ ¼ 1� x, which is a strong negation.

J. Balasubramaniam / Information Sciences 177 (2007) 930–946 939



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Case II: f(0) =1
In the case when f(0) =1 it is easy to see that NJf is not even strict, since "x 2 (0, 1], we have

Jf ðx; 0Þ ¼ NJf ðxÞ ¼ f �1ðx � f ð0ÞÞ ¼ f �1ðx � 1Þ ¼ f �1ð1Þ ¼ 0. Quite obviously, it is not strong either. In fact,
NJf is a vanishing but a non-filling negation.

Thus, as per Definition 16, Jf does not have contrapositive symmetry with respect to its natural negation.
The following result gives a sufficient condition under which this happens.

Theorem 11. Let the f-generator be such that f(0) = 1 and f�1 = f. Then the natural negation of Jf, N Jf , is a

strong negation and Jf has CPðN Jf Þ.

Proof. Let the f-generator be such that f(0) = 1 and f�1 = f. Then the pseudo-inverse of f from (10) is given by

f ð�1ÞðxÞ ¼
f �1ðxÞ if x 2 ½0 ¼ f ð1Þ; f ð0Þ ¼ 1�;
0 if x 2 ½1;1�:

�
ð14Þ

Now, the natural negation of Jf is given by J f ðx; 0Þ ¼ N Jf ðxÞ ¼ f ð�1Þðx � f ð0ÞÞ ¼ f ð�1Þðx � 1Þ ¼ f �1ðxÞ for any
x 2 [0, 1]. Since f is strictly decreasing so is NJf . Also, NJf ðNJf ðxÞÞ ¼ f �1 � f �1ðxÞ ¼ f � f �1ðxÞ ¼ x, since
f�1 = f. Hence N Jf , is a strong negation.

From the following string of equalities we note that Jf has CPðN Jf Þ:
J f ðNJf ðyÞ;N Jf ðxÞÞ ¼ f ð�1Þ½NJf ðyÞ � f ðN Jf ðxÞÞ�

¼ f ð�1Þ½f �1ðyÞ � f � f �1ðxÞ�
¼ f ð�1Þ½f �1ðyÞ � x�
¼ f ð�1Þ½f ðyÞ � x� ¼ J f ðx; yÞ: �

Corollary 19. If N is any strong negation then JN has CP(N).

Any strong N can be thought of as a decreasing bijection / on the unit interval [0, 1] with / = /�1 and
hence is a multiplicative generator of a strict t-conorm. Also note that for a strong N, JN has CP(N), (EP)
and (NP). Thus by Theorem 10 JN can be represented as an S-implication. Now, the t-conorm SJ obtained
from JN according to Theorem 10 is SJ(x,y) = JN(N(x), y) = N[N(x) Æ N(y)] = /�1[/(x) Æ /(y)], which by Def-
inition 8 is nothing but the t-conorm obtained using / as the multiplicative generator. Hence, in the case
f(0) = 1 and f�1 = f we do not obtain any new fuzzy implications but only S-implications from a strict t-con-
orm S and the strong negation NS which is also the multiplicative generator / of S.

5.2. Jf and contrapositivisation

From the discussions in Section 5.1 we observe that the natural negations of Jf, in general, are not strong
and thus, as per Definition 16, do not have contrapositive symmetry with respect to their natural negation. In
fact, the natural negation NJf of Jf is, in general, only a strict negation if f(0) <1, while it is a vanishing and a
non-filling negation if f(0) =1.

Towards imparting contrapositive symmetry to such fuzzy implications J with respect to a strong negation
N the following two contrapositivisation techniques – upper and lower contrapositivisation – have been pro-
posed by Bandler and Kohout in [10], whose definitions we give below.

Definition 20. Let J be any fuzzy implication and N a strong negation. The upper and lower contraposit-

ivisations of J with respect to N, denoted herein as ¼)
U :N

and ¼)
L:N

, respectively, are defined as follows:

x¼)U :N
y ¼ maxfJðx; yÞ; JðNðyÞ;NðxÞÞg; ð15Þ

x¼)
L:N

y ¼ minfJðx; yÞ; JðNðyÞ;NðxÞÞg ð16Þ
for any x,y 2 [0, 1].

As can be seen, ¼)
U :N

and ¼)
L:N

are both fuzzy implications, as per Definition 9, and always have the contra-
positive symmetry with respect to the strong negation N employed in their definitions.
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Definition 21. Let J be a fuzzy implication and N a strong negation. A contrapositivisation technique ¼)
�:N

is

said to be N-compatible if the contrapositivisation of J with respect to N, denoted as J�ðx; yÞ ¼ x¼)
�:N

y for all
x,y 2 [0, 1], is such that the natural negation of J*, given by NJ� ð�Þ ¼ J�ð�; 0Þ, is equal to the strong negation N
employed.

Definition 21, in essence, is asking for J* to have CP(NJ� ).
The following result has been proven in [9]:

Proposition 22. Let J be a neutral fuzzy implication with natural negation J(x,0) = NJ(x) and N a strong

negation.

(i) The upper contrapositivisation of J with respect to N is N-compatible if and only if N(x) P NJ(x), for all
x 2 [0,1].

(ii) The lower contrapositivisation of J with respect to N is N-compatible if and only if N(x) 6 NJ(x), for all

x 2 [0,1].

Proof. We give the proof of part (i) as that of part (ii) is similar.

(i) Let x 2 [0, 1]. By definition of ¼)U :N
we have

¼)
U :N

is N -Compatible iff NðxÞ ¼ x¼)
U :N

0

iff NðxÞ ¼ maxfJðx; 0Þ; Jð1;NðxÞÞg
iff NðxÞ ¼ maxðN J ðxÞ;NðxÞÞ
iff NðxÞP NJ ðxÞ; for all x 2 ½0; 1�: �

If the upper contrapositivisation of J with respect to a strong N is N-compatible, then from Proposition
22 we know N P NJ. Since N is strong N(x) = 1 if and only if x = 0 and we have that for all x 2 (0, 1],
1 > N(x) P NJ(x) and NJ is a non-filling negation. In other words, if the natural negation of the fuzzy
implication J is a filling negation we cannot find any strong N with which the upper contrapositivisation
of J becomes N-compatible. Similarly, if the natural negation of the fuzzy implication J is a vanishing

negation we cannot find any strong N with which the lower contrapositivisation of J becomes
N-compatible.

Now, in the case f(0) <1, we have that the natural negation of Jf is at least strict and so both upper and
lower contrapositivisation techniques are N-compatible, with respect to strong negations N, depending on
whether N P N Jf or N 6 N Jf , respectively. On the other hand, when f(0) =1, N Jf is a non-filling but a van-

ishing negation and thus we cannot have any strong negation N 6 NJf . Therefore, only the upper contrapo-
sitivisation technique is N-compatible with respect to strong negations N P NJf .

A summary of results in this section is given in Table 6 in Section 7.
In the following section, taking cue from the Yager’s f-generated implications, we propose a new class of h-

generated implications, denoted Jh, where h is defined on [0, 1] to [0, 1], unlike f which is from [0, 1] to [0,1]
and study its properties. We also show that one can obtain natural negations NJh of h-generated implications
that are non-vanishing and hence the lower contrapositivisation technique is N-compatible with respect to
strong negations N 6 NJh .

6. A new class of implications: h-generated implications – Jh

Definition 23. An h-generator is a function h : [0, 1]! [0,1], that is strictly decreasing and continuous such that
h(0) = 1. Let h(�1) be its pseudo-inverse given by

hð�1ÞðxÞ ¼ h�1ðxÞ if x 2 ½hð1Þ; 1�
1 if x 2 ½0; hð1Þ�

(
ð17Þ
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Lemma 3. Let the function Jh from [0,1] · [0,1] to [0,1] be defined as

J hðx; yÞ¼def hð�1Þðx � hðyÞÞ; x; y 2 ½0; 1�: ð18Þ
Jh is a fuzzy implication and called the h-generated implication.

Proof. That Jh is a fuzzy implication can be seen from the following:

• Jh(1,0) = h(�1)(1 Æ h(0)) = h(�1)(1 Æ 1) = 0.
• Jh(0,1) = h(�1)(0 Æ h(1)) = h(�1)(0) = 1 = Jh(0, 0).
• Jh(1,1) = h(�1)(1 Æ h(1)) = h(�1)(h(1)) = 1, since h(�1) � h = id.
• For any x,x 0,y 2 [0, 1] we have x 6 x 0 ) x Æ h(y) 6 x 0 Æ h(y)) h(�1)(x Æ h(y)) P h(�1)(x 0 Æ h(y))) Jh(x,y) P

Jh(x 0,y). Thus Jh is non-increasing in the first variable.
• For any x,y,y 0 2 [0, 1] we have y 6 y 0 ) x Æ h(y) P x Æ h(y 0)) h(�1)(x Æ h(y)) 6 h(�1)(x Æ h(y 0))) Jh(x,y) 6

Jh(x,y 0). Thus Jh is non-decreasing in the second variable.
• Since 0 6 x Æ h(1) 6 h(1), "x 2 [0, 1], we have Jh(x, 1) = h(�1)(x Æ h(1)) = 1, by definition of h(�1).
• Jh(0,y) = h(�1)(0 Æ h(y)) = h(�1)(0) = 1, for all y 2 [0, 1]. h

Without explicitly using the pseudo-inverse (18) can be written in the following form:

J hðx; yÞ ¼ h�1ðmaxðx � hðyÞ; hð1ÞÞÞ; x; y 2 ½0; 1�: ð19Þ
Also, Jh has the following desirable properties:

• Neutrality (NP): Jh(1,x) = h(�1)(1 Æ h(x)) = x, since h(�1) � h = id.
• Exchange principle (EP): For every h-generator h and x,y,z 2 [0, 1] we get

J hðx; J hðy; zÞÞ ¼ hð�1Þðx � hðJ hðy; zÞÞÞ ¼ h�1ðmaxðx � hðh�1ðmaxðy � hðzÞ; hð1ÞÞÞÞ; hð1ÞÞÞ
¼ h�1ðmaxðx �maxðy � hðzÞ; hð1ÞÞ; hð1ÞÞÞ ¼ h�1ðmaxðx � y � hðzÞ; x � hð1Þ; hð1ÞÞÞ
¼ h�1ðmaxðx � y � hðzÞ; hð1ÞÞÞ;

since x Æ h(1) 6 h(1). Similarly we get that

J hðy; J hðx; zÞÞ ¼ h�1ðmaxðy � x � hðzÞ; hð1ÞÞÞ:
Thus Jh satisfies the exchange principle.

Table 4 gives a few examples from the above class Jh.

6.1. Jh and its natural negation NJh

The natural negation of Jh, NJhðxÞ ¼ J hðx; 0Þ ¼ hð�1Þðx � hð0ÞÞ ¼ hð�1ÞðxÞ, for all x 2 [0, 1] is, in general, only
a negation. But,

• NJh is a strict negation if h(1) = 0;
• NJh is a strong negation iff h = h�1, in which case N Jh ¼ hð�1Þ ¼ h.

When h = h�1 from Corollary 19 we see that Jh has CPS(NJh ). Let h 5 h�1. Then, if h(1) = 0 we have that
the natural negation NJh is strict and hence is both a non-vanishing and non-filling negation. When h(1) > 0
then N Jh is a non-vanishing but a filling negation.

Table 4
Examples of some Jh implications with their h-generators

Name h(x) h(1) Jh(x,y)

Schweizer–Sklar 1 � xp; p 5 0 0 ½1� xþ x � yp�
1
p

Yager’s (1 � x)k; k > 0 0 1� x
1
kð1� yÞ

– 1� xn

n ; n P 1 1� 1
n min ½n� nxþ x � yn�

1
n; 1

n o

942 J. Balasubramaniam / Information Sciences 177 (2007) 930–946



Aut
ho

r's
   

pe
rs

on
al

   
co

py

6.2. Jh and contrapositivisation

Let h 5 h�1. Then, if h(1) = 0 we have that the natural negation NJh is strict and hence there exist strong
negations N such that both the upper and lower contrapositivisation of Jh are N-compatible, depending on
whether N P NJh or N 6 N Jh , respectively. On the other hand, if h(1) > 0 then NJh is a non-vanishing but a
filling negation and only the lower contrapositivisation technique is N-compatible with respect to strong nega-
tions N 6 NJh .

Fig. 1 shows plots of the fuzzy implication J Y1
k

ðx; yÞ ¼ 1� x
1
k þ x

1
k � y obtained from the Yager’s class of h-

generators for k = 0.5 or 1
k ¼ 2 (see Table 4) along with its natural negation NJY2

ðxÞ ¼ 1� x2, the lower and
upper contrapositivised implications with respect to negations N 1ðxÞ ¼ ð1�

ffiffiffi
x
p Þ2 and N 2ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

,
respectively.

For more details on contrapositivisation and significance of N-compatibility, see [9,10,20,21].
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Fig. 1. Fuzzy implication JY2
ðx; yÞ ¼ 1� x2 þ x2 � y with 1

k ¼ 2 whose natural negation is the strict negation NJY2
ðxÞ ¼ 1� x2 with lower

and upper contrapositivisations. (a) Yager’s implication JY2
ðx; yÞ ¼ 1� x2 þ x2 � y with 1

k ¼ 2, (b) lower contrapositivisation of JY2
with

N 1ðxÞ ¼ ð1�
ffiffiffi
x
p
Þ2, (c) upper Contrapositivisation of JY2

with N 2ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

and (d) plots of negations N1 (-Æ-), N2 (- - -), NJY2
(—).
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6.3. Relation between f- and h-generators

Let f be an f-generator. Then let us define an ĥ : ½0; 1� ! ½0; 1� as follows

ĥðxÞ¼def expf�f ð1� xÞg: ð20Þ
Then ĥ is a strictly decreasing function on the unit interval [0, 1], such that ĥð0Þ ¼ expf�f ð1� 0Þg ¼
expf�f ð1Þg ¼ 1 since f(1) = 0. Now, if f(0) =1 then ĥð1Þ ¼ 0 while if f(0) <1 then ĥð1Þ > 0. In either case,

the ĥ obtained as in (20) can act as an h-generator.
Similarly, from an h-generator one can obtain an f̂ -generator as follows:

f̂ ðxÞ¼def � ln hð1� xÞ: ð21Þ
While an f-generator can be seen as the additive generator of some continuous Archimedean t-norm T, an h-
generator can be seen as the multiplicative generator of some continuous Archimedean t-conorm S. Thus (20)
and (21) are how one obtains the multiplicative generator of the N � dual t-conorm S from the additive gen-
erator of the t-norm T and viceversa (see [18], pp. 80–81), where N is the classical negation N(x) = 1 � x.

Also note that if the range of the f-generator is [0, 1], i.e., f(0) = 1, then f itself can act as the h-generator and
Jh = Jf and h(1) = 0. This equivalence can be readily seen in the case of Yager’s class of generators from both
Tables 2 and 4. On the other hand, we can still obtain the h-generator from f as in (20) (see Example 4).

Example 4. Consider the f-generator given by f(x) = 1 � x. Then f(1) = 0 and also f(0) = 1 and thus letting
h = f we get that Jf = Jh(x,y) = 1 � x + x Æ y. On the other hand, by employing (20) we obtain the following:

ĥðxÞ ¼ expf�f ð1� xÞg ¼ expf�xg;

ĥð�1ÞðxÞ ¼
� ln x if x 2 ½ĥð1Þ ¼ 1

e ; ĥð0Þ ¼ 1�;
1 if x 2 ½0; ĥð1Þ�;

(

J ĥðx; yÞ ¼ ĥð�1Þðx � expf�ygÞ ¼ minf� lnðx � expf�ygÞ; 1g ¼ minfy � ln x; 1g;
NJĥ
ðxÞ ¼ minf� ln x; 1g;

whereas Jf(x,y) = 1 � x + x Æ y and NJf ðxÞ ¼ 1� x.

When h(1) 5 0 or f(0) 5 1, one cannot take f = h and by applying (21) and (20) one gets different f̂ and ĥ,
respectively (see Example 5).

Example 5. Consider the h-generator hðxÞ ¼ 1� x2

2 . Then clearly h(1) = 0.5 5 0 and thus is not suitable to be

employed as an f-generator directly. Also Jhðx; yÞ ¼ min 1;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 � xþ x � y2

pn o
as can be seen from Table 4.

On the other hand, using the transformation (21) we have the following:

f̂ ðxÞ ¼ � ln hð1� xÞ ¼ � ln
1� x2 þ 2x

2


 �
¼ � ln

1

2
½1� x2 þ 2x�;

f̂ ð1Þ ¼ 0; f̂ ð0Þ ¼ ln 2;

f̂ ð�1ÞðxÞ ¼ 1� ½2ð1� e�xÞ�
1
2; x 2 ½0; ln 2�

0; x 2 ½ln 2;1�

( )
¼ max 0; 1� ½2ð1� e�xÞ�

1
2

n o
;

J f̂ ðx; yÞ ¼ max 0; 1� 2� 2
1

2
ð1� y2 þ 2yÞ


 �x
 �1
2

( )
;

NJf̂
ðxÞ ¼ max 0; 1� 2� 2

1

2


 �x
 �1
2

( )
:

Similarly, the f-generator f(x) = �lnx is such that f(1) = 0 and f(0) 5 1 and thus h 5 f directly. But by using
the transformation (20) we have ĥðxÞ ¼ 1� x and J ĥðx; yÞ ¼ 1� xþ x � y while Jf(x,y) = JY(x,y) = yx.
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A more detailed study of f- and h-generated implications has been carried out in [3,4].

7. Concluding remarks

In this work we have studied the newly proposed Yager’s class of f-generated fuzzy implications with
respect to three classical tautologies, viz., distributivity over t-norms and t-conorms, law of importation
and contrapositive symmetry. The results of the above investigation are given in Tables 5 and 6 for ready
reference.

We have also suggested some sufficient conditions under which Jf implications possess contrapositive sym-
metry with respect to their natural negation. Since the natural negations of Jf, in general, are not strong we
resorted to the well-established contrapositivisation techniques, viz., upper and lower contrapositivisation
[10]. We have shown that, in general, only the upper contrapositivisation is N-compatible with Jf and hence
we have proposed a new class of fuzzy implications called h-generated implications, denoted Jh, along the lines
of Jf, for which class the lower contrapositivisation is N-compatible.

In this work both necessary and sufficient conditions have been proposed for Jf to satisfy the considered
tautologies (except in the case of (7), (8) and CP(N) when f(0) =1, where it is only a sufficient condition).
Thus determining the necessary conditions so that Jf satisfies these tautologies when f(0) =1 is likely to
be both interesting and important.

Yager in [31] has done an extensive analysis of the impact of this new class of implications in Approximate
Reasoning by introducing concepts like strictness of implications and sharpness of inference, among others.
For more recent works on the role of fuzzy logic operators in computing with words see [27,32]. This work
can be seen as a continuation of the above study on the classical tautologies satisfied by Yager’s f-generated
implications that have an influence in Approximate Reasoning.
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