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A T-fuzzy equivalence relation is a fuzzy binary relation on a set X which is reflexive, sym-
metric and T-transitive for a t-norm T. Recently, Mesiar et al. [R. Mesiar, B. Reusch, H. Thi-
ele, Fuzzy equivalence relations and fuzzy partitions, J. Multi-Valued Logic Soft Comput. 12
(2006) 167–181] have generalised the t-norm T to any general conjunctor C and investi-
gated the minimal assumptions required on such operations, called duality fitting conjunc-
tors, such that the fuzzification of the equivalence relation admits any value from the unit
interval and also the one–one correspondence between the fuzzy equivalence relations and
fuzzy partitions is preserved. In this work, we conduct a similar study by employing a
related form of C-transitivity, viz., I-transitivity, where I is an implicator. We show that
although every I-fuzzy equivalence relation can be shown to be a C-fuzzy equivalence rela-
tion, there exist C-fuzzy equivalence relations that are not I-fuzzy equivalence relations
and hence these concepts are not equivalent. Most importantly, we show that the class
of duality fitting implicators I is much richer than the residuals of the duality fitting conjunc-
tors in the study of Mesiar et al. We also show that the I-fuzzy partitions have a ‘‘constant-
wise” structure.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Equivalence relations and partitions

Let X be a non-empty set. An equivalence relation on X is a binary relation on X that is reflexive, symmetric and tran-
sitive. Every equivalence relation gives rise to a partition on the underlying set X. Formally, a partition of a set X is a col-
lection P of pairwise disjoint subsets of X whose union is equal to X. Once again, every partition of X gives rise to an
equivalence relation on X.

Let us denote the set of all equivalence relations by EðXÞ and the class of all partitions on X by PðXÞ. Then, we have the
following relations:

� Let E 2 EðXÞ. For every x 2 X, let Ex ¼ fy 2 Xjðx; yÞ 2 Eg. Then
PE ¼ fExjx 2 Xg 2 PðXÞ: ð1Þ
� Let P 2 PðXÞ. Then
EP ¼ fðx; yÞ 2 X2jfx; yg 2 U for some U 2 Pg 2 EðXÞ: ð2Þ
. All rights reserved.
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In fact, the following one–one correspondence between partitions and equivalence relations exists: EPE ¼ E and PEP ¼ P for
all E 2 EðXÞ and P 2 PðXÞ, i.e., the relationships (1) and (2) define a bijection between the equivalence relations and
partitions.

1.2. Fuzzy equivalence relations and fuzzy partitions

A fuzzification of the above concepts, viz., fuzzy equivalence relation and fuzzy partition, have been dealt with in many
works. In fact, the first such definition was proposed by Zadeh himself [60], wherein he proposed the following definition,
which have now come to be termed as similarity relations.

Definition 1.1. A fuzzy subset E of the Cartesian product X2 is called a fuzzy equivalence relation on X if the following
properties are satisfied for all x; y; z 2 X:
Eðx; xÞ ¼ 1 ðReflexivityÞ;
Eðx; yÞ ¼ Eðy; xÞ ðSymmetryÞ;
Eðx; zÞP max

w2X
minðEðx;wÞ; Eðw; zÞÞ ðTransitivityÞ:
Of course, the transitivity of E can be, and usually is, written equivalently as follows:
minðEðx; yÞ; Eðy; zÞÞ 6 Eðx; zÞ; x; y; z 2 X: ð3Þ
Following Zadeh [60], many works have appeared generalising the above concept of a fuzzy equivalence relation. For in-
stance, many types of reflexivity have been proposed and discussed, see for instance, [7,8,26]. Similarly, other types of tran-
sitivity have also been discussed. Bezdek and Harris [2] replaced the operator ‘‘min” in (3) by the Łukasiewicz t-norm
TLKðx; yÞ ¼maxð0; xþ y� 1Þ, while Faurous and Fillard [21] substituted it by the product t-norm TPðx; yÞ ¼ x � y. Further
works have started to consider any general t-norm T instead of ‘‘min” (see [17,18,30–35]). Other generalisations have also
appeared, see for example, [26,23,28,29].

Analogously, the concept of a fuzzy partition is a generalisation of the parition of a set X. Ruspini [52] was the first to
propose one such generalisation. Butnariu [6] proposed another generalisation of the concept of a fuzzy partition based
on an equivalent definition of the disjointedness using the Łukasiewicz operators, which was subsequently shown by Mesiar
and Rybárik [43] to be equivalent to that of the definition of Ruspini. For works dealing with either different or more general
definitions see, for instance, [3–5,16,44,45]. The following is an equivalent form of the above definitions that is more or less
established in the literature.

Definition 1.2 (cf. [27,29,50,59]). A system P of fuzzy subsets of X is called a fuzzy partition of X if the following properties
are satisfied:

(i) For all U 2 P there is some x 2 X such that U(x) = 1,
(ii) For all x 2 X there is exactly one U 2 P such that U(x) = 1,

(iii) If U, V 2 P such that U(x) = V(y) = 1 for some x; y 2 X, then U(y) = V(x).
1.3. Motivation for this work

Many of the works on fuzzy equivalence relation and fuzzy partition deal either exclusively with fuzzy equivalence
relations [7–9,12,14,21,24–26,31,32,36,47,48,56,57] or with fuzzy partitions [3–6,13,16,17,19,11,30,38,39,41,45,52]. The
correspondence between fuzzy equivalence relations and fuzzy partitions was discussed, e.g. in [12,22,33,42,44,46,49,50],
and a one–one correspondence between them explicitly stated in [53–55]. However, all these generalisations only consider
a t-norm to model the fuzzy transitivity in (3) in the concept of fuzzy equivalence relation and the fuzzy disjointedness in the
concept of fuzzy partition.

Recently, Mesiar et al. [42] – noticing that the associativity of a t-norm is superfluous in the above context, especially
since we never have to aggregate more than two arguments – have substituted a conjunctor instead of a t-norm in the above
setting and determined the minimal properties required on such operations so that the following properties of fuzzy
equivalences and fuzzy partitions are preserved:

Fuzzification: The concepts are such that each value a 2 [0, 1] is acceptable as a membership value of a fuzzy equivalence
relation (respectively, a member of a fuzzy partition);

Fuzzy extension: Fuzzification of these concepts is such that each equivalence (partition) is also a fuzzy equivalence rela-
tion (respectively, fuzzy partition), and vice-versa, each fuzzy equivalence relation which is (respectively, each fuzzy par-
tition with members only) is an equivalence relation (respectively, a partition);

Fitting fuzzy extension: Fuzzy extension of these concepts is such that there is a bijection between the class FEðXÞ of all
fuzzy equivalence relations on X and the class FPðXÞ of all fuzzy partitions on X.
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An alternative approach based on implications, which are rather general and not necessarily the residuals of some t-
norms, has been considered in [54,55]. In this work, we continue in the spirit of Mesiar et al. [42] with a general implicator,
i.e., we investigate the concepts of fuzzy equivalence relation and fuzzy partition by employing a related form of C-transi-
tivity, viz., I-transitivity, where the implicator I is nothing more than a binary operator satisfying the boundary conditions
of a implication, as given below.

Definition 1.3. An implicator I : ½0;1�2 ! ½0;1� is a mapping whose restriction to the domain {0, 1} coincides with the binary
implication, i.e.,
Ið1; 0Þ ¼ 0; Ið0;0Þ ¼ Ið0;1Þ ¼ Ið1;1Þ ¼ 1:
This work differs from [53–55] in that we do not suppose any kind of monotonicity for implicators, while in [53–55] the
hybrid monotonicity – decreasing in the first and increasing in the second coordinates – is assumed.
1.4. Organisation of this work

This paper is organised as follows. In Section 2 we introduce the concept of an I-fuzzy equivalence relation and investigate
the properties required on a general implicator I so that the 3 properties mentioned in Section 1.3 and considered in the work
of Mesiar et al. [42] are satisfied for any I-fuzzy equivalence relation. In Section 3 after introducing the concept of an I-fuzzy
partition, similar investigations are carried out. In particular, we show that the conditions required on an implicator I so that
a fuzzy relation E on a set X is an I-fuzzy equivalence relation is different from the conditions required on I for a fuzzy par-
tition P on X to be an I-fuzzy partition.

In Section 4, we discuss the correspondence between the above concepts of I-fuzzy equivalence relation and I-fuzzy par-
tition and determine the minimal conditions on an implicator to be a duality fitting implicator, i.e., an implicator I such that
every I-fuzzy equivalence relation is also an I-fuzzy partition and vice-versa. Once again, our studies show that not all of the
properties possessed by residuals of left-continuous t-norms are necessary; for example, the exchange principle does not
play any role in our study. We determine the exact bounds for the class of duality fitting implicators and propose a rather
special subclass of duality fitting implicators which play an important role in the rest of the work. We also show that the
I-fuzzy partitions have a ‘‘constant-wise” structure.

Sections 5–7 deal with the relationships between the concepts of I-fuzzy equivalence relation and I-fuzzy partition, on the
one hand, and the concepts of C-fuzzy equivalence relation and C-fuzzy partition introduced in Mesiar et al. [42], on the
other.

In Section 5 we recall the main definitions and relevant results regarding C-fuzzy equivalence relation and C-fuzzy par-
tition. Conjunctors C for whom there exists a one–one correspondence between the concepts of C-fuzzy equivalence relation
and C-fuzzy partition are called duality fitting conjunctors in [42].

In Section 6, after noting that every I-fuzzy equivalence relation (I-fuzzy partition) is also a C-fuzzy equivalence relation
(C-fuzzy partition), we attempt the converse poser, i.e., is every C-fuzzy equivalence relation (C-fuzzy partition) also an I-fuzzy
equivalence relation (I-fuzzy partition)? Towards this end, we investigate in detail the relationship between duality fitting
conjunctors and duality fitting implicators and present many results concerning them. We show that from every duality fit-
ting implicator I we can obtain a duality fitting conjunctor C. From the obtained results we show that there exist C-fuzzy
equivalence relations that are not I-fuzzy equivalence relations for any duality fitting implicator I. We also give an example
to illustrate the above (see Example 6.18). The classical logic operations of residual and deresiduum play an important role in
this section.

In Section 7 we investigate monotonic duality fitting operations. Note that a monotonic duality fitting conjunctor is a
commutative semi-copula, while a monotonic duality fitting implicator is a fuzzy implication, which is a minimal general-
isation of an implicator on {0, 1} to the unit interval [0, 1]. We give the minimal assumptions required on a conjunctor so that
its residual is a fuzzy implication. From the obtained relationships on the bounds of such operators, we show that the class of
duality fitting implicators is much richer than the class of residuals obtained from duality fitting conjunctors.

2. I-fuzzy equivalence relation

In this section, we define the concept of an I-fuzzy equivalence relation and show that not all implicators give rise to
I-fuzzy equivalence relations that accept any value a 2 [0, 1]. Similarly, not all implicators give rise to consistent I-fuzzy
equivalence relations (see Definition 2.6). Hence, we investigate the conditions required on an implicator I for it to satisfy
the above properties.

Definition 2.1. Let I be an implicator. A fuzzy subset E of the Cartesian product X2 is called an I-fuzzy equivalence relation
on X if the following properties are satisfied for all x; y; z 2 X:

(i) E is reflexive, i.e., E(x, x) = 1,
(ii) E is symmetric, i.e., E(x, y) = E(y, x),

(iii) E is I-transitive, i.e., I(E(x, y), E(y, z)) P E(x, z).
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Example 2.2. Not all implicators I give rise to I-fuzzy equivalence relations, i.e., some implicators are such that they allow
E(x, y) 2 {0, 1} only, which is hardly fuzzy! To see this, consider an implicator I such that I(x, y) = 0, when x, y R {0, 1}. If X is
non-singleton and E(x, y) = a 2 (0, 1), we have
IðEðx; yÞ; Eðx; xÞÞ ¼ Iða;1Þ ¼ 0ja ¼ Eðx; yÞ:
Remark 2.3. It should be emphasised that each equivalence relation can be understood as an I-fuzzy equivalence relation
with respect to an arbitrary implicator I. Conversely, each I-fuzzy equivalence relation that takes values only from the set
{0, 1} can be understood as an equivalence relation.

We say an I-fuzzy equivalence relation admits a value a 2 [0, 1], if there exists a fuzzy equivalence relation E such that E(x,
y) = a for some x; y 2 X.

Proposition 2.4. For a given implicator I the following are equivalent:

(i) The concept of I-fuzzy equivalence relation admits any value a 2 [0, 1].
(ii) I satisfies the following:
(a) I(1, a) P a,
(b) I(a,1) P a,
(c) I(a, a) = 1.
Proof.
(i)) (ii): Let there exist a fuzzy equivalence relation E such that E(x, y) = a 2 (0, 1). Then

(a) Ið1; aÞ ¼ IðEðx; xÞ; Eðx; yÞÞP Eðx; yÞ ¼ a,
(b) Iða;1Þ ¼ IðEðx; yÞ; Eðx; xÞÞP Eðx; yÞ ¼ a,
(c) Iða; aÞ ¼ IðEðx; yÞ; Eðx; yÞÞP Eðx; xÞ ¼ Eðy; yÞ ¼ 1.
(ii)) (i): Let X be any non-singleton set. Define the fuzzy subset on X2 as follows: For an x–y 2 X let
Eðx; yÞ ¼ Eðy; xÞ ¼ a 2 ð0;1Þ, and E(u, v) = 1 for all ðu; vÞ–ðx; yÞ 2 X2. Clearly, E is an I-fuzzy equivalence relation. h

In the case of equivalence relations, we know that if there exist x; y 2 X and x – y such that E(x, y) = 1, i.e., x and y are
related to each other, then the equivalence classes of x and y are identical. However, it is possible that an I-fuzzy equivalence
relation E w.r.to an implicator I is such that E(x, y) = 1 but E(x, z) – E(y, z), for some z 2 X, as the following example illustrates.

Example 2.5. Consider the following implicator I:
Iðp; qÞ ¼
0; if ðp; qÞ ¼ ð1;0Þ;
1; otherwise;

�
p; q 2 ½0;1�:
Note that I satisfies the properties in Proposition 2.4, but displays the rather undesirable property mentioned above. For any
a, b 2 (0, 1] such that a – b, it can be easily verified that the following is an I-fuzzy equivalence relation on the set
X ¼ fx; y; zg:
E
 x
 y
 z
x
 1
 1
 a

y
 1
 1
 b

z
 a
 b
 1
Definition 2.6. A fuzzy relation E on a non-empty set X is said to be consistent if E(x, y) = 1 for any x; y 2 X, then Ex ¼ Ey,
where ExðzÞ ¼ Eðx; zÞ, for every z 2 X.

Definition 2.7. An implicator I is called an equivalence relation fitting implicator if every E that is an I-fuzzy equivalence rela-
tion is consistent.

Proposition 2.8. If an implicator is such that I(1, a) = a, for any a 2 [0, 1], then I is an equivalence relation fitting implicator.

Proof. Let E be an I-fuzzy equivalence relation for a given implicator I with the above property. If possible, let for some
x–y 2 X, E(x, y) = 1. We will show that for all z 2 X, we have E(x, z) = E(y, z). Indeed, we have
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Eðx; zÞ ¼ Ið1; Eðx; zÞÞ ¼ IðEðx; yÞ; Eðx; zÞÞP Eðy; zÞ;
while
Eðy; zÞ ¼ Ið1; Eðy; zÞÞ ¼ IðEðy; xÞ; Eðy; zÞÞP Eðx; zÞ;
from whence we get that Ex ¼ Ey, i.e., I is an equivalence relation fitting implicator. h

Remark 2.9. It should be mentioned that the property I(1, a) = a is not necessary for an I to be an equivalence relation fitting
implicator. However, the following conditions are necessary whenever I is an equivalence relation fitting implicator:

(i) Whenever I(1, a) = b > a, not both I(a, b) = 1 and I(b, a) = 1,
(ii) Equivalently, if I(a, b) = I(b, a) = 1 with a < b, then I(1, a) – b,

(iii) I(1, a) – 1.

One can easily verify that the I-fuzzy equivalence relation given in Example 2.5 serves as an illustrative counter-example
w.r.to the above necessary conditions.

Theorem 2.10. For an implicator I the following are equivalent:

(i) I is an equivalence relation fitting implicator and the concept of I-fuzzy equivalence relation admits any value a 2 [0, 1].
(ii) I satisfies the following properties for any a, b 2 [0, 1]:
Iða; bÞP a ^ b; whenever a _ b ¼ 1; ðIE1Þ
Iða; aÞ ¼ 1; ðIE2Þ
If Ið1; aÞP b and Ið1; bÞP a and Iða; bÞ ¼ 1 then a ¼ b: ðIE3Þ
Proof
(i)) (ii): If I is such that the concept of I-fuzzy equivalence relation admits any value a 2 [0, 1], then from Proposition 2.4
we know that I satisfies all the properties (a)–(c) there. Clearly, (IE1) is only a reformulation of properties (a) and
(b), while (IE2) is the property (c). Let I be an equivalence relation fitting implicator such that I(1, a) P b,
I(1, b) P a and I(a, b) = 1 for some a, b 2 [0, 1]. Let us assume to the contrary that a – b. Let us now consider
the fuzzy relation E given in Example 2.5. Then it is immediate that E is an I-fuzzy equivalence relation. However,
E is not consistent, contradicting the fact that I is an equivalence relation fitting implicator.
(ii)) (i): From Proposition 2.4 and (IE1), (IE2) we see that the concept of I-fuzzy equivalence relation admits any value
a 2 [0, 1]. On the one hand, if for any a 2 [0, 1], I(1, a) = a then from Proposition 2.8 we see that I is an equivalence
relation fitting implicator. On the other hand, let E be an I-fuzzy equivalence relation on X and let E(x, y) = 1 for
some x; y 2 X. For any arbitrary but fixed z 2 X, let a = E(x, z) and b = E(y, z). Then,
Iða; bÞ ¼ IðEðx; zÞ; Eðy; zÞÞP Eðx; yÞ ¼ 1;
Ið1; aÞ ¼ IðEðy; xÞ; Eðx; zÞÞP Eðy; zÞ ¼ b;
Ið1; bÞ ¼ IðEðx; yÞ; Eðy; zÞÞP Eðx; zÞ ¼ a:
From (IE3) we have that a = E(x, z) = E(y, z) = b. Since z 2 X was arbitrary, we have that Ex ¼ Ey, i.e., E is consistent and I is an
equivalence relation fitting implicator. h
3. I-Fuzzy partitions

In this section, we define the concept of an I-fuzzy partition and, once again, show that not all implicators give rise to I-
fuzzy partitions that accept any value a 2 [0, 1]. Similarly, not all implicators give rise to consistent I-fuzzy partitions (see
Definition 3.5). Hence, we investigate the conditions required on an implicator I for it to satisfy the above properties.

Definition 3.1. Let I be an implicator. A system P of fuzzy subsets of X is called an I-fuzzy partition of X if the following
properties are satisfied, for all x; y; z 2 X:

(i) for all U 2 P there is some x 2 X such that U(x) = 1,
(ii) for all x 2 X there is some U 2 P such that U(x) = 1,

(iii) if U(x) = 1 for some x 2 X then for y 2 X and all V 2 P the following inequality holds:
IðVðyÞ;UðyÞÞP VðxÞ:



B. Jayaram, R. Mesiar / Information Sciences 179 (2009) 1278–1297 1283
Remark 3.2

(i) We again emphasise that each partition can be understood as an I-fuzzy partition with respect to any arbitrary impli-
cator I. Conversely, each I-fuzzy partition that takes values only from the set {0, 1} can be understood as a partition.

(ii) Note also that the Definition 3.1 is equivalent to the one given in Definition 1.2.

Once again, we have the following equivalence condition for an implicator I to give rise to an I-fuzzy partition P that ad-
mits any value in [0, 1].

Proposition 3.3. For a given implicator I the following are equivalent:

(i) The concept of I-fuzzy partition admits any value a 2 [0, 1].
(ii) I satisfies the following for any a 2 [0, 1]:

(a) I(a, a) = 1,
(b) there exists b 2 [0, 1] such that I(1, a) P b and I(1, b) P a.
Proof
(i)) (ii): Let P be an I-fuzzy partition and let U 2 P be such that U(x) = 1 and U(y) = a for some x; y 2 X and a 2 (0, 1). Then
Iða; aÞ ¼ IðUðyÞ;UðyÞÞP UðxÞ ¼ 1:
Let V 2 P be such that V(y) = 1. Then
Ið1;VðxÞÞ ¼ IðUðxÞ;VðxÞÞP UðyÞ ¼ a;
and
Ið1; aÞ ¼ IðVðyÞ;UðyÞÞP VðxÞ:
Now, letting b = V(x) we have the result.

(ii)) (i): Let I satisfy the above properties. Let X be any non-singleton set. Define the fuzzy subsets on X as follows:
UðyÞ ¼
1; y ¼ x;

a; y–x;

�
VðyÞ ¼

b; y ¼ x;

1; y – x:

�

From the following inequalities, where y – x,
IðVðyÞ;UðyÞÞ ¼ Ið1; aÞP b ¼ VðxÞ;
IðUðxÞ;VðxÞÞ ¼ Ið1; bÞP a ¼ UðyÞ;
we see that the system P = {U, V} is an I-fuzzy partition. h

Note that even if an implicator I is such that the concept of I-fuzzy partition admits any value a 2 [0, 1], it is possible that I
is such that the concept of I-fuzzy equivalence relation does not admit all values a 2 [0, 1]. The following example illustrates
this.

Example 3.4. Let us define an implicator I : ½0;1�2 ! ½0;1� as follows:
Iðp; qÞ ¼
0; if ðp; qÞ ¼ ð1;0Þ;
1� q; if p ¼ 1 and q 2 ð0;1Þ;
1; otherwise;

8><
>: p; q 2 ½0;1�:
From Proposition 3.3 we see that I is such that the concept of I-fuzzy partition admits any value a 2 [0, 1]. Let X ¼ fx; yg. Let
us define two fuzzy sets U, V on X as follows:
UðpÞ ¼
1; p ¼ x;

a; p ¼ y;

�
VðyÞ ¼

b; p ¼ x;

1; p ¼ y;

�

where a, b 2 [0, 1] are such that a + b 6 1. Once again, it is a routine verification that P = {U, V} is an I-fuzzy partition. How-
ever, from Proposition 2.4 we see that the I-fuzzy equivalence relations on X do not admit the values a 2 (0.5, 1].

Once again, in the case of partitions we know that two members of a parition P on X are either non-overlapping or iden-
tical. However, it is possible that there exist an I-fuzzy partition P w.r.to an implicator I, such that there exist U, V 2 P with
U(x) = V(x) = 1 but U – V (see Example 3.7 below).
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Definition 3.5. A fuzzy partition P of a non-empty set X is said to be consistent, if P is such that whenever for any elements U,
V 2 P there exists x 2 X such that U(x) = V(x) = 1 then U = V.

Definition 3.6. An implicator I is called a partition fitting implicator if every fuzzy partition P that is an I-fuzzy partition is
consistent.

Example 3.7. Note that not all implicators are partition fitting implicators. For example, let us once again consider the impli-
cator I given in Example 2.5. It can be easily verified that the P = {U, V, W} as defined below is an I-fuzzy partition on the set
X ¼ fx; y; zg, for any a, b 2 [0, 1] but a – b:
UðpÞ ¼
1; p ¼ x or y;

a; p ¼ z;

�
VðpÞ ¼

a; p ¼ x;

b; p ¼ y;

1; p ¼ z;

8><
>: WðpÞ ¼

1; p ¼ x or y;

b; p ¼ z:

�

Note that U(x) = W(x) = 1, but that U(z) – W(z), i.e., P is not consistent.

Proposition 3.8. If an implicator I is such that Iða; bÞ ¼ 1) a 6 b, for any a, b 2 [0, 1], then I is a partition fitting implicator.

Proof. Let P be a system of I-fuzzy partition such that for some U, V 2 P and some x 2 X, U(x) = V(x) = 1. Indeed, for any z 2 X,
we have
IðVðyÞ;UðyÞÞP VðxÞ ¼ 1) VðyÞ 6 UðyÞ;
for any y 2 X and similarly, U(y) 6 V(y). Hence U = V, i.e., I is a partition fitting implicator. h

Remark 3.9

(i) In Proposition 3.8, one could, instead, ask for the following condition: Iða; bÞ ¼ 1) a P b, for any a, b 2 [0, 1]. How-
ever, this would be absurd, since I(0, 1) = 1 would imply that 0 P 1!!!

(ii) Once again, the above property is not necessary for an I to be a partition fitting implicator. However, interestingly, pre-
cisely the same conditions given in Remark 2.9 can be shown to be necessary for an I to be a partition fitting
implicator.

(iii) Example 3.7 also shows that if I(a, 0) = 1 for any a > 0, then again I is not a partition fitting implicator.

Theorem 3.10. For an implicator I the following are equivalent:

(i) I is a partition fitting implicator and the concept of I-fuzzy partition admits any value a 2 [0, 1].
(ii) I satisfies the following properties:
Iða; aÞ ¼ 1; f or any a 2 ½0;1�; ðIP1Þ
For any a 2 ½0;1� there exists b 2 ½0;1� such that Ið1; aÞP b and Ið1; bÞP a; ðIP2Þ
For any a; b 2 ½0;1�; Iða; bÞ ¼ 1) a 6 b: ðIP3Þ
Proof
(i)) (ii): Let I be a partition fitting implicator and let the concept of I-fuzzy partition admit any value a 2 [0, 1]. The fact that
I satisfies (IP1) and (IP2) is immediate from Proposition 3.3. To see that (IP3) is necessary, let us assume that for
some a, b 2 [0, 1] with a > b, I is such that I(a, b) = 1. By (IP2), for the above a, b there exist a0; b0 2 ½0;1� such that
Ið1; aÞP b0 and Ið1; b0ÞP a; ð4Þ
Ið1; bÞP a0 and Ið1; a0ÞP b: ð5Þ
Let c ¼minða0; b0Þ. Note that it suffices to consider the case c 2 (0, 1]. Indeed, if c = 0 then either a = 0 or b = 0 from (IP2). a = 0
is a contradiction to our assumption, while if b = 0 then from Example 3.7 and Remark 3.9(iii) we know that I is not a par-
tition fitting implicator, a contradiction to our hypothesis. With respect to the above c, let us define the function
Ic : ½0;1�2 ! ½0;1� as follows:
Icðp; qÞ ¼
1; if p 6 q;

1; if q ¼ c;

Iðp; qÞ; otherwise;

8><
>: p; q 2 ½0;1�:
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Note that Ic is an implicator such that Icða; bÞ ¼ 1 for the above considered a, b 2 [0, 1] with a > b. Let X ¼ fx; yg and consider
the partition P = {U, V, W} on X as follows:
UðpÞ ¼
1; p ¼ x;

a; p ¼ y;

�
VðpÞ ¼

c; p ¼ x;

1; p ¼ y;

�
WðpÞ ¼

1; p ¼ x;

b; p ¼ y:

�

A routine calculation shows that P is an Ic-fuzzy partition However, note that U – W, i.e., P is not consistent.

(ii)) (i): The sufficiency is immediate from Propositions 3.3 and 3.8. h
Remark 3.11. Note that the conditions in Theorems 2.10 and 3.10 are not equivalent. To see this, consider the following
implicator:
Iðp; qÞ ¼

0; if p 2 ð0;1Þ and q ¼ 1;
0; if p > q and p–1;
q; if p ¼ 1;
1; otherwise;

8>>><
>>>: p; q 2 ½0;1�:
It is easily verifiable that I satisfies all the conditions in Theorem 3.10, viz., IP1, IP2 and IP3, but does not satisfy (IE1), since
Iða;1Þ ¼ 0ja for any a 2 (0, 1). Note, however, that I satisfies (IE2) and (IE3) – for the only applicable value a = 0.5 – of The-
orem 2.10.
4. Correspondence between I-fuzzy equivalence relations and I-fuzzy partitions

As noted in Section 1, there exists a one–one correspondence between partitions and equivalence relations given by the
relationships (1) and (2). Hence, it is only natural to expect, and in fact enforce, such a correspondence between their I-fuzzy
counterparts. However, from Theorems 2.10 and 3.10 and Remark 3.11 it is immediate that there are I-fuzzy partitions with-
out the corresponding counterpart among I-fuzzy equivalence relations (see also Example 3.4).

In the following, we propose relations, similar to Eqs. (1) and (2), in the case of I-fuzzy partitions and I-fuzzy equivalence
relations and determine conditions on an implicator I so as to obtain a one–one correspondence between these concepts.

Definition 4.1

(i) Let I be an equivalence fitting implicator and E be an I-fuzzy equivalence relation on X. Let us denote by PE the set of all
fuzzy sets on X, PE ¼ fExjx 2 Xg.

(ii) Let I be a partition fitting implicator and P be an I-fuzzy partition on X. Let us denote by EP the fuzzy set on X2 given by
EPðx; yÞ ¼ inffUðyÞjU 2 P;UðxÞ ¼ 1g for any x; y 2 X.

Theorem 4.2. Let I be an equivalence fitting implicator and E an I-fuzzy equivalence relation on X. Then PE is always an I-fuzzy
partition.

Proof. From the definition of PE it is obvious that PE satisfies both the axioms (i) and (ii) in Definition 3.1. To see that PE sat-
isfies also the axiom (iii), let U ¼ Eu and U(x) = 1 for some x;u 2 X. Then, we know that Eu ¼ Ex. Now, for any v; y 2 X and
letting V ¼ Ev we have
IðVðyÞ;UðyÞ ¼ IðEvðyÞ; EuðyÞÞ ¼ IðEðv ; yÞ; Eðy;uÞÞP Eðv ;uÞ ¼ EuðvÞ ¼ ExðvÞ ¼ EvðxÞ ¼ VðxÞ: �
Theorem 4.3. Let I be a partition fitting implicator. The following are equivalent:

(i) For any non-empty set X and any I-fuzzy partition P, EP is an I-fuzzy equivalence relation on X.
(ii) I(1, a) = a for all a 2 [0, 1].
Proof
(i)) (ii): Let I(1, a) = b > a, for some a 2 [0, 1]. Consider the partition P = {U, V} on a set X ¼ fx; ygwith U(x) = V(y) = 1, U(y) = a
and V(x) = b. It can be easily verified that P is an I-fuzzy partition of X. However, EPðx; yÞ ¼ UðyÞ ¼
a–b ¼ VðxÞ ¼ Eðy; xÞ, i.e., EP is not an I-fuzzy equivalence relation on X.
(ii)) (i): Let I(1, a) = a for all a 2 [0, 1]. Let P be an I-fuzzy partition on some universe X. Firstly, note that EPðx; xÞ ¼ 1 for all
x 2 X, i.e., EP is reflexive.To see that EP is symmetric, we have to show that the equality U(x) = V(y) = 1 for some U,
V 2 P and x; y 2 X ensures the equality U(y) = V(x). This follows easily from the following inequalities. Since P is an
I-fuzzy partition, with V(y) = 1 we have that I(U(x), V(x)) P U(y) for any x; y 2 X and any U 2 P.
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VðxÞ ¼ Ið1;VðxÞÞ ¼ IðUðxÞ;VðxÞÞP UðyÞ;
and similarly, U(y) P V(x).To see that EP is I-transitive, i.e., for any x; y; z 2 X we need to show that
IðEPðx; yÞ; EPðy; zÞÞP EPðx; zÞ: ð6Þ
However, note that from the above we have that if U(x) = V(z) = 1 then V(x) = U(z) for any x; z 2 X and hence
IðUðyÞ;VðyÞÞP VðxÞ ¼ UðzÞ;
for any y 2 X, which by the definition of EP implies (6), i.e., EP is I-transitive. Thus, EP is an I-fuzzy equivalence relation. h
4.1. Duality fitting implicators

Theorems 4.2 and 4.3 direct us towards conditions on an implicator I to ensure a one–one correspondence between the
concepts of I-fuzzy partitions and I-fuzzy equivalence relations.

Definition 4.4. A duality fitting implicator I : ½0;1�2 ! ½0;1� is an implicator that also satisfies the following:
Iða; aÞ ¼ 1; a 2 ½0;1�; ðIPÞ

Iða;1ÞP a; a 2 ½0;1�; ðRBCÞ

Ið1; aÞ ¼ a; a 2 ½0;1�; ðLNPÞ

Iða; bÞ ¼ 1) a 6 b; a; b 2 ½0;1�: ðOP’Þ
The set of all duality fitting implicators will be denoted by I.

Remark 4.5.

(i) Note that the above conditions on an implicator I to be a duality fitting implicator is minimal - in the sense of ensuring
a one–one correspondence between the concepts of I-fuzzy partition and I-fuzzy equivalence relations as the many
examples in Sections 2 and 3 have amply demonstrated- and cannot be weakened. Also the conditions are, in general,
mutually independent. However, with the additional assumption of monotonicity this is not the case (see Lemma 7.3).

(ii) The class of all duality fitting implicators is convex, i.e., if I1, I2 are any duality fitting operators, then for any k 2 [0, 1]
we have that k � I1 þ ð1� kÞ � I2 is also a duality fitting implicator.

(iii) Also the class of all duality fitting implicators is closed under lattice operations, i.e., if I1, I2 are any duality fitting oper-
ators, then their pointwise minimum or maximum, viz.,
ðI1 ^ I2Þðp; qÞ ¼ minðI1ðp; qÞ; I2ðp; qÞÞ;
ðI1 _ I2Þðp; qÞ ¼ maxðI1ðp; qÞ; I2ðp; qÞÞ; p; q 2 ½0;1�;
are also duality fitting implicators.
(iv) Finally, we would like to mention that the peculiar labeling of the above properties is so done as to retain consistency

with the terms used in literature and will become clear later on in Section 7. In the context of fuzzy implications, (IP) is
also known as the identity principle, (LNP) is the left-neutrality property and (OP’) is related to the ordering property of a
fuzzy implication, while (RBC) is a right-boundary condition.

For a given non-empty set X, let us denote the set of all I-fuzzy equivalence relations by IFEðXÞ and the set of all I-fuzzy
partitions by IFPðXÞ. We have the following main result of this section.

Theorem 4.6. Let I 2 I, i.e., I is a duality fitting implicator and X any non-empty set. Then there exists a bijection between the set
of all I-fuzzy equivalence relations and I-fuzzy partitions. Namely, for every E 2 IFEðXÞ, PE 2 IFPðXÞ, and conversely, for every
P 2 IFPðXÞ, EP 2 IFEðXÞ. Moreover, EPE ¼ E and PEP ¼ P.

Proof. Let I 2 I and X any non-empty set. From Definition 4.4 and Theorems 4.2 and 4.3 we have that for every
E 2 IFEðXÞ, PE 2 IFPðXÞ, and conversely, for every P 2 IFPðXÞ, EP 2 IFEðXÞ.

Let E be a given I-fuzzy equivalence relation on X. The corresponding I-fuzzy partition is given by PE ¼ fExjx 2 Xg. Let
x; y 2 X. Then
EPE ðx; yÞ ¼ inffEzðyÞjz 2 X; EzðxÞ ¼ 1g ¼ Eðx; yÞ:
The last equality follows from Proposition 2.8 and the fact that E being an I-fuzzy equivalence relation for an I 2 I is con-
sistent, i.e., EzðxÞ ¼ Eðz; xÞ ¼ 1 ensures Ez ¼ Ex, and consequently EzðyÞ ¼ ExðyÞ ¼ Eðx; yÞ.
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Now, let P be a given I-fuzzy partition on X. The equality PEP ¼ P is equivalent to the equality U ¼ EPx for all U 2 P and
x 2 X such that U(x) = 1. Assuming these conditions, let y 2 X. Then
EPx ðyÞ ¼ EPðx; yÞ ¼ inffVðyÞjV 2 P;VðxÞ ¼ 1g ¼ UðyÞ;
where the last claim follows from the fact that V(x) = 1 implies that V = U, i.e., V(y) = U(y). h
4.2. Bounds on duality fitting implicators

Remark 4.7.

(i) It can be easily seen that the class of duality fitting implicators I is bounded below and above by, but not including,
the following implicators:
I�ðp; qÞ ¼
1; if ðp; qÞ ¼ ð0;1Þ or p ¼ q;

p ^ q; if p _ q ¼ 1;
0; otherwise;

8><
>: I�ðp; qÞ ¼

1; if p < 1;
q; if p ¼ 1;

�

i.e., if I 2 I then I� 6 I < I�. I� is the Weber implication (see [58]), which however, is not a duality fitting implicator
since it does not satisfy (OP’).
(ii) Let X be any non-empty set and E a fuzzy set on X2. Let J; I 2 I such that J P I. If E is I-transitive, then E is also J-tran-
sitive. Hence every I-fuzzy equivalence relation is a J-fuzzy equivalence relation, and simultaneously, every I-fuzzy
partition is also a J-fuzzy partition.

(iii) Let us denote the set of all I-fuzzy equivalences on a non-empty set X w.r.to a duality fitting implicator I by IFEIðXÞ.
If J; I 2 I such that J P I, then we have the following inclusions:
IFEIðXÞ#IFEJðXÞ and IFPIðXÞ#IFPJðXÞ:
(iv) In particular, every I�-fuzzy equivalence relation is an I-fuzzy equivalence relation and every I-fuzzy equivalence rela-
tion is an I�-fuzzy equivalence relation, i.e., for any I 2 I we have the following inclusions:
IFEI� ðXÞ#IFEIðXÞ#IFEI� ðXÞ;
IFPI� ðXÞ#IFPIðXÞ#IFPI� ðXÞ:
(v) Let P be any I-fuzzy partition w.r.to an I 2 I. If U 2 P is such that, for some x; y 2 X, U(x) = U(y) = 1, then for all V 2 P we
have that V(x) = V(y). This follows from the fact that I satisfies property (iv) in Definition 4.4. In other words, I-fuzzy
partitions have ‘‘constant-wise” structure.

(vi) Let I; J 2 I and let X be non-empty. If E is both an I-fuzzy equivalence relation and J-fuzzy equivalence relation on X,
then E is also an I ^ J-fuzzy equivalence relation on X. Of course, E is also an I _ J-fuzzy equivalence relation on X.

The proofs of the following lemmas are quite straightforward.

Lemma 4.8. An E 2 IFEI� ðXÞ if and only if E is reflexive, symmetric, consistent and whenever for some x; z 2 X there exists y 2 X

such that EyðxÞ–EyðzÞ then E(x, z) = 0.

Lemma 4.9. A P 2 IFPI� ðXÞ if and only if P is consistent and whenever there exist U, V 2 P and x; y 2 X such that U(x) = 1 and
U(y) – V(y) then x R supp(V), where suppðVÞ ¼ fx 2 XjVðxÞ > 0g.
4.3. A special class of duality fitting implicators

We now introduce a rather special class of duality fitting implicators.

Definition 4.10. Let � 2 (0, 1]. Let us define the function I½�� : ½0;1�2 ! ½0;1� as follows:
I½��ðp; qÞ ¼
1; if p 6 q;

q; if p ¼ 1;
1� �; otherwise;

8><
>: p; q 2 ½0;1�:
Remark 4.11. Let us denote by I½E� the above family of functions, i.e., I½E� ¼ fI½��j� 2 ð0;1�g. Then the following remarks can be
made about I½E�.

(i) Clearly, every member of this family is a duality fitting implicator, i.e., I½E�(I.
(ii) This family is monotonically increasing with decreasing parameter � and
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I� ¼ lim
�!0

I½�� ¼ sup I½E�:

Hence we can write I� ¼ I½0�.

(iii) Moreover, if I 2 I, then there exists an � 2 ð0;1� such that I½�� P I.
(iv) From Remark 4.7(ii) we see that every fuzzy relation E that is I-transitive for an I 2 I, is also I½��-transitive for some

� 2 (0, 1]. This fact will be used in the sequel.

Remarks 6.5 and 6.13 show further interesting properties of this class of implicators.

5. Conjunctor-based fuzzy equivalences and partitions

As noted in Section 1, in Mesiar et al. [42], the authors have discussed fuzzy equivalence relations based on a general
conjunctor C. In this section, after recalling the relevant definitions and results, we investigate the relations between the
concepts of C-fuzzy equivalence relations and C-fuzzy partitions with the concepts of I-fuzzy equivalence relations and
I-fuzzy partitions, proposed in this work.

Definition 5.1. A conjunctor C : ½0;1�2 ! ½0;1� is a mapping whose restriction to the domain {0, 1} coincides with the binary
conjunction, i.e.,
Cð0; 0Þ ¼ Cð1;0Þ ¼ Cð0;1Þ ¼ 0; Cð1;1Þ ¼ 1:
Definition 5.2. ([42], Definition 2.2). Let C be a conjunctor. A fuzzy subset E of the Cartesian product X2 is called a C-fuzzy
equivalence relation on X if E is reflexive, symmetric and is C-transitive, i.e., for all x; y; z 2 X,
CðEðx; yÞ; Eðy; zÞÞ 6 Eðx; zÞ:
Definition 5.3. ([42], Definition 2.3). Let C be a conjunctor. A system P of fuzzy subsets of X is called a C-fuzzy partition of X

if the following properties are satisfied, for all x; y; z 2 X:

(i) for all U 2 P there is some x 2 X such that U(x) = 1,
(ii) for all x 2 X there is some U 2 P such that U(x) = 1,

(iii) if U(x) = 1 for some x 2 X then for all y 2 X and all V 2 P the following inequality holds:
CðVðxÞ;VðyÞÞ 6 UðyÞ: ðCFPÞ
Definition 5.4. A C : ½0;1�2 ! ½0;1� is said to satisfy the right neutrality property, if
Cðp;1Þ ¼ p; p 2 ½0;1�: ðRNPÞ
Definition 5.5. ([42], Definition 3.2). A C : ½0;1�2 ! ½0;1� is called a duality fitting conjunctor if it is a commutative conjunctor
that satisfies (RNP), or equivalently (LNP), i.e., for all a 2 [0, 1] it is C(a,1) = C(1, a) = a. The set of all duality fitting conjunctors
will be denoted by C.

Theorem 5.6. ([42], Theorem 3.1). Let C be a duality fitting conjunctor, i.e., C 2 C. Then there exists a bijection between the set of
all C-fuzzy equivalence relations, denoted as CFEðXÞ and C-fuzzy partitions, denoted as CFPðXÞ. Namely, for each C-fuzzy equiv-
alence relation E, PE is a C-fuzzy partition, and for each C-fuzzy partition P, EP is a C-fuzzy equivalence relation. Moreover, EPE ¼ E
and PEP ¼ P.

Remark 5.7. ([42], pp. 175–177).

(i) The class of duality fitting conjunctors C is bounded below and above by the following conjunctors:
C�ðp; qÞ ¼
0; if p; q 2 ½0;1Þ;
minðp; qÞ; otherwise;

�
C�ðp; qÞ ¼

0; if ðp; qÞ ¼ ð0;0Þ;
minðp; qÞ; if maxðp; qÞ ¼ 1;
1; otherwise:

8><
>:

C� is also known as the drastic t-norm TD (see [37]).

(ii) Let X be any non-empty set and E a fuzzy set on X2. Let C;C0 2 C such that C P C0. If E is C-transitive, then E is also C0-

transitive. Hence every C-fuzzy equivalence relation is a C0-fuzzy equivalence relation, and simultaneously, every C-
fuzzy partition is also a C0-fuzzy partition.

(iii) Unlike in the case of duality fitting implicators, for duality fitting conjunctors we have the reverse inclusions, i.e., if C is
any duality fitting conjunctor such that C� 6 C 6 C�, then
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CFEC� ðXÞ � CFECðXÞ � CFEC� ðXÞ;
CFPC� ðXÞ � CFPCðXÞ � CFPC� ðXÞ:
(iv) An E 2 CFEC� ðXÞ if and only if E is reflexive, symmetric and consistent.
(v) An E 2 CFEC� ðXÞ if and only if E 2 CFEC� ðXÞ and there exists a 2 [0, 1] such that, for all x; y 2 X, E(x, y) 2 [a,1]. Com-

paring with Lemma 4.8 it is clear that the concepts of C�-fuzzy equivalence relation and I�-fuzzy equivalence relation
are different.

(vi) A P 2 CFPC� ðXÞ if and only if fkerðUÞjU 2 Pg is a partition of X and U(x) = V(y) whenever for any x; y 2 X and U, V 2 P it
is U(y) = V(x) = 1.

(vii) An P 2 CFPC� ðXÞ if and only if P is a partition or P = (U, V), where kerðUÞ ¼ X n kerðVÞ and U(x) = V(y) = a 2 [0, 1] when-
ever x 2 kerðVÞ; y 2 kerðUÞ.
6. Comparison of the concepts of I- and C-fuzzy equivalences and partitions

It is immediately interesting to investigate the relation between the concepts of I- and C-fuzzy equivalences and parti-
tions. Firstly, we show that every I-fuzzy equivalence (and hence every I-fuzzy partition) is also a C-fuzzy equivalence (C-
fuzzy partition).

Lemma 6.1. Let X be any non-empty set. If I is a duality fitting implicator, then every I-fuzzy equivalence relation (equivalently, I-
fuzzy partition) on X is a C-fuzzy equivalence relation (equivalently, I-fuzzy partition) on X for some duality fitting conjunctor C.

Proof. Since I 2 I, I is an equivalence relation fitting implicator and hence by Definition 2.7, if E 2 IFEðXÞ then E is reflex-
ive, symmetric and consistent. Thus, by Remark 5.7 (iv), we see that E 2 CFPC� ðXÞ. In other words, IFEðXÞ � CFEðXÞ. h

In the rest of this section, we attempt to answer the converse question, i.e., given a set X, is every C-fuzzy equivalence rela-
tion (equivalently, C-fuzzy partition) on X for a duality fitting conjunctor C also an I-fuzzy equivalence relation (equivalently, an I-
fuzzy partition) on X, with I a duality fitting implicator? As can be seen the answer to this poser is not straightforward and we
resort to some concepts relating conjunctors and implicators from classical logics.

6.1. Relations between conjunctors and implicators

In some classical logics, for instance, Intuitionistic logic, where only a conjunctor is available, an implicator is obtained as
its residual. This relation has been generalised to the framework of fuzzy logic with much success and the residuals of many
generalisations conjunctors in fuzzy logic, viz., t-norms, uninorms, t-subnorms, etc, are widely studied and applied (see, for
instance, [1,10,40,51]).

In fact, for certain classes of left-continuous conjunctors, a C belonging to this class and the residual I obtained from C are
such that the pair (C, I) satisfies the following residuation property:
Cðp; qÞ 6 r () Iðp; rÞP q; p; q; r 2 ½0;1�: ðRPÞ
One can immediately note that the C-transitivity in Definition 5.2(iii) and the I-transitivity in Definition 2.1(iii) can be made
to relate to each other if the duality fitting conjunctor and the duality fitting implicator satisfy (RP). In fact, the conjunctors
from the above classes are in a one–one correspondence with their residuals. Thus, in the following we investigate the rela-
tions between duality fitting conjunctors and duality fitting implicators.

6.2. Residuals of duality fitting conjunctors
Definition 6.2. Let C be a function from [0, 1]2 to [0, 1]. A function IC : ½0;1�2 ! ½0;1� defined as follows
ICðp; qÞ ¼ supft 2 ½0;1�jCðp; tÞ 6 qg; p; q 2 ½0;1�; ð7Þ
is called the residual of C.

Remark 6.3.

(i) In the case C and IC are restricted to {0, 1}2, if C is a conjunctor, then IC is an implicator.
(ii) If C;C0 are any two functions from [0, 1]2 to [0, 1] such that C 6 C0, then their residuals have the opposite ordering, i.e.,

IC P IC0 . Indeed, for any x; y; t 2 ½0;1� we have that
C 0ðp; tÞ 6 q implies Cðp; tÞ 6 q;

i:e:; ft 2 ½0;1�jC0ðp; tÞ 6 qg � ft 2 ½0;1�jCðp; tÞ 6 qg;
i:e:; supft 2 ½0;1�jC0ðp; tÞ 6 qg 6 supft 2 ½0;1�jCðp; tÞ 6 qg;
i:e:; IC0 ðp; qÞ 6 ICðp; qÞ:
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We also have the following result regarding a binary operation and its residual.

Theorem 6.4 (cf. [15], Theorem 4.1). Let C be a function from [0, 1]2 to [0, 1] and let IC denote its residual. Then the following are
valid:

(i) ICð0; 0Þ ¼ 1 if and only if C(0, 1) = 0.
(ii) ICð1;1Þ ¼ 1 always.

(iii) ICð1;0Þ ¼ 0 if and only if C(1, x) > 0 for all x 2 (0, 1].

From Theorem 6.4 and the definition of a duality fitting conjunctor (see Definition 5.5) it immediately follows that if C 2 C

then its residual IC is an implicator. However, this residual IC is not always a duality fitting implicator. For example, we know
that if C 2 C, then C� 6 C 6 C�. The residual of C� is IC� ¼ I½1� which is a duality fitting implicator (see Remark 4.11(i)), while
that of C� is IC� ¼ I� ¼ I½0�, which is not a duality fitting implicator, since I�ðp; qÞ ¼ 1 even if p > q.

Remark 6.5. Let us consider the family I½E� of duality fitting implicators.

(i) Recall that IC� and IC� are, respectively, the lower and upper bounds of the family I½E�.
(ii) Note that the class of duality fitting implicators is much richer than the class of residuals obtained from duality fitting

conjunctors, i.e., if C is any duality fitting conjunctor, then we have I� < IC� ¼ I½1� 6 IC < I� ¼ I½0�. Of course, it is clear that
there exist I 2 I such that I� 6 I < IC� .

(iii) However, it should be emphasized that the residuals obtained from duality fitting conjunctors strictly contains the
family I½E� of duality fitting implicators. To see this, consider the Łukasiewicz t-norm TLKðp; qÞ ¼maxð0; pþ q� 1Þ
which is a monotonic duality fitting conjunctor such that TD 6 TLK 6 TM. However, its residual is the fuzzy implication
ILKðx; yÞ ¼minð1;1� xþ yÞ and ILK R I½E�.

Unfortunately, the properties available for a duality fitting conjunctor are not strong enough to obtain conditions under-
which its residual is a duality fitting implicator. However, if the condition of monotonicity is also assumed, then necessary
and sufficient conditions underwhich the residuals of these monotonic duality fitting conjunctors become duality fitting
implicators can be obtained. This study will be taken up in Section 7.2.

6.3. Deresiduum of duality fitting implicators

Let us now turn to the converse procedure of obtaining a conjunctor from an implicator. Once again we will be interested
only in duality fitting operators.

Definition 6.6. Let I : ½0;1�2 ! ½0;1� be any function. We define a mapping CI : ½0;1�2 ! ½0;1� as
CIðp; qÞ ¼ infft 2 ½0;1�jIðp; tÞP qg; p; q 2 ½0;1�: ð8Þ
CI is also known as the deresiduum of I (see e.g., [20]).

Remark 6.7

(i) Note that in the case I and CI are restricted to {0, 1}2, if I is an implicator, then CI is a conjunctor.
(ii) If I; I0 are any two functions from [0, 1]2 to [0, 1] such that I 6 I0, then their deresidua have the opposite ordering, i.e.,

CI P CI0 . This can be proven analogously to Remark 6.3(ii) using the fact that if A # B then inf A P inf B.

Remark 6.8. Once again, not for every I 2 I we have that its deresiduum CI 2 C. To see this, consider the Łukasiewicz impli-
cation ILK 2 I and whose deresiduum is the Łukasiewicz t-norm CILK ¼ TLK 2 C. Whereas, the deresiduum of I� 2 I is
CI� ðp; qÞ ¼
p ^ q; if p _ q ¼ 1;
0; if p ^ q ¼ 0;
p; otherwise;

8><
>: p; q 2 ½0;1�; ð9Þ
which is not commutative and hence CI� R C.

Towards characterizing I 2 I whose deresiduum CI 2 C, we introduce the following important algebraic property.

Definition 6.9. An I : ½0;1�2 ! ½0;1� is said to satisfy the weak exchangeability property, if
Iðp; rÞP q() Iðq; rÞP p; p; q; r 2 ½0;1�: ðWEÞ
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Lemma 6.10. Let I : ½0;1�2 ! ½0;1� be any function and CI its deresiduum as defined in (8). Then,

(i) If I satisfies (LNP) then CI satisfies (LNP).
(ii) If I satisfies (IP) and (OP’) then CI satisfies (RNP).

(iii) If I satisfies (WE) then CI is commutative.
Proof.

(i) That CI satisfies (LNP) follows from the following equality:
CIð1; qÞ ¼ infft 2 ½0;1�jIð1; tÞP qg ¼ q; by ðLNPÞ:
(ii) By (IP) we know that p 2A ¼ ft 2 ½0;1�jIðp; tÞP 1g for any p 2 [0, 1]. To see that p ¼ inf A, if possible, let there exist a
q < p such that I(p, q) = 1. However, this is a contradiction to the fact that I satisfies (OP’). Thus, we have
CIðp;1Þ ¼ infft 2 ½0;1�jIðp; tÞP 1g ¼ p for all p 2 [0, 1], i.e., CI satisfies (RNP).

(iii) Let p, q 2 [0, 1] be fixed. then
CIðp; qÞ ¼ infft 2 ½0;1�jIðp; tÞP qg;
CIðq;pÞ ¼ infft 2 ½0;1�jIðq; tÞP pg:
It is clear now that if I satisfies (WE) then CI is commutative. h

It can be easily verified that while ILK satisfies (WE), I� does not. However, if an I 2 I, then it satisfies both (LNP) and (OP’)
and hence its deresiduum CI is such that CIð1; pÞ ¼ CIðp;1Þ ¼ p for all p 2 [0, 1]. The only property CI lacks is commutativity.

Definition 6.11. Let I 2 I satisfy (LNP) and (OP’) and let CI be its deresiduum. The modified deresiduum of I is defined as
eCI ðp; qÞ ¼minðCIðp; qÞ; CIðq; pÞÞ; p; q 2 ½0;1�: ð10Þ

The following result is now immediate.

Proposition 6.12. Let I 2 I satisfy (LNP) and (OP’) and let CI be its deresiduum. The modified deresiduum is a duality fitting
conjunctor, i.e, fCI 2 C. Moreover, fCI 6 CI.

Remark 6.13. Let us once again consider the family I½E� of duality fitting implicators.

(i) It can be easily verified that for no � 2 (0, 1] does I½�� satisfy (WE) and hence the deresidua of I½E� are not duality fitting
conjunctors. Of course, their modified deresidua are duality fitting conjunctors. In fact, for any � 2 (0, 1] the deresid-
uum of I½�� is given as follows:
CI½�� ðp; qÞ ¼

p ^ q; if p _ q ¼ 1;
0; if p ^ q ¼ 0;
p; if q > 1� �;
0; if q 6 1� �;

8>>><
>>>: p; q 2 ½0;1�: ð11Þ
(ii) Note that CI½1� ¼ CI� given in (9). Now, for any I 2 I such that I� 6 I 6 I½1�, we know from Remark 6.7(ii) that
CI½1� P CI P CI� , i.e., CI is exactly as given in (9). Thus the deresiduum of I½1� is the upper bound of the deresidua of
the class of all duality fitting implicators I.

(iii) Moreover, the modified deresiduum of I½1� is the minimum operation (also a t-norm on [0, 1]2). Thus no duality fitting
conjunctor C > TM can be obtained as a deresiduum of a duality fitting implicator.

(iv) Note that CI½�� ¼ C� only if � = 0 and hence cannot be obtained as a deresiduum of any member of the class of I½E�.
(v) Finally, and most interestingly, for any � 2 (0, 1] the residual of CI½�� given in (11) is precisely I½��, i.e., ICI½��

¼ I½��.

6.4. Relations between the concepts of I- and C-fuzzy equivalences and partitions
Lemma 6.14. Let X be any non-empty set and E be a fuzzy set on X2.

(i) Let C 2 C be such that C > C� and IC be its residual. If E is C-transitive then E is also IC-transitive.
(ii) Conversely, if E is I-transitive for any I 2 I, then E is also CI-transitive.

Proof. Let X be any non-empty set and E be a fuzzy set on X2.

(i) Let C 2 C be such that C > C�, IC be its residual and let E be C-transitive. To show that E is IC-transitive, we need to
show that for any x; y; z 2 X we have that ICðEðx; yÞ; Eðy; zÞÞP Eðx; zÞ. By the definition of IC , we have
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ICðEðx; yÞ; Eðy; zÞÞ ¼ supftjCðEðx; yÞ; tÞ 6 Eðy; zÞg:
Since E is C-transitive, we have that CðEðx; yÞ; Eðx; zÞÞ 6 Eðy; zÞ for any x; y; z 2 X, i.e.,
Eðx; zÞ 2A ¼ ftjCðEðx; yÞ; tÞ 6 Eðy; zÞg;
and hence Eðx; zÞ 6 supA. Now it is clear that ICðEðx; yÞ; Eðy; zÞÞP Eðx; zÞ, i.e., E is IC-transitive.
(ii) The proof in this case can be proven similar to the above, using the fact that infimum of a set is less than or equal to

any element of the set. h

Theorem 6.15. Let X be any non-empty set and E be a fuzzy set on X2.

(i) Let C 2 C be such that C > C� and its residual IC satisfies (OP’). If E is a C-fuzzy equivalence relation on X, then there exists an
I 2 I such that E is also an I-fuzzy equivalence relation.

(ii) Conversely, if E is an I-fuzzy equivalence relation on X for any I 2 I, then there exists a C 2 C such that E is also a C-fuzzy
equivalence relation.

Proof. Let X be any non-empty set and E be a fuzzy set on X2.

(i) Let C 2 C be such that C > C� and let IC be its residual. If E is a C-fuzzy equivalence relation on X, then E is C-transitive.
From Lemma 6.14(i) we know that E is also IC-transitive. Now, we have the following two cases. On the one hand, if
IC 2 I, then E is an IC-fuzzy equivalence relation and the result follows. On the other hand, if IC R I, then we know
from Remark 4.11(iv) that there exists an � > 0 such that I½�� 2 I and I½�� > IC and E is I½��-transitive, or equivalently E
is an I½��-fuzzy equivalence relation.

(ii) Let I 2 I and let CI be its deresiduum. If E is an I-fuzzy equivalence relation on X, then E is I-transitive. From Lemma
6.14(ii) we know that E is also CI-transitive. Once again, we have two scenarios. On the one hand, if CI 2 I, then E is a
CI-fuzzy equivalence relation and the result follows. On the other hand, if CI R C, then we consider the modified dere-
siduum eCI of I (see Definition 6.11). Clearly, eCI 2 C. Since eCI 6 CI , from Remark 5.7(ii) we see that E is also eCI -transi-
tive. Thus, E is also a eCI -fuzzy equivalence relation. Hence the result. h

Remark 6.16. It should be emphasised that, in Theorem 6.15(i), the condition that the residual IC of the duality fitting con-
junctor C does satisfy (OP’) is important, since without it there does not exist any � > 0 such that I½�� > IC .

The final result in this section – see also Example 6.18 – shows that there can exist C-fuzzy equivalence relations that are
not I-fuzzy equivalence relations for any I 2 I.

Proposition 6.17. Let X be any non-empty set and E be a fuzzy set on X2. If E is such that E is a C�-fuzzy equivalence relation and
is not a C-fuzzy equivalence relation for any C > C�, then there does not exist any I 2 I such that E is an I-fuzzy equivalence
relation.

Proof. Let us assume to the contrary that there exists some I 2 I such that E is an I-fuzzy equivalence relation. We know
from Remark 4.11(iv) that there exists an � > 0 such that I½�� 2 I and I½�� P I and E is an I½��-fuzzy equivalence relation. Con-
sequently, from Theorem 6.15(ii) we have that E is also a gCI½�� -fuzzy equivalence relation for the modified deresiduum of I½��.
However, by the hypothesis, since gCI½�� 2 C, we see that gCI½�� 6 C�. Since C� is the lower bound of C we see that gCI½�� ¼ C�, a
contradiction to the fact that � > 0 (see Remark 6.13(iv)). Thus, there does not exist any I 2 I such that E is an I-fuzzy equiv-
alence relation. h

Example 6.18. Let X ¼ ½0;1� and consider the following fuzzy relation E on X:
Eðx; yÞ ¼

0:25; if x ¼ 0:5 and y 2 ½0;1� n f0;0:5g;
1�maxðx; yÞ; if minðx; yÞ ¼ 0;
1; if x ¼ y;

0; otherwise;

8>>><
>>>: x; y 2 X ¼ ½0;1�:
It is easy to verify that E, indeed, is a C�-fuzzy equivalence relation. However, E is not an I-fuzzy equivalence relation for any
duality fitting implicator I, i.e., for any I 2 I. On the contrary, if E were to be an I-fuzzy equivalence relation for some duality
fitting implicator I, then the following inequality must be valid for any z 2 ½0;1� n f0;0:5g:
Ið0:5; 0:25Þ ¼ IðEð0; 0:5Þ; Eð0:5; zÞÞP Eð0; zÞ ¼ 1� z:
However, this implies that I(0.5, 0.25) = 1 and I is not a duality fitting implicator, since I violates (OP’).
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Remark 6.19. The following remarks highlight many interesting properties about the relation E in Example 6.18.

(i) There exist C 2 C such that C > C� ¼ TD and the relation E above is a C-fuzzy equivalence relation. For instance, the
following duality fitting conjunctor C0 is the largest duality fitting conjunctor such that E is a C-fuzzy equivalence
relation:
C 0ðp; qÞ ¼

p ^ q; if p _ q ¼ 1;
1; if p ¼ q and p–0;
0:25; if p ^ q ¼ 0:5;
0; otherwise;

8>>><
>>>: p; q 2 ½0;1�:
(ii) Now, by Remark 5.7(ii), E is a C-fuzzy equivalence relation for every C 2 C such that C� 6 C 6 C0.
(iii) Note that IC0 ð0:5;0:3Þ ¼ 1 and hence IC0 does not satisfy (OP’). Hence, from Remark 6.3 (ii) we see that for no C such that

C* 6 C 6 C
0

the residual Ic satisfies (OP
0
).

(iv) However, in the case we consider only monotonic duality fitting conjunctors, which form the topic of the next section,
then E is a C-fuzzy equivalence relation only for C ¼ C�.
7. Relations between monotonic duality fitting operations

In this section, we investigate monotonic duality fitting operations. Note that a monotonic duality fitting conjunctor is a
commutative semi-copula, while a monotonic duality fitting implicator is a fuzzy implication, which is a minimal general-
isation of an implicator on {0, 1} to the whole unit interval [0, 1]. It is important to emphasize that a fuzzy implication is
hybrid monotonic, i.e., it is non-increasing in the first variable and non-decreasing in the second variable.

Firstly, we give the definition of a fuzzy implication and determine the exact class of fuzzy implications that could be em-
ployed as duality fitting implicators. Then we introduce semi-copulas and some subclasses of them, mainly w.r.to the differ-
ent types of continuity they exhibit. Though left-continuity of a conjunctor is a must for it to satisfy (RP) with its residual, we
show that, in our context, the class of fuzzy implications that are duality fitting implicators can be obtained as residuals of
more general semi-copulas.

7.1. Fuzzy implications and semi-copulas
Definition 7.1. A function I : ½0;1�2 ! ½0;1� is called a fuzzy implication if it satisfies the following conditions for all
p; p1; p2; q; q1; q2 2 ½0;1�:
if p1 6 p2; then Iðp1; qÞP Iðp2; qÞ; i:e:; Ið�; qÞ is decreasing; ðI1Þ
if q1 6 q2; then Iðp; q1Þ 6 Iðp; q2Þ; i:e:; Iðp; �Þ is increasing; ðI2Þ
Ið0;0Þ ¼ 1; Ið1;1Þ ¼ 1; Ið1; 0Þ ¼ 0: ðI3Þ
The set of all fuzzy implications will be denoted by FI.

Definition 7.2. An I 2FI is said to satisfy the ordering property, if
Iðp; qÞ ¼ 1() p 6 q; p; q 2 ½0;1�: ðOPÞ
It can be immediately noted that Definition 7.1 is the minimal generalisation of the concept of an implicator with monoto-
nicity. The following interdependencies, which are important in our context, exist among the above algebraic properties of a
fuzzy implication I, the proof of which is straight-forward and hence not presented.

Lemma 7.3. Let I be an implicator.
(i) If I satisfies (I1), then I(p,1) = 1 for any p 2 [0, 1].

(ii) If I satisfies (OP) then it also satisfies (IP).
(iii) Let I satisfy (I1). I satisfies (IP) if and only if I satisfies the following:
p 6 q) Iðp; qÞ ¼ 1; p; q 2 ½0;1�: ð12Þ
(iv) If I satisfies (I1), (IP) and (OP’) then I satisfies (OP).

Remark 7.4. From the above result and Definition 4.4, it is clear that the class of monotonic duality fitting implicators are
exactly the class of fuzzy implications that satisfy (LNP) and (OP).

Definition 7.5 (cf.[37,20]). Consider a mapping C : ½0;1�2 ! ½0;1�.
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(i) C is a semi-copula if it is monotonic increasing in both variables and Cð1; pÞ ¼ Cðp;1Þ ¼ p for every p 2 [0, 1].
(ii) C is said to be border continuous in the first variable if for every increasing sequence fpng in [0, 1] that converges to 1,

we have that, for any q 2 [0, 1]
lim
n!1

Cðpn; qÞ ¼ Cðlim
n!1

pn; qÞ ¼ Cð1; qÞ ¼ q:
(iii) C is said to be left-continuous in the first variable if for every increasing sequence fpng in [0, 1] we have that, for any
q 2 [0, 1]
lim
n!1

Cðpn; qÞ ¼ Cðlim
n!1

pn; qÞ:
(iv) C is said to be right-continuous in the first variable if for every decreasing sequence fpng in [0, 1] we have that, for any
q 2 [0, 1]
lim
n!1

Cðpn; qÞ ¼ Cðlim
n!1

pn; qÞ:
(v) Border-, left- and right-continuities in the second variable can be defined analagously. In the case the semi-copula is
also commutative, then any of the continuities in one variable immediately implies the same in the other.
7.2. Semi-copulas and their residuals

As seen earlier, from a conjunctor C one can obtain an implicator as its residual. Noting that monotonic duality fitting
conjunctors are commutative semi-copulas, in the following, we consider this procedure in the case of semi-copulas. From
Remark 7.4 we know that the minimal assumptions on a fuzzy implication I 2FI for it to be a duality fitting implicator are
that I satisfies (LNP) and (OP). Hence, in the following we show the minimal assumptions on a semi-copula C whose residual
is a duality fitting fuzzy implication.

Theorem 7.6.

(i) If C is a semi-copula that is border-continuous in the second variable then IC 2FI and satisfies (LNP) and (OP).
(ii) Conversely, if an I 2FI satisfies (LNP) and (OP), then CI is a semi-copula that is border-continuous in the second variable.

Proof. Firstly, we note the following. Let C be any semi-copula and for any fixed p 2 [0, 1], consider the vertical segment
Cpð�Þ ¼ Cðp; �Þ. Obviously, Cp is a one-variable function from [0, 1] to [0, p]. Now notice that if C is border continuous in
the second variable, then for every p 2 (0, 1) there exists a neighborhood Up ¼ ðap;1�, where ap 2 ð0;1Þ is dependent on
the chosen p, such that Cp is continuous on Up.

(i) This is straight forward. The hybrid monotonicity of IC follows from the monotonicity of C, while the boundary con-
ditions of IC follow from the boundary conditions on C. Note also that IC satisfies (LNP), since
ICð1; qÞ ¼ supftjCð1; tÞ 6 qg ¼ q; q 2 ½0;1�:

Let C be a semi-copula that is border-continuous in the second variable. On the contrary, let IC not satisfy the ordering
property (OP). Since for any C we have that p 6 q) ICðp; qÞ ¼ 1, there exists p0; q0 2 ð0;1Þ such that p0 > q0 and
ICðp0; q0Þ ¼ 1. Let p0 ¼ Cp0

ðap0
Þ ¼ Cðp0;ap0

Þ 6 p0. Now, we have two cases. If q0 > p0 then there exists t 2 Up0
and

t – 1 such that Cp0 ðtÞ ¼ q0 contradicting our assumption that ICðp0; q0Þ ¼ 1. On the other hand, if q0 6 p0 then by def-
inition ICðp0; q0Þ 6 ap0

< 1. Hence IC satisfies (OP).

(ii) Let I 2FI and satisfy (LNP) and (OP). Let CI be defined as in (8).

� CI is monotonic in the first variable: Let p1; p2; q 2 ½0;1� such that p1 6 p2. By (I1) if a t 2 [0, 1] is such that

Iðp2; tÞP q then Iðp1; tÞP q, i.e.,

ft 2 ½0;1�jIðp1; tÞP qg � ft 2 ½0;1�jIðp2; tÞP qg;

from which we obtain that CIðp1; qÞ 6 CIðp2; qÞ for any p1; p2; q 2 ½0;1�.
� CI is monotonic in the second variable: Let p; q1; q2 2 ½0;1� and q1 6 q2. Once again from (I2) we have

ft 2 ½0;1�jIðp; tÞP q1g � ft 2 ½0;1�jIðp; tÞP q2g;

from which we obtain that CIðp; q1Þ 6 CIðp; q2Þ for any p; q1; q2 2 ½0;1�.
� The following equalities show that CI indeed is a semi-copula (see also Lemma 6.10):

CIðp;1Þ ¼ infft 2 ½0;1�jIðp; tÞP 1g ¼ p; by ðOPÞ;
CIð1;pÞ ¼ infft 2 ½0;1�jIð1; tÞP pg ¼ p; by ðLNPÞ:
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� Let IC satisfy (OP). On the contrary, if C is not border continuous in the second variable, then there exists an
p0 2 ð0;1Þ such that limq!1�Cðp0; qÞ ¼ z < p0. Now, by definition

ICðp0; zÞ ¼ supft 2 ½0;1�jCðp0; tÞ 6 zg ¼ 1;

a contradiction to the fact that IC satisfies (OP). h
Remark 7.7. We emphasize the following important remarks on Theorem 7.6:

(i) The assumptions on an I to obtain a semi-copula CI as its deresiduum are minimal.
(ii) The semi-copula C is not assumed to be commutative. However, note that this class of semi-copulas does not subsume

the class of monotonic duality fitting conjunctors, since they are not expected to be border-continuous.
(iii) It should be emphasized that, in general, border-continuity of a duality fitting conjunctor is not required for the cor-

responding residual to satisfy (OP). For example, consider the largest duality fitting conjunctor C�, which is not border-
continuous, but whose residual I½1� satisfies (OP).

Theorem 7.8. ([20], Theorem 3.2 and Proposition 3.3).

(i) If C is a semi-copula that is left-continuous in both the variables then IC 2FI, satisfies (LNP), (OP) and IC is left-continuous
in the first variable and right-continuous in the second variable.

(ii) Conversely, if an I 2FI satisfies (LNP), (OP) and is left-continuous in the first variable and right-continuous in the second
variable, then CI is a semi-copula that is left-continuous in both the variables.

Now, we give a characterisation of monotonic left-continuous duality fitting conjuctors C, i.e., left-continuous commuta-
tive semi-copula, such that their residuals IC are not only duality fitting implicators but also such that every C-fuzzy equiv-
alence relation E on a set X is also an IC-fuzzy equivalence relation and vice-versa, i.e., E 2 CFECðXÞ () E 2 IFEIC ðXÞ.

Theorem 7.9. ([20], Theorem 3.5).

(i) If C is a left-continuous commutative semi-copula, then IC 2FI, is left-continuous in the first variable and right-continuous
in the second variable and satisfies (LNP), (OP) and (WE).

(ii) Conversely, if an I 2FI, is left-continuous in the first variable and right-continuous in the second variable and satisfies
(LNP), (OP) and (WE), then CI is a left-continuous commutative semi-copula.
7.3. Bounds on monotonic duality fitting operations

We know that the class of duality fitting conjunctors is bounded below by C� and above by C�, while the class of duality
fitting implicators is bounded below by I� and above (but not including) by I�.

As noted in [42, p. 175], monotonic duality fitting conjunctors are binary aggregation operators on [0, 1] with neutral ele-
ment 1 and annihilator 0, which are symmetric non-decreasing functions between C�, which is the weakest t-norm known as
the drastic t-norm TD, and the strongest t-norm TM, the minimum function. Interestingly, their residuals form the bounds for
the monotonic duality fitting implicators, i.e., any I 2FI that is also a duality fitting implicator is bounded below by the
Gödel implication
IGDðp; qÞ ¼
1; if p 6 q;

q; if p > q;

�

and bounded above by, but not including, I� which is the residual of C�.
8. Concluding remarks

In this work we have investigated fuzzy equivalence relations and fuzzy partitions where the respective transitivities
were defined with respect to an implicator I, instead of a conjunctor C as done in Mesiar et al. [42]. We have determined
the minimal conditions on an implicator to be a duality fitting implicator, i.e., an implicator I such that every I-fuzzy equiv-
alence relation is also a I-fuzzy partition and vice-versa. Our studies show that not all of the properties possessed by resid-
uals of left-continuous t-norms is quite relevant, for example, the exchange principle does not play any role in our study. This
can also be seen from the fact that not all residuals of duality fitting conjunctors, i.e., conjunctors C such that every C-fuzzy
equivalence relation is also a C-fuzzy partition and vice-versa, are duality fitting implicators. Also there exist duality fitting
implicators that cannot be obtained as residuals of duality fitting conjunctors.
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Regarding the relationships between the concepts of C-fuzzy equivalence relations and I-fuzzy equivalence relations, we
have shown that although, in general, every C-fuzzy equivalence relation can be shown to be an I-fuzzy equivalence relation
and vice-versa, there does exist C-fuzzy equivalence relations that are not I-fuzzy equivalence relations for any duality fitting
implicator even though C is a duality fitting conjunctor, showing that these concepts are not equivalent. Note also that, due
to Lemma 4.8, for a non-singleton X, we see that the smallest class IFEI� ðXÞ of all fuzzy equivalence relations on X based
on a duality fitting implicator is a proper subclass of the smallest class CFEC� ðXÞ of all fuzzy equivalence relations on X

based on a duality fitting conjunctor (see Remark 5.7(v)).
It should be remarked that, in the Definition 3.1 of an I-fuzzy partition, one could instead use the following equivalent

condition in the case of partitions:

(iii0) if U(x) = 1 for some x 2 X then for all y 2 X and all V 2 P the following inequality holds:
IðVðxÞ;UðyÞÞP VðyÞ:
However, it can be verified, without much tedium, that considering the above inequality does not alter the conditions
eventually required on a duality fitting implicator.

Finally, we remark that all the concepts proposed and the results proven in Klawonn and Jacas [33] in the framework of *-
fuzzy equivalence relation with * being a conjunction in a GL-monoid, can be, in a natural way, reformulated and proven for
the fuzzy equivalence relations based on the residual of *.
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References
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