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1 Introduction 

The concept of ‘nearness’ is all pervasive and important in every field of knowledge and 
sphere of human activity. Be it to define a mathematical concept like continuity or to 
match faces in an identity parade or to express the feeling of liking between human 
beings or to determine the closeness between points in a cluster or to find an approximate 
match to a given query in a database. Central to any evaluation of the nearness of two 
objects lies a similarity, or equivalently, its dual distance measure. While a norm or even 
a metric does the job admirably in mathematical settings, one has to resort to more 
subjective measures in other areas. However, one area which has attracted a lot of 
attention recently because of the difficulties in measuring this concept of ‘nearness’ is the 
setting of high dimensional spaces. 

1.1 The CoD 

Recently many works have dealt with what has now come to be called the ‘curse of 
dimensionality’ (CoD). The term presently connotes two different phenomena whose 
effects are typically seen when one deals with high dimensional spaces. This term was 
firstly introduced by Bellmann (1961) to refer to the combinatorial explosion in the 
number of variables in optimisation problems involving high dimensions. Recently, this 
term has also been used to refer to the degration in the effectiveness of methods 
employed in similarity searches, clustering and indexing in high dimensional spaces – 
typically the dimension is in the order of 100s. In this work, we deal with CoD in the 
context of the latter interpretation. 

Research on this topic over the last decade and more have attributed this effect largely 
to the following: 
1 The intrinsic dimension of the data which can lie on a manifold whose dimension is 

far less than the space in which the data reside. For instance, the data from a  
10-dimensional space can all lie on a straight line and hence its intrinsic dimension is 
just 1. For more details, see the works of Pestov (2000, 2007, 2008) and the 
references therein. 

2 The inability of the distance functions to separate points well in high dimensions. 
This inability of a distance measure manifests itself, rather unpleasantly, in nearest 
neighbourhood algorithms, clustering schemes, query searching in databases with 
high dimensionality and often leads to ‘instabilities’ or convergence to sub-optimal 
solutions. 

The scope of this work is restricted to dealing with the second of the above two factors. 
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1.2 Distance measures and their concentration

The ‘concentration of the norm’ (CoN) phenomenon, in some sense, refers to the
concentration of points and hence their distances, which is to say, that as the dimension
n increases the distances between a query point and its nearest and farthest neighbours
are no more significantly different.

Studies on the influence of distance functions on CoD can be broadly classified into
those that:

1 determine the conditions on the data distribution and the properties of the distance
measures which lead to unstable situations (see, for instance, Demartines, 1994;
Beyer et al., 1999; Durrant and Kabán, 2009)

2 analyse existing and/or new distance measures with respect to some indices
(Hinneburg et al., 2000; Aggarwal et al., 2001; François et al., 2007; Doherty et al.,
2004; Hsu and Chen, 2009).

This work can be considered to fall in the second category. Of course, needless to state,
the existing results from the first category have to be complied to.

In this work, we study the influence of the different properties of a distance measure,
viz., triangle inequality, boundedness and translation invariance, on this phenomenon.
Our studies indicate that unbounded distance measures whose expectations do not exist
are to be preferred. We propose some new distance measures based on our studies and
present many experimental results which seem to confirm our analysis. In particular,
we study these distance measures w.r.t. indices like relative variance and relative
contrast (RC) and further compare and contrast these measures in the setting of nearest
neighbour/proximity searches and hierarchical clustering.

1.3 Outline of the work

In Section 2, after giving some preliminaries that fix the definitions and notations,
we formally introduce the CoN phenomenon and discuss in brief the different works
related to it. Section 3 contains the study of the influence of the different mathematical
properties of a distance measure, viz., triangle inequality, boundedness and translation
invariance, on this phenomenon. Based on this analysis, in Section 4 we discuss the
desirability of the above properties and whether they can co-exist. In Section 5, we
propose some new distance measures that conform to the analysis in the previous
sections. Following this, we study these new and also some existing distance measures
w.r.t. indices like relative variance and RC. Further, we compare and contrast these
measures in the setting of nearest neighbour/proximity searches and hierarchical
clustering on both real and synthetic datasets. It can be seen that the experimental results
seem to confirm our analysis. In Section 6, some concluding remarks are given.

2 Concentration of norms in high-dimensional spaces

2.1 Some preliminaries

Let X̄, Ȳ ∈ U ⊂ Rn for some n ∈ N, i.e., X̄ = (x1, . . . , xn), Ȳ = (y1, . . . , yn) are
n-dimensional real vectors. We say X̄ ≼ Ȳ if xi ≤ yi for all i = 1, 2, . . . , n. A set
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V ⊂ U is called a chain if any two elements in it are comparable w.r.t. the order given
by ≼ above.

A mapping d : U × U → [0,∞] is called a distance measure if

1 d(X̄, Ȳ ) = 0 ⇐⇒ X̄ = Ȳ

2 it is symmetric, i.e., d(X̄, Ȳ ) = d(Ȳ , X̄)

3 it is monotonic on any chain V ⊂ U , i.e., if X̄, Ȳ , Z̄ ∈ V such that X̄ ≼ Ȳ ≼ Z̄ then
d(X̄, Ȳ ) ≤ d(X̄, Z̄)

A distance measure d is called a metric if it further satisfies, for any X̄, Ȳ , Z̄ ∈ U

4 the triangle inequality, i.e., d(X̄, Z̄) ≤ d(X̄, Ȳ ) + d(Ȳ , Z̄).

Given a normed vector space (Rn,+, ·, ∥.∥) and any X̄, Ȳ ∈ Rn, the norm – usually
denoted as ∥.∥ – is a function from Rn → [0,∞] such that

1
∥∥X̄∥∥ = 0 ⇐⇒ X̄ = 0̄

2
∥∥aX̄∥∥ = |a|

∥∥X̄∥∥ for any scalar a, (Linearity)

3
∥∥X̄ + Ȳ

∥∥ ≤
∥∥X̄∥∥+ ∥∥Ȳ ∥∥. (Triangle inequality)

It is well known that one can get a metric from a norm as d(X̄, Ȳ ) =
∥∥X̄ − Ȳ

∥∥, though
the converse is not always possible. For instance, let X̄, Ȳ ∈ Rn. Consider the function

∥∥X̄∥∥ =

(
n∑

i=1

|xi|p
) 1

p

. (1)

For p ≥ 1, it can be easily shown that (1) is a norm – usually denoted as ∥·∥p – and
one obtains the following distance function which is a metric from it as follows:

d(X̄, Ȳ ) =

(
n∑

i=1

|xi − yi|p
) 1

p

. (2)

If 1 ≤ p ∈ N then d is usually called the Minkowski norm/metric and is denoted as Lp

in this work. Setting p = 2 gives the Euclidean metric. If p ∈ (0, 1) then d is called the
Fractional norm/metric (see Aggarwal et al., 2001) and we denote it by Fp. Note also
that Fp is actually not a metric since the triangle inequality does not hold.

In this work, we will denote the distance of a vector X̄ from the origin w.r.t. d by∥∥X̄∥∥
d
, as the ‘norm’ of the vector, i.e.,

∥∥X̄∥∥
d
= d(X̄, 0̄) =

∥∥X̄ − 0̄
∥∥
d
even if d is not

a metric and only a distance measure. Of course, this is true if d is a metric obtained
from a norm.

In the sequel, we deal only within the framework of [0, 1]n, which means it is
implicitly assumed that all data can be normalised to fall within this domain. This
is done to maintain uniformity and consistency in the presentation of arguments and
results. There are many forms of normalisation each with its own effectiveness and
efficiency, the presentation of which is quite outside of the scope of the present work.
For more on the benefits and effects of data normalisation, see Sneath and Soka (1973)
and Milligan and Cooper (1985). We only assume that the data are reasonably and
satisfactorily normalised. As is usual, let us take the query point to be situated at the
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origin. Note that this can be assumed without loss of generality only if the distance
measure used is translation invariant.

2.2 RC of a metric

Consider a finite dataset U ⊂ [0, 1]n. Given a distance measure d on [0, 1]n, let us denote
by DM , Dm the distance from our query point Q̄ = 0̄ (the origin here) to those members
X̄, Ȳ ∈ U that are the farthest and nearest to Q̄, respectively, w.r.t. d. Consider the
following quotient called the ‘RC’:

ρnd =
DM −Dm

Dm
. (3)

The CoN phenomenon, in some sense, refers to the concentration of points and hence
their distances, which is to say, that as the dimension n increases ρnd goes to zero, i.e.,
limn→∞ ρnd = 0. In other words, as the dimension increases most of the data seem to be
distributed closer to the corners and hence the difference between the ‘farthest’ and the
nearest neighbours, as determined by the distance measure d, becomes indistinguishable.

2.3 Studies on the concentration of norms

Here we give a brief summary of only those works that have a direct bearing on our
studies and refer the reader to the excellent article of François et al. (2007) and the
references therein for further details.

Demartines (1994) is credited to have been the first to determine the bounds
on ρnd for any arbitrary but i.i.distributed data but only for the Euclidean norm.
Later, independently, Beyer et al. (1999) proposed rather mild conditions on the data
distribution by discussing the ratio between the variance and the expectation of the
distance distribution under which the CoN phenomenon occurs (see Beyer et al., 1999;
Theorem 1). Recently, the authors in Durrant and Kabán (2009) and Hsu and Chen
(2009) have shown that the converse also holds when the number of points is‘large’.

Following this, Aggarwal et al. (2001) (see also Hinneburg et al., 2000) discussed
the CoN for uniformly distributed data consisting of finite points for both the Lp norm
and made a strong case for Fp by showing that RC was better with decreasing p,
i.e., as p → 0. These results were further generalised by François et al. (2007) for any
arbitrary distributions, not necessarily uniform or i.i.d. However, they also showed that
the fractional metric too concentrated, i.e., the RC approached zero but just that the rate
at which it decreased was slow. Further they also present datasets (real and synthetic)
where it is observed that Lp norms fare better than the fractional metrics. Doherty et al.
(2004) studied these norms in the setting of NN classifiers and their results seem to
further confirm the earlier studies.

2.4 A case of treating only the symptoms?

So far studies on the CoN phenomenon w.r.t. some specific distance measures have
largely restricted themselves with the Lp and Fp measures.

It should also be highlighted that the effectiveness of distance measures is very much
contextual and depends on the domain of the application, the distribution of the data
and to a certain extent even on the range of the data. Studies have shown that different
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distance functions behave differently on normalised data, see for example, Doherty et al.
(2004, 2007) (see also Remarks 5.1 and 5.2). In fact, Aggarwal (2001, 2003) makes a
case for a distance function to be user centric by stating “The most important aspect of
distance function design is that since a human is the end-user for any application, the
design must satisfy the user requirements with regard to effectiveness”.

Thus both emperical studies related to measuring the different indices like the RC
or the relative variance and also the effectiveness of these distance measures in different
applications have been studied in Aggarwal et al. (2001), François et al. (2007) and
Doherty et al. (2007).

However, the following questions still remain: What happens to the CoN if p is fixed
a priori and n → ∞? On the other hand, if the data come from a fixed but arbitrarily
large dimension n = n0 >> 1, how should the value of p be chosen so that ρnd >> 0?
Does there exist any relation between n, p so as to ensure that ρnd >> 0? Note that
in the works of Aggarwal et al. (2001) and François et al. (2007) one needs to vary
simultaneously both the dimension n and the exponent power p of the metric.

In other words, though the RC ρnd reflects well the inability of the distance
function to distinguish points in higher dimensions, does proposing metrics to ensure
the slowness of its concentration in itself address the root of the problem?

In the following section we revisit the CoN phenomenon and show a likely cause for
it and propose some metrics that overcome this drawback. Towards this end, we firstly
discuss the desirable properties of a distance measure and show the interplay between
these properties among themselves and w.r.t. the CoN.

3 Properties of a distance measure and the concentration of norm phenomenon

In this section, we take a look at the properties of typical distance measures, which are
usually based on a norm or a metric, and discuss their desirability vis-á-vis the CoN
phenomenon.

3.1 Can bounded measures ever do the job?

A distance measure d on [0, 1]n is called unbounded if limX̄→1̄

∥∥X̄∥∥
d
= ∞.

Let us consider the formula for RC (3). Once again let Q̄ = 0̄ be the query point.
Clearly, ρnd → 0 either if the nearest neighbour Ȳ of Q̄ goes closer to the farthest
neighbour X̄ of Q̄ and/or if the distance of Ȳ itself is large (w.r.t. the origin, here Q̄).
Let us consider a bounded distance measure d. Note that DM = d(Q̄, X̄) =

∥∥X̄∥∥
d
and

Dm = d(Q̄, Ȳ ) =
∥∥Ȳ ∥∥

d
.

Let the data come from a fixed but arbitrarily large n dimensional space, [0, 1]n.
Then the theoretical farthest neighbour for our query point is 1̄ = (1, . . . , 1) at a distance
DM = K, for some K ∈ R. Letting X̄ = 1̄ we have that as Ȳ → X̄ ,

∥∥Ȳ ∥∥
d
→ K and

the numerator of (3), viz.,
(
DM −

∥∥Ȳ ∥∥)→ 0 while its denominator
∥∥Ȳ ∥∥

d
is increasing.

Clearly, however large K may be this phenomenon is waiting to happen, especially if
the number of data points are fixed but the dimension n is allowed to increase.

The above discussion seems to call for unbounded metrics d, i.e.,
limX̄→1̄

∥∥X̄∥∥
d
= ∞. Clearly, then d cannot be linear either. For, if d is linear,

then consider some c ∈ (0, 1). With a = 1
c > 0, C̄ = (c, . . . , c), we have that
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d
= K < ∞ which implies that |a|

∥∥C̄∥∥
d
=
∥∥aC̄∥∥

d
= ∥1̄∥d = |a|K < ∞,

contradicting the fact that d is unbounded.

3.2 The effect of triangle inequality

The triangle inequality property of a norm automatically fixes an upper bound for ρnd :∥∥X̄ − Ȳ
∥∥
d∥∥Ȳ ∥∥

d

≥
∥∥X̄∥∥

d
−
∥∥Ȳ ∥∥

d∥∥Ȳ ∥∥
d

= ρnd . (4)

Once again, as Ȳ → X̄ we have that (X̄ − Ȳ ) → 0̄ and hence
∥∥X̄ − Ȳ

∥∥
d
→ 0 and so

does ρnd .
Thus even if d is unbounded but satisfies the triangle inequality the CoN

phenomenon is certain to manifest sooner or later. This also suggests that, for ρnd to
not to go to zero, not only should d continue to increase for points far away from the
origin, the distances ‘closer to the origin’ should also be ‘relatively large’.

3.3 Translation invariance and the CoD

From the above, it is clear that one needs to ensure that
∥∥X̄ − Ȳ

∥∥
d
remains large even

when (X̄ − Ȳ ) → 0̄. One way to achieve this is to make the distance between two
points – which is essentially a measure of their relative position – to somehow depend
on their ‘absolute positions’ also. For instance, consider X̄, Ȳ , Z̄ ∈ [0, 1]n such that

∥0̄∥d <
∥∥X̄∥∥

d
,
∥∥Ȳ ∥∥

d
<<

∥∥Z̄∥∥
d
< ∥1̄∥d .

Let C̄ ∈ [0, 1]n be such that X̄ + C̄, Ȳ + C̄ ∈ [0, 1]n and

∥0̄∥d <<
∥∥X̄ + C̄

∥∥
d
,
∥∥Ȳ + C̄

∥∥
d
< ∥1̄∥d .

To ensure that the numerator of the upper bound in (4) is also relatively large compared
to its denominator, we need that

d
(
X̄ + C̄, Ȳ + C̄

)
> d

(
X̄, Ȳ

)
.

In short, d should not be translation invariant!
Perhaps the above property is captured in some sense in another index firstly

proposed by François et al. (2007) [and later generalised in Durrant and Kabán (2009)]
to investigate the CoN phenomenon. The relative variance of a given data distribution
is given as:

RVd =

√
V ar

(∥∥X̄∥∥
d

)
E
(∥∥X̄∥∥

d

) , (5)

where ∥.∥d is any distance measure. Once again, a small value for RVd reflects the
concentration of d. As already stated by the authors, “RVFp measures the concentration
by relating a measure of spread (variance) to a measure of location (expectation)”.
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4 Desirable properties of a distance measure

It is clear from the above discussion that we need distance measures d that are
unbounded, and hence non-linear, nevertheless satisfying both the triangle inequality and
translation invariance.

4.1 Can a distance measure d have the above three properties?

We show below that there cannot exist distance measures d that possess all the above
three properties.

Theorem 4.1: Let d be a distance measure on [0, 1]n. Then d can have at most two of
the following three properties:

1 unboundedness

2 translation invariance

3 triangle inequality.

Proof

• (1) and (2) =⇒ not (3): let d be unbounded with d(0̄, 0.5) = K < ∞. By the
translation invariance of d, we have d(0̄, 0.5) = d(0.5, 1̄). If d were to also have the
triangle inequality property, then

d(0̄, 1̄) ≤ d(0̄, 0.5) + d(0.5, 1̄) = 2K < ∞, (6)

contradicting the fact that d is unbounded.

• (3) =⇒ not (1)

• (1) =⇒ not (2): follow easily from the inequality (6) above.

4.2 Can translation invariance be given the slip?

While it is clear that we need a measure that evaluates distances between points not only
based on their relative separation but also somehow taking into account their absolute
positions also, translation invariance is an essential property in many applications, for
instance, in clustering applications. Deviating from translation invariance would imply
that the distance or similarity differs depending on the range in which data fall. This
might be desirable in certain applications, but could only be justified by domain-specific
knowledge that suggests how to measure distance in different ranges.

In fact, note that the usual assumption of considering the origin as a query point in
any analysis is valid only if the distance measures employed are translation invariant.

4.3 Is triangle inequality always desirable?

The triangle inequality property of a norm states that the straight line is the shortest
path between any two points. How valid is this intuitive property of Euclidean spaces
in higher dimensions? More importantly, is it even desirable? Even in the cases where
the distance measures satisfy this property, one can get some counter-intuitive results.



Can unbounded distance measures mitigate the curse of dimensionality? 369

In fact, the triangle inequality is important so that the corresponding similarity
measure S : U × U → [0, 1] induced by the distance measure d satisfies the transitivity
property. In this context, it is enough to find a well-defined operation ⊕ such that

d(X̄, Z̄) ≤ d(X̄, Ȳ )⊕ d(Ȳ , Z̄).

Then one can suitably find a ∗ (usually a conjunctive operator) such that

S(X̄, Z̄) ≥ S(X̄, Ȳ ) ∗ S(Ȳ , Z̄)

holds.

5 Analysis of distance measures and some experimental results

In this section, we analyse the two commonly used and investigated distance measures,
viz., the Minkowski’s Lp and fractional norms Fp. Moreover based on our analysis in
the previous sections we also propose two new unbounded measures and investigate
all these measures w.r.t. the two indices that have now become commonly accepted as
measures of concentration, viz., the RC ρnd and the relative variance RVd.

Table 1 Properties of different d with fixed n, p. K is the bound of d, i.e., K = ∥1̄∥d

d p parameter Bounded K Triangle inequality Translation invariance

Lp p ≥ 1 X n
1
p X X

Fp 0 < p < 1 X n
1
p × X

Jp p ≥ 1 × ∞ X ×
Jp 0 < p < 1 × ∞ × ×
J ′
p p ≥ 1 × ∞ × X

J ′
p 0 < p < 1 × ∞ × X

Note: See Section 5.1 for more details.

5.1 Bounded and unbounded distance measures

Let us once again consider the data to come from [0, 1]n for a fixed but arbitrarily large
n ∈ N and assume that our query point is placed at the origin 0̄ ∈ [0, 1]n.

5.1.1 The Minkowski norms Lp, p ∈ N

From equation (1), it is clear that for a fixed p it is bounded above by
K = ∥1̄∥d = Lp(1̄) = n

1
p . Also, as p increases this bound decreases. Being a norm it

does satisfy both the triangle inequality and translation invariance properties.

5.1.2 The fractional norms Fp, p ∈ (0, 1)

Once again, from equation (1) with a fixed p ∈ (0, 1) we see that the fractional norms
are also bounded above by K = ∥1̄∥d = Fp(1̄) = n

1
p . Also, as p decreases this bound

increases, since as p → 0 we have that 1
p → ∞. Thus even though it is bounded we see

that as n → ∞ the bound increases but for a fixed n, p it is very much bounded. Once
again, it is well known that Fp is translation invariant but does not satisfy the triangle
inequality.
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Note that the above analysis also clarifies the seemingly contradictory results found
in Aggarwal et al. (2001), Doherty et al. (2004) and François et al. (2007). In Aggarwal
et al. (2001), the authors prove that as p → 0 the constant for the upper bound increases
non-linearly, but the moment p is fixed this constant is also fixed, thus it only slows
down the rate of concentration without completely eliminating it as the results in
Doherty et al. (2004) and François et al. (2007) show.

5.1.3 Some new unbounded measures

Consider the following two functions on [0, 1)n with p > 1:

Jp(X̄, Ȳ ) =

(
n∑

i=1

∣∣∣∣ xi

1− xi
− yi

1− yi

∣∣∣∣p
) 1

p

(7)

J ′
p(X̄, Ȳ ) =

(
n∑

i=1

∣∣∣∣ xi − yi
1− |xi − yi|

∣∣∣∣p
) 1

p

(8)

It can be easily verified that both Jp,J ′
p satisfy the basic conditions of a distance

measure, viz., symmetry and monotonicity on any chain in [0, 1)n. Moreover, both of
them are unbounded measures, i.e.,

lim
X̄→1̄

Jp(0̄, X̄) =
∥∥X̄∥∥Jp

=

(
n∑

i=1

∣∣∣∣ xi

1− xi

∣∣∣∣p
) 1

p

=
∥∥X̄∥∥J ′

p
= lim

X̄→1̄
J ′
p(0̄, X̄) = ∞

since X̄ → 1̄ implies that xi → 1 for all i = 1, . . . , n (note that ∥·∥J ′
p
= ∥·∥Jp

, since
the distance of a point from the origin remains the same under both the measures).
However, while Jp satisfies the triangle inequality (this can be easily proven using the
usual Minkowski’s inequality) it is not translation invariant. In contrast, J ′

p is translation
invariant but does not satisfy the triangle inequality.

Of course, if we let p ∈ (0, 1) it only affects the triangle inequality property of Jp.
The distance measure Jp is in the line of kernel functions as they are used for

support vector machines. It is based on the non-linear transformation

(x1, . . . , xn) 7→
(

1

1− x1
, . . . ,

1

1− xn

)
and then computing the distance with the corresponding Lp norm. The distance measure
J ′
p can be seen as a modification of Jp, since it can be rewritten in the form

J ′
p(X̄, Ȳ ) = Jp(0̄, X̄ − Ȳ ).

The distance J ′
p defines the distance between to vectors X̄ and Ȳ as the Jp distance of

the difference between X̄ and Ȳ to the zero vector.
In François et al. (2007), the authors have considered a sample of 100,000 uniformly

sampled points from [0, 1]n for n varying from 1–100. Considering the set of distances
A = {

∥∥X̄i
∥∥
d
, i = 1, . . . , 100, 000}, they plot the minimum, maximum, average and the

variance of the set A for dimensions 1–100 with the Euclidean metric for d. We do a
similar study for the measures Jp,J ′

p.
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Figure 1 The minimum, maximum, average, standard deviation and RC of Jp

(and J ′
p) with p = 2 for distances on 25,000 points distributed over [0, 1)n for

dimensions n = 10− 100 (see online version for colours)

Figure 2 The minimum, maximum, average, standard deviation and RC of Jp

(and J ′
p) with p = 2 for distances on 50,000 points distributed over [0, 1)n for

dimensions n = 10− 100 (see online version for colours)
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Figure 3 The minimum, maximum, average, standard deviation and RC of Jp

(and J ′
p) with p = 2 for distances on 100,000 points distributed over [0, 1)n for

dimensions n = 10− 100 (see online version for colours)

Figure 4 The relative variance of Jp (and J ′
p) with p = 2 for distances on points distributed over

[0, 1)n for dimensions n = 10− 100
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In Figures 1 to 3, we plot the above indices for three datasets each containing 25,000;
50,000 and 100,000 vectors. Each set contained roughly the same number of points
that were Gaussian and uniformly distributed over [0, 1)n. Not only is the RC quite
high – the difference between minimum and maximum distances is in the order of 106,
as is expected it tends to increase with the increase in the number of points for the same
dimension. This is further confirmed by the relative variance index which is plotted in
Figure 4 which was measured on the same datasets.

5.2 K-NN search on some normalised UCI datasets

In Aggarwal et al. (2001), a K-nearest neighbour (K-NN) search was done on some
UCI datasets to test the quality of the Lp and Fp distance measures for different
parameter values. The test consisted of stripping off the class variable data from the
datasets and using only the feature variables. Picking each data member from the dataset
as the query point, the K-nearest neighbours were determined using a distance d (here
Lp or Fp). This set of K-nearest neighbours was then checked for class variable
accuracy, i.e., how many among the K-nearest neighbours actually belonged to the same
class as the query point. Though this is primarily a measure that is evidential in nature,
their study still indicated that the class variable accuracy increased with decreasing
values of p with p ∈ (0, 1), thus suggesting the use of fractional norms.

Later on, Doherty et al. (2004) performed a similar experiment on the following
datasets from the UCI repository: ionosphere, Wisconsin breast cancer diagonostic
(WBCD) and image segmentation training data. When the tests were performed on data
that were normalised employing the usual formula

yi =
xi − xi

m

xi
M − xi

m

, (9)

along each of the feature variables, where xi
m, xi

M were the minimum and maximum
values of the i-th feature variable xi, their results show that there was no clear relation
between the values of the parameter p and the class variable accuracy.

We performed the same experiment on the above three datasets using the
normalisation formula (9) for the four distance measures, viz., L2,F0.04,J ′

2,J2.
To ensure that the distance measures J ′

2,J2 did not saturate, when a particular
feature variable had the value yi = 1 after normalisation, we reassigned the value to
yi = 0.9999. The results are presented in Table 2 [though we present here results of
L2,F0.04 for such a dataset, the results were not significantly different on the normalised
data without this modification as can be readily verified for the case of L2 from Table 4
in Doherty et al. (2004). Also note that p = 0.1 is the smallest value for which the
results are tabulated in Aggarwal et al. (2001) and Doherty et al. (2004)]. In the first
column of the table indicates the corresponding dataset and the number of instances
contained in the datasets. The number K in the second column specifies the number
of nearest neighbours that are considered. For each instance we compute how many
of the K nearest neighbours with respect to the mentioned distance measure belong to
the same the same class as the instance itself. The average number and the average
percentage of these K nearest neighbours from the same class is given in the remaining
columns.
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Table 2 K-NN Search on some normalised UCI datasets

Dataset
K

L2 F 1
25

J ′
2 J2

(no. of objects) Euclidean Fractional Translation invariant Triangle inequality
Ionosphere (351) 3 2.56 2.71 2.59 2.36

(85%) (90%) (86%) (79%)
5 4.20 4.38 4.24 3.88

(84%) (88%) (85%) (77%)
9 7.42 7.72 7.57 6.83

(80%) (86%) (84%) (76%)
Segmentation (210) 3 2.51 2.03 2.46 2.27

(84%) (68%) (82%) (76%)
5 4.12 3.17 4.00 3.58

(82%) (63%) (80%) (72%)
9 7.00 5.29 6.71 5.83

(78%) (66%) (75%) (65%)
WBCD (569) 3 2.86 2.71 2.80 2.85

(95%) (90%) (93%) (95%)
5 4.74 4.55 4.74 4.63

(95%) (91%) (95%) (93%)
9 8.48 8.14 8.44 8.28

(94%) (90%) (94%) (92%)

The results show that while the fractional norm with p = 0.04 was the best for the
Ionosphere dataset, this honour belonged to the Euclidean norm for the other two
datasets. They also show that J ′

2,J2 do perform consistently well with one of them
being the second best in every scenario.

Although the four distance measures yield very different values for the distances,
their performance in Table 2 differs not so drastically as might have been expected. The
reason might be that for the nearest neighbour search, only a few nearest neighbours
are considered. These nearest neighbours are in most cases really close to the reference
point, no matter which distance measured is used. The situation changes when cluster
analysis is carried out. In this case, the number of data objects in a cluster is usually
much larger than the number of considered nearest neighbours in classification. As will
be discussed in Section 5.4, the results for the four distance measures differ much more
for clustering than for nearest neighbour search.

Remark 5.1: As was noted in Aggarwal et al. (2001) any commentary on the quality of
a distance measure based on such experiments is largely evidential in nature. Moreover,
it is not clear whether distance measures which are naturally more suited for clustering
of spatial data should be expected to or can also perform well in classification problems,
where the data members of respective classes may not share any intrinsic spatial
similarity. For instance, the Manhattan metric can effectively classify the two simple
datasets in Figure 5, while the Euclidean metric is unlikely to classify it accurately.
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Figure 5 Distance measures: for classification or clustering! (see online version for colours)

5.3 RC and RV on a real dataset

Now we present some results related to the RCs and relative variances of the above
distance measures on a real dataset. In François et al. (2007), they have plotted the RCs
for some real datasets from the UCI depository, specifically the WBCD data and the
image segmentation dataset. Their study shows that the Minkowski norms Lp perform
better than fractional norms Fp and, in fact, their RC increases with increasing p with
p ≥ 1.

We consider the WBCD data consisting of 569 vectors which, after stripping down
the categorical variables of patient ID and the type of cancer, contains 30 dimensions.
Once again, we normalise the data as explained in Section 5.2. We plot the RCs and
relative variances of the above distance measures on this dataset for different values of
p, typically p = 1, . . . , 50. Note that for the fractional metric we used the reciprocal of
the parameter p. As can be seen in Figure 6 the comparison among the indices tell quite
an interesting story.

In Figure 6(a), the RC is plotted for p = 1, . . . , 36, which for the fractional metric
means p assumes the values 1, 1

2 , . . . ,
1
36 (we do not present the results for p > 36 just

to retain the overall scale of the plot). The RCs for the Minkowski norms Lp and the
unbounded measures Jp decrease with increasing p, however they seem to stabilise at
not a very far value (7.81; 35.26) from where they begin (9.21; 32.66). In contrast, the
RC for the unbounded measure J ′

p initially increases with increasing p but seems to
stabilise, but with a value (63.21) far away from what it was for p = 1 (27.79). The
fractional norm Fp shows a totally different behaviour and continues its increasing trend
even after p = 36.

In Figure 6(b), the RC is plotted for p = 1, . . . , 50 (for the fractional metric
p = 1, 1

2 , . . . ,
1
50 ). Once again, the relative variances for the Minkowski norms Lp and

the unbounded measure Jp decrease with increasing p, while those for the unbounded
measure Jp and the fractional norm Fp increase with increasing p. However, all of them
soon saturate to an almost stable value.

What is quite revealing here is that the fractional norm that increased almost
exponentially with respect to the RC not only does its relative variance stabilise but to a
value that is far below those of the unbounded measures. Note that while the RC of Fp

is far superior to those of the other measures considered, the values for Jp,J ′
p are also

quite on the higher side even without increasing the parameter value beyond 2. In fact,
this is one of the nice properties of these unbounded measures: they do not need the
help of an extra parameter. Also note that through out this work we have consistently
used a value of p = 2 for Jp,J ′

p, while for Fp we use a rather low value of p = 0.04.
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Figure 6 Plots of the (a) RC ρnd (b) relative variance RVd of the above distance
measures for the WBDC data (see online version for colours)

(a)

(b)

Remark 5.2: Note that we have presented our results on normalised data [Figure 6(a)]
and hence we do not expect it to conform to what is reported in François et al. (2007).
This once again clearly highlights the difference between employing data which is
normalised and that which is not.
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5.4 Hierarchical clustering

In this section, we present results of Hierarchical clustering performed with the
above four distance measures. For this purpose we considered two datasets consisting
of 1,000 vectors of 100 dimensions. The first dataset resembles a Gaussian
mixture model. Firstly, we generated 200 data points with 100 dimensions with
values lying in [0, 0.16666], i.e., A = {X̄i = (xi

j)|xi
j ∈ [0, 0.16666], i = 1, 2, . . . , 200,

j = 1, . . . , 100}. Then we created another 800 points from these by adding 0.833333 to
different but non-overlapping dimensions to create the other four clusters. For instance,
we added the above constant to the dimensions j = 10, . . . , 28 of every X̄i ∈ A to
get the next cluster B. Similarly, we obtained clusters C,D,E by modifiying the
dimensions in the range of [35, 55], [58, 74], [88, 98].

Using a similar procedure as above, for the second dataset we generated uniformly
distributed data in [0, 1]100 such that there were four clear and distinct clusters each
with 200 points. Then we generated 200 points, once again uniformly over [0, 1]100, and
added them to the dataset as a fifth noise cluster.

Figure 7 Dendrograms of the single linkage hierarchical clustering for 1,000 points Gaussian
distributed with five distinct clusters, (a) Euclidean L2 (b) fractional F0.04

(c) translation invariant J ′
2 (d) trianlge Inequality J2

(a) (b)

(c) (d)
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We used two of the hierarchical clustering methods available with R statistical package,
viz., the single-linkage and the Ward’s method. In Figures 7 to 10, we give the plots of
the dendrograms and the heat maps for the clustering obtained with the above distance
measures. The result shows that the Euclidean metric L2 and the unbounded measures
J2,J ′

2 perform consistently well, while the fractional metric (F0.04) is found wanting.
Though we have presented the results only for the above two methods and the specified
datasets, our experiments with other types of data distributions and different hierarchical
clustering methods showed a similar trend.

Figure 8 Heat maps of the single-linkage hierarchical clustering for 1,000 points Gaussian
distributed with five distinct clusters, (a) Euclidean L2 (b) fractional F0.04

(c) translation invariant J ′
2 (d) trianlge inequality J2 (see online version for colours)

(a) (b)

(c) (d)
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Figure 9 Dendrograms of Ward’s hierarchical clustering for 1,000 points uniformly distributed
with four distinct clusters and a noise cluster, (a) Euclidean L2 (b) fractional F0.04

(c) translation invariant J ′
2 (d) trianlge inequality J2

(a) (b)

(c) (d)

It should be noted that the data clusters are more or less well-separated. When clusters
tend to overlap more, the situation will become more difficult for the distance measures.
The Euclidean metric L2 and our distance measure J2 can both discover the the
five clusters, these clusters are even more visible for the distance measure J2 in the
dendrogram than for the Euclidean metric. The ‘lawn’ of smaller clusters is much shorter
for the distance measure J2.
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Figure 10 Heat haps of the Ward’s hierarchical clustering for 1,000 points uniformly distributed
with four distinct clusters and a noise cluster, (a) Euclidean L2 (b) fractional F0.04

(c) translation invariant J ′
2 (d) trianlge Inequality J2 (see online version for colours)

(a) (b)

(c) (d)

5.5 High expectations from an expectationless distance measure

In Hsu and Chen (2009), the authors state “Our theoretical results show that all distance
functions should be meaningless in high-dimensional space, except that it can resist the
rapid degradation of distance variation with increasing dimensionality”. With reference
to this statement, how does one view the results and analysis presented so far? Are the
new functions Jp,J ′

p prone to concentration but only much slower? Is this true of any
general unbounded measure too?

The answer perhaps lies in the fact that the known theoretical results are valid for
only those distance measures whose expectation is finite. Let us consider the uniformly
distributed random variable X ∼ U(0, 1) on a single dimension. Then the expectation
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of the distance from the origin for X w.r.t. the measures Jp,J ′
p is given as

E[∥X∥] =
∫ 1

0

x

1− x
dx ,

which clearly does not exist.
So far, we have dealt with only [0, 1]n assuming the underlying data is normalised.

However, outliers in data can upset the normalisation and hence most of the actual data
may not belong as close to the vertices as assumed so far. In other words, even if d
is an unbounded metric the data distribution may be such that the distances may not
‘saturate’ and hence the expectation of d may very well exist. In the following we show
that the above metrics can be easily adapted to this situation.

Let us assume that even though the normalised data occupy the [0, 1]n space, they
are effectively concentrated in some ’sub-space’ [a, b]n ⊂ [0, 1]n. Since b ∈ (0, 1) we
have that lim

t→∞
b

1
t = 1. From the denseness of reals we can easily find a q ∈ (0, 1) such

that |1− bq| < ϵ for any arbitrarily small ϵ > 0. Now consider the modified translation
invariant metric J ∗

q , q ∈ (0, 1) given by:

J ∗
q (X̄, Ȳ ) =

(
n∑

i=1

|xi − yi|q

1− |xi − yi|q

) 1
q

. (10)

Clearly, for a uniformly distributed random variable X ∼ U(0, 1)

E[∥X∥] =
∫ 1

0

xq

1− xq
dx ,

does not exist.
Measuring the distance as in equation (10) is related to the concept of power

transform (Box and Cox, 1964; Carroll and Ruppert, 1981), a well known concept from
statistics where it is normally applied directly to the data, whereas it is applied to the
distances here.

6 Concluding remarks

In this work, we have analysed distance measures to cope with the CoD. Our main
observation is that unbounded distance measures can help to overcome certain problems
caused by the CoD. We have also given examples for such unbounded distance measures
and have evaluated them based on some characteristic indices and real datasets.

However, we would like to reiterate that we do not proclaim the superiority of
the unbounded measures proposed in this work. Firstly, they are only for illustrative
purposes and more such measures along these lines can easily be proposed. Secondly,
as mentioned repeatedly in this work, the effectiveness of a distance measure is very
much contextual and hence distance measures that perform consistently well in all areas
and aspects can be quite hard to come by. In any case, it is better to stick to the ideas of
intelligent data analysis (Berthold and Hand, 2009; Berthold et al., 2010) and to involve
as much domain knowledge into the data analysis and handling as possible. So if a
domain-specific distance measure is known, this should be preferred over other general
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purpose measures. However, especially when dealing with high-dimensional data, a
canonical domain-specific distance measure is not known or very difficult to define. In
such cases, it is useful to try out different general purpose distance measures that reduce
the effects of the CoD.

This work can and should be seen as yet another honest effort in understanding the
CoD and an attempt at mitigating its effects.
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