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Abstract

The two most important models of inferencing in approximate reasoning with fuzzy sets are Zadeh’s Compositional
Rule of Inference (CRI) and Similarity Based Reasoning (SBR). It is known that inferencing in the above models is
resource consuming (both memory and time), since these schemes often consist of discretisation of the input and output
spaces followed by computations in each point. Also an increase in the number of rules only exacerbates the problem. As
the number of input variables and/or input/output fuzzy sets increases, there is a combinatorial explosion of rules in multi-
ple fuzzy rule based systems. In this paper, given a fuzzy if–then rule base that is used in an SBR inference mechanism, we
propose to reduce the number of rules by combining the antecedents of the rules that have the same consequent. We also
present some sufficient conditions on the operators employed in SBR inference schemes such that the inferences obtained
using the original rule base and the reduced rule base obtained as above are identical. Subsequently, these conditions are
investigated and many solutions are presented for some specific SBR inference schemes.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Inference in approximate reasoning

One of the best known application areas of fuzzy logic is approximate reasoning, wherein from imprecise
inputs and fuzzy premises or rules we obtain, often, imprecise conclusions. Approximate reasoning with fuzzy
sets encompasses a wide variety of inference schemes and have been readily applied in many fields, especially
among others, decision making, expert systems and control.

Of all the various approaches taken in such schemes in approximate reasoning, two of them have been pre-
valent in the literature, viz., reasoning methods based on the
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(i) Combination-Projection principle, of which Zadeh’s Compositional Rule of Inference (CRI) [55] is a
good example.

(ii) Similarity between inputs and antecedents and the subsequent modification of the consequent, usually
called Similarity Based Reasoning (SBR) or plausible reasoning [23], of which Compatibility Modifica-
tion Inference (CMI) [15] and Turksen’s Approximate Analogical Reasoning Scheme (AARS) [48] are
some representative samples.

Of course, there are many more that do not strictly fall under these two categories, for example, Swapan
Raha et al., proposed an inference that is a combination of both the above approaches in [43], Baldwin’s
Fuzzy Truth Value Modification inference [5], the scheme proposed by Ughetto et al. for implication based
rules in [49], etc. Also see earlier papers of Mizumoto [35,36], Roger [44], etc.

An inference scheme proposed under Approximate Reasoning (AR) is validated or assessed mainly based
on the reasonableness of inference and the complexity of the algorithm. For example, they are used in fuzzy
control primarily to approximate a function, which usually describes the system under consideration. On the
other hand, in the areas of decision making and expert systems, AR techniques are employed for their infer-
ential capabilities that conform to the basic rules of Generalised Modus Ponens (GMP) as envisaged in fuzzy
logic. Given a fuzzy if–then rule of the type A! B and a fuzzy input A 0, GMP allows us to infer the output
fuzzy set B 0 even if A 0 6� A. Hence the different schemes under AR are evaluated based on their approxima-
tion abilities in the former, while in the latter they are assessed based on the ‘‘goodness’’ of inference as given
by how well they satisfy the ‘‘axioms’’ of GMP as listed in [6,25,30,35], etc.

1.2. Motivation for this work

It is known that (see [20,45,49]) the inferencing schemes in AR are generally resource consuming (both
memory and time), since these schemes often consist of discretisation of the input and output spaces followed
by computations in each point. Also an increase in the number of rules only exacerbates the problem. As the
number of input variables and/or input/output fuzzy sets increases, there is a combinatorial explosion of rules
in multiple fuzzy rule based systems.

Many works have appeared towards reducing the complexity of the inference procedure, see, for example
[1,42] for an excellent coverage. Of the many ways of reducing complexity, rule reduction methods are preva-
lent in the literature and have been proposed for fuzzy systems employed in fuzzy control, where the main aim
is to approximate the behaviour of a system under consideration, which is a function of its inputs. For a good
survey on many of these techniques we refer the readers to [1,7,41,42,53].

Currently, there is an increased awareness that the approximation accuracy achieved should not be sacri-
ficed in the process of complexity reduction. In [8], Baranyi et al. discuss the trade off between approximation
accuracy and complexity. See also [32] for a discussion on the trade off between computation time and preci-
sion. All these necessitate rule reduction techniques that are lossless with respect to inference, i.e., the inference
obtained from the original rule base and that obtained from the reduced rule base should be identical. Some
works have appeared along these lines, see, for example [9,12,14,31].

In this work, we consider only inference schemes in AR that can be grouped under Similarity Based Rea-
soning (SBR). In inferences in SBR, given a fuzzy if–then rule of the type A! B and a fuzzy input A 0, the
input is matched to the antecedent A to obtain a measure of similarity s = M(A, A 0). The output fuzzy set
B 0 is obtained by modifying the consequent B using this similarity measure s and a modification function J.

In this paper we address the issue of efficient inferencing through rule reduction. The rule reduction technique
we propose here is a simple technique of combining the antecedents of rules with same consequents. To this end,
we propose some sufficient conditions on the different operators employed in SBR inferencing that ensure that
the inference obtained from the original rule base is identical to that obtained from the reduced rule base.

1.3. Outline of the paper

In Section 2, we give some preliminaries on the fuzzy logic operators required for the rest of the paper. This
section also includes a brief background on fuzzy if–then rules. Sections 3–5 constitute the main parts of this
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work. While Section 3 discusses the structure and inference in SBR, Section 4 proposes some sufficient con-
ditions on the different operators employed in SBR that ensure inference invariant rule reduction of the above
mentioned type. Subsequently, in Section 5 we investigate the conditions of the previous section and present as
solutions inference operators employed in many SBR inference schemes. In Section 6, we illustrate the rule
reduction method with a numerical example. In Section 7, some concluding remarks are given.

2. Preliminaries: basic fuzzy logic connectives

To make this work self-contained, we briefly mention some of the concepts and results employed in the rest
of the work.

2.1. Negations, T-norms and T-conorms

Definition 1 [26, Definitions 1.2–1.4]. A function N:[0, 1]! [0, 1] is called a fuzzy negation if N(0) = 1,
N(1) = 0 and N is non-increasing. N is called strict if, in addition, N is strictly decreasing and N is continuous.
N is called strong if it is an involution, i.e., N(N(x)) = x for all x 2 [0, 1].

Definition 2 (cf. [40,29, Definition 1.1])

(i) An associative, commutative and increasing operation T: [0, 1]2! [0, 1] is called a t-norm if it has the
neutral element 1.

(ii) An associative, commutative and increasing operation S: [0, 1]2! [0, 1] is called a t-conorm if it has the
neutral element 0.
If F is an associative binary operation on a domain X then by the notation, xðnÞF we mean F ðx; F ðx; � � � ; x|fflfflfflffl{zfflfflfflffl}
n�1 times

ÞÞ
for an x 2 X and n P 2. Also xð1ÞF ¼ x.

Definition 3 [29, Definitions 2.9 and 2.13]. A t-norm T (t-conorm S, resp.) is said to be

– continuous if it is continuous in both the arguments;
– Archimedean if T (S, resp.) is such that for every x; y 2 ð0; 1� (x; y 2 ½0; 1Þ resp.) there is an n 2 N with

xðnÞT < y ðxðnÞS > yÞ;
– strict if T (S, resp.) is continuous and strictly monotone, i.e., T ðx; yÞ < T ðx; zÞ ðSðx; yÞ < Sðx; zÞÞ whenever

x > 0 (x < 1 resp.) and y < z.
It is well known that if T and S are continuous Archimedean t-norm and t-conorm, then they have contin-
uous additive generators (see [29, Theorem 5.1 and Corollary 5.5]). Table 1 lists the basic t-norms and t-con-
orms. The set of all t-norms and t-conorms will be denoted by T, S, respectively.

2.2. Uninorms

Definition 4 [27, Definition 1]. A uninorm is a two-place function U: [0, 1]2! [0, 1] which is associative,
commutative, non-decreasing in each place and such that there exists some element e 2 ½0; 1� called the neutral
element such that Uðe; xÞ ¼ x, for all x 2 ½0; 1�.
Table 1
Examples of t-norms and t-conorms

t-norm T Formula t-conorm S Formula f

TM: minimum min(x,y) SM: maximum max(x, y)
TP: product x Æ y SP: probabilistic sum x + y � x Æ y

TLK: Łukasiewicz max(x + y � 1, 0) SLK: Łukasiewicz min(x + y, 1)
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Remark 5

(i) If e = 0 then U is a t-conorm and if e = 1 then U is a t-norm. For any uninorm U, Uð1; 0Þ 2 f0; 1g (see
[27] Corollary 1).

(ii) A uninorm U such that Uð1; 0Þ ¼ 0 is called a conjunctive uninorm and if Uð1; 0Þ ¼ 1 it is called a dis-

junctive uninorm.
(iii) It is known that a uninorm U behaves as a t-norm on the square ½0; e� � ½0; e� and as a t-conorm on the

square ½e; 1� � ½e; 1�. Hence a uninorm U with the neutral element e 2 ð0; 1Þ is typically denoted as
U ¼ ðT ; S; eÞ, where T and S are the underlying t-norm and t-conorm.
There are three main classes of uninorms in the literature, viz.,

(i) Pseudo-continuous uninorms (see [34]), i.e., uninorms U that are continuous on ½0; 1�2 except on the seg-
ments ð0; eÞ; ð1; eÞ and ðe; 0Þ; ðe; 1Þ. These are precisely the uninorms for which both the functions Uðx; 1Þ
and Uðx; 0Þ are continuous except at the point x = e.

(ii) Idempotent uninorms, i.e., uninorms U such that Uðx; xÞ ¼ x for all x 2 ½0; 1� (see [21,33,51]).
(iii) Representable (also called almost continuous) uninorms that have additive generators and are continu-

ous everywhere on the ½0; 1�2 except at the points ð0; 1Þ; ð1; 0Þ (see [27]).

Analogous to the representation theorems for continuous Archimedean t-norms and t-conorms, Fodor
et al. [27] have proven the following:

Proposition 6 (cf. [27]). A uninorm U is an almost continuous uninorm with neutral element e 2 ð0; 1Þ if and only

if there exists a strictly increasing continuous function r : ½0; 1� 2 ½0;þ1� with rð0Þ ¼ 0; rðeÞ ¼ 1 and r(1) = +1
such that U is given by
Plea
Rea
Uðx; yÞ ¼ r�1ðrðxÞ � rðyÞÞ; ðx; yÞ 2 ½0; 1�2 n fð0; 1Þ; ð1; 0Þg ð1Þ

and Uð0; 1Þ ¼ Uð1; 0Þ ¼ 0 or Uð0; 1Þ ¼ Uð1; 0Þ ¼ 1. Such a function r is called a multiplicative generator of U.

The set of all uninorms will be denoted by U.

2.3. Fuzzy implication operators

Definition 7 [26, Definition 1.15]. A function I : ½0; 1�2 ! ½0; 1� is called a fuzzy implication if for all
x; y; z 2 ½0; 1�, it satisfies
Iðx; zÞP Iðy; zÞ; if x 6 y; ðI1Þ
Iðx; yÞ 6 Iðx; zÞ; if y 6 z; ðI2Þ
Ið0; yÞ ¼ 1; ðI3Þ
Iðx; 1Þ ¼ 1; ðI4Þ
Ið1; 0Þ ¼ 0: ðI5Þ
The following are the two important classes of fuzzy implications well established in the literature:

Definition 8 [26, Definition 1.16]. An S-implication IS is obtained from a t-conorm S and a strong negation N

as follows:
ISðx; yÞ ¼ SðNðxÞ; yÞ; x; y 2 ½0; 1�: ð2Þ
Definition 9 [26, Definition 1.16]. An R-implication IT is obtained from a t-norm T as its residuation as
follows:
IT ðx; yÞ ¼ supft 2 ½0; 1� : T ðx; tÞ 6 yg; x; y 2 ½0; 1�: ð3Þ

Along the lines of Definition 8 we can obtain fuzzy implications from a uninorm U.
se cite this article in press as: B. Jayaram, Rule reduction for efficient inferencing in similarity ..., Int. J. Approx.
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Definition 10. A U-implication IU is obtained from a uninorm U, with neutral element e 2 ð0; 1Þ, and a strong
negation N as follows:
Plea
Rea
IU ðx; yÞ ¼ UðNðxÞ; yÞ; x; y 2 ½0; 1�: ð4Þ
Definition 11 (cf. [26,28]). A fuzzy implication I is said to have

(i) the left neutrality property or is said to be left neutral, if
Ið1; yÞ ¼ y; y 2 ½0; 1�; ðNPÞ

(ii) the ordering property, if
x 6 y () Iðx; yÞ ¼ 1; x 2 ½0; 1�: ðOPÞ
Remark 12

(i) While all S- and R-implications satisfy (NP), U-implications do not.
(ii) An R-implication IT obtained from a left-continuous t-norm has (OP).

(iii) The function IU as defined in (4) is a fuzzy implication if and only if U is a disjunctive uninorm.

For some well known S-, R, and U-implications we refer the readers, for example, to [26,18]. We need the
following result in the sequel:

Proposition 13 [11, Proposition 1]. Let I : ½0; 1�2 ! ½0; 1�. Then the following are equivalent:

(i) I satisfies (I2);
(ii) Iðx;minðy; zÞÞ ¼ minðIðx; yÞ; Iðx; zÞÞ for all x; y; z 2 ½0; 1�;

(iii) Iðx;maxðy; zÞÞ ¼ maxðIðx; yÞ; Iðx; zÞÞ for all x; y; z 2 ½0; 1�.
2.4. Fuzzy if–then rules

A linguistic statement ‘‘~x is A’’ is interpreted as the linguistic variable ~x taking the linguistic value A. For
example, if ~x denotes ‘‘Temperature’’ (on a suitable domain X), then it can assume the following linguistic val-
ues A, viz., high, very high, medium, cool, hot, etc. Each of the linguistic values (say cool) is represented by a
fuzzy set on the domain X of the linguistic variable ~x.

A Single Input Single Output (SISO) fuzzy if–then rule is of the form,
If ~x is A Then ~y is B
where ~x; ~y are linguistic variables and A;B are linguistic expressions/values assumed by the linguistic variables.
For example,
If ~x ðtemperatureÞ is A ðHighÞ Then ~y ðPressureÞ is B ðLowÞ:

A Mutli Input Single Output (MISO) fuzzy if–then rule is of the form,
If ~x1 is A and ~x2 is B Then ~y is C;
where ~x1; ~x2; ~y are linguistic variables and A;B;C are linguistic expressions.
The following definition will be helpful in the sequel:

Definition 14. Let X ¼ fx1; x2 . . . ; xng be a finite set. Let A;B : X ! ½0; 1�, and F be any binary operation on
½0; 1�, i.e., F : ½0; 1� � ½0; 1� ! ½0; 1�.

(i) F ðA;BÞ is a fuzzy set on X, i.e., F ðA;BÞ : X ! ½0; 1�, defined as F ðA;BÞðxÞ ¼ F ðAðxÞ;BðxÞÞ 8x 2 X .
(ii) If a 2 ½0; 1� then F ða;BÞ is a fuzzy set on X, i.e., F ða;BÞ : X ! ½0; 1�, defined as F ða;BÞðxÞ ¼

F ða;BðxÞÞ; 8x 2 X .
se cite this article in press as: B. Jayaram, Rule reduction for efficient inferencing in similarity ..., Int. J. Approx.
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3. Structure and inference in similarity based reasoning

Let If ~x is A Then ~y is B be a given fuzzy if–then rule and the given input be ~x is A 0. Inference in Similarity
Based Reasoning (SBR) schemes in AR is based on the calculation of a measure of compatibility or similarity
MðA;A0Þ of the input A0 to the antecedent A of the rule, and the use of a modification function J to modify the
consequent B, according to the value of MðA;A0Þ.

Some of the well-known examples of SBR are Compatibility Modification Inference (CMI) [15], ‘‘Approx-
imate Analogical Reasoning Scheme’’ (AARS) in [48] and ‘‘Consequent Dilation Rule’’ (CDR) in [37], Smets
and Magrez [46], Chen [13], etc. For a comparitive study of many SBR inference schemes see [54]. In this sec-
tion, we detail the typical inferencing mechanism in SBR, both in the case of SISO and MISO fuzzy rule bases.

3.1. Matching function M

Given two fuzzy sets, say A;A0, on the same domain, a matching function M compares them to get a degree
of similarity, which is expressed as a real in the ½0; 1� interval. We refer to M as the Matching Function in the
sequel. Formally, it can be defined as follows:

Definition 15. A matching function M : FðX Þ �FðX Þ ! ½0; 1�, where FðX Þ is the fuzzy power set of a non-
empty set X, i.e., FðX Þ ¼ fA j A : X ! ½0; 1�g.

Example 1. Let X be a non-empty set and A;A0 2FðX Þ. Below we list a few of the matching functions
employed in the literature.

– Zadeh’s max–min: MZðA;A0Þ ¼ maxx minðAðxÞ;A0ðxÞÞ.
– Magrez – Smets’ Measure [46]: MMðA;A0Þ ¼ maxx minðAðxÞ;A0ðxÞÞ, where AðxÞ is the negation of A(x).
– Measure of Subsethood [37]: MSðA;A0Þ ¼ minx IðA0ðxÞ;AðxÞÞ, where I is a fuzzy implication.
– Scalar Product [13]: MCðA;A0Þ ¼ A�A0

maxðA�A;A0 �A0Þ, where the domain X is discretized into n points, i.e.,

X ¼ fx1; x2; . . . ; xng and hence A;A0 2 ½0; 1�n with ‘�’ is the scalar product of the ‘vectors’ A;A0.

– Disconsistency Measure [48]: MTkðA;A0Þ ¼ ½
Pn

i¼1
ðAðxiÞ�A0ðxiÞÞ2

n �1=2, once again the domain X is discretized into n

points.
Remark 16

(i) Zwick et al. [56] have compared 19 such similarity measures based on a few parameters. Also see
[10,38,39,50,13] for more such measures.

(ii) Note that a matching function M is not required to be symmetric. For example, since a fuzzy implication
I is not commutative, the subsethood measure MS of A 0 in A is different from than that of A in A 0.
3.2. SBR inference for SISO fuzzy rule base

3.2.1. Modification function J

Let us again consider If ~x is A Then ~y is B to be the given SISO fuzzy if–then rule and ~x is A0 the observed
fuzzy input. Let s ¼ MðA;A0Þ 2 ½0; 1� be a measure of the compatibility of A 0 to A.

Let Y be a non-empty set and B 2FðY Þ. The modification function J is again a function from ½0; 1�2 to
½0; 1� and produces a modification B0 2FðY Þ based on s and B, i.e., the consequence in SBR, using the
modification function J, is given by
Plea
Rea
B0ðyÞ ¼ Jðs;BðyÞÞ ¼ JðMðA;A0Þ;BðyÞÞ; y 2 Y : ð5Þ

In AARS [48] the following modification operators have been proposed, for any y 2 Y:

(i) More or less: J MLðs;BÞ ¼ B0ðyÞ ¼ minf1;BðyÞ=sg;
(ii) Membership value reduction: J MVRðs;BÞ ¼ B0ðyÞ ¼ BðyÞ � s.
se cite this article in press as: B. Jayaram, Rule reduction for efficient inferencing in similarity ..., Int. J. Approx.
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Table 2
Some SBR inference schemes along with their inference operators, where T is any t-norm, I is any fuzzy implication and Avg. is the
averaging operator

SBR scheme G J K M

CMI [15] T I T MZ

AARS [48] SM JMVR, JML Avg. MTk, MZ

CDR [37] TM I – MS
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Once again in JMVR ‘Æ’ can be generalised to any t-norm T. In CMI [15] and CDR [37] J is taken to be a
fuzzy implication operator. Note that J need not be either commutative or associative.

3.2.2. Aggregation function G

In the case of multiple rules
Plea
Rea
Ri : If ~x is Ai Then ~y is Bi; i ¼ 1; 2; . . . ;m;
we infer the final output by aggregating over the rules, using an associative aggregation operator
G : ½0; 1�2 ! ½0; 1�:
B0ðyÞ ¼ Gm
i¼1ðJðMðAi;A

0Þ;BiðyÞÞÞ; y 2 Y : ð6Þ

Usually, G is either a t-norm, t-conorm or a uninorm, i.e., G 2T [S [U.

3.3. SBR Inference for MISO fuzzy rule base

3.3.1. Combiner function K
On the other hand, if we consider a Mutli Input Single Output (MISO) fuzzy if–then rule of the form,
If ~x1 is A1 and . . . and ~xn is An Then ~y is C;
then given the input that ( ~x1 is A01; . . . ; ~xn is A0n), the consequence in SBR is given by
C0ðyÞ ¼ JðKðMðA1;A
0
1Þ; . . . ;MðAn;A

0
nÞÞ;CðyÞÞ;¼ JðKn

i¼1ðMðAi;A
0
iÞÞ;CðyÞÞ; y 2 Y ; ð7Þ
where K : ½0; 1�2 ! ½0; 1�, referred to as ‘Combiner’ in the sequel, is an associative and commutative function
that combines the matching degrees of Ai to A0i, for all i ¼ 1; 2; . . . ; n. Once again, typically, K 2T [S [U.

In the case of MISO multiple rules
Rj : If ~x1 is A1j and . . . and ~xn is Anj Then ~y is Cj; j ¼ 1; 2; . . . ;m;
given the input that ( ~x1 is A01; . . . ~xn is A0n), we infer the final output by aggregating over the rules,
C0ðyÞ ¼ Gm
j¼1ðJðKn

i¼1ðMðAij;A
0
iÞÞ;CðyÞÞÞ; y 2 Y : ð8Þ
Table 2 lists some SBR inference schemes along with their inference operators.

4. Rule reduction in SBR

In this section, we propose a simple rule reduction technique of combining the antecedents of rules with
identical consequents. To this end, we propose some sufficient conditions on the different operators employed
in SBR that ensure that the inferences obtained from the original rule base and the reduced rule base are
identical.

Such a procedure of combining antecedents in fuzzy rules with identical consequents was considered by
Dubois and Prade [24]. The focus of their study was the conditions on the underlying possibility distributions
that enabled meaningful combination, whereas our agenda here is to study the conditions on the operators used
in the SBR inference mechanisms that allows combining antecedents without losing the obtained inference.

In SBR the steps involved are the following:
se cite this article in press as: B. Jayaram, Rule reduction for efficient inferencing in similarity ..., Int. J. Approx.
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(i) Selection of a matching function M to match the antecedent A of the rule to the current input/observa-
tion A 0.

(ii) Selection of the modification function J to modify the consequent B according to the degree of compat-
ibility between A and A 0 to obtain B 0.

(iii) In the case of MISO fuzzy rule bases, an additional step employing a commutative and associative
operator K is required for combining the matching degrees of the antecedents Ai to the given
inputs A0i.

(iv) When there are more than one rule, an associative aggregation operator G is employed over the rules and
the inference is obtained by (6) or (8), using J, M and K.

We denote the SBR inference scheme employed in the case of SISO fuzzy rule base by the quadruple
(R;G; J ;M), where R denotes the SISO fuzzy rule base given and the inference is given by (6). Similarly,
we denote the SBR inference scheme employed in the case of MISO fuzzy rule base by the quintuple
ðR;G; J ;K;MÞ, where R denotes the MISO fuzzy rule base given and the inference is given by (8).

Theorem 1. Let a MISO fuzzy rule base R be given with the non-empty input universes of discourses Xi,

for i ¼ 1; 2; . . . ; n and an output universe of discourse Y . Let the inference be drawn using the SBR inference
scheme ðR;G; J ;K;MÞ, viz., (8). If the operators K; J ;G;M are such that the following distributive equations

hold:
Plea
Rea
GðJðx; zÞ; Jðy; zÞÞ ¼ JðKðx; yÞ; zÞ; ðC1Þ

MðKðA1;A2Þ;A0Þ ¼ KðMðA1;A
0Þ;MðA2;A

0ÞÞ; ðC2Þ
where A1;A2;A 2FðX Þ and x; y; z 2 ½0; 1�, then inference invariant rule reduction is possible by combining ante-

cedents of those rules in R whose consequents are identical.

Proof. For the sake of clarity we consider a 2-input–1-output MISO rule base with just three rules as given in
(RO), where ~x1; ~x2; ~y are linguistic variables assuming the linguistic values A1;A2;A3 2FðX 1Þ, B1;B2;B3 2
FðX 2Þ and C;D 2FðY Þ, respectively, and X 1;X 2 are the non-empty input domains while Y is the non-empty
output domain.
If ~x1 is A1 and ~x2 is B1 Then ~y is C;

If ~x1 is A2 and ~x2 is B2 Then ~y is C;

If ~x1 is A3 and ~x2 is B3 Then ~y is D:

ð ROÞ
In the presence of an input ( ~x1 is A0; ~x2 is B 0), where A0 2FðX 1Þ and B0 2FðX 2Þ the inference is given by (8),
for every y 2 Y, as follows:
C0ðyÞ¼G3
i¼1ðJðK½MðAi;A

0Þ;MðBi;B0Þ�;CiðyÞÞÞ
¼GðJðKðMðA1;A

0Þ;MðB1;B0ÞÞ;CðyÞÞ;JðKðMðA2;A
0Þ;MðB2;B0ÞÞ;CðyÞÞ;JðKðMðA3;A

0Þ;MðB3;B0ÞÞ;DðyÞÞÞ:
ð9Þ
Let the operators K; J ;G;M be such that (C1) and (C2) hold. We claim that the above rule base (RO) can be
reduced to the following rule base (RR) with two rules:
If ~x1 is KðA1;A2Þ and ~x2 is KðB1;B2Þ Then ~y is C;

If ~x1 is A3 and ~x2 is B3 Then ~y is D;
ð RRÞ
such that the inference obtained from the reduced rule base (RR) for the identical input ( ~x1 is A 0; ~x2 is B 0) is
equivalent to (9). Indeed, the inference obtained in this case as given by (8) is, for every y 2 Y,
se cite this article in press as: B. Jayaram, Rule reduction for efficient inferencing in similarity ..., Int. J. Approx.
son. (2007), doi:10.1016/j.ijar.2007.07.009
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Plea
Rea
C0ðyÞ ¼ GðJðKðMðKðA1;A2Þ;A0Þ;MðKðB1;B2Þ;B0ÞÞ;CðyÞÞ; JðKðMðA3;A
0Þ;MðB3;B0ÞÞ;DðyÞÞÞ

¼ GðJðKðKðMðA1;A
0Þ;MðA2;A

0ÞÞ;KðMðB1;B0Þ;MðB2;B0ÞÞÞ;CðyÞÞ;

JðKðMðA3;A
0Þ;MðB3;B0ÞÞ;DðyÞÞÞ dByðC2Þ

¼ GðJðKðMðA1;A
0Þ;MðA2;A

0Þ;MðB1;B0Þ;MðB2;B0ÞÞ;CðyÞÞ;

JðKðMðA3;A
0Þ;MðB3;B0ÞÞ;DðyÞÞÞ dBy associativity of K

¼ GðJðKðKðMðA1;A
0Þ;MðB1;B0ÞÞ;KðMðA2;A

0Þ;MðB2;B0ÞÞÞ;CðyÞÞ;

JðKðMðA3;A
0Þ;MðB3;B0ÞÞ;DðyÞÞÞ

¼ GðJðKðMðA1;A
0Þ;MðB1;B0ÞÞ;CðyÞÞ; JðKðMðA2;A

0Þ;MðB2;B0ÞÞ;CðyÞÞ;

JðKðMðA3;A
0Þ;MðB3;B0ÞÞ;DðyÞÞ dByðC1Þ

¼ ðð9ÞÞ:
Thus when K; J ;G;M are such that (C1) and (C2) hold, inference invariant rule reduction as proposed above is
possible in the SBR inference scheme ðR;G; J ;K;MÞ. h

Notice that in the case of SISO rules, the combiner operator K, though does not play a role in inferencing,
does play a role in rule reduction, as can be seen from the following result, which follows immediately from
Theorem 1 above.

Theorem 2. Let a SISO fuzzy rule base R be given with the input and output universes of discourses being non-

empty sets X, Y, respectively. Let the inference be drawn using the SBR inference scheme (R;G; J ;M ), viz., (6). If

there exists an associative and commutative operator K : ½0; 1�2 ! ½0; 1� such that (C1) and (C2) hold, then

inference invariant rule reduction is possible by combining antecedents of those rules in R whose consequents are

identical.
5. Some solutions of conditions (C1) and (C2)

In this section we investigate the sufficient conditions (C1) and (C2) obtained in the previous section and
present some solutions.

5.1. Some solutions of equivalence (C1)

In this section we investigate the equivalence (C1)
GðJðx; zÞ; Jðy; zÞÞ ¼ JðKðx; yÞ; zÞ; ðC1Þ

for some modification functions J and associative and commutative operators G, K.

In the case when J = JMVR as in AARS [48] then it can be easily verified that J satisfies (C1) with
G = K = SM – the max t-conorm.

The case when J is a fuzzy implication as in CMI or CDR is more interesting, since it presents more solu-
tions as we show from our investigations in the following sub-sections, where J = I, a fuzzy implication, and
G, K are one of t-norms, t-conorms or uninorms in the equivalence (C1). Also, since the main focus of this
section is to show that the above equivalence has many solutions, whence there are many operators that enable
rule reduction in SBR, we limit our study to the three families of fuzzy implications introduced in Section 2.3,
viz., S -, R- and U-implications.

5.1.1. In the seting of t-norms and t-conorms, i.e., G;H 2T
S
S

Proposition 17. Let I have (NP). If K is a t-norm in (C1) then G is a t-conorm and vice versa.
se cite this article in press as: B. Jayaram, Rule reduction for efficient inferencing in similarity ..., Int. J. Approx.
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Proof. Let K be a t-norm. Then taking x ¼ 1; y ¼ 0 and for any z 2 ½0; 1� we have IðT ð1; 0Þ; zÞ ¼ Ið0; zÞ ¼ 1,
while GðIð1; zÞ; Ið0; zÞÞ ¼ Gðz; 1Þ, since I is neutral. Hence (C1) is satisfied only if Gðz; 1Þ ¼ 1 for all
z 2 ½0; 1�, i.e., G is a t-conorm. h

Since all S- and R-implications satisfy (NP), in the setting of t-norms and t-conorms (C1) reduces to the
folowing two equations.
Plea
Rea
IðSðx; yÞ; zÞ ¼ T ðIðx; zÞ; Iðy; zÞÞ ð10Þ
IðT ðx; yÞ; zÞ ¼ SðIðx; zÞ; Iðy; zÞÞ: ð11Þ
In [2,47] the following has been proven:

Theorem 3. An S -implication IS or an R-implication IT � obtained from a left-continuous t-norm T* satisfies (10)

or (11) if and only if S = SM and T = TM.

Theorem 4 [18, Theorems 3 and 8]. An U-implication IU, T a t-norm, and S a continuous t-conorm satisfy

(i) (10) if and only if T and S are N-dual and we have one of the following two cases:
(a) S = SM, T=TM, or

(b) T is strict and U is representable and such that, if t is the additive generator of T with t(e) = 1, then 1
t is

also a multiplicative generator of U.
(ii) (11) if and only if T and S are N -dual and we have one of the following two cases:
(a) S = SM, T = TM, or

(b) S is strict and U is representable and such that, if s is the additive generator of S with s(e) = 1, then s is

also a multiplicative generator of U.
Example 2. Let T be the product t-norm T P which is strict with additive generator tðxÞ ¼ � ln x for x 2 ½0; 1�.
Now,
rðxÞ ¼ 1

tðxÞ ¼ �
1

ln x
; r�1ðzÞ ¼ exp � 1

z

� �
:

Using r as the multiplicative generator (see Proposition 6) we obtain the disjunctive uninorm
U tðx; yÞ ¼ r�1ðrðxÞ � rðyÞÞ ¼ r�1 � 1

ln x � ln y

� �
¼ exp � ln x � ln yð Þ; x; y 2 ½0; 1�:
The neutral element of Ut is e = exp(�1) and t(e) = 1. Consider the U-implication obtained from Ut and the
strong negation N(x) = 1 � x given by
IUt
ðx; yÞ ¼ Utð1� x; yÞ ¼ expð� lnð1� xÞ � ln yÞ; x; y 2 ½0; 1�:
Then it can be easily verified that IUt
satisfies (10) for the N-dual t-conorm of the product t-norm TP, viz.,

probabilistic sum t-conorm SP.

Example 3 (cf. [17, Example 1]). Let S be the probabilistic sum t-conorm SP which is strict with additive gen-
erator s(x) = �log(1 � x). Using s as the multiplicative generator (see Proposition 6) we obtain the disjunctive
uninorm
U sðx; yÞ ¼ 1� expð� logð1� xÞ � logð1� yÞÞ; x; y 2 ½0; 1�:

The neutral element of Us is 1 � e�1 and s(e) = 1. Consider the U-implication obtained from Us and the strong
negation N(x) = 1 � x given by
IUs
ðx; yÞ ¼ U sð1� x; yÞ ¼ 1� cðlogcx � logcð1�yÞÞ; x; y 2 ½0; 1�:
Then it can be easily verified that IUs
satisfies (11) for the N-dual t-norm of the probabilistic sum t-conorm SP,

viz., the product t-norm TP.
se cite this article in press as: B. Jayaram, Rule reduction for efficient inferencing in similarity ..., Int. J. Approx.
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5.1.2. In the setting of Uninorms, i.e., G;K 2 U
Exactly along the same lines as in Proposition 17 the following can be proven:

Proposition 18. Let I have (NP). If K is a conjunctive uninorm Uc in (C1) then G is a disjunctive uninorm Ud and

vice versa.

Once again since all S- and R-implications satisfy (NP), in the setting of uninorms (C1) reduces to the fol-
lowing two equations.
Plea
Rea
IðUdðx; yÞ; zÞ ¼ U cðIðx; zÞ; Iðy; zÞÞ ð12Þ
IðU cðx; yÞ; zÞ ¼ U dðIðx; zÞ; Iðy; zÞÞ: ð13Þ
Proposition 19. If I has (NP) then Uc in (12) and Ud in (13) are idempotent uninorms.

Proof. Let I have (NP). Then taking x = 1 = y and for any z 2 ½0; 1� we have IðUdð1; 1Þ; zÞ ¼ Ið1; zÞ ¼ z, since
I is neutral, while U cðIð1; zÞ; Ið1; zÞÞ ¼ U cðz; zÞ. Now, the equivalence (12) holds if and only if U cðz; zÞ ¼ z for
all z 2 ½0; 1�, i.e., U c is an idempotent conjunctive uninorm.

That Ud in (13) is an idempotent disjunctive uninorm can be shown along similar lines. h

Theorem 5. An S -implication IS, a disjunctive uninorm Ud ¼ ðed; T d; SdÞ and a conjunctive uninorm
U c ¼ ðec; T c; ScÞ satisfy the equivalence

(i) (12) if and only if Uc and Ud are idempotent, N-dual of each other and S is distributive over Uc.

(ii) (13) if and only if Uc and Ud are idempotent, N-dual of each other and S is distributive over Ud.
Proof. Let IS be an S-implication, Ud a disjunctive uninorm and Uc a conjunctive uninorm.

(i) ():) Let IS ;U d;U c satisfy (12). Since IS has (NP) by Proposition 19 we have that U c is idempotent. We
know that ISðx; 0Þ ¼ NðxÞ for any x 2 ½0; 1�. Now, taking z ¼ 0 in (12), for any x; y 2 ½0; 1� we have that
LHS ð12Þ ¼ ISðU dðx; yÞ; 0Þ ¼ NðU dðx; yÞÞ;
RHS ð12Þ ¼ U cðISðx; zÞ; ISðy; zÞÞ ¼ U cðNðxÞ;NðyÞÞ;

from whence we surmise that Ud is the N-dual of Uc and hence is also idempotent. Since N is strong and
hence a bijection on ½0; 1� we have from the equivalence (12), for any x; y 2 ½0; 1�
LHS ð12Þ ¼ SðNðU dðx; yÞÞ; zÞ ¼ SðU cðNðxÞ;NðyÞÞ; zÞ;
RHS ð12Þ ¼ U cðSðNðxÞ; zÞ; SðNðyÞ; zÞÞ;
and hence S is distributive over U c.
((:) The sufficiency can be obtained by retracing the above arguments.
(ii) Can be shown as above. h
Theorem 6. An R-implication IT � obtained from a left-continuous t-norm T*, a disjunctive uninorm

U d ¼ ðed; T d; SdÞ and a conjunctive uninorm U c ¼ ðec; T c; ScÞ satisfy the equivalence

(i) (12) if and only if Uc = TM and Ud = SM are idempotent.

(i) (13) if and only if Ud is idempotent and Uc = TM.
Proof. Let IT � be an R-implication obtained from a left-continuous t-norm T*, Ud a disjunctive uninorm and
Uc a conjunctive uninorm.

(i) ():) Let IT � ;Ud ;U c satisfy (12).
Uc = T, a t-norm: Let x ¼ 1; y ¼ 0; z ¼ ec. Then since Ud is disjunctive and IT � has (NP), we have
LHS ð12Þ ¼ IT � ðUdð1; 0Þ; ecÞ ¼ IT � ð1; ecÞ ¼ ec;

RHS ð12Þ ¼ U cðIT � ð1; ecÞ; IT � ð0; ecÞÞ ¼ U cðec; 1Þ ¼ 1:
se cite this article in press as: B. Jayaram, Rule reduction for efficient inferencing in similarity ..., Int. J. Approx.
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Plea
Rea
From the equivalence (12)we obtain ec = 1, i.e., Uc = T, a t-norm.
Ud = S, a t-conorm: We show that ed = 0. If not, then there exists an x; z 2 ð0; 1Þ such that x < z < ed and
by the ordering property (OP) we have

LHS ð12Þ ¼ IT � ðU dðx; edÞ; zÞ ¼ IT � ðx; zÞ ¼ 1;

RHS ð12Þ ¼ U cðIT � ðx; zÞ; IT � ðed; zÞÞ ¼ T ð1; IT � ðed; zÞÞ ¼ IT � ðed; zÞ:

Once again, from the equivalence (12) we obtain IT � ðed; zÞ ¼ 1 or that ed � z, a contradiction. Hence
ed = 0 and Ud = S, a t-conorm. Now (12) reduces to (10) which, from Theorem 3 we know is satisfied
for an R-implication IT � if and only if T = TM and S = SM

((:) The sufficiency can be obtained by retracing the above arguments.

(ii) ():) Let IT � ;U d;U c satisfy (13).

Ud is idempotent: Since IT � has (NP) by Proposition 19 we have that Ud is idempotent.
Uc = TM: To see this, firstly, we show that the neutral element of Uc, ec = 1. If not, let ec 2 ð0; 1Þ. Then
there exist z; x 2 ð0; 1Þ such that y = ec < z < x. Then by the ordering property (OP) we have IT � ðec; zÞ ¼ 1
but IT � ðx; zÞ 6¼ 1. Now,
LHS ð13Þ ¼ IT � ðU cðx; ecÞ; zÞ ¼ IT � ðx; zÞ;
RHS ð13Þ ¼ U dðIT � ðx; zÞ; IT � ðec; zÞÞ ¼ UdðIT � ðx; zÞ; 1Þ ¼ 1;

since Ud is disjunctive. From the equivalence (13) we obtain IT � ðx; zÞ ¼ 1, a contradiction. Hence Uc = T,
a t-norm.We claim that U c ¼ T is idempotent. If not, then there exists an x0; z 2 ð0; 1Þ such that
T ðx0; x0Þ < z < x0 and by the ordering property (OP) we have

LHS ð13Þ ¼ IT � ðT ðx0; x0Þ; zÞ ¼ 1;

RHS ð13Þ ¼ U cðIT � ðx0; zÞ; IT � ðx0; zÞÞ ¼ IT � ðx0; zÞ:

Once again, from the equivalence (13) we obtain IT � ðx0; zÞ ¼ 1, a contradiction.
((:) The sufficiency can be obtained by retracing the above arguments. h
Ruiz and Torrens [16] have proven the following:

Theorem 7 [16, Theorems 1 and 7]. An U-implication IU, Ud a disjunctive uninorm and Uc a conjunctive uninorm
satisfy

(i) (12) if and only if Uc and Ud are N -dual of each other and U is distributive over Uc.

(ii) (13) if and only if Uc and Ud are N -dual of each other and U is distributive over Ud.
5.2. Some solutions of equivalence (C2)

In this section, we investigate some solutions of the equivalence (C2)
MðKðA1;A2Þ;A0Þ ¼ KðMðA1;A
0Þ;MðA2;A

0ÞÞ; ðC2Þ

where M is a matching function and K is any associative and commutative operator on ½0; 1�.

5.2.1. The measure of subsethood matching function of CDR

In the case of CDR [37] the matching function is the subsethood measure given by
MSðA;A0Þ ¼ minx IðA0ðxÞ;AðxÞÞ;
where I is a fuzzy implication.

Theorem 8. Let X be a finite set and A1;A2;A0 2FðX Þ. MS distributes over K ¼ min, i.e., MS satisfies (C2) with
K ¼ min.
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Proof. Let K = min, then
Plea
Rea
LHS ðC2Þ ¼ MSðKðA1;A2Þ; A0Þ
¼ minx IðA0ðxÞ;minðA1ðxÞ;A2ðxÞÞÞ
¼ minxðminðIðA0ðxÞ;A1ðxÞÞ; IðA0ðxÞ;A2ðxÞÞÞÞ dByProposition 13

¼ minðminxIðA0ðxÞ;A1ðxÞÞ;minxIðA0ðxÞ;A2ðxÞÞÞ
¼ KðMSðA1;A

0Þ;MSðA2;A
0ÞÞ

¼ RHS ðC2Þ: �
5.2.2. The class MV;W of matching functions and their distributivity
Let us consider the following class of matching functions which can be seen as generalisations of many of

the matching functions in Example 1.

Definition 20. Let V ;W be any two commutative and associative functions from ½0; 1�2 to ½0; 1�. Then by MV;W

we denote the class of matching functions given by
MV;WðA;A0Þ ¼ V x2X W ðAðxÞ;A0ðxÞÞ;
where A;A0 2FðX Þ of a non-empty set X .

Now the condition (C2) reduces to the following distributive equation,
V �ðMV;WðA1;A
0Þ;MV;WðA2;A

0ÞÞ ¼ MV;WðV �ðA1;A2Þ;AÞ ð14Þ
where V � : ½0; 1�2 ! ½0; 1�, V �ðA1;A2Þ 2FðX Þ and is as given in Definition 14.

Theorem 9. Let X be a finite set and A1;A2;A0 2FðX Þ. If the associative operators V �; V ;W are such that

V � ¼ V and W distributes over V, then MV;W distributes over V*, i.e., MV;W satisfies (14).

Proof. Let V* = V and W distribute over V, i.e.,
W ðV ðx; yÞ; zÞ ¼ V ðW ðx; zÞ;W ðy; zÞÞ:

For ease of understanding and notation, let X ¼ fx1; x2g and let aij ¼ AiðxjÞ, a0i ¼ A0ðxiÞ for i; j 2 f1; 2g. By the
associativity of V �; V ;W the proof can be extended to arbitrary arguments.
LHS ð14Þ ¼ V V x2X W ðA1ðxÞ;A0ðxÞÞ; V x2X W ðA2ðxÞ;A0ðxÞÞð Þ
¼ V V ðW ðA1ðx1Þ;A0ðx1ÞÞ;W ðA1ðx2Þ;A0ðx2ÞÞÞ; V ðW ðA2ðx1Þ;A0ðx1ÞÞ;W ðA2ðx2Þ;A0ðx2ÞÞÞð Þ
¼ V V ðW ða11; a01Þ;W ða12; a02ÞÞ; V ðW ða21; a01Þ;W ða22; a02ÞÞ

� �
¼ V W ða11; a01Þ;W ða12; a02Þ;W ða21; a01Þ;W ða22; a02Þ

� �
¼ V V ðW ða11; a01Þ;W ða21; a01ÞÞ; V ðW ða12; a02Þ;W ða22; a02ÞÞ

� �
¼ V W ðV ða11; a21Þ; a01Þ;W ðV ða12; a22Þ; a02Þ

� �
¼ V W ðV ðA1ðx1Þ;A2ðx1ÞÞ;A0ðx1ÞÞ;W ðV ðA1ðx2Þ;A2ðx2ÞÞ;A0ðx2ÞÞð Þ
¼ V x2X ðW ðV ðA1ðxÞ;A2ðxÞÞ;A0ðxÞÞÞ ¼ MV;WðV �ðA1;A2Þ;A0Þ ¼ RHSð14Þ: �
5.2.3. Eq. (14) in the setting of t-norm, t-conorm or uninorms
Since the associative and commutative operator K features in both the equivalences (C1) and (C2) and from

the previous section we know that usually K 2T
S
S
S
U when J = I – a fuzzy implication – in this section

we investigate the cases where V ;W 2T
S
S
S
U. Then the following Corollary is immediate from Theorem

9:

Corollary 21. Let X be a finite set and A1;A2;A0 2FðX Þ.
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(i) If the t-conorm S distributes over a t-norm T, then MT;S satisfies (14) with V � ¼ T .

(ii) If the t-norm T distributes over a t-conorm S, then MS,T satisfies (14) with V* = S.

(iii) If the uninorm U* distributes over another uninorm U*, then MU�;U� satisfies (14) with V* = U*.
Theorem 10. Let X be a finite set, A1;A2;A
0 2FðX Þ, U c ¼ ðT c; Sc; ecÞ;U d ¼ ðT d; Sd; edÞ be conjuncitve and dis-

junctive uninorms, respectively. There exists no disjunctive uninorm U* that satisfies (14) with MUc;Ud
.

Proof. Let a disjunctive uninorm U* satisfy (14) with MUc;Ud
. Once again, we let X ¼ fx1; x2g and let

aij ¼ AiðxjÞ, a0i ¼ A0ðxiÞ for i; j 2 f1; 2g.
Plea
Rea
LHS ð14Þ ¼ U �ðU cx2X U dðA1ðxÞ;A0ðxÞÞ;U cx2X U dðA2ðxÞ;A0ðxÞÞÞ
¼ U �ðU cðUdðA1ðx1Þ;A0ðx1ÞÞ;U dðA1ðx2Þ;A0ðx2ÞÞÞ;

U cðU dðA2ðx1Þ;A0ðx1ÞÞ;UdðA2ðx2Þ;A0ðx2ÞÞÞÞ
¼ U �ðU cðUdða11; a01Þ;U dða12; a02ÞÞ;U cðUdða21; a01Þ;U dða22; a02ÞÞÞ

RHS ð14Þ ¼ MUc;Ud
ðU �ðA1;A2Þ;A0Þ

¼ U cx2X ðU dðU �ðA1ðxÞ;A2ðxÞÞ;A0ðxÞÞÞ
¼ U cðU dðU �ðA1ðx1Þ;A2ðx1ÞÞ;A0ðx1ÞÞ;

UdðU �ðA1ðx2Þ;A2ðx2ÞÞ;A0ðx2ÞÞÞ
¼ U cðU dðU �ða11; a21Þ; a01Þ;U dðU �ða12; a22Þ; a02ÞÞ
Now, LHS of (14) should be equal to RHS of (14) for the disjunctive uninorm U* to satisfy (14) with MUc ;Ud
. In

the case when a01 ¼ a02 ¼ ed, the above equivalence reduces to
U �ðU cða11; a12Þ;U cða21; a22ÞÞ ¼ U cðU �ða11; a21Þ;U �ða12; a22ÞÞ ð15Þ

But (15) does not hold for any pair of disjunctive and conjunctive uninorm. To see this, if possible, let for some
disjunctive uninorm U* (i.e., U �ð1; 0Þ ¼ 1), conjunctive uninorm U � (i.e., U �ð1; 0Þ ¼ 0) and x; x0; y; y 0 2 ½0; 1�
U �ðU �ðx; yÞ;U �ðx0; y 0ÞÞ ¼ U �ðU �ðx; x0Þ;U �ðy; y 0ÞÞ:

Then letting x = y 0 = 0 and x 0 = y = 1 we have
U �ðU �ð0; 1Þ;U �ð1; 0ÞÞ ¼ U �ð0; 0Þ ¼ 0 6¼ 1 ¼ U �ðU �ð0; 1Þ;U �ð1; 0ÞÞ ¼ U �ð1; 1Þ:

Hence there exists no disjunctive uninorm U* that satisfies (14) with MUc;Ud

. h

Theorem 11. Let X be a finite set, A1;A2;A
0 2FðX Þ, U c ¼ ðT c; Sc; ecÞ;U d ¼ ðT d; Sd; edÞ be conjuncitve and dis-

junctive uninorms, respectively. There exists no conjunctive uninorm U* that satisfies (14) with MUd;Uc
.

Corollary 22. Let X be a finite set, A1;A2;A
0 2FðX Þ, S a t-conorm and T a t-norm. There exists no

(i) t-conorm S* that satisfies (14) with MT,S;

(ii) t-norm T* that satisfies (14) with MS,T.
Summarising the above results, Table 3 gives examples of sets of operators G; J ;K;M that satisfy the con-
ditions (C1) and (C2) of Theorem 1.

6. A numerical example

In this section, we present a numerical example to show the efficiency and invariance in the inference
obtained when the above rule reduction procedure is employed. Consider a rule base consisting of the follow-
ing three rules:
If ~x1 is A1 and ~x2 is B1 Then ~y is C;

If ~x1 is A2 and ~x2 is B2 Then ~y is C;

If ~x1 is A3 and ~x2 is B3 Then ~y is D;

ð ROÞ
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Table 3
Some classes of operators obeying Eqs. (C1), (C2)

G J K M Comments

SM JMVR SM MZ AARS [48]
SM IT � TM MS CDR [37]
TM IS=IT � SM MSM,T SM distributes over any T

SM IS=IT � TM MTM,S TM distributes over any S

Uc IS Ud MUd,U S, Uc, Ud satisfy Theorem 5 (i)
Ud distributes over U

Ud IS Uc MUc, U S, Uc, Ud satisfy Theorem 5 (ii)
Uc distributes over U

Uc IT � Ud MUd, U S, Uc, Ud satisfy Theorem 6 (i)
Ud distributes over U

Ud IT � Uc MUc,U S, Uc, Ud satisfy Theorem 6 (ii)
Uc distributes over U

T IU S MS,U T, U, S satisfy Theorem 4 (i)
S distributes over U

S IU T MT,U T, U, S satisfy Theorem 4 (ii)
T distributes over U

Uc IU Ud MUd,U U, Uc, Ud satisfy Theorem 7 (i)
U distributes over Uc

Ud IU Uc MUc,U U, Uc, Ud satisfy Theorem 7 (ii)
U distributes over Ud
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where Ai,Bi for i = 1,2,3 and C, D are fuzzy sets defined on X = {x1, x2, x3, x4}, Y = {y1, y2, y3} and
Z = {z1, z2, z3, z4}, respectively, and are given as follows:
Plea
Rea
A1 ¼ ½ :3 :5 0 1 �; B1 ¼ ½ :3 :4 :9 �; C ¼ ½ 1 :8 :4 :7 �
A2 ¼ ½ :36 :25 :3 :8 �; B2 ¼ ½ :12 :67 :99 �; D ¼ ½ :8 :7 0 1 �
A3 ¼ ½ :9 0 :8 :5 �; B3 ¼ ½ :2 :7 :6 �:
We employ the AARS inference scheme of Turksen et al., [48] with G = SM; J = JMVR;K = SM; M = MZ (see
Table 3). Let the given input be ( ~x1 is A0; ~x2 is B 0) where
A0 ¼ ½ :4 :7 :8 0 � & B0 ¼ ½ :2 0 1 �:
In the following we infer both with the original rule base (RO) and the reduced rule base (RR) and show that
the inferred output is identical in both the cases.

6.1. Inference with the original rule base (RO)

6.1.1. Calculating the matching degrees

0 0
MZðA1;A Þ ¼ maxð:3; :5; 0; 0Þ ¼ 0:5; MZðB1;B Þ ¼ maxð:2; 0; :9Þ ¼ 0:9

MZðA2;A
0Þ ¼ maxð:36; :25; :3; 0Þ ¼ 0:36; MZðB2;B0Þ ¼ maxð:12; 0; :99Þ ¼ 0:99

MZðA3;A
0Þ ¼ maxð:4; 0; :8; 0Þ ¼ 0:8; MZðB3;B0Þ ¼ maxð:2; 0; :6Þ ¼ 0:6:
6.1.2. Combining the matching degrees to obtain similarity values si

Following this we calculate the similarity values using the operator K = SM, as follows:
s1 ¼ KðMZðA1;A
0Þ;MZðB1;B0ÞÞ ¼ maxð0:5; 0:9Þ ¼ 0:9

s2 ¼ maxð0:36; 0:99Þ ¼ 0:99

s3 ¼ maxð0:8; 0:6Þ ¼ 0:8:
se cite this article in press as: B. Jayaram, Rule reduction for efficient inferencing in similarity ..., Int. J. Approx.
son. (2007), doi:10.1016/j.ijar.2007.07.009



16 B. Jayaram / Internat. J. Approx. Reason. xxx (2007) xxx–xxx

ARTICLE IN PRESS
6.1.3. Modifying the consequents based on the similarity values si

0

Plea
Rea
Jðs1;CÞ ¼ J MVRðs1;CÞ ¼ ð0:9Þ � ½ 1 :8 :4 :7 � ¼ ½ :9 :72 :36 :63 � ¼ C1

Jðs2;CÞ ¼ J MVRðs2;CÞ ¼ ð0:99Þ � ½ 1 :8 :4 :7 � ¼ ½ :99 :79 :396 :69 � ¼ C02
Jðs3;DÞ ¼ J MVRðs3;DÞ ¼ ð0:8Þ � ½ :8 :7 0 1 � ¼ ½ :64 :56 0 :8 � ¼ C03:
6.1.4. Combining the obtained consequents for a conclusion

0 0 0 0 0 0 0
C ¼ GðC1;C2;C3Þ ¼ SMðC1;C2;C3Þ ¼ ½ :99 :79 :396 :8 �: ð16Þ
6.2. Inference with the reduced rule base (RR)

As can be seen, the first two rules in the original rule base (RO) have the same consequent fuzzy set C and
hence can be reduced to the rule base consisting of the following two rules:
If ~x1 is A� and ~x2 is B� Then ~y is C;

If ~x1 is A3 and ~x2 is B3 Then ~y is D;
ð RRÞ
where
A� ¼ KðA1;A2Þ ¼ SMðA1;A2Þ ¼ ½ :36 :5 :3 1 �;
B� ¼ KðB1;B2Þ ¼ SMðB1;B2Þ ¼ ½ :3 :67 :99 �:
Once again, calculating the matching degrees with respect to the same input pair (A 0; B 0) we obtain
MZðA�;A0Þ ¼ MZðSMðA1;A2Þ;A0Þ ¼ maxð:36; :5; :3; 0Þ ¼ 0:5;

MZðB�;B0Þ ¼ MZðSMðB1;B2Þ;B0Þ ¼ maxð:2; 0; :99Þ ¼ 0:99:
Hence the similarity value of the input to the new rule is s�1 ¼ maxð0:5; 0:99Þ ¼ 0:99, which modifies the con-
sequent C as
C�1 ¼ Jðs�1;CÞ ¼ J MVRðs�1;CÞ ¼ ð0:99Þ � ½ 1 :8 :4 :7 � ¼ ½ :99 :79 :396 :69 �:
Combining the obtained consequents for a conclusion we obtain
C00 ¼ GðC�1;C03Þ ¼ SMðC�1;C03Þ ¼ ½ :99 :79 :396 :8 �;
i.e., C00 = C 0 in (16). Equivalently, we have shown that the inference obtained for the same inputs from the
original and reduced rule bases are identical.

Remark 23. In the example above, the operators G, K turned out to be the same because of the choice of the
operator J. It should be noted that if J = I, a fuzzy implication, then G, K are usually different as can be seen
from the results in Section 5.1 and Table 3.
7. Concluding remarks

In this work we have proposed a simple rule reduction technique that of combining the antecedent(s) of
rules that have the same consequent. We have shown that this type of rule reduction can be done in Similarity
Based Reasoning inference schemes that employ a fuzzy if–then rule base, in such a way that the inferences
obtained from the original and the reduced rule bases are identical. Towards this end, some sufficient condi-
tions involving the inference operators employed in these SBR inference schemes were proposed. Subse-
quently, these conditions were investigated and many solutions were presented for some specific SBR
inference schemes.

In fact, it can be shown that the existence of an associative and commutative operator H:[0, 1]2! [0, 1] sat-
isfying the following condition (C3),
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Plea
Rea
H KðMðA1;AÞ;MðB1;BÞÞ;KðMðA2;AÞ;MðB2;BÞÞð Þ ¼ K MðHðA1;A2Þ;AÞ;MðHðB1;B2Þ;BÞð Þ; ðC3Þ
along with (C1), is sufficient to enable inference invariant rule reduction along the proposed approach. Inves-
tigations of equivalence (C3) will be taken up in future works.

In this work, though we have only considered three families or classes of fuzzy implications, there are a few
more families that have been proposed, viz., the residual implications of uninorms IU* in [22] and the recently
proposed families of f-generated implications If and g-generated implications Ig by Yager in [52] and h-gener-
ated implications Ih in [3]. The distributivity of IU� over uninorms is studied in [19] while that of If over t-
norms and t-conorms is done in [4]. Hence these families of fuzzy implications also become potential solutions
for equivalence (C1).
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