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On the Distributivity of Implication Operators Over
T and S Norms

J. Balasubramaniam, Associate Member, IEEE, and C. Jagan Mohan Rao

Abstract—1In this paper, we explore the distributivity of impli-
cation operators [especially Residuated (R)- and Strong (S)-impli-
cations] over Takagi (T)- and Sugeno (S)-norms. The motivation
behind this work is the on going discussion on the law [(p A ¢) —
T = [(p—r)V(g — r)] in fuzzy logic as given in the title of the
paper by Trillas and Alsina. The above law is only one of the four
basic distributive laws. The general form of the previous distribu-
tive law is J(T'(p,q),r) = S(J(p,r), J(q, r)). Similarly, the
other three basic distributive laws can be generalized to give equa-
tions concerning distribution of fuzzy implications J on T- and S-
norms. In this paper, we study the validity of these equations under
various conditions on the implication operator .J. We also propose
some sufficiency conditions on a binary operator under which the
general distributive equations are reduced to the basic distributive
equations and are satisfied. Also in this work, we have solved one
of the open problems posed by M. Baczynski (2002).

Index Terms—Distributivity, fuzzy implication, fuzzy logic,
S-norms, T-norms.

1. INTRODUCTION

ECENTLY, there has been a lot of discussion [1]-[6] cen-
tred around a paper by Combs and Andrews [1] where they
attempt to exploit the equivalence

(pAg)—=r=@pP—=7)V(g—T) (1)

toward eliminating combinatorial rule explosion in fuzzy sys-
tems. (1) is only one of four such equations as listed in [7],
which deals with the distributivity of Implication operators with
respect to T- and S-norms, the rest of them being

(pva)—r=p—r)A(g—r) 2
r—{tANs)=(r—=t)A(r—s) 3)
Tﬁ(tVs)E(T—)t)V(r—)s), (@)

In [6], Trillas and Alsina have investigated the conditions
under which the following general form of (1):

J(T(p,q),r) = S(J(p,7), I(q,7)) S))

holds for the main four different types of implication operators,
viz., R-, S-, QL-, and ML-implications, where 7" and S denote

Manuscript received October 15, 2002; revised July 22, 2003. The work of
J. Balasubramaniam was supported by a grant from Sri Sathya Sai Institute of
Higher Learning.

The authors are with the Department of Mathematics and Computer Sciences,
Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam A.P.-515134,
India (e-mail: jbala@ieee.org).

Digital Object Identifier 10.1109/TFUZZ.2004.825075

any T- and S-norms, respectively. The generalizations of (2)—(4)
are as follows:

J(S(p.a),r) = T(J(p,7), I (q;7)) (6)
J(r,T1(s,t)) = To(J(r,s), J(r,t)) )
J(r,S1(s,t)) = Sa(J(r,8), J(r,t (8)

The general forms of these equations have a role in lossless
rule reduction for Control/Expert systems in Fuzzy Logic. Work
on these lines has appeared in [8]. Equation (7) has been dis-
cussed in [9] under the assumption that 7" = 17 = T5 is a strict
t-norm and the implication J is continuous except at (0, 0).

In this paper, we study the validity of (2)—(4) under various
conditions. We propose some sufficiency conditions on a binary
operator under which the general distributive equations (5)—(8)
are reduced to the basic distributive equations (1)—(4)and are
satisfied. Also in this paper, we have solved one of the open
problems posed by Baczynski [10].

A. Few Definitions

To make this paper self-contained, we briefly mention some
of the concepts and results employed in the rest of the paper.
Definition 1: A t-norm T is a binary operation from I x I —
I such that Va,b,c € I = [0,1],
* T(a,1) = a;
* T(a,0) = 0;
(a,b) = T(b, a);
(a,7(b,¢)) = T(T(a,b), c);
(a,b) is monotonic in both the variable;
* T is continuous.

a
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Definition 2: An S-norm S is a binary operation from I X
I — T such that Va,b,c € T = [0, 1],

S(a,S(b,c)) = S(S(a,b),c);
* S(a,b) is monotonic in both the variable;
* S is continuous.

(

* S(a,
(
(

Definition 3: An implication J is a binary operation from
I x I — I such that the following properties hold:
« J(p,r) > J(q,7),if ¢ > p;
o J(p,r) < J(p,s),ifr < s;
» J(1,t) = t,Vt € [-Neutrality principle;
» J(0,t) = 1,Vt € I-Falsity principle;
* J(p,J(q,7)) = J(q,J(p,r))-Exchange principle.
Definition 4: A strong Negation N is a unary operator from
I — I such that

1063-6706/04$20.00 © 2004 IEEE
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* N(a) is a decreasing function;
* N(N(a)) = a,Ya € I,
* N(0) =1;N(1) = 0.

Definition 5: An S-implication is obtained from
an S-norm S and a strong negation N as follows:
a— b= S(N(a),b),Va,b € I.

Definition 6: An R-implication is obtained from a 7'-norm
T as its residuation as follows: a = b= \/{z € I : T(a,z) <
b},Va,b € I.

II. ON THE GENERAL FORMS OF (1)—(4)

In this section, we consider each of the general forms (5)—(8)
of the basic distributive equations (1)—(4).

A. On the Equation J(T(p,q),r) = S(J(p,r), J(q,7)) (5)

In [6], it is shown that (5) reduces to (9) under any of the
implication operators R-,S-, QL-, and ML-implications

J(T(p,q),r) = max(J(p,r), J(q,7)) ©)

i.e., § = max, in (5). Interpreting J as S-, R-, or a QL- impli-
cation reduces (9) to (10)

J(min(p, q),r) = max(J(p,r), J(q,7)),

i.e., T = min. Also it is shown that all R- and S- implications
satisfy (10) which is (5) with 7" = min and S = max, but only
a certain restricted class of QL-implications satisfy (10). Also,
ML-implications do not satisfy (10), butif 7' = S = min in (5)
then J interpreted as an ML-implication satisfies the following
law:

(10)

J(min(p, q),r) = min(J(p,r), J(q,7)).

Due to these results, in the remaining part of this work we will
be concerned with only R- and S-implications, the implication
operators for which (5) always holds.

Y

B. On the Equation J(S(p,q),r) = T(J(p,7), J(q,7)) (6)
Letting p = q = 1, we have
J(1,7) =T(J(1,7),J(1,71)).

12)

We know that J(1,r) = r,V¥r € I, for S- and R- implications.
Thus, we have from (12), r = T(r,r),Vr € I. This implies
T = min, the only idempotent t-norm. Thus, (6) reduces to (13)
in the case of R- and S-implications

J(S(p,q),r) = min(J(p,7), J(q,7))- (13)
Also, (6) can be shown to reduce to (13) for QL- and ML-im-
plications. Let us investigate (13) separately for S- implications
and R-implications.
1) Case I: S-Implications: Let Jg be an S-implication ob-
tained from an S-norm S* and a strong negation N* as follows:
Js(p,q) = S*(N*(p), 0)

We know J&(p,0) = N*(p). Taking r = 0 in (13), we have
N*(S(p,q)) = min(N"(p), N*(q))

= S(p,q) = max(p, q)
= S = max

the dual of min. Also
LHS of (13) = S*(N*(max(p, q)),r)
= 5" (min(N* (p), N*(q), )
= win(§*(N* (p), 1), §*(N*(), )
[by distributivity of S* over min]
= min(J5(p, ), J5(q,7)
RHS of (13),
ie., J3(max(p,q),r) = min(J5(p,r), J(q,r)

(14)

where J¢ is an S-implication. Thus, (14) holds for all S-impli-
cations.

2) Case II: R-Implications: Let Jr be an R-implication
given by a t-norm 7™ as follows:

Tr(p,a) =J" (p,q) = \[{z € I : T*(p,w) <q}. (15
Now, letting p = ¢ in (13) we have
Jr(S(p,p),r) = min(Jr(p,r), Jr(p,7))
= Jr(p.7). (16)

Since S is an s-norm, S(p, p) > p. If S(pg, po) > po for some
po € I then for this po Itg € I 3 S(po,po) = so > to > po.
Then, from (16) we have

Jr(S(Po,po);to) = Jr(Po,to),

i.e., JR(807t0) = JR(p(), t()).

However, Jg being an R-implication has the identity principle,

ie., Jr(a,b) =1 a < b,Va,b € I, and thus Jg(pg,to) = 1

and therefore Jg(sg,%0) = 1, which is not true since this would

imply sg < to. Therefore, so = po, i.e., S(p,p) = p,Vp € 1.

This implies S = max, the only idempotent s-norm. Thus, (13)
reduces to (18) when J is an R-implication

J(max(p, q),r) = min(J(p,r), J(q,7)). (18)

We know in a Residuated Lattice L, for the adjoin couple (x, —)
we have

a7

axb<cea<b—oc VYa,b,c € L (19)

where — is an R-implication obtained from the t-norm x. The
left-hand side of (18), using (19), becomes
t < JR(ma‘X(p‘, q)7 T)
< t*max(p,q) <r
S max(txp,tkq) <r
Stxp<randtxqg<r
&t < Jr(p,r)and t < Jgr(q,7)
<t< min(JR(p7 ’I”), JR(q7 7”))
Since t € [ is arbitrary, we have (18). Thus, (18) holds for all
R-implications.
In the rest of this paper, so as to use an unobtrusive notation

and since the context itself will make it clear, we will denote by
J both an S- and an R-implication.

C. On the Equation J(r,T1(s,t)) = To(J(r,s), J(r,t)) (7)

Let us consider S- and R-implications for the (7). We know for
any S- and R-implication, .J(1,t) = ¢,Vt € I. Putting r = 1 in
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(7), we get J(1,T1(t, s)) = T=(J(1,
To(t,s),Vt,s € I.Hence Ty = Tp =
Thus, (7) becomes

t),J(1,s))ie., Ti(t,s) =
T on I2.

J(r,T(s,t)) =T(J(r,s),J(rt)). (20)

1) Case I: S-Implication: Taking t = s = 0 in (20) we
obtain

J(r,0) =T(J(r,0),J(r,0)). @21

= N(r),Vr € I, thus
Vr € I. Since N is
t,t),Yt € I. Hence,

We know that for S-implications J(r, 0)
(21) becomes N(r) = T(N(r),N(r)),
a strong negation, we have that ¢t = T
1" = min. (20) now becomes

J(r,min(s,t)) = min(J(r,s), J(r,t)). (22)
Also
LHS of (22) = S(N(r), min(t, s))
= min(S(N(r), 1), S(N(r), 5)
[by distributivity of S over min)]
= min(J(r,t), J(r,s))
= RHS of (22)
Thus, (22) holds for all S-implications.
2) Case II: R-Implication: LetTi = = T # min. Then

there exist s and ¢ such that T'(s,t) < s < t. Let 7 be so chosen
that T'(s,t) < r < s < t. Now, LHS of (20) = J(r,T(s,t)).
RHS of (20) = T(J(r,s), J(r,t)) = T(1,1) = 1, by the
identity principle of R-implications, i.e., Jg(a,b) =1 & a <
b,VYa,b € I. Thus, LHS of (20) = 1, which again by the iden-
tity principle implies r < T(s,t), a contradiction to our as-
sumption. Therefore, we see that when .J is an R-implication
Ty =15 =T = min and (20) reduces to

J(r,min(s,t)) = min(J(r,s), J(r,t)). (23)

We have to show that when .J is an R-implication (23) holds.
Again, by the definition of a residuated lattice, we have

w < J(r,min(t, s))
& u*r < min(t, )
Suxr<tanduxr<s
< u< J(rt)and u < J(r,s)
< uw < min(J(r,t), J(r,s).

Since u € I is arbitrary, we have (23). Thus, (23) holds for all
R-implications.

In [10], the following was posed as an open problem.

Open Problem 2 [10]: What is the solution of the functional
equation

J(r, T(s,t)) = T(J(r,5), I (r, 1)) (24)

when J is a given fuzzy implication, for example, R-implication
or S-implication?

As can be seen, (24) is only a special case of (7), when 177 =
T2 =1T.
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D. On the Equation J(r, S1(s,t)) = Sa(J(r,s), J(r,t)) (8)
t

We know for any S- and R-implication, J(1,t) =
t,Vt € I.Putting r = 1 in (8), we get J(1,S51(t,s)) =
So(J(1,t),J(1,8)), i.e., Si(t,s) = Sa(t,s),Vt,s € I. Hence,
Sl = SQ = SOHIZ.

Thus, (8) becomes

J(r,S(s,t)) = S(J(r,s), J(r,t)). (25)

1) Case I: S-Implications: Takingt = s = 0 in (25) we
obtain, J(r,0) = S(J(r,0),J(r,0)),Vr € I. We know that
for S-implications J(r,0) = N(r),Vr € I, thus we have from
above N(r) = S(N(r),N(r)),Vr € I. Again, since N is a
strong negation, we have that ¢ = S(¢,t),Vt € I. Hence, S =
max. (25) now becomes

J(r,max(s,t)) = max(J(r,s), J(r,t)). (26)

Further, it can be shown (as has been shown for (22) in Sec-
tion II.C.1) that if J is an S-implication then it satisfies (26).

2) Case II: R-Implications: We know that if J is an R-im-
plication obtained from a nilpotent t-norm then .J is contin-
uous in both the variables [11]. We also have that J(1,0) = 0
and J(0,0) = 1 and since J is continuous J takes all values
in I = [0, 1] when the second coordinate of .J is fixed, i.e.,
Vr € I3s €13 J(s,0) = r. Then, (25) becomes

J(5,5(0,0)) = S(J(s,0), J(s,0))
r=.5(rr) Vrel
= S = max

the only idempotent s-norm.

From this discussion, the following results arise.

Theorem 1: An S-implication or an R-implication satisfies
(5) if and only if S = max and 7" = min.

Theorem 2: An S-implication or an R-implication satisfies
(6) if and only if S = max and T' = min.

Theorem 3: An S-implication or an R-implication satisfies
(7) if and only if T} = T5 = min.

Theorem 4: An S-implication or an R-implication obtained
from a nilpotent t-norm satisfies (8) if and only if S; = Sy =
max.

Even though the proof of reduction of (8) to (4) has been
given for the case where the R-implication was obtained from a
nilpotent t-norm, the authors have a strong feeling that it holds
for the case when the R-implication is obtained from a strict
t-norm, and that Theorem 4 will hold for any R-implication.

III. SOME SUFFICIENCY CONDITIONS ON THE GENERAL FORMS
OF THE DISTRIBUTIVE EQUATIONS

In this section, we consider the general equations (5)—(8) and
propose sufficiency conditions on a binary operator J : I X I —
1 that reduces them to (1)—(4), the basic distributive equations.

A. On the Equation J(T(r,s),t) = S(J(r,t), J(s,t)) (5)

Let J be a binary operator from I x I to I. Then, we have the
following propositions.

Proposition 1: 1f J satisfies neutrality, i.e., J(1,t) = ,Vt €
I, then S = max.
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Proof: v = s = 1 in (5) reduces it to J(1,t) =
S(J(1,t),J(1,t)),VYt € I, which implies t = S(¢,t),Vt € I.
Hence, S = max, the only idempotent s-norm. [ |

Proposition 2: If J satisfies the neutrality principle and is
one-to-one in the first variable, then 7" = min in (5).

Proof: As shown by neutrality of .J, (5) becomes
J(T(r,s),t) = max(J(r,t),J(s,t)). Letting » = s in the
above equation with a fixed ¢, we have, J(T(r,r),t) =
max(J(r,t), J(r,t), ie., J(T(r,r),t) = J(r,t), which
implies T'(r,7) = r,Vr € I, since J is one-to-one in the first
variable. Hence, 7' = min, the only idempotent t-norm. ]

Proposition 3: A binary operator .J is nonincreasing in the
first variable if and only if .J satisfies

?

J(min(r, s),t) = max(J(r,t),J(s,t))

27

which is nothing but (1).
Proof: Let .J be nonincreasing in the first variable, i.e.,

r < s = J(rt) > J(s,t),¥r,s € I. Then the two sides
of (27) are equal. On the other hand, let J satisfy (27) and let
r < s for any ¢ € I. Then from (27) we have, J(r,t) =
max(J(r,t), J(s,t)), which implies J(r,t) > J(s,t), i.e., J
is nonincreasing in the first variable. [ |

From the definition of an implication operator and the afore-
mentioned propositions, we have the following.

Theorem 5: Any implication operator J that is one-to-one in
the first variable reduces (5) to (1) and satisfies (1).

B. On the Equation J(S(r,s),t) = T(J(r,t),J(s,t)) (6)

Let J be a binary operator from I x I to I. Then, we have the
following propositions, the proofs of which can be obtained as
in Section III-A.

Proposition 4: 1f J satisfies neutrality, i.e., J(1,t) = ¢,Vt €
I then T = min.

Proposition 5: 1f J satisfies the neutrality principle and is
one-to-one in the first variable, then S = max in (6).

Proposition 6: A binary operator J is nonincreasing in the
first variable if and only if .J satisfies

J(max(r,s),t) = min(J(r,t), J(s,t))

(28)

which is nothing but (2).

From the definition of an implication operator and the afore-
mentioned propositions, we have the following.

Theorem 6: Any implication operator J that is one-to-one in
the first variable reduces (6) to (2) and satisfies (2).

C. Onthe Equation J(r,T1(s,t)) = Ta(J(r,s), J(r,t)) (7)

Let .J be a binary operator from I X I to I. Then, we have
the following propositions.

Proposition 7: If J satisfies the neutrality principle, i.e.,
J(1,t) = t,Vt € I then Ty = T on I?.

Proof: Taking r = 1 in (7) we have, J(1,T1(s,t)) =
T5(J(1,s),J(1,t)), which implies T4 (s,t) = Ta(s,t), Vs,t €
I.Hence, Ty = T, on I2. n

Proposition 8: 1If J is neutral and onto in the first variable,
then 73 = T = min in (7).

Proof: As shown before, by the neutrality of J we have
T, = Ty on I? in (7), i.e.,
J(r,T(s, 1)) = T(J(r,5), I (r,1))

?

(29)

Let s = t = 0, then from (29) we have, J(r,0) =
T(J(r,0),.J(r,0)). Since .J is onto in the first variable,
Vk € I 3r € I > J(r,0) = k. Hence, from above,
k =T(k,k),Y k € I, which implies T' = min. ]
Proposition 9: A binary operator .J is nondecreasing in the
second variable if and only if .J satisfies (30)
J(r,min(s,t)) = min(J(r, s), J(r, 1))

?

(30)

which is nothing but (3).
Proof: Proof is similar to that of Proposition 3. [ |
From the definition of an Implication operator and the above
propositions, we have the following:
Theorem 7: Any implication operator .J that is onto in the
first variable reduces (7) to (3) and satisfies (3).

D. On the Equation J(r,S1(s,t)) = Sa2(J(r,s), J(r,t)) (8)

Let J be a binary operator from I x I to I. Then, we have
the following propositions,the proofs of which can be obtained
as in Section III-C.

Proposition 10: 1If J satisfies the neutrality principle, i.e.,
J(1,t) = t,Vt € I then S; = Sy on I2.

Proposition 11: 1If J is neutral and onto in the first variable
then S; = S = max in (8).

Proposition 12: A binary operator .J is nondecreasing in the
second variable if and only if J satisfies (31)

J(r,max(s,t)) = max(J(r,s), J(r,t)) (31)

which is nothing but (4).

From the definition of an implication operator and the above
propositions, we have the following:

Theorem 8: Any implication operator .J that is onto in the
first variable reduces (8) to (4) and satisfies (4).

IV. CONCLUSION

It may be noted that a fuzzy implication will be of the form
“If X is A, then Y is B,” where X and Y are the variables and
A and B are fuzzy sets on the domain of X and Y, respectively.
The implication is represented as A(x) — B(y) and often as
p — r. It is common in fuzzy control to have two different
antecedents (observations) leading to the same consequent (ac-
tion). The two rules may be joined by “else” or “and.” These
lead to the RHS of (1) and (2), respectively. The left-hand side
of these equations reduces these to a single rule. Similarly, in the
case of fuzzy expert systems, it is possible that one antecedent
(symptom) may lead to different consequents (diseases). These
lead to the RHS of (3) and (4). The left-hand side of these equa-
tions once again enable reduction in number of rules. The advan-
tage of this rule reduction is lossless inferencing, i.e., the infer-
ences drawn from the original system and the reduced system
are the same. It is quite satisfying to note that all S-implica-
tions and R-implications have this property. The requirement
on any binary operator to satisfy these equations is also not too
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stringent. The discussion in this work is on the framework of
single-input-single-output fuzzy systems, but can be extended
in an obvious way to multiple-input—single-output systems.
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