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On the Law of Importation
(x y) z (x (y z))

in Fuzzy Logic
Balasubramaniam Jayaram, Member, IEEE

Abstract—The law of importation, given by the equivalence (
) ( ( )), is a tautology in classical

logic. In -implications defined by Turksen et al., the above equiv-
alence is taken as an axiom. In this paper, we investigate the general
form of the law of importation ( ( ) ) ( ( )),
where is a -norm and is a fuzzy implication, for the three
main classes of fuzzy implications, i.e., -, - and -implications
and also for the recently proposed Yager’s classes of fuzzy implica-
tions, i.e., - and -implications. We give necessary and sufficient
conditions under which the law of importation holds for -, -,

- and -implications. In the case of -implications, we inves-
tigate some specific families of -implications. Also, we investi-
gate the general form of the law of importation in the more general
setting of uninorms and -operators for the above classes of fuzzy
implications. Following this, we propose a novel modified scheme
of compositional rule of inference (CRI) inferencing called the hi-
erarchical CRI, which has some advantages over the classical CRI.
Following this, we give some sufficient conditions on the operators
employed under which the inference obtained from the classical
CRI and the hierarchical CRI become identical, highlighting the
significant role played by the law of importation.

Index Terms—Approximate reasoning, compositional rule of in-
ference, fuzzy implications, fuzzy inference, law of importation,
rule reduction.

I. INTRODUCTION

THE equation , known
as the law of importation, is a tautology in classical logic.

The general form of the above equivalence is given by

(LI)

where is a -norm and a fuzzy implication.
In the framework of fuzzy logic, the law of importation has

not been studied so far in isolation. In -implications defined
by Turksen et al. [51], (LI) with as the product -norm

was taken as one of the axioms. Baczyński
[1] has studied the law of importation in conjunction with the
general form of the following distributive property of fuzzy
implications:

(1)
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and has given a characterization. Bouchon-Meunier and
Kreinovich [11] have characterized fuzzy implications that
have the law of importation (LI) as one of the axioms along
with (1). They have considered for
the -norm and claim that Mamdani’s choice of implication
“min” is “not so strange after all.”

A. Motivation for This Work

Recently, there have been many attempts to examine classical
logic tautologies involving fuzzy implication operators, both
from a theoretical perspective and from possible applicational
value. There were a number of correspondences [10], [13]–[15],
[18], [34], [48] on (1), the following equivalence:

(2)

and related distributive properties in fuzzy logic, in the context
of inference invariant complexity reduction in fuzzy rule based
systems (see [8], [9], [45], and [53]). Daniel-Ruiz and Torrens
have investigated the distributivity of fuzzy implications over
uninorms (see Section II-D) in [43]. Fodor [20] has investigated
the contrapositive symmetry of the three classes of fuzzy im-
plications -, - and -implications with respect to a strong
negation. Igel and Tamme [28] have dealt with chaining of im-
plication operators in a syllogistic fashion. Thus the investiga-
tion of these properties of fuzzy implications has interesting ap-
plications in approximate reasoning.

In this paper, we consider the general form of the law of im-
portation in the setting of fuzzy logic and explore its potential
applications in the field of approximate reasoning along the fol-
lowing lines.

The compositional rule of inference (CRI) proposed by Zadeh
[57] is one of the earliest and most important inference schemes
in approximate reasoning involving fuzzy propositions. Infer-
encing in CRI involves fuzzy relations that are multidimensional
and hence is resource consuming—both memory and time. We
propose a novel modified scheme of the classical CRI infer-
encing called the hierarchical CRI that alleviates some of the
drawbacks of the classical CRI. Next we investigate when the
inference obtained from the classical CRI and the hierarchical
CRI become identical. Toward this end, we give some sufficient
conditions on the operators employed in the inferencing, con-
ditions that highlight the significant role played by the law of
importation.
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B. Main Contents of the Paper

The three established and well-studied classes of fuzzy im-
plications in the literature are the -, - and -implications.
Recently, Yager [54] has proposed two new classes of fuzzy im-
plications— - and -implications—that can be seen to be ob-
tained from the additive generators of continuous Archimedean
-norms and -conorms (see Section II-C), respectively. In this

paper, we consider the law of importation (LI) for these classes
of fuzzy implications: -, -, -, -, and -implications. We
give necessary and sufficient conditions under which the above
equivalence can be established for -, -, -, and -implica-
tions. In the case of -implications, we investigate some spe-
cific families of -implications. Also we have investigated the
general form of law of importation in the more general setting
of uninorms and -operators and show that they get reduced to
-norms.

We propose a novel modified scheme of CRI inferencing
called the hierarchical CRI that has many advantages over
classical CRI. Subsequently, we give sufficient conditions
on the operators employed in the hierarchical CRI under
which the inference obtained from the classical CRI and the
hierarchical CRI become identical. The law of importation
plays a significant role in the above equivalence. We illustrate
the above concepts through some numerical examples. It is
not uncommon to use a -norm for relating antecedents to
consequents in CRI, in which case we have shown that under
even less restrictive conditions the equivalence between the
inferences in the classical CRI and hierarchical CRI can be
obtained.

C. Outline of This Paper

In Section II, we review the basic fuzzy logic operators and
their different properties. The main theoretical results of this
paper are contained in Section III, wherein we investigate the
general form of law of importation for some well-known classes
of fuzzy implications, and in Section IV, where we investigate
the general form of law of importation in the more general set-
ting of uninorms and -operators. In Section V, we propose a
novel scheme of inferencing called hierarchical CRI and high-
light its advantages. In Section VI, we illustrate the applicational
values of the theoretical results in Sections III and IV by demon-
strating the significant role the law of importation plays in the
equivalence of the outputs obtained from classical CRI and hi-
erarchical CRI. Section VII gives a few concluding remarks.

II. PRELIMINARIES

To make this paper self-contained, we briefly mention some
of the concepts and results employed in the rest of this paper.

Definition 1: Let be an increasing bijec-
tion.

• If is any function, then the -conjugate
of is given by

(3)

• If is any binary function, then the
-conjugate of is

(4)

A. Negations

Definition 2 ([21, Def. 1.2–1.4]:
i) A function is called a fuzzy negation if

, , and is nonincreasing.
ii) A fuzzy negation is called strict if, in addition, is

strictly decreasing and is continuous.
iii) A fuzzy negation is called strong if it is an involution,

i.e., for all .
Theorem 1 [47], [21, Theorem 1.1]: A function

is a strong negation if and only if there exists an increasing
bijection , such that .

B. -Norms and -Conorms

Definition 3 [44], [29, Definition 1.1]: An associative, com-
mutative, increasing operation is called a
-norm if it has neutral element equal to one.

Definition 4 [44], [29, Def. 1.13]: An associative, commuta-
tive, increasing operation is called a -conorm
if it has neutral element equal to zero.

If is an associative binary operation on a domain
, then by the notation we mean

for an and . Also .

Definition 5 [29, Def. 2.9 and 2.13]: A -norm ( -conorm
, respectively) is said to be:
• continuous if it is continuous in both the arguments;
• Archimedean if ( , respectively) is such that for every

( , respectively) there is an
with ;

• strict if ( , respectively) is continuous and strictly mono-
tone, i.e., when-
ever ( , respectively) and ;

• nilpotent if ( , respectively) is continuous and if each
is such that for some

.
Table I lists the basic -norms and -conorms along with their
properties.

Theorem 2 ([29, Theorem 5.1]: For a function
, the following are equivalent.

i) is a continuous Archimedean -norm.
ii) has a continuous additive generator, i.e., there exists

a continuous, strictly decreasing function
with , which is uniquely determined up to

a positive multiplicative constant, such that for all

(5)
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TABLE I
BASIC t-NORMS AND t-CONORMS WITH THEIR PROPERTIES

where is the pseudoinverse of and is defined as:

if
if

(6)

If , then is strict and if , then is
nilpotent.

Theorem 3 [29, Corollary 5.5]: For a function
, the following are equivalent.

i) is a continuous Archimedean -conorm.
ii) has a continuous additive generator, i.e., there exists

a continuous, strictly increasing function
with , which is uniquely determined up to

a positive multiplicative constant, such that for all
we have

where is the pseudoinverse of and is given by

if
if

(7)

Theorem 4 [21, Theorem 1.8]: A continuous -conorm sat-
isfies , for all with a strict negation

, if and only if there exists a strictly increasing bijection of
the unit interval [0,1] such that and have the following rep-
resentations:

(8)

(9)

C. Uninorms and -Operators

Definition 6 [22, Definition 1]: A uninorm is a two-place
function that is associative, commutative,
nondecreasing in each place, and such that there exists some
element called the neutral element such that

, for all .
If , then is a -conorm; and if , then is a

-norm. For any uninorm , . A uninorm
such that is called a conjunctive uninorm and if

it is called a disjunctive uninorm. Note that it can be
easily shown that a uninorm that is continuous on the whole

of [0,1] is either a -norm or a -conorm. There are three main
classes of uninorms that have been well studied in the literature.

1) Pseudocontinuous uninorms (see [32]), i.e., uninorms
that are continuous on [0,1] except on the segments

0 1 and 0 1 . These are precisely the
uninorms such that both functions 1 and 0
are continuous except at the point . The class of
conjunctive uninorms having this property are usually
referred to as and the disjunctive ones by (see
[22]).

2) Idempotent uninorms, i.e., uninorms such that
for all (see [55], [5], [30],

and [42]).
3) Representable uninorms that have additive generators and

are continuous everywhere on the [0,1] except at the
points (0, 1) and (1, 0) (see [22]).

Definition 7 [31, Definition 3.1]: A -operator is a two-place
function which is associative, commutative,
nondecreasing in each place, and such that:

• ;
• the sections are continuous func-

tions, where ; , for all
.

D. Fuzzy Implications

Definition 8 [21, Definition 1.15]: A function
is called a fuzzy implication if, for all , it

satisfies

if (J1)

if (J2)

(J3)

(J4)

(J5)

A fuzzy implication is said to be neutral if

(NP)

Remark 1: Though the above axioms are the usually required
set in literature, they are not mutually exclusive. For example,
it can be shown that (J1) implies (J4). Since a fuzzy implication
operator coincides with the Boolean implication on {0, 1}, we
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TABLE II
SOME S-IMPLICATIONS WITH THEIR CORRESPONDING t-CONORMS AND THEIR N -DUAL t-NORMS, WHERE N IS THE STANDARD NEGATION 1� x

know that . Now by (J1) we have implies
, i.e., (J1) implies (J4). Similarly, from

and (J2), we obtain (J3).
The following are the two important classes of fuzzy impli-

cations well established in the literature:
Definition 9 [21, Definition 1.16]: An -implication is

obtained from a -conorm and a strong negation as follows:

(10)

Definition 10 [21, Definition 1.16]: An -implication is
obtained from a -norm as follows:

(11)
A -norm and -implication obtained from are said

to have the residuation principle if they satisfy the following:

iff (RP)

Remark 2: It is important to note that (RP) is a characterizing
condition for a left-continuous -norm (see [21, p. 25] and [27,
Proposition 5.4.2]. In this paper, we only consider -implica-
tions obtained from -norms such that the pair ( )
satisfy the residuation principle (RP) or, equivalently, is a
left-continuous -norm. Also if is a left-continuous -norm,
then in (11) reduces to .

Any -implication obtained from a left-continuous
-norm satisfies (NP) and has the ordering property (OP)

(see, for example, [50]) for all

Ordering Property (OP)

Since for any , we have that
(see also [39] and [40])

(12)

Proposition 1 [2, Propositions 12 and 21]: Let
be an increasing bijection.

i) If is an -implication obtained from a -conorm
and a strong negation , then its -conjugate is
also an -implication obtained from the -conorm and
the strong negation .

ii) If is an -implication obtained from a left continuous
-norm , then its -conjugate is also an -impli-

cation obtained from the left continuous -norm .
A third important class of fuzzy implications studied in the

literature is the following.

TABLE III
SOME R-IMPLICATIONS AND THEIR CORRESPONDING t-NORMS

Definition 11 [21, p. 24]: A -implication is obtained from
a -conorm , -norm , and strong negation as follows:

(13)

Remark 3: It should be emphasized that not all -implica-
tions satisfy the condition (J1) of Definition 8. For example, con-
sider the function , called the
Zadeh implication in the literature. Let
and . Then and
hence does not satisfy (J1), but it is a -implication obtained
from the triple .

Further, a -implication satisfies (J4), and hence (J1), only
if the strong negation and the -conorm in Definition 11
are such that for all .

We say that a -implication obtained from the triple
is a fuzzy implication only if satisfies (J1). For

more recent works on -implications, we refer the readers to
[33] and [49].

Remark 4: An -implication (Definition 9) or a -im-
plication can be considered for noninvolutive negations
also (see [4]), but in this paper we only consider the stronger
definition as given in [21].

All the above three classes of -, -, and -implications
are neutral. Tables II–IV list a few of the well-known -, -,
and -implications, respectively.

E. Yager’s Classes of Fuzzy Implications

Recently, Yager [54] has proposed two new classes of fuzzy
implication operators— - and -generated implications—that
cannot be strictly categorized to fall in the above classes. Refer-
ence [3] discusses the intersection of the above classes of fuzzy
implications with the classes of - and -implications.
They can be seen to be obtained from additive generators of
-norms and -conorms, whose definitions we give below along

with a few of their properties.
Definition 12 [54, p. 196]): An -generator is a function

that is a strictly decreasing and continuous
function with . Also we denote its pseudoinverse by

given by (6).
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TABLE IV
SOME QL-IMPLICATIONS WITH THEIR CORRESPONDING t-CONORMS AND t-NORMS, WHERE N IS THE STANDARD NEGATION 1�x

TABLE V
SOME J IMPLICATIONS WITH THEIR f -GENERATORS

TABLE VI
SOME J IMPLICATIONS WITH THEIR g-GENERATORS

Definition 13 [54, p. 197]): A function from to [0, 1]
defined by an -generator as

(14)

with the understanding that is called an -generated
implication.

It can easily be shown that is a fuzzy implication (see [54,
p. 197]).

Definition 14 [54, p. 201]: A -generator is a function
that is a strictly increasing and continuous func-

tion with . Also we denote its pseudoinverse by
given by (7).

Definition 15 (Yager [54, p. 201]): A function from [0,1] to
[0, 1] defined by a -generator as

(15)

with the understanding that is a fuzzy implication
and is called a -generated implication.

Note that for any , since ,
and hence in (14). As can be seen from The-

orems 2 and 3, the - and -generators can be used as additive
generators for generating -norms and -conorms, respectively.
We will use the terms -generated ( -generated, respectively)
implication and -implication ( -implication, respectively) in-
terchangeably.

It is easy to see that , are neutral fuzzy implications, and
a few examples from these two classes are given in Tables V and
VI (see [54, pp. 199–203]).

Lemma 1: Let be:
i) an -implication obtained from an -generator; or

ii) a -implication obtained from a -generator such that
.

Then iff either or .
Proof:

i) Let be an -implication . Then the reverse implica-
tion is obvious. On the other hand

which implies either or , which by the
strictness of means .

ii) Let be a -implication obtained from a -generator
such that . Again, the reverse implication is
obvious. On the other hand, since , we have

and

which implies either , since if then
cannot be , or , i.e., .

Lemma 2: Let be:
i) an -implication obtained from an -generator with

; or
ii) a -implication .
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Then

if
if

Proof: If , then since ,
are fuzzy implications. If , then:
i) ,

by definition of .
ii) , and since is strictly increasing and ,

we have .

III. THE LAW OF IMPORTATION

In the following sections we discuss the validity of (LI) when
is an -, -, -, -, and -implication.

A. - and -Implications and the Law of Importation

Theorem 5: An -implication , obtained from a
-conorm and a strong negation satisfies (LI) with a
-norm iff is the -dual of .

Proof: Let be an -implication obtained from a
-conorm and a strong negation .

( :) Let satisfy (LI) with a -norm . If is the
-dual -conorm of , then

LHS LI

(16)

RHS LI

(17)

Since (16) (17), taking , we have
for all . Since is a strong negation

and hence both one-to-one and onto on [0, 1], for every
, there exists such that
. Now it follows that for all

, and that is the -dual -conorm of .
( :) If is the -dual of , then and (16)

(17) by the associativity of . Thus an -implication and
a -norm satisfy (LI) iff is the -dual of .

Theorem 6 [38], [21, Theorem 1.14]: An -implication
obtained from a left-continuous -norm satisfies (LI) with a
-norm iff .

Proof: Let be the -implication obtained as
the residuation of the left-continuous -norm . Then

, for all
. Since satisfy the residuation principle

(RP), we have . Also by
(OP), we have iff .

( :) Let . Now, since is left-continuous we have
by the associativity of and (RP)

LHS LI

RHS LI

( :) Let satisfy (LI) for some -norm . Let
be arbitrary but fixed and . Now, by em-

ploying the following properties—commutativity of , (12),
and (OP)—we have

(18)

On the other hand, for the above fixed , let .
Then we have, from (OP) and (RP)

(19)

From (18) and (19) and since are arbitrary, we see that
.
In Table II, the -norms under column and in Table III

the -norms under column are the -norms corresponding to
the -implications and -implications (under the columns
and ), respectively, that satisfy (LI).

From Theorems 5 and 6 and Proposition 1, we have the fol-
lowing corollary.

Corollary 1: Let be an increasing bijec-
tion.

i) The -conjugate of an -implication satisfies (LI)
iff is the -dual of .

ii) The -conjugate of an -implication obtained from
a left-continuous -norm satisfies (LI) iff ,
where is the -conjugate of the -norm .

B. -Implications and the Law of Importation

Let the -implication obtained from a -conorm ,
-norm , and strong negation be a fuzzy implication; then

, for all (see Remark 3). In the rest
of this section, we consider only continuous -conorms and
hence by Theorem 4 we have that and have the represen-
tation as given in (8) and (9), respectively, i.e.,

for all .
Let us consider the extreme case when

(from the same bijection ), in which case from Theorem
1 we have that is a strong negation.

Now, if we consider the obtained from the triple
where is any -norm, then since
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for any -norm and , we have, for all ,
the following (see also [33] and [49]):

(20)

If we consider to be either a -conjugate of a continuous
Archimedean -norm or , it can be easily verified that
obtained from the triple all satisfy (J1) and
hence are fuzzy implications. In fact, Fodor [20, Corollary 4]
has shown that an “if and only if” relation exists between the
different -norms employed below and the resulting -im-
plications.

i) If the -norm in (20) is conjugate with the Łukasiewicz
-norm , then is the -implication obtained

from and , i.e.,

(21)

ii) If the -norm in (20) is conjugate with the product
-norm , then is conjugate with the Reichenbach

implication , i.e., and is given by

(22)

iii) If the -norm in (20) is the minimum -norm , then
is conjugate with the Łukasiewicz implication ,

i.e., and is given by

(23)

Theorem 7: Let be a continuous -conorm with represen-
tation (8) for an increasing bijection and
be the associated strong negation, i.e., .
Let be a -implication obtained from .

i) If the -norm is the -conjugate of the Łukasiewicz
-norm , then satisfies (LI) with a -norm iff

, the minimum -norm.
ii) If the -norm is the -conjugate of the product -norm

, then satisfies (LI) with a -norm iff .
iii) If the -norm , the minimum -norm, then

satisfies (LI) with a -norm iff is the -conjugate of
the Łukasiewicz -norm .

Proof:
i) We know from (21) that is the -conjugate of the

Łukasiewicz implication .
Now by Corollary 1–ii, we have that satisfies (LI)
if and only if is the -conjugate of the Łukasiewicz
-norm , i.e.,

.
ii) From (22), we see that is an -implication obtained

from the algebraic sum -conorm
and the strong negation . Now by

Corollary 1–i, we have that satisfies (LI) if and only if
is the -dual of the -conjugate of the algebraic sum

-conorm ,

where . Now by an
easy verification, we can see that

iii) From (23), we see that is an -implication with
. Hence by Theorem 5, we have that satisfies

(LI) iff , which is the -dual of for any
strong .

C. Yager’s - and -Implications and the Law of Importation

Theorem 8: Let be an -generated implication. satis-
fies the law of importation (LI) with a -norm if and only if

, the product -norm.
Proof: ( :) Let be the product -norm. Then for any

RHS LI

LHS LI

( :) Let obey the law of importation (LI) with a -norm .
Then for any , we have

LHS LI RHS LI

(24)

Now, if , then, since is strictly decreasing,
and hence from (24) we have for all
.

Lemma 3: If a -implication satisfies the law of impor-
tation (LI) with a -norm , then for any

.
Proof: On the contrary, let for some

. Let . Then
by (J3). Since satisfies the law of importation

(LI) with respect to , we have . In
particular, if , then and

from Lemma 2–ii, from
which we have , a contradiction. Hence for
any .

Theorem 9: Let be a -generated implication with
such that . satisfies the law of

importation (LI) with a -norm if and only if , the
product -norm.

Proof: Let be a -generated implication obtained from
a -generator such that . Then we have .
First, since is a neutral fuzzy implication, if or

or , then (LI) holds for any -norm . Again
from Lemma 2–ii, , for all , and hence
(LI) holds for and any -norm such that for all
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, when . Hence in the following, we consider
(LI) only for , which also implies .

( :) Let be the product -norm. Then for all

RHS LI

LHS LI

( :) Let obey the law of importation (LI) with a -norm
. Then for all , we note that from Lemma 3

, and also

from which we obtain , for all , since
.

Theorem 10: Let be a -generator such that .
Then , the -generated implication, satisfies the law of im-
portation (LI) if and only if , the product -norm.

Proof: Let be a -generator such that .
( :) Clearly if , then it can be easily verified that
satisfies (LI) with .

( :) To prove the converse, let be a -norm for which
satisfies the law of importation and note that from Lemma 3,

for any .
Suppose first that for some , we have

, and let . Then we have

and so

whereas

a contradiction.

On the other hand, if for some we have
and let , since

, we have

and so

whereas

a contradiction. Hence necessarily for all
, i.e., in (LI).

IV. THE LAW OF IMPORTATION IN THE SETTING OF UNINORMS

AND -OPERATORS

In this section, we investigate the equivalence (LI) when is
either a uninorm or a -operator.

A. Law of Importation With a Uninorm Instead of a -Norm

In this section, we consider the following equality, where
is a uninorm:

(LI.U)

Lemma 4: If a neutral fuzzy implication satisfies (LI.U),
then , i.e., is conjunctive.

Proof: Let be a neutral fuzzy implication and
. Letting , , , we have

LHS LI.U

RHS LI.U

LHS (LI.U) RHS (LI.U) , a contradiction.
Since all of the fuzzy implications considered in this work are

neutral, in this section, we only consider conjunctive uninorms
for (LI.U).
Theorem 11: An -implication , obtained from a

-conorm and a strong negation , satisfies (LI.U) with a
conjunctive uninorm only if the identity of is one, or
equivalently , the -norm that is -dual of .

Proof: Let be a conjunctive uninorm with the identity
element and be the -implication obtained from
a -conorm and a strong negation . Letting , ,

, we have

LHS LI.U

RHS LI.U

LHS (LI.U) RHS (LI.U)
, a -norm. Now from Theorem 5, we have that is the

-norm that is -dual of .
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From the proof of the above theorem and noting that
for all ,

we have that a -implication satisfies (LI.U) with a
conjunctive uninorm only if the identity of is one, i.e.,

is a -norm.
Theorem 12: An -implication obtained from a left-con-

tinuous -norm satisfies (LI.U) with a conjunctive uninorm
only if the identity of is one, or equivalently ,

the -norm from which was obtained.
Proof: Let be a conjunctive uninorm with the identity

element . Let be an -implication obtained
from a left-continuous -norm . We know from (OP) that

, for all . Letting , in
(LI.U)

LHS LI.U

RHS LI.U

Now, LHS (LI.U) RHS (LI.U) , i.e., is a -norm.
Now from Theorem 6, we have that is the -norm from
which was obtained.

Theorem 13: An -implication satisfies (LI.U) with a con-
junctive uninorm only if the identity element of is one,
or equivalently, is the product -norm .

Proof: Let be an -implication obtained from an -gen-
erator. Let , . Then

LHS LI.U

RHS LI.U

satisfies (LI.U) only if
, which implies or or . Now,

, a contradiction to the fact that is
a conjunctive uninorm and . Hence we have .
Now, from Theorem 8, we have that is the product -norm

.
Theorem 14: A -implication satisfies (LI.U) with a con-

junctive uninorm only if the identity element of is one,
or equivalently is the product -norm .

Proof: Let be a -implication obtained from a
-generator. Let , . Then LHS (LI.U)

while RHS (LI.U)
. satisfies

(LI.U) only if . Here again we consider
the following two cases.

Case 1: Let . Then
. Hence

or or

or

Now, implies is a -conorm, contradicting the fact that
is a conjunctive uninorm, and so we have and ,

a -norm.
Case 2: Let . Then

and , a -norm.
Now, from Theorems 9 and 10, we have that is the product

-norm .

B. Law of Importation With a -Operator Instead of a
-Norm

In this section, we consider the following equality, where
is a -operator:

(LI.F)

Lemma 5: Let be a fuzzy implication operator such that
iff either or . Then satisfies (LI.F)

only if or, equivalently, , a -norm.
Proof: Let , , . Then LHS (LI.F)

and RHS (LI.F) .
Hence for to satisfy (LI.F), we need , which since

by the hypothesis we have or, equivalently, ,
a -norm.

Lemma 6: Let be a fuzzy implication operator such that
if and only if . Then satisfies (LI.F) only if

or, equivalently, , a -norm.
Proof: Let , . Then LHS (LI.F)

and RHS (LI.F) .
Hence for to satisfy (LI.F), we need , and from the
given condition on , we have or, equivalently, ,
a -norm.

Theorem 15: Let be:
i) an -implication ;

ii) an -implication obtained from a left-continuous
-norm ;

iii) an -implication ;
iv) a -implication .

Then satisfies (LI.F) only if the absorption element of is
zero, i.e., , a -norm.

Proof: Let be a -operator with the absorption element
.

i) Let be an -implication obtained from a -conorm
and strong negation . Then , the

strong negation, and hence .
Now, by Lemma 6, we have , i.e., is a -norm.

ii) Let be an -implication obtained from a left-con-
tinuous -norm . We know, from the ordering prop-
erty (OP), that , for any . Let

. Then by definition . Now

LHS LI.F

RHS LI.F

Hence LHS (LI.F) RHS (LI.F)
, a contradiction to the fact that . Thus there

does not exist any such that , i.e.,
is a -norm.

iii) Let be an -implication. Then the result is obvious
from Lemmas 5 and 1.

iv) Let be a -implication. Then the result is obvious from
Lemmas 6 and 2.

Corollary 2:
i) An -implication satisfies (LI.F) iff is the -dual

-norm of .
ii) An -implication obtained from a left-continuous

-norm satisfies (LI.F) iff .
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iii) An -implication satisfies (LI.F) iff is the product
-norm.

iv) A -implication satisfies (LI.F) iff is the product
-norm.

Once again, from part i) of the proof of Theorem 15 and
noting that , a strong negation, we have that a

-implication satisfies (LI.F) only if the absorption ele-
ment of is zero or, equivalently, , a -norm.

V. HIERARCHICAL CRI

In this section, we discuss the structure and inference in one
of the most established methods of inferencing in approximate
reasoning, the classical compositional rule of inference (CRI)
[57]. After detailing some of the drawbacks of CRI, we pro-
pose a novel inferencing scheme called hierarchical CRI, which
is a modification of and has many advantages over CRI, most
notably computational efficiency. We illustrate these concepts
with some numerical examples.

Definition 16: A fuzzy set on a nonempty set ,
, is said to be a “fuzzy singleton” if there exists an

such that has the following representation:

if
if

(25)

We say attains normality at .

A. Structure and Inference in Classical CRI

The CRI proposed by Zadeh [57] is one of the earliest imple-
mentations of generalized modus ponens. Here, a fuzzy if-then
rule of the form

If is Then is (26)

is represented as a fuzzy relation as
follows:

(27)

where is any fuzzy implication and are fuzzy sets on
their respective domains . In this section, unless otherwise
explicitly stated, , , and . Then given a fact
is , the inferred output is obtained as composition of
and , i.e.,

(28)

where is a Sup– composition given by

Sup (29)

where can be any -norm (see [52]).
In the case when the input is a “singleton” (25) attaining

normality at an , then

Sup

(30)

In the case of a multiple-input single-output (MISO) fuzzy
rule given by

If is and is Then is (31)

the relation is given by

(32)

where stands for the “cylindrical extension” of the
fuzzy set with respect to the universe of , and vice versa,
and is the antecedent combiner, which is usually a -norm.

Consider a single MISO rule of the type (31), denoted
, for simplicity. Then, given a multiple-input

, the infered output , taking the Sup– composi-
tion, is given by

(33)

Sup

(34)

As in the single-input single output case, when the inputs
are “singleton” fuzzy sets and attaining normality at the
points , , respectively, we have from (34)

(35)

Once again, is the antecedent combiner which is usually any
of the -norms.

1) Example 1: Let , ,
and , where , , and are defined
on , , and

, respectively. Let be the Reichenbach implica-
tion and the antecedent combiner

be the product -norm . Then, taking the
cylindrical extensions of and with respect to , we have
that

Now, with , from
(32) will be given by ,
where

and are given as follows:

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 14, 2009 at 23:40 from IEEE Xplore.  Restrictions apply.



140 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 1, FEBRUARY 2008

Let , be the given fuzzy singleton
inputs. Then

(36)

Taking the Sup– composition, we have

(37)

B. Drawbacks of CRI

Despite the prevalent use of CRI, the following are usually
cited as its drawbacks (see, for example, [16] and [17]).

• Computational Complexity: The calculation of the
supremum in (34) is a time-consuming process. When

and , the complexity of a single infer-
ence amounts to .

• Explosion in Dimensions: For an -input one-output
system with the cardinality of
the base sets of each of the inputs being , we have
an -dimensional matrix having entries. Also
we need to store -dimensional matrices for every fuzzy
if-then rule.

The many works proposing modifications to the classical CRI
can be broadly categorized into those that attempt to improve
the accuracy of inferencing in CRI and those that intend to en-
hance the efficiency in its inferencing. Some works relating to
the former approach are those of Ying [56], who investigated the
“reasonableness” of CRI and proposed a suitable modification
of the CRI; and Wangming [52], who was one of the earliest to
employ the Sup– composition and has studied the suitability
of pairs ( ) – of the -norm used for composition and
the fuzzy implication that satisfy some appropriate criteria
for generalized modus ponens and generalized modus tollens. In
[12], necessary and sufficient conditions on operators involved
in CRI inferencing are investigated to fit the CRI into the ana-
logical scheme. For works relating to computation of CRI and
exact formulas, see those by Fullér et al. [24], [25], [23]. For
some recent works, see [35]–[37].

In the case when there are more than two antecedents involved
in fuzzy inference, Ruan and Kerre [41] have proposed an exten-
sion to the classical CRI, wherein, starting from a finite number
of fuzzy relations of an arbitrary number of variables but having
some variables in common, one can infer fuzzy relations among
the variables of interest.

As noted above, because of the multidimensionality of the
fuzzy relation (32), inferencing in CRI (33) is difficult to per-

form. To overcome this difficulty, Demirli and Turksen [17] pro-
posed a rule breakup method and showed that rules with two or
more independent variables in their premise can be simplified
to a number of inferences of rule bases with simple rules (only
one variable in their premise). For further modification of this
method, see [26]. In the following, we propose a modified but
novel form of CRI that alleviates some of the concerns noted
above.

C. Hierarchical CRI

In the field of fuzzy control, hierarchical fuzzy systems
(HFSs) hold center stage, since, where applicable, they help to
a large extent in breaking down the complexity of the system
being modeled, in terms of both efficiency and understand-
ability. For a good survey of HFS, see Torra [46] and references
therein.

In this section, we propose a new modified form of CRI
termed hierarchical CRI owing to the way in which multiple
antecedents of a fuzzy rule are operated upon in the inferencing.
A distinction should be made between the method proposed in
this paper, which uses the given MISO fuzzy rules as is, and
typical inferencing in HFS, which is dictated by the hierarchical
structure that exists among the modeled system variables. It
should be emphasized that the term “hierarchical CRI” as
employed here refers to the modifications in the inferencing
procedure of CRI and does not impose a hierarchical architec-
ture on the MISO fuzzy rules.

From the law of importation (LI), we see that (32) can be
rewritten as, using a -norm as the antecedent combiner

(38)

Taking a cue from this equivalence, we propose a novel way of
inferencing called the hierarchical CRI, which is given as shown
in (39) at the bottom of the page (using the Sup– composi-
tion).

Procedure for Hierarchical CRI

Step 1) Calculate .

Step 2) Calculate .

Step 3) Calculate .

Step 4) Finally, calculate

We illustrate the gain in efficiency from using the hierarchical
CRI through the following example. For simplicity, we have

Sup

Sup Sup (39)
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considered the Sup– , i.e., Sup– , composition in the ex-
ample, though it can be substituted by any Sup– composition,
for any -norm . Also we have considered the Łukasiewicz
implication , which is both an

- and an -implication.
1) Example 2: Let the fuzzy sets be as in Example 1.

Let be the Łukasiewicz implication
and the antecedent combiner be the minimum -norm

.
Case 1) Inference with the Classical CRI: Then taking the

cylindrical extensions of and with respect to , we have
that

Now, with ,
from (32) will be given by

, where

and

Let , be the given fuzzy singleton
inputs. Then is still as given in (36). Taking the
Sup– composition, we have

(40)

Case 2) Inference With the Hierarchical CRI: Inferencing
with the hierarchical CRI, given an input , we have

(41)

D. Advantages of Hierarchical CRI

From the above example, it is clear that we can convert a mul-
tiple-input system employing CRI inference to a single-input
hierarchical system employing CRI. The effect becomes more
pronounced when we have more than two input variables. We
summarize the advantages of hierarchical CRI in the following.

• Computational Efficiency: In the proposed hierarchical
system we only need to process two-dimensional matrices
at every stage.

• Storage Efficiency: It suffices to store the different an-
tecedent fuzzy sets of a fuzzy rule and not their combined
multidimensional matrices.

• Associative Inferencing: For a given input
, since we only compose each of

the s independently at every stage, this relieves us
from waiting for all the inputs’ s to be available for the
inference, and the inference can be done associatively.

• Order Independence: By the commutativity of the -norms
used in the composition and as the antecedent com-
biner— , respectively—the inputs can be composed
in any order, i.e.,

Hence it can be applied online, as and when the inputs are
given.

Though Example 2 illustrates the computational efficiency of
hierarchical CRI, we see that the inference obtained from the
classical CRI is different from that obtained from the proposed
hierarchical CRI, i.e., . In the following section, we
propose some sufficiency conditions under which the outputs of
the classical and hierarchical CRI schemes are identical, for the
same inputs.

VI. EQUIVALENCE BETWEEN CLASSICAL CRI AND

HIERARCHICAL CRI

In this section, we investigate the equivalence between (39)
and (33). Toward this end, we propose some sufficiency condi-
tions when the inputs to the system are restricted to fuzzy sin-
gletons. It is not uncommon to use a -norm instead of a fuzzy
implication to relate antecedents to consequents to obtain the
relation in (32), i.e., the in (32) is a -norm . In such a
case, we give both necessary and sufficiency conditions for the
equivalence between (39) and (33) when the inputs to the system
are restricted to fuzzy singletons. Again, in the case when is
a -norm, we have also proposed some sufficiency conditions
even when the inputs to the system are not fuzzy singletons.

A. Sufficiency Condition for Equivalence Between Classical
CRI and Hierarchical CRI

Theorem 16: Let the inputs to the fuzzy system be “sin-
gleton” fuzzy sets. Then (39) and (33) are equivalent, i.e.,

,
when the -norm employed for the antecedent combiner and
the implication are such that (LI) holds.

Proof: Let the antecedent combiner be a -norm and
be a fuzzy implication such that satisfies (LI) with . Also let
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us consider the Sup– composition for some -norm . Let
the inputs to the fuzzy rule base be the “singleton” fuzzy sets

and attaining normality at the points , ,
respectively. Then we have

Sup

(42)

Sup Sup

(43)

Equation (42) (43) by (LI). Thus (39) and (33) are equivalent
when the -norm used for the antecedent combiner and the
fuzzy implication satisfy (LI) and the inputs are fuzzy single-
tons.

1) Example 3: Let the fuzzy sets be as defined in
Example 1. In Example 1, the antecedent combiner was taken to
be the product -norm and the implication considered was
the Reichenbach implication , which is an -implication.
From Theorem 5 and Table II, we see that the pair
does satisfy the conditions given in Theorem 16.

In this example, we infer, using the hierarchical CRI for the
identical “singleton” inputs , given in Example 1 and show
that the output obtained is the same as that in Example 1, i.e.,
(37).

Inferencing with the hierarchical CRI, given the input
, we have

Now, after some tedious calculations, it can be seen that

(44)

Quite evidently, the inference obtained from the hierarchical
CRI (44) is equal to that obtained from the classical CRI (37),
under the conditions of Theorem 16.

Similarly, in Example 2, the fuzzy implication employed
was the Łukasiewicz implication with minimum -norm

as the antecedent combiner. Now, according to the con-
ditions given in Theorem 16, if we consider the Łukasiewicz
-norm as the antecedent combiner, it can be easily ver-

ified that the outputs obtained from the classical CRI and the
hierarchical CRI are indeed identical.

B. Classical CRI With -Norms Instead of Fuzzy Implications

Even though -norms do not satisfy all the properties of a
fuzzy implication, as given in Definition 8, they are still em-
ployed both in approximate reasoning and fuzzy control to re-
late antecedents to consequents in fuzzy rules (see, for example,
[11] and [19]). Two of the most commonly employed -norms
are Mamdani’s min ( ) and Larsen’s product ( ) -norms.

It is easy to see that if is any -norm, then satisfies
(LI) with a -norm , i.e., , if
and only if . The reverse implication is obtained
by associativity and the forward implication can be obtained by
taking . Hence Theorem 16 is true in the above case. In
fact, when the inputs are singleton fuzzy sets, we can in fact
show the following stronger equivalence condition.

Theorem 17: Let the inputs to the fuzzy system be “sin-
gleton” fuzzy sets and be a -norm. Then (39) and (33)
are equivalent, i.e.,

if and only if the same -norm is em-
ployed for the antecedent combiner.

Proof: Let be singleton fuzzy sets on the domains
attaining normality at points , , respec-

tively. Then, for any , we have with and for any
Sup– composition and for all , , (39) and (33)
become as given in (45) and (46) at the bottom of the page. Now,

Sup Sup

(45)

Sup

(46)
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TABLE VII
RESULTS AT A GLANCE: J—FUZZY IMPLICATION, T—t-NORM, U—UNINORM, F—t-OPERATOR

from above, we have that (45) (46) if and only if ,
i.e., the -norm employed for the antecedent combiner and the
-norm relating the antecedent to the consequent are iden-

tical.
The following theorem gives a sufficient condition under

which (39) and (33) are equivalent, even when the inputs
, are not fuzzy singletons.

Theorem 18: Let be a left-continuous -norm. Then (39)
and (33) are equivalent, i.e.,

, if the same is employed for
the antecedent combiner to relate the antecedents of the rules to
their consequents (instead of an implication ) and in the Sup–
composition.

Proof: Let a -norm; then
(33) Sup

Sup

Sup

(47)

Sup (48)

We obtain (48) from (47) by the associativity of .
(39)

Sup Sup

Sup Sup

Sup Sup

Sup Sup

Sup (49)

The last equality follows from the previous step since is left-
continuous and Sup Sup . Equation
(48) (49) by associativity of -norms again. Thus (39) and
(33) are equivalent if the -norm used for the “implication” and
the antecedent combiner are the same as the -norm used in
the Sup– composition.

VII. CONCLUSIONS

The law of importation has not been studied so far in isolation.
In this paper, we have given necessary and sufficient conditions
under which the classes of fuzzy implications -, -, -, and

-implications satisfy the law of importation (LI). Also we have
investigated the general form of law of importation in the more
general setting of uninorms and -operators for all the above
classes of fuzzy implications. A summary of the results in this
work is given in Table VII for ready reference.

We have also proposed a modification in the CRI inferencing
scheme called the hierarchical CRI, which has many advan-
tages, chiefly computational efficiency. We have also shown that

the law of importation plays an important role in the equiva-
lence between inferencing with hierarchical CRI and the clas-
sical CRI. The hierarchical CRI proposed in this paper has been
employed only as an instrument of illustration to the possible
applications of the law of importation. The hierarchical CRI
method itself merits more focused study and will be taken up
in a future work.

By the commutativity of a -norm, if an implication has the
law of importation with respect to to any -norm , then has
the exchange principle, i.e.,

The exchange principle plays a significant role in contraposi-
tivization of fuzzy implications (see [6]).

Recent works investigating classical logic tautologies in-
volving fuzzy implication operators show both their theoretical
interests (see [7], [6], [10], [13]–[15], [18], [20], [34], [43], and
[48]) and their influence in practical applications (see [8], [9],
[28], [45], and [53]). This paper can also be seen in this context.
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