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Abstract—Fuzzy relational inference (FRI) systems form an im-
portant part of approximate reasoning schemes using fuzzy sets.
The compositional rule of inference (CRI), which was introduced
by Zadeh, has attracted the most attention so far. In this paper, we
show that the FRI scheme that is based on the Bandler–Kohout
(BK) subproduct, along with a suitable realization of the fuzzy
rules, possesses all the important properties that are cited in favor
of using CRI, viz., equivalent and reasonable conditions for their
solvability, their interpolative properties, and the preservation of
the indistinguishability that may be inherent in the input fuzzy sets.
Moreover, we show that under certain conditions, the equivalence
of first-infer-then-aggregate (FITA) and first-aggregate-then-infer
(FATI) inference strategies can be shown for the BK subproduct,
much like in the case of CRI. Finally, by addressing the computa-
tional complexity that may exist in the BK subproduct, we suggest
a hierarchical inferencing scheme. Thus, this paper shows that the
BK-subproduct-based FRI is as effective and efficient as the CRI
itself.

Index Terms—Bandler–Kohout (BK) subproduct, compositional
rule of inference (CRI), correctness and continuity of inference,
fuzzy relational equations, fuzzy relational inference (FRI) systems,
hierarchical CRI.

I. INTRODUCTION

THE IDEA of linguistic fuzzy models that imitate the human
way of thinking was proposed by Zadeh in his pioneering

work [1]. Systems that use fuzzy rules and an inference mech-
anism have been applied in a wide variety of applications, viz.,
automatic control, decision making, risk analysis, etc.

Let X be a nonempty classical set. Let us recall that a fuzzy
set A on X is a mapping from X to the unit interval, i.e.,
A : X → [0, 1]. Let F(X) denote the set of all fuzzy sets on
X . Given two nonempty classical sets X,Y , a fuzzy IF–THEN
rule is usually given as follows:

IF x is A THEN y is B (1)

where the antecedent fuzzy set A ∈ F(X) and the consequent
fuzzy set B ∈ F(Y ) represent some properties.

Given that a fuzzy observation x is A′, where A′ ∈ F(X), a
corresponding output fuzzy set B′ ∈ F(Y ), which means that
y is B′, is deduced using an inference mechanism. Thus, an
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B. Jayaram was supported in part by Grant APVV-0375-06.
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inference mechanism may, generally, be viewed as an arbitrary
mapping from F(X) to F(Y ) [2], [3].

Many types of inference mechanisms that deal with fuzzy-
rule-based systems have been proposed in the literature and
used in practical applications. Of the many fuzzy inference
schemes, fuzzy relational inferences (FRIs) have received con-
siderable attention both from theoretical researchers and practi-
tioners. Similarity-based reasoning (SBR) [4] and inverse truth-
functional modification [5] are two of the representative exam-
ples of inference mechanisms that do not use fuzzy relations
and that are also well established in the literature. However, it
should be mentioned that under certain conditions, an equiva-
lent fuzzy-relation-based description of some of these inference
mechanisms can be given (see [6] and [7]).

In this paper, we will focus only on fuzzy-relation-based in-
ference mechanism.

A. Fuzzy Relational Inferences

FRI mechanisms use a fuzzy relation R to model a given
fuzzy rule base. Here, a fuzzy IF–THEN rule of the form (1)
is represented as a fuzzy relation R : X × Y → [0, 1], i.e., R ∈
F(X × Y ). Then, given a fact that x is A′, the inferred output
y is B′ is obtained as a composition of A′ and R, i.e.,

B′ = A′@R (2)

where A′ ∈ F(X), B′ ∈ F(Y ), and @ is a fuzzy relational com-
position1 that involves fuzzy logic operations.

Up to now, we have discussed the case of a single fuzzy
rule only. However, rarely, if ever a single fuzzy rule can be
expected to capture the entire knowledge in which the scheme
is employed, a fuzzy rule base that consists of multiple fuzzy
rules is necessary. Let us consider a fuzzy rule base as follows:

IF x is Ai THEN y is Bi, for i = 1, . . . , n (3)

where the fuzzy sets Ai ∈ F(X) and Bi ∈ F(Y ) represent
some properties.

Clearly, for different representations R of the fuzzy IF–THEN
rules in (1) and different compositions @, we obtain different
FRI mechanisms, often with varying properties that are appli-
cable in specific contexts. We now present two of the most

1In the literature, we may, very often, find a distinction between fuzzy rela-
tional composition and image of a fuzzy set under a fuzzy relation. The first
notion denotes a composition of two binary relations, while the second one
denotes our situation when we compose a fuzzy set and a binary fuzzy relation.
However, a unary fuzzy relation (i.e., a fuzzy set) on a universe U may be
viewed as a binary fuzzy relation on a Cartesian product of an empty set and U.
Therefore, we may use the notion composition even in our situation and avoid
the use of two notions.
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commonly employed fuzzy relations R to model a given fuzzy
rule base and two of the established FRI mechanisms based on
different fuzzy compositions.

B. Distinct Fuzzy Rule Base Models

1) The fuzzy relation Ř ∈ F(X × Y )

Ř(x, y) =
n∨

i=1

(Ai(x) ∗ Bi(y)), x ∈ X, y ∈ Y (4)

is the most often used model of fuzzy rules (3) in real-
world applications. This is mainly due to the success-
ful applications of this, say, Cartesian product approach,
which was described by Mamdani and Assilian [8], and
was followed by a huge number of researchers and prac-
titioners (see, e.g., [9] and [10]).

2) Alternatively, to keep the conditional IF–THEN form of
fuzzy rules (3), fuzzy relation R̂ ∈ F(X × Y )

R̂(x, y) =
n∧

i=1

(Ai(x) → Bi(y)), x ∈ X, y ∈ Y (5)

can be chosen to model the fuzzy rule base. It deals with a
mathematically correct extension of a classical implication
that is denoted by →.

To stress the difference between both the approaches, let us
recall the work of Dubois et al. [11], where the authors state
that “In the view given by (5), each piece of information (fuzzy
rule) is viewed as a constraint. This view naturally leads to a
conjunctive way of merging the individual pieces of information
since the more information, the more constraints and the less
possible values to satisfy them.” They have also described the
second approach that was proposed by Mamdani and Assilian
as follows: “It seems that fuzzy rules modelled by Ř are not
viewed as constraints, but are considered to be pieces of data.
Then, the maximum in (4) expresses accumulation of data.”

It should be stressed that both approaches have sound logical
foundations but from different viewpoints (see, e.g., [12]–[14]).
However, only the approach using Ř was widely used in appli-
cations, although the implicational approach using R̂ is proba-
bly as useful as the approach proposed by Mamdani–Assilian
(see [15]). Nevertheless, as we show in this paper, the im-
plicational approach using R̂ does have an important role to
play in the case of Bandler–Kohout (BK) subproducts (see
Theorem 3.22). For an extensive study of different fuzzy rules,
see [16]–[18].

C. Coherence

Consistency (i.e., nonexistence of contradictory rules) is a
crucial issue that needs to be checked when dealing with a fuzzy
rule base. In case of the implicational approach (5) to modeling
a fuzzy rule base, the situation gets significantly simpler. It
was noted by Dubois et al. [11] that inconsistent rules lower
the largest membership degrees in the resulting fuzzy relation.
Departing from this fact, they proposed the concept of so-called
coherence for which an existence of y ∈ Y such that R̂(x′, y) =

1 for arbitrary x′ ∈ X is required. This condition can be easily
checked and ensured (see [11] and [19]).

An analogous issue in case of the Cartesian product approach
Ř has been suggested [20]. However, the condition has to be
redefined, and instead of nonemptiness of the core of Ř, its
convexity up to some predefined value is required. This approach
is, unquestionably, more complicated and less preferable.

Generally, the consistency (coherence) is a property of the
given fuzzy rule base (its model) and not of the inference mecha-
nism itself. However, as mentioned previously and demonstrated
in Section IV, each model of a fuzzy rule base is computation-
ally preferable in combination with a different inference, and
thus, these notions cannot be studied independently.

D. Compositional Rule of Inference and BK-Subproduct
Inference Mechanisms

As noted previously, depending on the type of composition @,
the FRI varies in its properties. Two of the commonly employed
fuzzy relational compositions are the sup -∗ and inf -I compo-
sitions (see [21]), which, when employed, lead to the following
FRIs.

1) The compositional rule of inference (CRI) that was pro-
vided by Zadeh [1] is one of the earliest FRIs. Here, a fuzzy
IF–THEN rule of the form (1) is represented as a fuzzy
relation R(x, y) : X × Y → [0, 1], i.e., R ∈ F(X × Y ).
Then, given a fact that x is A′, the inferred output B′ is
obtained as composition of A′(x) and R(x, y), i.e.,

B′(y) =
∨

x∈X

(A′(x) ∗ R(x, y)), y ∈ Y (6)

where ∗ is a fuzzy conjunction, which is typically a t-norm
(see [22] for more details). We use the following notation
to indicate the CRI scheme:

B′ = A′ ◦ R. (7)

2) Other than the CRI, let us also recall that it was Pedrycz
[23] who first proposed an inference scheme based on
the BK subproduct, which was proposed by Bandler and
Kohout [24]–[26].

For a given fuzzy input A′ ∈ F(X), the fuzzy output
B′ ∈ F(Y ) that is obtained by the BK-subproduct infer-
ence mechanism is defined as follows:

B′(y) =
∧

x∈X

(A′(x) → R(x, y)), y ∈ Y (8)

where → is a residual implication (see Section II for more
details), and R is the fuzzy relation that models fuzzy
rule (1). We use the following notation to indicate the
BK-subproduct scheme:

B′ = A′ � R. (9)

We only remark that yet other types of fuzzy relational com-
positions are studied in the literature, for instance, the inf -S
composition, where S is a t-conorm (see [21]).
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E. Mathematical Structure for Fuzzy Relational
Inference Mechanisms

Based on the previous discussion, fuzzy rules may be viewed
as a partial mapping from F(X) to F(Y ) that assigns Bi ∈
F(Y ) to Ai ∈ F(X) for every i = 1, . . . , n. Then, the in-
ference process itself can be viewed as an extension of this
partial mapping to a total one [27]. For better understanding,
let us adopt the notation from [28] and consider the following
structure:

S = (X,Y, {Ai,Bi}i=1,...,n ,L,@)

where X,Y are nonempty classical sets, Ai ∈ F(X), Bi ∈
F(Y ) for all i = 1, . . . , n are the antecedent and consequent
fuzzy sets in the fuzzy rule base, and @ : F(X) ×F(X ×
Y ) → F(Y ) is a fuzzy relational composition. For instance,
@ could be either ◦ or �. Finally, L is an algebra on the unit
interval [0, 1] that provides us with the operations to be em-
ployed in the inference process, which is typically a complete
residuated lattice (see Section II-A for more details).

Now, by the choice of the fuzzy relation R that models the
fuzzy rule base and by the choice of @, we define a fuzzy
function f@

R (A) : F(X) → F(Y ) such that f@
R (A) = A@R for

an arbitrary A ∈ F(X).

F. Studies on the Advantages of CRI and Organization
of the Paper

Given a fuzzy rule base, the CRI is the most often and widely
used FRI for the following reasons.

1) An important issue in the applicability of an FRI mecha-
nism @ in a structure S = (X,Y, {Ai,Bi}i=1,...,n ,L,@)
is to determine an appropriate fuzzy relation R that mod-
els the given fuzzy rules to obtain meaningful conclu-
sions. One of the fundamental properties expected of the
corresponding fuzzy adjoint mapping is its interpolativ-
ity, i.e., f@

R (Ai) = Bi . This pertains to the solvability of
fuzzy relation equations. In the case of CRI, necessary and
sufficient conditions for the solvability of fuzzy relation
equations have been well established for a long time (see,
e.g., [29]). The state of the art, as well as analogous results,
which concerns the BK subproduct are briefly recalled in
Section III-A.

2) Perfilieva and Lehmke [28] and Perfilieva and Novák [30]
have dealt with the continuity of a fuzzy function f ◦

R that
is adjoint to the CRI mechanism ◦ in a structure S =
(X,Y, {Ai,Bi}i=1,...,n ,L, ◦) and a fuzzy relation R that
models fuzzy rules (3). The authors give necessary and
sufficient conditions for f ◦

R to be continuous. They have
also shown that the concept of continuity is equivalent
to the interpolativity of the function f ◦

R . We follow their
ideas in Section III-B.

3) Klawonn and Castro [31] have proven two important and
interesting results about the CRI scheme and the indistin-
guishability inherent to the fuzzy sets considered. First,
the authors show that the indistinguishability induced by
the antecedent fuzzy set of the rule cannot be overcome.
Second, they have also demonstrated the robustness of

fuzzy inference systems that employ the CRI mechanism
in scenarios where there can be slight discrepancies be-
tween the intended input A′ and the actual input Â′, i.e.,
f ◦

R (A′) = f ◦
R (Â′). However, this study was done in the

case of a single fuzzy rule, as in (1). We consider mul-
tiple fuzzy rules (3) and prove that, in such a case, this
property holds when R = Ř. Then, we continue with
an investigation of this property for the BK subproduct.
Section III-C describes this issue.

4) In the case of CRI, if the input is a fuzzy singleton, then
the output determined by the fuzzy adjoint function f ◦

R

depends only on the relation R that models the given
fuzzy rule base, i.e., the inference plays a role only in case
of a nonsingleton fuzzy input. A detailed exposition of
this topic is provided in Section IV-A.

5) While employing FRIs in a system that consists of multiple
fuzzy rules, there are two inference strategies that are
usually employed, viz., first aggregate then infer (FATI)
and first infer then aggregate (FITA). In the case of the CRI
mechanism, if the fuzzy rules are represented by the fuzzy
relation Ř, then the FATI inference strategy is equivalent
to the FITA inference strategy. However, this is not true if
we employ R̂ instead of Ř. More details on the FATI and
FITA strategies, as well as their subsequent exploration,
are provided in Section IV-B.

6) Finally, it should be noted that FRIs, in general, have
their drawbacks due to space and time complexities. Many
works have concentrated on increasing the efficiency of
the inference process. However, so far, all these have been
done only for the case of CRI mechanism and, especially,
when the fuzzy rules are represented by the fuzzy relation
Ř. The aforementioned properties will be dealt with in a
more detailed way in Sections IV-C and D.

G. Motivation for This Paper: Study of the Bandler–Kohout
Subproduct and the Relation R̂

From the previous section, it is clear that most works have
tended to concentrate predominantly on the CRI mechanism.
However, two facts emerge from it.

On the one hand, the previous studies on CRI can also be con-
ducted for other FRI mechanisms, and in this paper, we intend
to perform a similar investigation into the BK subproduct. On
the other hand, also note that some of the advantages available
with the CRI mechanism depend, to a large extent, on the fuzzy
rules being modeled by the fuzzy relation Ř, which, as already
noted, is appropriate only in the context where the fuzzy rules
are viewed as “positive” pieces of information [11], [17]. How-
ever, there are situations when the context dictates to view the
fuzzy rules in the conditional nature, and the fuzzy relation R̂
has to be used to model them [15]. Then, many of the advantages
of the CRI are no longer available, viz., the robustness of the
CRI mechanism with respect to the indistinguishability of input
fuzzy sets in the case of multiple fuzzy rules, the equivalence of
FATI and FATI, the many techniques that deal with enhancing
the efficiency of the inference procedures.
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In this paper, we intend to investigate the following. First,
this paper shows that all the properties investigated/touted as an
advantage of the CRI mechanism are also available for the BK
subproduct and, often, under similar conditions or generality as
available on CRI. Second, we also highlight that the conditional
form of representation of a fuzzy rule base, in conjunction with
the BK subproduct, i.e., f�

R̂
is a strong alternative to f ◦

Ř
in the

appropriate contexts.

II. MATHEMATICAL BACKGROUND OF FUZZY

INFERENCE MECHANISMS

A. Fuzzy Inference Mechanisms

FRI mechanisms are mathematically based on a complete
residuated lattice (see, e.g., [12]) that we fix for the whole paper
as the basic algebraic structure. Let us only briefly recall that
an algebra L = (L,∧,∨, ∗,→, 0, 1) is a residuated lattice if the
following hold.

1) (L,∧,∨, 0, 1) is a lattice with the least and the greatest
element.

2) L = (L, ∗, 0, 1) is a commutative monoid such that ∗ is
isotone in both arguments.

3) The operation → is a residuation with respect to ∗, i.e.,

a ∗ b ≤ c, iff a → c ≥ b. (10)

The following properties [12] are immediately available to us
for any a, b, c ∈ L:

a = 1 → a (11)

a → c ≥ b → c, whenever a ≤ b (12)

a → b ≤ a → c, whenever b ≤ c (13)

a → (b → c) = (a ∗ b) → c = (b ∗ a) → c (14)

(a → b) → b ≥ a ∨ b (15)

a →
∧

i∈I
bi =

∧

i∈I
(a → bi) (16)

∨

i∈I
(ai → b) ≤

∧

i∈I
ai → b (17)

∨

i∈I
ai → b =

∧

i∈I
(ai → b) (18)

(a → b) ∗ c ≤ a → (b ∗ c). (19)

Let us fix the set L = [0, 1] for the whole paper. Then, ∗
becomes a left-continuous t-norm, and → becomes a residual
fuzzy implication that is derived from ∗. For more details on
these operations, see [12], [22], and [32].

In L, we can derive yet another operation that is known as the
biresiduum and is defined as follows:

a ↔ b = (a → b) ∧ (b → a), a, b ∈ L. (20)

The following properties of the biresiduum will be useful in
the sequel (see [12]):

(a ↔ b) ∗ (b ↔ c) ≤ a ↔ c (21)

(a ↔ b) ∧ (c ↔ d) ≤ (a ∧ c) ↔ (b ∧ d). (22)

Finally, by extending an algebraic operation from L to oper-
ations between fuzzy sets, we mean the following:

(C � D)(u, v) = C(u) � D(v), u ∈ U, v ∈ V (23)

where � ∈ {∧,∨, ∗,→,↔} and for arbitrary fuzzy sets C,D on
arbitrary universes U, V , respectively.

B. Inference Strategies

Now, there are two inference strategies that are called FITA
and FATI (see [33]).

In FITA strategy, we first construct individual fuzzy relations
Ri ∈ F(X × Y ) from each of the n fuzzy rules. Then, the given
fuzzy observation A′ ∈ F(X) is composed with each of these
relations Ri by a chosen inference @, and the obtained individual
output fuzzy sets B′

i = A′@Ri ∈ F(Y ) are then aggregated to
form the final output fuzzy set B′ ∈ F(Y ).

In FATI strategy, the individual fuzzy relations Ri ∈ F(X ×
Y ) from each of the n fuzzy rules is aggregated into a single
fuzzy relation R ∈ F(X × Y ), and this is composed with the
given fuzzy observation A′ ∈ F(X) to obtain the fuzzy output
B′ = A′@R ∈ F(Y ).

III. DESIRABLE PROPERTIES OF INFERENCE MECHANISMS

A. Interpolativity of Fuzzy Inference Systems—Property 1

The interpolativity f@
R (Ai) = Bi is a fundamental property

of any inference mechanism. In this case, we say that R is a
correct model of given fuzzy rules in the given structure S. This
leads us to deal with a system of fuzzy relation equations [34],
where

Ai@R = Bi, i = 1, . . . , n (24)

is solved with respect to the known Ai ∈ F(X) and Bi ∈ F(Y )
and unknown R ∈ F(X × Y ). If R is a solution to (24), then
the adjoint fuzzy function fulfills f@

R (Ai) = Bi .
In the case of CRI, the previous system of equations reduces

to the following:

Ai ◦ R = Bi, i = 1, . . . , n. (25)

Let us recall some main results that may be found, e.g., in [29]
and [34]–[36].

Theorem 3.1: System (25) is solvable if and only if R̂ is a
solution of the system, and moreover, R̂ is the greatest solution
of (25).

On the one hand, Theorem 3.1 states the necessary and suf-
ficient condition for the solvability of system (25), and it deter-
mines the solution. Moreover, it ensures that the given solution
is the greatest one. On the other hand, we still do not know when
R̂ is the solution, i.e., how the solvability can be ensured.

Theorem 3.2 [36]: Let Ai , for i = 1, . . . , n be normal.2 Then,
Ř is a solution of (25) if and only if the following condition holds
for arbitrary i, j ∈ {1, . . . , n}:

∨

x∈X

(Ai(x) ∗ Aj (x)) ≤
∧

y∈Y

(Bi(y) ↔ Bj (y)). (26)

2Let us recall that a fuzzy set A on a universe U is called normal if there
exists an x ∈ U such that A(x) = 1.
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ŠTĚPNIČKA AND JAYARAM: ON THE SUITABILITY OF THE BANDLER–KOHOUT SUBPRODUCT AS AN INFERENCE MECHANISM 289

Theorem 3.2 specifies a sufficient condition under which the
system is solvable, and moreover, it ensures that not only R̂ but
also Ř is a solution of system (25).

It is worth mentioning that condition (26) that appears in The-
orem 3.2 is not very convenient in practice. Another sufficient
condition for solvability of the systems with a high practical
importance was published in [39] and [40].

Theorem 3.3: Let Ai , for i = 1, . . . , n, be normal and fulfill
the Ruspini condition

n∑

i=1

Ai(x) = 1, x ∈ X. (27)

Then, the system (25) is solvable.
Remark 3.4: Besides the case when antecedent fuzzy sets

form a fuzzy partition that fulfills the Ruspini condition, the
so-called ∗-semipartition [37] also plays an important role.

Let us recall the state of the art that concerns the BK
subproduct and the interpolativity issue. In the case of the
BK subproduct, the system of equations (24) reduces to the
following:

Ai � R = Bi, i = 1, . . . , n. (28)

Concerning system (28), let us recall the following two basic
theorems from Pedrycz [23] and Nosková [38].

Theorem 3.5 [23]: System (28) is solvable if and only if Ř is
a solution of the system, and moreover, Ř is the least solution
of system (28).

Theorem 3.6 [38, Th. 2]: Let Ai , for i = 1, . . . , n, be normal.
Then, R̂ is a solution of (28) if and only if condition (26) holds
for arbitrary i, j ∈ {1, . . . , n}.

Again, condition (26) to which Theorem 3.6 refers is, on one
hand, very transparent, but not very convenient from a practical
point of view. Fortunately, the sufficient condition for solvability
of the system, with a high practical importance, which is stated
in Theorem 3.3, is valid even for system (28) (see [39] and [40]).

Theorem 3.7: Let Ai , for i = 1, . . . , n, be normal and fulfill
the Ruspini condition (27). Then, the system (28) is solvable.

We may easily observe that each of the important results
that is well known for the interpolativity issue in case of CRI
has its analogy, even for the BK-subproduct case under exactly
the same conditions, and therefore, both inferences are equally
appropriate from this point of view.

In fact, the availability of such results for the BK subproduct
was also one of the motivations to conduct this study of the BK-
subproduct inference vı́s-á-vı́s the already-known advantageous
properties of CRI.

B. Continuity of Fuzzy Inference Systems—Property 2

Perfilieva and Lehmke [28] and Perfilieva and Novák [30]
have dealt with the continuity of a fuzzy function f ◦

R that is
adjoint to the CRI mechanism and a fuzzy relation that models
fuzzy rules (3). They have suitably defined continuity and have
shown that it is equivalent to the correctness of the model that
is under consideration.

Although the original definition in [28] of a continuous model
was given for the particular inference mechanism CRI, i.e., for

@ ≡ ◦, the particular composition plays no role in the proof of
the result (see Theorem 3.11), thereby explaining the nature of
the definition. Hence, it can be generalized for an arbitrary fuzzy
relational composition.

Definition 3.8: A fuzzy relation R ∈ F(X × Y ) is said to
be a continuous model of fuzzy rules (3) in a structure S =
(X,Y, {Ai,Bi}i=1,...,n ,L,@) if, for each i ∈ I and for each
A ∈ F(X), the following inequality holds:

∧

y∈Y

(Bi(y) ↔ (A@R)(y)) ≥
∧

x∈X

(Ai(x) ↔ A(x)). (29)

Remark 3.9: Inequality (29) can be rewritten in terms of the
adjoint fuzzy function f@

R as follows:
∧

y∈Y

(Bi(y) ↔ (f@
R (A))(y)) ≥

∧

x∈X

(Ai(x) ↔ A(x)). (30)

To be precise, the continuity concerns the fuzzy function f@
R , i.e.,

the model of fuzzy rules R as well as the inference mechanism
@. Therefore, we could, more adequately, talk about continuity
of the whole fuzzy inference systems rather than just about the
continuity of R. Nevertheless, since Definition 3.8 fixes a struc-
ture in which the continuity is introduced, it is mathematically
correct, and we adopt the original terminology from [28].

Remark 3.10: Let us explain why (29) expresses the continu-
ity. The closeness between fuzzy sets is measured by the biresid-
uation operation ↔, i.e., it is a dual concept to the metric one.
Let us consider a continuous Archimedean t-norm ∗ with an
additive generator g : [0, 1] → [0,+∞]. Then, the biresiduum
may be written in the form

a ↔ b = g−1(|g(a) − g(b)|) (31)

where g−1 : [0,∞] → [0, 1] is the inverse function and where, in
the case of g(0) = ∞, we define g(0) − g(0) = 0. Now, for an
arbitrary nonempty universe X , it is possible to define a metric
Dg on F(X) that is generated by g as follows:

Dg (A,B) =
∨

x∈X

|g(A(x)) − g(B(x))|. (32)

The following theorem justifies the use of the notion of conti-
nuity in Definition 3.8.

Theorem 3.11: Let S = (X,Y, {Ai,Bi}i=1,...,n ,L,@) be a
structure for fuzzy rules (3) such that L is a residuated lattice
on [0, 1], with a continuous Archimedean t-norm ∗ having a
continuous additive generator g. A fuzzy relation R ∈ F(X ×
Y ) is a continuous model of the fuzzy rules in the given structure
S if and only if

Dg (Bi, (A@R)) ≤ Dg (Ai,A), i = 1, . . . , n (33)

for each fuzzy set A ∈ F(X).
Proof: The proof for @ ≡ ◦ may be found in [28]. Its gener-

alization is straightforward. �
The main result by Perfilieva and Lehmke [28] and Perfilieva

and Novák [30] concerns the relationship of the aforementioned
continuity and the interpolativity for the CRI as contained in the
following result.

Theorem 3.12 [28, Th. 2]: Let S = (X,Y, {Ai,Bi}i=1,...,n ,
L, ◦) be a structure for fuzzy rules (3). A fuzzy relation
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R ∈ F(X × Y ) is a correct model of fuzzy rules (3) in the
given structure S if and only if it is a continuous model of these
rules in S.

In the following, we show that an identical result is valid even
for the case of the BK subproduct. Let us start by proving the
following lemma that is crucial for further results.

Lemma 3.13: Let S = (X,Y, {Ai,Bi}i=1,...,n ,L, �) be a
structure for fuzzy rules (3), and let R ∈ F(X × Y ). Then,
for any A ∈ F(X) and all i = 1, . . . , n, as well as y ∈ Y , it is
true that

Bi(y) ↔ (A � R)(y) ≥ δR,i(y) ∗
∧

x∈X

(Ai(x) ↔ A(x)) (34)

where δR,i(y) = Bi(y) ↔ (Ai � R)(y).
Proof: By the transitivity property (21) of ↔ with respect to

∗, we get

Bi(y) ↔ (A � R)(y)

≥ (Bi(y) ↔ (Ai � R)(y)) ∗ ((Ai � R)(y) ↔ (A � R)(y))

where i ∈ {1, . . . , n}.
The first multiplicand Bi(y) ↔ (Ai � R)(y) is equal to

δR,i(y), while the second multiplicand, for an arbitrary y ∈ Y ,
has the following lower bound:

(A � R)(y) ↔ (Ai � R)(y)

=
∧

x∈X

(A(x) → R(x, y)) ↔
∧

x∈X

(Ai(x) → R(x, y))

≥
∧

x∈X

((A(x) → R(x, y)) ↔ (Ai(x) → R(x, y))) 
By (22)

=
∧

x∈X

(([A(x) → R(x, y)] → [Ai(x) → R(x, y)])

∧ ([Ai(x) → R(x, y)] → [A(x) → R(x, y)]))

=
∧

x∈X

(([Ai(x) ∗ (A(x) → R(x, y))] → R(x, y))

∧ ([A(x) ∗ (Ai(x) → R(x, y))] → R(x, y))) 
By (14)

=
∧

x∈X

((Ai(x) → [(A(x) → R(x, y)) → R(x, y)])

∧ (A(x) → [(Ai(x) → R(x, y)) → R(x, y)])) 
By (14)

≥
∧

x∈X

([Ai(x) → A(x)] ∧ [A(x) → Ai(x)]) 
By (15)

=
∧

x∈X

(Ai(x) ↔ A(x)).

Now, (34) follows immediately from the monotonicity of ∗. �
Due to Lemma 3.13, we may prove the following theorem

that is analogous to Theorem 3.12. It, again, shows that the BK
subproduct as an inference mechanism has the same property as
the CRI.

Theorem 3.14: Let S = (X,Y, {Ai,Bi}i=1,...,n ,L, �) be a
structure for fuzzy rules (3). A fuzzy relation R ∈ F(X × Y )
is a correct model of fuzzy rules (3) in the given structure S if
and only if it is a continuous model of these rules in S.

Proof: Suppose R is a correct model of the fuzzy rules (3) in
the given structure. Then, R solves the given system of fuzzy
relation equations Ai � R = Bi for all i = 1, . . . , n, and there-
fore, δR,i(y) = 1 for all i = 1, . . . , n and for all y ∈ Y . By (34),
R is a continuous model.

Conversely, let R be a continuous model of (3) in the given
structure. Then

∧

y∈Y

(Bi(y) ↔ (A � R)(y)) ≥
∧

x∈X

(Ai(x) ↔ A(x)) (35)

holds for each i = 1, . . . , n and for arbitrary A ∈ F(X). Sub-
stituting A ≡ Ai into (35), we obtain

∧

y∈Y

(Bi(y) ↔ (Ai � R)(y)) ≥ 1

which implies that Ai � R ≡ Bi . �
As in the case of interpolativity, the continuity property is

present in both the types of inferences under exactly the same
conditions.

C. Robustness of Fuzzy Inference Systems—Property 3

Let X be a classical set, and let ∼ be an equivalence relation
that is defined on X , i.e., ∼ is reflexive, symmetric, and transi-
tive. Immediately, ∼ partitions X into equivalence classes. It is
well known that an M ⊆ X belongs to this partition if and only
if whenever x ∈ M and x ∼ y for some y ∈ X , then y ∈ M .
In a sense, the elements of M are indistinguishable and can be
represented mathematically as follows:

x ∈ M and x ∼ y implies y ∈ M.

A similar relation between fuzzy equivalence relations and
fuzzy sets on X was introduced by Klawonn and Castro [31].
The operation ∗ comes from the residuated lattice L.

Definition 3.15: A fuzzy subset E of the Cartesian product
X2 is called a fuzzy equivalence relation on X if the following
properties are satisfied for all x, y, z ∈ X:

(Reflexivity) E(x, x) = 1 (ER)

(Symmetry) E(x, y) = E(y, x) (ES)

(Transitivity) E(x, z) ≥ E(x, y) ∗ E(y, z). (ET)

Definition 3.16: A fuzzy set µ ∈ F(X) is called extensional
with respect to a fuzzy equivalence relation E on X if

µ(x) ∗ E(x, y) ≤ µ(y), x, y ∈ X. (36)

If a fuzzy set µ is not extensional with respect to the con-
sidered fuzzy equivalence relation E, the smallest fuzzy set is
instead considered, which is extensional with respect to E and
contains µ.

Definition 3.17: Let µ ∈ F(X), and let E be a fuzzy equiva-
lence relation on X . The fuzzy set

µ̂(x) =
∧

{ν | µ ≤ ν and ν is extensional with respect to E}

is called the extensional hull of µ. Note that by µ ≤ ν, we
mean that for all x ∈ X , µ(x) ≤ ν(x), i.e., we mean ordering
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in the sense of inclusion and not in the sense of ordering fuzzy
quantities.

Proposition 3.18 [31, Proposition 2.9]: Let µ ∈ F(X), and
let E be a fuzzy equivalence relation on X . Then, the following
hold.

1) µ̂(x) =
∨
{µ(y) ∗ E(x, y) | y ∈ X}.

2) µ̂ is extensional with respect to E.
3) ̂̂µ = µ̂.
The following two important and interesting results about

the CRI scheme and the considered indistinguishability that is
inherent to the fuzzy sets are proved in [31].

Theorem 3.19 [31, Th. 4.4]: Let S = (X,Y, {A,B},L, ◦) be
a structure for a single fuzzy IF–THEN rule as given in (1). Let
E be a fuzzy equivalence relation on X with respect to which
A is extensional. Letting A′ ∈ F(X) be any fuzzy set, then

A′ ◦ R̂ = Â′ ◦ R̂

A′ ◦ Ř = Â′ ◦ Ř.

The following interpretation of the previous result is given
in [31]: The output obtained from CRI for a given fuzzy rule
and an input fuzzy set A′ does not change if we substitute A′

by its extensional hull Â′. The indistinguishability inherent in
the fuzzy set A cannot be avoided, even if the input fuzzy set
A′ stands for a crisp value. Further, a fuzzified input does not
change the outcome of a rule as long as the fuzzy set obtained
by the fuzzification is contained in the extensional hull of the
original crisp input value. They finally conclude that it does not
make sense to measure more exactly than the indistinguishability
admits.

In other words, this shows the robustness of the inference in
scenarios where there can be slight discrepancies between the
intended input and the actual input.

As already observed in [31], it immediately follows that the
indistinguishability induced by the fuzzy set that represents
the linguistic expression in the premise of the rule cannot be
overcome.

Even though Theorem 3.19 is proven in [31] for a single fuzzy
rule, it can be shown that the result is valid even with n fuzzy
rules.

Theorem 3.20: Let S = (X,Y, {Ai,Bi}i=1,...,n ,L, ◦) be a
structure for fuzzy rules (3). Let E be a fuzzy equivalence
relation on X with respect to which Ai is extensional for arbi-
trary i = 1, . . . , n. Letting A′ ∈ F(X) be any fuzzy set, then
A′ ◦ Ř = Â′ ◦ Ř.

Proof: The inequality Â′ ◦ R ≥ A′ ◦ R holds for arbitrary
fuzzy relation R ∈ F(X × Y ).

Thus, it suffices to prove the other inequality for Ř, i.e.,
Â′ ◦ Ř ≤ A′ ◦ Ř. Since Ai is extensional with respect to E for
arbitrary i, Ai(x′) ≥ Ai(x) ∗ E(x, x′) for any x, x′ ∈ X .

For any x ∈ X , we have

Â′(x) ∗
n∨

i=1

(Ai(x) ∗ Bi(y))

=
∨

x ′∈X

(A′(x′) ∗ E(x, x′)) ∗
n∨

i=1

(A(x) ∗ B(y))

=
∨

x ′∈X

(
[A′(x′) ∗ E(x, x′)] ∗

n∨

i=1

(Ai(x) ∗ Bi(y))

)

=
n∨

i=1

∨

x ′∈X

([A′(x′) ∗ E(x, x′)] ∗ (Ai(x) ∗ Bi(y)))

=
n∨

i=1

∨

x ′∈X

(A′(x′) ∗ [E(x, x′) ∗ Ai(x)] ∗ Bi(y))

≤
n∨

i=1

∨

x ′∈X

(A′(x′) ∗ (Ai(x′) ∗ Bi(y)))

which implies

(Â′ ◦ Ř)(y) ≤ (A′ ◦ Ř)(y), y ∈ Y. �

It should be emphasized that only the Mamdani–Assilian (i.e.,
Cartesian product) approach Ř generally works in combination
with the CRI. We now show the robustness of the BK-subproduct
inference mechanism along similar lines as by Klawonn and
Castro [31]. Once again, the employed operations come from
the residuated lattice L. First, note that if a fuzzy set µ ∈ F(X)
is extensional with respect to a fuzzy equivalence relation E on
X , then

E(x, y) → µ(y) ≥ µ(x), x, y ∈ X. (37)

Proposition 3.21: Let µ ∈ F(X), and let E be a fuzzy equiv-
alence relation on X . Then

µ̂(x) =
∧

{E(x, y) → µ(y) | y ∈ X}. (38)

Proof: Let µ̃(y) =
∧
{E(z, y) → µ(z) | z ∈ X}. We only

need to show that µ̃ = µ̂. First, note that for any x ∈ X , we
have

µ̃(x) =
∧

{E(z, x) → µ(z) | z ∈ X} ≤ E(x, x) → µ(x)

= 1 → µ(x) = µ(x) ≤ µ̂(x).

Let ν ∈ F(X) be extensional with respect to E such that ν ≥ µ,
which implies, by definition, that µ̂ ≤ ν. Then, for any x ∈ X ,
we have

ν(x) ≤ E(z, x) → ν(z) and ν(x) ≤ E(z, x) → µ(z)

for every z ∈ X , and therefore

ν(x) ≤
∧

{E(z, x) → µ(z) | z ∈ X} = µ̃(x)

i.e., µ̃(x) ≥ µ̂(x), and hence, µ̃(x) = µ̂(x). �
Now, we present a result that is analogous to the one given in

Theorem 3.19.
Theorem 3.22: Let S = (X,Y, {A,B},L, �) be a structure

for fuzzy rule (1). Let E be a fuzzy equivalence relation on X
with respect to which A is extensional. Let A′ ∈ F(X) be any
fuzzy set, then

A′ � R̂ = Â′ � R̂, A′ � Ř = Â′ � Ř.
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Proof: Let R ∈ F(X × Y ) be any fuzzy relation. By the
definition of Â′, we have the following inequalities:

Â′ ≥ A′ =⇒ Â′ → R ≤ A′ → R 
By (12)

=⇒ Â′ � R ≤ A′ � R.

Thus, it suffices to prove the other inequality, i.e., Â′ � R ≥
A′ � R.

Let R = R̂, i.e., R(x, y) = A(x) → B(y) for any x ∈ X,
y ∈ Y . Then, by definition, we have

(Â′ � R̂)(y) =
∧

x∈X

(Â′(x) → (A(x) → B(y))), y ∈ Y.

Since A is extensional with respect to E,
A(x′) ≥ A(x) ∗ E(x, x′) for any x, x′ ∈ X , and, by (12)

A(x′) → B(y) ≤ (A(x) ∗ E(x, x′)) → B(y), y ∈ Y. (39)

For any x ∈ X , we have

Â′(x) → (A(x) → B(y))

=
∨

x ′∈X

(A′(x′) ∗ E(x, x′)) → (A(x) → B(y))

=
∧

x ′∈X

([A′(x′) ∗ E(x, x′)] → (A(x) → B(y))) 
By (18)

=
∧

x ′∈X

(A′(x′) → [E(x, x′) → (A(x) → B(y))]) 
By (14)

=
∧

x ′∈X

(A′(x′) → ((E(x, x′) ∗ A(x)) → B(y))) 
By (14)

≥
∧

x ′∈X

(A′(x′) → (A(x′) → B(y))) 
By (40)

which implies

(Â′ � R̂)(y)

=
∧

x∈X

(Â′(x) → (A(x) → B(y)))

≥
∧

x ′∈X

(A′(x′) → (A(x′) → B(y))) = (A′ � R̂)(y)

for any y ∈ Y .
Let R = Ř, i.e., R(x, y) = A(x) ∗ B(y) for any x ∈ X,

y ∈ Y . Then, by definition, we have

(Â′ � Ř)(y) =
∧

x∈X

(Â′(x) → (A(x) ∗ B(y))), y ∈ Y.

For any x ∈ X , we have

Â′(x) → (A(x) ∗ B(y))

=
∨

x ′∈X

(A′(x′) ∗ E(x, x′)) → (A(x) ∗ B(y))

=
∧

x ′∈X

((A′(x′) ∗ E(x, x′)) → (A(x) ∗ B(y))) 
By (18)

=
∧

x ′∈X

(A′(x′) → [E(x, x′) → (A(x) ∗ B(y))]) 
By (14)

which, by (13) and (19), is

≥
∧

x ′∈X

(A′(x′) → ((E(x, x′) → A(x)) ∗ B(y)))

and, by (16),

=
∧

x ′∈X

(
A′(x′) →

∧

x∈X

((E(x, x′) → A(x)) ∗ B(y))

)

=
∧

x ′∈X

(
A′(x′) →

(
∧

x∈X

(E(x, x′) → A(x)) ∗ B(y)

))

=
∧

x ′∈X

(A′(x′) → (Â(x′) ∗ B(y))) 
 By (38)

=
∧

x ′∈X

(A′(x′) → (A(x′) ∗ B(y)))
 .. . Â = A

which implies that (Â′ � Ř)(y) = (A′ � Ř)(y) for any
y ∈ Y . �

The previous result, as already noted in the case of CRI,
shows the robustness of the BK-subproduct inference in scenar-
ios where there can be slight discrepancies between the intended
input and the actual input, and this reinforces the fact that even
in the case of BK subproduct, the indistinguishability that is in-
duced by the fuzzy set that represents the linguistic expression
in the premise of the rule cannot be overcome.

Once again, as in the case of CRI, we may generalize the
result that concerns the indistinguishability of the premises
for an arbitrary finite number of rules. Note that in the case
of the BK subproduct, the fuzzy relation R̂ plays the main
role.

Theorem 3.23: Let S = (X,Y, {Ai,Bi}i=1,...,n ,L, �) be a
structure for fuzzy rules (3). Let E be a fuzzy equivalence
relation on X , with respect to which each Ai is extensional,
for arbitrary i = 1, . . . , n. Letting A′ ∈ F(X) be any fuzzy set,
then

A′ � R̂ = Â′ � R̂.

Proof: The inequality Â′ � R ≤ A′ � R holds for arbitrary
fuzzy relation R ∈ F(X × Y ); see the proof of Theorem 3.22.

Thus, it suffices to prove the other inequality for R̂, i.e.,
Â′ � R̂ ≥ A′ � R̂. Since each Ai is extensional with respect to
E for arbitrary i, Ai(x′) ≥ Ai(x) ∗ E(x, x′) for any x, x′ ∈ X ,
and, by (12), we have

Ai(x′) → Bi(y) ≤ (Ai(x) ∗ E(x, x′)) → Bi(y), y ∈ Y.

(40)

For any x ∈ X , we have

Â′(x) →
n∧

i=1

(Ai(x) → Bi(y))

=
∨

x ′∈X

(A′(x′) ∗ E(x, x′)) →
n∧

i=1

(Ai(x) → Bi(y))
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which, by (18), (16), (14), and (40), is

=
∧

x ′∈X

(
[A′(x′) ∗ E(x, x′)] →

n∧

i=1

(Ai(x) → Bi(y))

)

=
n∧

i=1

∧

x ′∈X

([A′(x′) ∗ E(x, x′)] → (Ai(x) → Bi(y)))

=
n∧

i=1

∧

x ′∈X

(A′(x′) → [E(x, x′) → (Ai(x) → Bi(y))])

=
n∧

i=1

∧

x ′∈X

(A′(x′) → ((E(x, x′) ∗ Ai(x)) → Bi(y)))

≥
n∧

i=1

∧

x ′∈X

(A′(x′) → (Ai(x′) → Bi(y)))

which implies (Â′ � R̂)(y) ≥ (A′ � R̂)(y), y ∈ Y . �

IV. COMPUTATIONAL ASPECTS OF FUZZY

RELATIONAL INFERENCES

In this section, we deal with the computational aspects of
CRI and BK-subproduct inferences. First, we show that all the
advantages of CRI are also available with the BK subproduct.
However, both CRI and BK subproduct—these being FRIs—
possess some drawbacks. Recently, Jayaram [41] proposed a
modified form of CRI, viz., an hierarchical CRI scheme, to
overcome some of these drawbacks. We show that a similar
hierarchical inferencing is possible even in the case of BK sub-
product and, hence, is a computationally viable alternative for
the CRI.

A. Inferencing in the Case of Singleton Fuzzy
Inputs—Property 4

The following definition will be useful in this section.
Definition 4.1: A fuzzy set on a nonempty set X , A : X →

[0, 1] is said to be a “fuzzy singleton” if there exists an x0 ∈ X
such that A has the following representation:

A(x) =
{

1, if x = x0

0, if x �= x0 .
(41)

We say that A attains normality at x0 ∈ X .
It is common in some contexts to deal with fuzzy singleton

inputs. For instance, in typical control situations, the input is
usually a crisp value that is fuzzified before it is presented to a
fuzzy system to obtain the output. There are many fuzzification
methods, i.e., procedures to convert a crisp value into a fuzzy set
with different shapes and spread based on this value. Most often,
the singleton fuzzifier that converts a crisp input x′ ∈ X into a
singleton A′ ∈ F(X), which attains normality at x′, is used.
Note that this seemingly formal conversion is crucial since it
allows any FRI to be applied, which, in principle, deals only
with fuzzy inputs.

Given a crisp input x′ ∈ X , which is fuzzified using a single-
ton fuzzifier, from a computational point of view, it is highly de-
sirable to deal with such FRI mechanisms whose inferred output

is dependent only on the chosen fuzzy relation R that models a
given fuzzy rule base, and the inference plays a role only in case
of a fuzzy input, i.e., the inferred output f@

R (A′) = B′ ∈ F(Y )
is given by B′(y) = R(x′, y), for arbitrary y ∈ Y .

This property, which saves computational costs, holds for
CRI. From the following equalities, we see that the discussed
property is valid even for the BK subproduct. Let the given
singleton fuzzy input A′ attain normality at some x′ ∈ X . Then,
the inferred output using the BK subproduct is given by

B′(y) =
∧

x∈X

(A′(x) → R(x, y))

= (A′(x′) → R(x′, y)) ∧
∧

x ∈X
x �= x ′

(A′(x) → R(x, y))

= (1 → R(x′, y)) ∧
∧

x ∈X
x �= x ′

(0 → R(x, y))

= R(x′, y) ∧ 1 = R(x′, y), y ∈ Y.

It should be emphasized that this property is generally not valid
for any fuzzy relational composition. Neither the BK superprod-
uct nor the BK square product [24], [42] nor any of the inf -S
fuzzy relational compositions retain this essential property. This
is one of the reasons why the BK subproduct is, other than the
CRI, a privileged composition and gives a clear motivation to
study all the properties that are investigated in Section III.

B. Equivalence Between FITA and FATI—Property 5

It is a well-known fact that one of the reasons to use the Carte-
sian product approach to model a fuzzy rule base is that it, pos-
sibly, saves computational efforts. In other words a combination
of ◦ with Ř requires fewer computations than the combination
with the fuzzy relation R̂. This is due to the following sequence
of equalities:

B(y) =
∨

x∈X

(
A′(x) ∗

n∨

i=1

(Ai(x) ∗ Bi(y))

)

=
∨

x∈X

n∨

i=1

(A′(x) ∗ (Ai(x) ∗ Bi(y)))

=
n∨

i=1

∨

x∈X

((A′(x) ∗ Ai(x)) ∗ Bi(y))

=
n∨

i=1

(
∨

x∈X

(A′(x) ∗ Ai(x)) ∗ Bi(y)

)
, y ∈ Y.

This means that we do not have to compose all rules to a fuzzy
relation; we just find the highest degree of intersection of a given
input A′ and a particular rule antecedent and multiply it by the
corresponding consequent. This approach is, then, applied rule
per rule, and the results are composed together by the maximum
operation. This reduction in the computational costs is the effect
of the equivalence of FITA and FATI inference strategies [2].

Authorized licensed use limited to: Hochschule Ostfalia (FH). Downloaded on May 27,2010 at 07:27:45 UTC from IEEE Xplore.  Restrictions apply. 



294 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 18, NO. 2, APRIL 2010

Therefore, it may, again, be generally considered even for
other inference mechanisms. Due to the following sequence of
equalities:

B(y) =
∧

x∈X

(
A′(x) →

n∧

i=1

(Ai(x) → Bi(y))

)

=
∧

x∈X

n∧

i=1

(A′(x) → (Ai(x) → Bi(y)))

=
n∧

i=1

∧

x∈X

((A′(x) ∗ Ai(x)) → Bi(y))

=
n∧

i=1

(
∨

x∈X

(A′(x) ∗ Ai(x)) → Bi(y)

)
, y ∈ Y

we may state that even in the case of the BK subproduct � and
an appropriate model of fuzzy rules (3) that are given by R̂,
the FATI inference strategy is equivalent to the FITA inference
strategy.

The difference lies in the propriety of the chosen fuzzy rela-
tion that models fuzzy rules (3) with respect to a chosen infer-
ence mechanism. In the case of CRI, there is no other choice but
Ř if we want to reduce the computational efforts by an equiva-
lent FITA strategy. Whereas in case of the BK subproduct, the
same holds for R̂. In other words, there should be other reasons
that lead to the use of Ř than the computational costs because
if this is the only reason, we may still reduce the computational
efforts by using the BK subproduct as an inference mechanism,
while still keeping the conditional nature of rules (3) by the
choice of R̂. Then, the correctness of the model (i.e., fundamen-
tal interpolation condition) should be ensured by the conditions
that are given in Theorem 3.6. On the other hand, this is also the
case when Ř is employed where the same conditions have to be
imposed (see Theorem 3.2).

Remark 4.2: Note that the expression
∨

x∈X (A(x) ∗ A′(x)),
with ∗ being a t-norm, is, in fact, one of the earliest measures that
was proposed by Zadeh [43] to determine the similarity between
two fuzzy sets A,A′ ∈ F(X). Moreover, typically, antecedent
fuzzy sets form some partition (e.g., the Ruspini partition [44]),
and the input fuzzy set is of a limited support so that there are
such i for which the similarity between the input A′ and the
antecedent Ai , given by the earlier measure, is zero, and the
computation gets simplified further.

C. Drawbacks of a Fuzzy Relational Inference

So far, we have considered only single-input–single-output
(SISO) fuzzy rules. However, in practice, often, such situa-
tions are encountered that demand that inputs from multiple
sources/dimensions be considered, and hence, the need arises to
deal with multiple-input–single-output (MISO) fuzzy rules of
the following type. For the sake of notational simplicity and ease
of understanding, we deal only with a two-input–one-output
MISO fuzzy rules, which can be extended in an obvious way to
more than two input dimensions

IF x is Ai AND y is Bi THEN z is Ci (42)

where Ai ∈ F(X), Bi ∈ F(Y ), and Ci ∈ F(Z), respectively.

Note that in the case of both MISO and SISO rules, the input
fuzzy set(s) can be seen to be a fuzzy set on either a single
domain or a Cartesian product of the domains; hence, all the
results presented so far, although discussed in the framework
of SISO rules, are valid even when dealing with MISO fuzzy
rules.

FRI schemes have their drawbacks also because of the com-
putational and space complexities that are involved (see, e.g.,
[45]–[47]). These are compounded greatly, especially while
dealing with MISO fuzzy rules. Since both CRI and the BK
subproduct belong to the class of FRIs, they are not immune to
these drawbacks.

The complexity of an inference algorithm stems mainly from
two factors.

1) The process of inference itself: The fuzzy inferencing
schemes are generally resource-consuming (in terms of
both memory and time). Many of the inference schemes
discretize the underlying domains, and hence, the process
becomes computationally intensive.

2) The structure, complexity, and the number of rules: De-
pending on the shape of the underlying fuzzy sets, the
number of parameters stored and processed varies. Simi-
larly, the manner in which multiple antecedents are com-
bined affects the processing complexity. Also, an increase
in the number of rules only exacerbates the problem. As
the number of input variables and/or input fuzzy sets
increases, there is a combinatorial explosion of rules in
multiple-fuzzy-rule-based systems.

We illustrate these factors through the following example.
Example 4.3: Let A = [0.9 0.8 0.7 0.7], B = [1 0.6 0.8],

and C = [0.1 0.1 0.2] denote fuzzy sets that are defined, re-
spectively, on the following classical sets:

X = {x1 , x2 , x3 , x4}, Y = {y1 , y2 , y3}, and

Z = {z1 , z2 , z3}.

Let S = (X,Y,Z, {A,B,C},L, �) be the structure considered
for the single fuzzy rule

IF x is A AND y is B THEN z is C.

Let L be the Łukasiewicz complete residuated lattice, i.e., L =
([0, 1],∧,∨,⊗,→⊗, 0, 1), where ⊗ stands for the Łukasiewicz
t-norm x ⊗ y = max(0, x + y − 1), and →⊗ stands for the
Łukasiewicz implication x →⊗ y = min(1, 1 − x + y).

Now, taking the Cartesian product of A and B with respect
to ⊗, we have

A ⊗ B =





0.9 0.5 0.7
0.8 0.4 0.6
0.7 0.3 0.5
0.7 0.3 0.5



 .

Now, we have R̂(A,B;C) = [R̂(z1) R̂(z2) R̂(z3)], where
(A ⊗ B) →⊗ C = (A ⊗ B) →⊗ [0.1 0.1 0.2], and R̂(zi) =
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(A ⊗ B) →⊗ C(zi). Thus

R̂(z1) = R̂(z2) =





0.2 0.6 0.4
0.3 0.7 0.5
0.4 0.8 0.6
0.4 0.8 0.6





R̂(z3) =





0.3 0.7 0.5
0.4 0.8 0.6
0.5 0.9 0.7
0.5 0.9 0.7



 .

Let A′ = [0.7 0.6 0.5 0.5], B′ = [0.8 0.5 0.7] be the given fuzzy
(nonsingleton) inputs. Then

A′ ⊗ B′ =





0.5 0.1 0.4
0.4 0.1 0.3
0.3 0 0.2
0.3 0 0.2



 .

The output that is obtained from the BK subproduct is given by

C ′ = (A′ ⊗ B′) � ((A ⊗ B) →⊗ C) = [0.7 0.7 0.8]. (43)

Remark 4.4: With the help of Example 4.3, the following
observations can be made.

1) Computational complexity: Although the computational
complexity depends largely on the choice of operators
employed, let us consider the following general case of
a p-input–1-output system where the ith fuzzy rule is
modeled by the fuzzy relation Ri ∈ F(X1 , . . . , Xp , Y ),
where Ri = ((A1

i ∗ · · · ∗ Ap
i ) → Bi). Let the universe

of discourse Xj be discretized into pj points for each
j = 1, . . . , p. Then, the complexity of a single inference is
proportional to O(

∏p
j=1 pj ). If pj = m, then it is O(mp).

2) Space complexity: Again, for a p-input–1-output system,
we have a p-dimensional matrix that has

∏p
j=1 pj entries.

Hence, we need to store p-dimensional matrices for every
fuzzy IF–THEN rule.

3) Run-time space requirements: For example, consider in-
ferencing with the BK-subproduct inference scheme [see
(8)] in the case of a two-input fuzzy IF–THEN rule. Let
the universes of discourse X1 ,X2 , and Y be discretized
into m, k, and l points, respectively. Then, the memory re-
quirements of the algorithm are as follows (see also [47]):
m · k · l for (A ∗ B) → C, m · k for combining the given
facts A′ ∗ B′ and l for the consequent, where ∗ denotes
the t-norm used for the Cartesian product. Overall, it is
m · k · l + m · k + l. In the case where m = k = l, the
memory requirements of the algorithm become m3 +
m2 + m. Generalizing this, in the case of p inputs, the
memory requirements of the algorithm are O(m(p+1)).

There are many works that have proposed modifications to
the classical CRI in an attempt to enhance the efficiency in its
inferencing (see, for example, the works of Fullér and coauthors
[48]–[50] and Moser and Navara [51]–[53]). In the case when
there are more than two antecedents involved in fuzzy inference,
Ruan and Kerre [54] proposed an extension to the classical
CRI, wherein starting from a finite number of fuzzy relations
of an arbitrary number of variables, but having some variables
in common, fuzzy relations can be inferred among the variables

of interest. Demirli and Türksen [47] proposed a rule breakup
method and showed that rules with two or more independent
variables in their premise can be simplified to a number of
inferences of rule bases with simple rules (only one variable in
their premise). For further modification of this method, see [55].

However, to the best of the authors’ knowledge, no such
works exist for the BK subproduct. In the following, we propose
a modified form of BK subproduct that alleviates some of the
concerns noted previously, along the lines of the hierarchical
CRI that was proposed by Jayaram [41].

D. Hierarchical BK Subproduct—Property 6

Jayaram [41] proposed a hierarchical variant of the CRI where
observation on particular axes are taken independently and hi-
erarchically, and the overall output is deduced after all obser-
vations were used in this step-by-step chain procedure. This
contradicts the usual case where a Cartesian product of all ob-
servations is computed, and such a product serves as the only
fuzzy input with a vector variable. We follow this idea with the
BK subproduct as well.

Procedure for Hierarchical BK Subproduct

Step 1 FOR i = 1 TO n DO
i) Calculate R′

i ∈ F(Y × Z): R′
i = Bi → Ci .

ii) Calculate C ′
i ∈ F(Z): C ′

i = B � R′
i .

iii) Calculate R′′
i ∈ F(X × Z): R′′

i = Ai → C ′
i .

iv) Calculate C ′′
i ∈ F(Z): C ′′

i = A � R′′
i .

Step 2 AGGREGATE ALL C ′′
i BY MINIMUM.

Although the algorithm for the hierarchical CRI is provided
in [41] only for the case of inferencing with a single MISO
rule, we remark that it can be extended in a straightforward
manner to the case of multiple MISO rules, as is done here.
However, for the sake of simplicity, the following example,
which demonstrates the reduction in computational efforts and
memory savings, is given in the context of a single MISO rule.

Example 4.5: Let the fuzzy sets A,B,C,A′, B′ be as in
Example 4.3, with the same structure S for the given fuzzy
rule. Inferencing with the hierarchical BK subproduct, given
the input (A′, B′), we have the following:

Step 1 (i) B →⊗ C =




0.1 0.1 0.2
0.5 0.5 0.6
0.3 0.3 0.4





Step 1 (ii) C ′ = B′ � (B →⊗ C)

= [0.8 0.5 0.7] � (B →⊗ C)

= [0.3 0.3 0.4]

Step 1 (iii) A →⊗ C ′ =





0.4 0.4 0.5
0.5 0.5 0.6
0.6 0.6 0.7
0.6 0.6 0.7





Step 1 (iv) C ′′ = A′ � (A →⊗ C ′)

= [0.7 0.6 0.5 0.5] � (A →⊗ C ′)

= [0.7 0.7 0.8]. (45)
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Remark 4.6: From the previous example, it is clear that we
can convert a multi-input system to a single-input hierarchical
system by employing the BK-subproduct inference.The effect
becomes more pronounced when we have more than two input
variables. From Example 4.5, it can be noted that the most
memory-intensive step in the inference is the calculation of the
“current” output fuzzy set (steps 1 (ii) and 1 (iv)). Once again,
considering the case of a p-input fuzzy rule, if the input universe
of discourse Xj , j = 1, 2, . . . , p is discretized into pj points, and
the output universe of discourse Z is discretized into l points,
then the memory requirements of this step and, hence, of the
algorithm itself, can be easily deduced to be p∗ · l + l + p∗,
where p∗ = maxp

j=1pj . In the case m = p∗ = l, we have that
the overall memory requirements are 2m + m2 . It should also
be emphasized that the memory requirements are independent
of the number of input variables, as can be expected in any
hierarchical setting.

Example 4.5 not only illustrates the computational efficiency
of hierarchical BK-subproduct inference, but it also shows that
the inference obtained from the original BK subproduct is iden-
tical to the one that is obtained from the proposed hierarchical
BK subproduct, i.e., (43) = C ′ = C ′′ = (45). The following re-
sult shows that this equivalence is always guaranteed under the
structure S that is considered in this paper.

Theorem 4.7: Let S = (X,Y,Z, {Ai,Bi, Ci}i=1,...,n ,L, �)
be a structure for fuzzy rules as given in (42), and let R̂ ∈
F(X × Y × Z) be given by

n∧

i=1

((Ai(x) ∗ Bi(y)) → Ci(z)), x ∈ X, y ∈ Y, z ∈ Z.

Then, for any A ∈ F(X) and B ∈ F(Y ), all i = 1, . . . , n, it is
true that

(A ∗ B) � R̂ ≡
n∧

i=1

(A � (Ai → (B � (Bi → Ci)))).

Proof: For an arbitrary z ∈ Z, we have

[(A ∗ B) � R̂](z)

=
∧

x,y

(
(A(x) ∗ B(y)) →

n∧

i=1

((Ai(x) ∗ Bi(y)) → Ci(z))

)

=
n∧

i=1

∧

x,y

((A(x) ∗ B(y)) → ((Ai(x) ∗ Bi(y)) → Ci(z)))

and by triple use of (14), we get

=
n∧

i=1

∧

x,y

((A(x) ∗ Ai(x) ∗ B(y) ∗ Bi(y)) → Ci(z))

=
n∧

i=1

∧

x

(
(A(x) ∗ Ai(x)) →

∧

y

((B(y) ∗ Bi(y)) → Ci(z)))
)

which equals to
n∧

i=1

∧

x

(
A(x) →

(
Ai(x) →

∧

y

(B(y) → (Bi(y) → Ci(z)))
))

and, therefore

[(A ∗ B) � R̂](z) =
n∧

i=1

(A � (Ai → (B � (Bi → Ci)))).

�
Theorem 4.7 proves the equivalence of outputs that are ob-

tained from the proposed algorithm of the hierarchical BK in-
ference mechanism and the original BK subproduct with 2-D
inputs. Indeed, it may be systematically extended into a case of
inputs of an arbitrary finite dimension.

Now, we may state the following corollary of Theorems 3.6
and 4.7, which claims that if condition (26) certifies the solvabil-
ity of (28), then even the proposed hierarchical BK-subproduct
inference procedure keeps the fundamental interpolation condi-
tion fulfilled.

Corollary 4.8: Let all the assumptions of Theorem 4.7 be
valid. Furthermore, let

n∨

i=1

(Ai(x) ∗ Aj (x) ∗ Bi(y) ∗ Bj (y)) ≤
n∧

i=1

(Ci(z) ↔ Cj (z))

hold for arbitrary x ∈ X, y ∈ Y, z ∈ Z, as well as for arbitrary
i, j ∈ {1, . . . , n}. Then

n∧

i=1

(Ai � (Ai → (Bi � (Bi → Ci)))) ≡ Ci.

V. CONCLUSION

In this paper, after recalling some of the properties that are
usually cited in favor of using the CRI, which was introduced by
Zadeh [1], viz., equivalent and reasonable conditions for their
solvability, their interpolative properties, and the preservation of
the indistinguishability that may be inherent in the input fuzzy
sets, we have shown that the BK subproduct that was introduced
in [24] possesses all the aforementioned properties and, hence, is
equally suitable to be considered when reasoning with a system
of fuzzy rules. Toward this end, some new but equivalent results
on indistinguishability operations have also been presented.

Moreover, we show that under certain conditions, the equiv-
alence of FITA and FATI can be shown for the BK subproduct,
much like in the case of CRI. After citing some of the main draw-
backs of FRIs, we propose an hierarchical inferencing scheme
that alleviates many of these drawbacks in the BK-subproduct
inference. This method is amply illustrated with numerical ex-
amples. Finally, we have also shown that if the structure for the
considered fuzzy rules is chosen appropriately, then the outputs
that are obtained from the hierarchical BK subproduct and the
original BK subproduct are identical, thus addressing the issues
related to computational complexity.

Based on this paper, it can be concluded that the BK subprod-
uct is as advantageous as the classical CRI that was proposed
by Zadeh and, hence, can be employed alternatively in applica-
tions. The main difference lies in the fuzzy relation that models
a fuzzy rule base, which is combined with a particular inference
mechanism. It is shown that some computational advantages of
the very popular Mamdani–Assilian approach are valid only in
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the case of the CRI inference mechanism, while if we use the
BK subproduct, then many of the advantages of using Ř are lost,
and the implicational approach that employs the fuzzy relation
R̂ assumes this privilege.

Therefore, we conclude that there is another added value to
the existence of two inference schemes with the same appro-
priate properties—the possibility to freely choose between two
approaches of modeling a fuzzy rule base. Up to now, the ap-
proach denoted by R̂ that employs genuine implication was
considered to be a disadvantage because of its computational
complexity, although for some problems, it is much more suit-
able [15]. This investigation shows that from the computational
point of view, there is neither a preferable model of a fuzzy
rule base nor a preferable inference mechanism; there are only
preferable combinations of them.
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[38] L. Nosková, “Systems of fuzzy relation equation with inf→ composition:
Solvability and solutions,” J. Electr. Eng., vol. 12(s), pp. 69–72, 2005.
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