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Abstract

Contingency tables are a very common basis for the investigation of effects of different treatments or influences

on a disease or the health state of patients. Many journals put a strong emphasis on p-values to support the

validity of results. Therefore, even small contingency tables are analysed by techniques like t-test or ANOVA. Both

these concepts are based on normality assumptions for the underlying data. For larger data sets, this assumption

is not so critical, since the underlying statistics are based on sums of (independent) random variables which can

be assumed to follow approximately a normal distribution, at least for a larger number of summands. But for

smaller data sets, the normality assumption can often not be justified.

Robust methods like the Wilcoxon-Mann-Whitney-U test or the Kruskal-Wallis test do not lead to statistically

significant p-values for small samples. Median polish is a robust alternative to analyse contingency tables providing

much more insight than just a p-value.

Median polish is a technique that provides more information than just a p-value. It explains the contingency

table in terms of an overall effect, row and columns effects and residuals. The underlying model for median

polish is an additive model which is sometimes too restrictive. In this paper, we propose two related approach to

generalise median polish. A power transformation can be applied to the values in the table, so that better results
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Group Replicate

G1 6.39 8.10 6.08
G2 8.95 7.48 6.57
G3 5.61 8.58 5.72
G4 813.70 686.50 691.20
G5 4411.50 3778.90 4565.30
G6 32848.40 28866.00 46984.40

Table 1: A contingency table.

for median polish can be achieved. We propose a graphical method how to find a suitable power transformation. If

the original data should be preserved, one can apply other transformations – based on so-called additive generators

– that have an inverse transformation. In this way, median polish can be applied to the original data, but based

on a non-additive model. The non-linearity of such a model can also be visualised to better understand the joint

effects of rows and columns in a contingency table.

Introduction

Contingency tables often arise from collecting patient data and from lab experiments. The rows and columns

of a contingency table correspond to two different categorical attributes. One of these categorical attributes

could account for different drugs with which patients are treated and the other attribute could stand for

different forms of the same disease. Each cell of the table contains a numerical entry which reflects a

measurement under the combination of the categorical attributes corresponding to the cell. In the example

above, these entries could be the number of patients that have been cured from the disease by the drug

corresponding to the cell. Or it could be the time or average time it took patients to recover from the disease

while being treated with the drug.

Table 1 shows an example of a contingency table. The rows correspond to six different groups. The

columns in this case reflect replicates. The columns correspond to 3 replicates of a gene expression experiment

where cultured cells were transfected with increasing amounts of an effector plasmid (a plasmid expressing

a protein that increases the expression of a gene contained on a second plasmid, referred to as a reporter

plasmid) in the presence or absence of the reporter plasmid. Rows 1-3 constitute the negative control

experiment, in which increasing amounts of the effector plasmid were transfected, but no reporter plasmid.

The experiments in rows 4-6 are identical to those in 1-3, except that increasing amounts of the reporter

plasmid were co-transfected. The data correspond to the intensity of the signal derived from the protein
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which is expressed by the reporter plasmid.

A typical question to be answered based on data from a contingency table is whether the rows or the

columns show a significant difference. In the case of the treatment of patients with different drugs for different

diseases, one could ask whether one of the drugs is more efficient than the other ones or whether one disease

is more severe than the other ones. For the example of the contingency table 1, one would be interested in

significant differences among the groups, i.e. the rows. But it might also be of interest whether there might

be significant differences in the replicates, i.e. the columns. If the latter question had a positive answer, this

could be a hint to a batch effect, which turn out to be a serious problem in many experiments [1].

Hypothesis tests are a very common way to carry out such analysis. One could perform a pairwise

comparison of the rows or the columns by the t-test. However, the underlying assumption for the t-test

is that the data in the corresponding rows or columns originate from normal distributions. For very large

contingency tables, this assumption is not very critical, since the underlying statistics will be approximately

normal, even if the data do not follow a normal distribution. Non-parametric tests like the Wilcoxon-Mann-

Whitney-U test are a possible alternative. However, for very small contingency tables they cannot provide

significant p-values. In any case, a correction for multiple testing – like Bonferroni (see for instance [2]),

Bonferroni-Holm [3] or false discovery rate (FDR) correction [4] – needs to be carried in the case of pairwise

comparisons.

Instead of pairwise comparisons with correction for multiple testing, analysis of variance (ANOVA) is

often applied instead of the t-test. Concerning the underlying model assumptions, ANOVA is even more

restrictive than the t-test, since it does even assume that the underlying normal distributions have identical

variance. ANOVA is also – like the t-test – very sensitive to outliers. The Kruskal-Wallis test is the

corresponding counterpart of the Wilcoxon-Mann-Whitney-U test, carrying out a simultaneous comparison

of the medians. But it suffers from the same problems as the Wilcoxon-Mann-Whitney-U test and is not

able to provide significant p-values for small samples. [5]???

A general question is whether a p-value is required at all. A p-value can only be as good as the underlying

statistical model and a lot of information is lost when the interestingness of a whole contingency table is

just reflected by a single p-value. In the worst case, a t-test or ANOVA can yield a significant p-value just

because of a single outlier.

Median polish [6] – a technique from robust statistics and exploratory data analysis – is another way to

analyse contingency tables based on a simple additive model. We briefly review the idea of median polish

in terms of a simple additive model. Although the simplicity of median polish as an additive model is
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appealing, it is sometimes too simple to analyse contingency table. Very often, especially in the context of

gene, protein or metabolite expression profile experiments, the measurements are not taken directly, but are

transformed before further analysis. In the case of expression profiles, it is common to apply a logarithmic

transformation. The logarithmic transformation is a member of a more general family, the so-called power

transformations which we use to introduce a method to find a suitable power transformation that yields

the best results for median polish for a given contingency table. The leads to median polish based on an

additive model, but with transformed attribiutes. We further extend the presented ideas, by transforming

the median polish back to the original domain of the attributes. This back-transformation requires special

transformations related to additive generators. With such back-transformation the median polish result can

be interpreted on the original data values as non-additive model. Finally, we illustrate how to visualise the

non-linearity exploited by the non-additive median polish model. This paper combines the ideas that were

presented in [7] and [8].

Median polish

Median polish has been applied to medical and biomedical contingency tables in various settings [9–11]. The

underlying additive model of median polish is that each entry xij in the contingency table can be written in

the form

xij = g + ri + cj + εij .

• g represents the overall or grand effect in the table. This can be interpreted as general value around

which the data in the table are distributed.

• ri is the row effect reflecting the influence of the corresponding row i on the values.

• cj is the column effect reflecting the influence of the corresponding column j on the values.

• εij is the residual or error in cell (i, j) that remains when the overall, the corresponding row and column

effect are taken into account.

The overall, row and column effects and the residuals are computed by the following algorithm.

1. For each row compute the median, store it as the row median and subtract it from the values in the

corresponding row.

2. The median of the row medians is then added to the overall effect and subtracted from the row medians.
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Overall: 350.075

R1 R2 R3 row effect

G1 0.000 4.795 −0.310 −343.685
G2 0.000 1.615 −2.380 −341.125
G3 −0.110 5.945 0.000 −344.355
G4 122.500 −1.615 0.000 341.125
G5 0.000 −629.515 153.800 4061.425
G6 0.000 −3979.315 14136.000 32498.325

column effect 0.000 −3.085 0.000

Table 2: Median polish for the data in Table 1.

3. For each column compute the median, store it as the column median and subtract it from the values

in the corresponding column.

4. The median of the column medians is then added to the overall effect and subtracted from the column

medians.

5. Repeat steps 1-4 until no changes (or very small changes) occur in the row and column medians.

Table 2 shows the result of median polish applied to Table 1.

The result of median polish can help to better understand the contingency table. In the ideal case, the

residuals are zero or at least close to zero. Close to zero means in comparison to the row or column effects.

If most of the residuals are close to zero, but only a few have a large absolute value, this is an indicator for

outliers that might be of interest. Most of the residuals in Table 1 are small, except the ones in the lower

right part of the table.

The row effect shows how much influence each row, i.e. in the example, each group has. One can see that

group G1, G2 and G3 have roughly the same effect. Group G5 and G6 have extremely high influence and

show very significant effects.

The column effects are interpreted in the same way. Since the columns represent replicates, they shall

have no effect at all in the ideal case. Otherwise, some batch effect might be the cause. The column effects

in Table 1 are – as expected – all zero or at least close to zero.

Power transformations

Transformation of data is a very common step of data preprocessing (see for instance [12]). There can be

various reasons for applying transformations before other analysis steps, like normalisation, making different
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attribute ranges comparable, achieving certain distribution properties of the data (symmetric, normal etc.)

or gaining advantage for later steps of the analysis.

Power transformations (see for instance [6]) are a special class of parametric transformations defined by

tλ(x) =

{
xλ−1
λ if λ 6= 0,

ln(x) if λ = 0.

It is assumed that the data values x to be transformed are positive. If this is not the case, a corresponding

constant ensuring this property should be added to the data.

We restrict our considerations on power transformations that preserve the ordering of the values and

therefore exclude negative values for λ.

In the following section, we use power transformations to improve the results of median polish.

Finding a suitable power transformations for median polish

An ideal result for median polish would be when all residuals are zero or at least small. The residuals get

smaller automatically when the values in the contingency table are smaller. This would mean that we tend to

put a high preference on the logarithmic transformation (λ = 0), at least when the values in the contingency

table are greater than 1. Small for residuals does not refer to the absolute values of the residuals being small.

It means that the residuals should be small compared to the row or column effects. Therefore, we should

compare the absolute values of the residuals to the absolute values of the row or column effects. One way

to do this would be to compare the mean values of the absolute values of the residuals to the mean value

of the absolute values of the row or column effects. This would, however, be not consistent in the line of

robust statistics. Single outliers could dominate this comparison. This would also lead to the reverse effect

as considering the residuals alone. Power transformations with large values for λ would be preferred, since

they make larger values even larger. And since the row or column effects tend to be larger than the residuals

in general, one would simply need to choose a large value for λ to emphasize this effect.

Neither single outliers of the residuals nor of the row or column effects should have an influence on the

choice of the transformation. What we are interested in is being able to distinguish between significant row

or column effects and residuals. Therefore, the spread of the row or column effects should be large whereas

at least most of the absolute values of the residuals should be small.

To measure the spread of the row or column effects, we use the interquartile range which is a robust

measure of spread and not sensitive to outliers like the variance. The interquartile range is the difference

between the 75%- and the 25%-quantile, i.e. the range that contains 50% percent of the data in the middle.
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We use the 80% quantile of the absolute values of all residuals to judge whether most of the residuals

are small. It should be noted that we do not expect all residuals to be small. We might have single outliers

that are of high interest.

Finally, we compute the quotient of the interquartile range of the row or column effects and divide it by

the 80% quantile of the absolute values of all residuals. We call this quotient the IQRoQ value (InterQuartile

Range over the 80% Quantile of the absolute residuals). The higher the IQRoQ value, the better is the result

of median polish. For each value of λ, we apply the corresponding power transformation to the contingency

table and calculate the IQRoQ value. In this way, we obtain an IQRoQ plot, plotting the IQRoQ value

depending on λ.

Of course, the choice of the interquartile range – we could also use the range that contains 60% percent

of the data in the middle – and the 80%-quantile for the residuals are rules of thumb that yield good results

in our applications. If more is known about the data, for instance that outliers should be extremely rare,

one could also choose a higher quantile for the residuals.

Before we come to examples with real data in the next section, we illustrate our method based on

artificially generated contingency tables. The first table is a 10 × 10, generated by the following additive

model. The overall effect is 0, the row effects are 10, 20, 30, . . . , 100, the column effects are 1, 2, 3, . . . , 10. We

then added to each entry noise from a uniform distribution over the interval [−0.5, 0.5] to each entry.

Figure 1: IQRoQ plot for the row (left) and column effects (right) for the artificial example data set.

Figure 1 shows the IQRoQ plots for the row and column effects for this artificial data set. In both cases,
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we have a clear maximum at λ = 1. So the IQRoQ plots propose to apply the power transformation with

λ = 1 which is the identity transformation and leaves the contingency table as it is. The character of the

IQRoQ plots for the row and column effects is similar, but the values differ by a factor 10. This is in complete

accordance with the way the artificial data set had been generated. The row effects were chosen 10 times as

large as the column effects.

Figure 2: IQRoQ plot for the row (left) and column effects (right) for the exponential artificial example data
set.

As a second artificial example we consider the same contingency table, but apply the exponential function

to each of its entries. The IQRoQ plots shown in Figure 2 have their maximum at λ = 0 and therefore suggest

to use the logarithmic transformation before applying median polish. So this power transformation reverses

the exponential function and we retrieve the original data which were generated by the additive model.

The last artificial example is a negative example in the sense that there is no additive model underlying

the data generating process. The entries in the corresponding 10 × 10 contingency table were produced by

a normal distribution with expected value 5 and variance 1. The IQRoQ plots are shown in Figure 3. The

IQRoQ plot for the row effect has no clear maximum at all and shows a tendency to increase with increasing

λ. The IQRoQ plot for the column effect has a maximum at 0 and then seems to oscillate with definitely

more than one local maximum. There is no clear winner among the power transformations. And this due

to the fact that there is no underlying additive model for the data and no power transformation will make

the data fit to an additive model.
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Figure 3: IQRoQ plot for the row (left) and column effects (right) for a random data set where all entries in
the contingency table were generated by a normal distribution with expected value 5 and variance 1.

Examples

Figure 4: IQRoQ plot for the row (left) and column effects (right) for the data set in Table 1.

We now apply the IQRoQ plots to real data sets. As a first example, we consider the data set in Table

1. The IQRoQ plots are shown in Figure 4. The IQRoQ plot for the row effects has its global maximum

at λ = 0 and a local maximum at λ = 0.5. The IQRoQ plot for the column effects has its global maximum

at λ = 0.5. However, we know that in this data set the columns correspond to replicates and it does not

make sense to maximise the effects of the replicates over the residuals. The IQRoQ values for the column
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effects are also much smaller than the IQRoQ values for the row effects. Therefore, we chose the power

transformation suggested by the IQRoQ plot for the row effects, i.e. the logarithmic transformation induced

by λ = 0. The second choice would be the power transformation with λ = 0.5 which would lead to similar

effects as the logarithmic transformation, although not so strong.

Overall: 4.2770

R1 R2 R3 row effect

G1 0.0000 0.2422 −0.0497 −2.4223
G2 0.1760 0.0017 −0.1331 −2.2614
G3 −0.0194 0.4106 0.0000 −2.5331
G4 0.1632 −0.0017 0.0000 2.2614
G5 0.0000 −0.1497 0.0343 4.1149
G6 0.0000 −0.1241 0.3579 6.1226

column effect 0.0000 −0.0051 0.0000

Table 3: Median polish for the data in Table 1 after power transformation with λ = 0.

Table 3 shows the result of median polish after the logarithmic transformation has been applied to the

data in Table 1. We compare this table with Table 2 which originated from median polish applied to the

original data. In Table 3 based on the optimal transformation derived from the IQRoQ plots, the absolute

values of all residuals are smaller than any of the (absolute) row effects. There is no indication of extreme

outliers anymore, whereas the median polish in Table 2 applied to the original data suggests that there are

some extreme outliers. The entries for G6 for replicate R2 and R3 and even the entry for G5 for replicate R2

show a larger absolute value of the majority of the row effects in Table 2. From Table 2, it is also not very

clear whether group G4 is similar to groups G1, G2, G3 or groups G5, G6, whereas after the transformation

in Table 1 the original groupings G1, G2, G3 (no reporter plasmid) versus of G4, G5, G6 (with increasing

amount of reporter plasmid) can be easily identified based on the row effects.

We finally consider two larger contingency tables with 14 rows and 97 columns that are far too large to

be included in this paper. The tables consist of a data set displaying the metabolic profile of a bacterial

strain after isolation from different tissues of a mouse. The columns reflect the various substrates whereas

the rows consist of repetitions for the isolates from tumor and spleen tissue. The aim of the analysis is

to identify those substrates that can be utilized by active enzymes and to find differences in the metabolic

profile after growth in different organs.

The corresponding IQRoQ plots are shown in Figures 5 and 6. The IQRoQ plots indicate that we choose

a value of around λ = 0.5, although the IQRoQ plots do not agree on exactly the same value.
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Figure 5: IQRoQ plot for the row (left) and column effects (right) for a larger contingency table for spleen.

The Non-additive Model

In the previous setting, we have looked at the median polish results for the transformed data. Sometimes,

transformations of the attributes might not be desired, since the transformed attribute might not be in-

terpretable for the domain expert anymore. Therefore, we introduce transformations that can be reversed

leading to median polish on the original attributes based on non-additive models. In order to motivate and

explain this idea, we take a closer look at the power transformation with λ = 0, i.e. we when choose the

logarithm for the power transformation. We then obtain the following model.

ln(xij) = g + ri + cj + εij . (1)

Transforming back to the original data yields the model

xij = eg · eri · ecj · eεij .

So it is in principle a multiplicative model (instead of an additive model as in standard median polish) as

follows:

xij = g̃ · r̃i · c̃j · ε̃ij

where g̃ = eg, r̃i = eri , c̃j = ecj , ε̃ij = eεij . The part of the model which is not so nice is that the residuals

also enter the equation by multiplication. Normally, residuals are always additive, no matter what the

underlying model for the approximation of the data is.
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Figure 6: IQRoQ plot for the row (left) and column effects (right) for a larger contingency table for tumour.

Towards overcoming this drawback, we propose the following approach. We apply the median polish

algorithm to the log-transformed data in order to compute g (or g̃), ri (or r̃i) and cj (or c̃j). The residuals

are then defined at the very end as

εij := xij − g̃ · r̃i · c̃j . (2)

Let us now rewrite Eq. (1) in the following form:

ln(xij) = ln(g̃) + ln(r̃i) + ln(c̃j) + ln(ε̃ij).

Assuming that the residuals are small, we have

ln(xij) ≈ ln(g̃) + ln(r̃i) + ln(c̃j).

Transforming this back to the original data, we obtain

xij ≈ exp (ln(g̃) + ln(r̃i) + ln(c̃j)) .

A natural question that arises now is the following: What happens with other power transformations, i.e.,

for λ > 0? In principle the same, as we obtain

xij ≈ t−1
λ (tλ(g̃) + tλ(r̃i) + tλ(c̃j)). (3)

Let us denote by ⊕λ the corresponding, possibly associative, operator obtained as follows:

x⊕λ y = t−1
λ (tλ(x) + tλ(y)) . (4)
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Now, we can interpret Eq. (3) as

xij ≈ g ⊕λ r̃i ⊕λ c̃j (5)

Thus the problem of determining a suitable transformation of the data before applying the median polish

algorithm essentialy boils down to finding that operator ⊕λ which minimises the residuals in (2), viz.,

εij = xij − g ⊕λ r̃i ⊕λ c̃j .

Transformations and Additive Generators of Fuzzy Logic Connectives

It is very interesting to note the similarity between the operator ⊕λ and t-norms / t-conorms [13], operators

for modelling the AND, respectively the OR operator in fuzzy logic.

On the one hand, the above family of power transformations closely resembles the Schweizer-Sklar family

of additive generators1 of t-norms. In fact, the power transformations are nothing but the negative of

the additive generator of the Schweizer-Sklar t-norms. Note that additive generators of t-norms are non-

increasing, and in the case of continuous t-norms they are strictly decreasing, which explains the need for a

negative sign to make the function decreasing.

On the other hand, given continuous and strict additive generators, one constructs t-norms / t-conorms

precisely by using Eq. (4).

However, it should be emphasised that additive generators of t-norms or t-conorms cannot be directly

used here. The additive generator of a t-norm is non-increasing while one requires a transformation to

maintain the monotonicity in the arguments. In the case of the additive generator of a t-conorm, though

monotonicity can be ensured, their domain is restricted to just [0, 1]. This can be partially overcome by

normalising the data to fall in this range. However, this type of normalisation may not be reasonable always.

Further, the median polish algorithm applied to the transformed data do not always remain positive and

hence determining the inverse with the original generator is not possible.

The above discussion leads us to consider a suitable modification of the additive generators of t-norms /

t-conorms that can accommodate a far larger range of values both in their domain and co-domain. Repre-

sentable uninorms are another class of fuzzy logic connectives that are obtained by the additive generators

of both a t-norm and a t-conorm. In this work, we construct newer transformations by suitably modifying

the underlying generators of these representable uninorms [13].

1An additive generator of a function f(x, y) in two real variables is a function h in one real variable such that f(x, y) =
h−1(h(x) + h(y)) holds.
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Figure 7: IQRoQ plots for the column and row effects of the artificial data with Modified Schweizer-Sklar
generator

Modified Additive Generators of Uninorms : An Example

Let us assume that the data x are coming from the interval (−M,M). Consider the following modified

generator of the uninorm obtained from the additive generators of the Schweizer-Sklar family of t-norms

and t-conorms. Let e ∈ (−M,M) be any arbitrary value. Then the following is a valid transformation with

hλ : [−M,M ]→
[

(−M)λ − eλ

λ
,

1

λ

]
, for all λ 6= 0.

hλ(x) =



xλ − eλ

λ
, x ∈ [−M, e]

1−

M − x
M − e

λ

λ
, x ∈ [e,M ]

;

(hλ)
−1

(x) =


(xλ+ eλ)

1
λ , x ≤ 0

M − (M − e) [(1− xλ)]
1
λ , x ≥ 0

.

Note that hλ is monotonic for all λ 6= 0 and increases with decreasing λ.

That this modified generator is a reasonable transformation can be seen by applying it to the random

data set that was already used to generate the IQRoQ plots in Figure 1. From the IQRoQ plots for this

data given below, it can be seen that the global maxima occur at λ = 1. So the IQRoQ plots propose to

apply the above transformation with λ = 1 which is a linear transformation of the data.
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≤ 8 9− 11 12 13− 15 ≥ 16

North-West 25.3 25.3 18.2 18.3 16.3
North-Central 32.1 29.0 18.8 24.3 19.0

South 38.8 31.0 19.3 15.7 16.8
West 25.4 21.1 20.3 24.0 17.5

Table 4: Infant Mortality vs Educational Qualification of the Parents in deaths per 1000 live births in the
years 1964-1966 (Source: U.S. Dept. of Health, Education and Welfare)

Overall: 0.2919985

≤ 8 9− 11 12 13− 15 ≥ 16 RE

NW 0.00025312 0.0027983 -0.00025004 -0.010879 0.0000000 -0.010113225
NC -0.00025312 -0.0027983 -0.01200293 0.010879 0.0078014 0.006694490
S 0.01098492 0.0091121 0.00025004 -0.044525 -0.0035433 -0.001558958
W -0.01102793 -0.0305895 0.00456985 0.014641 0.0000000 0.001558958

CE 0.0318984143 0.0293532152 -0.0112376220 0.0002531186 -0.0294192135

Table 5: Median polish on the hλ-transformed Infant Mortality data with λ = −0.5

A Novel Way of Finding a Suitable Transformation

In this section we present the algorithm to find a suitable transformation of the given data such that the

MP algorithm performs well to elucidate the underlying structures in the data. We only consider a one

parameter family of operators with the parameter denoted by λ.

The proposed algorithm is as follows. Let ⊕λ denote the one parameter family of operators whose domain

and range allow it to be operated on the data given in the contingency table. Then for each λ the following

steps are performed:

1. Apply the transformation ⊕λ to the contingency table.

2. Apply median polish to the transformed data to find the overall, row and column effects, viz., g̃, r̃i, c̃j

for each i, j.

3. Find the residuals εij = xij − g ⊕λ r̃i ⊕λ c̃j for each i, j.

4. Determine the IQRoQ values of the above residuals.

Finally, we plot λ versus the above IQRoQ values to get the IQRoQ plots for the column and row effects.

Clearly, the operator corresponding to the λ at which the above IQRoQ plots peak is a plausible trans-

formation for the given contingency table.
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Figure 8: IQRoQ plots for the column and row effects of the Infant Mortality data

Some Illustrative Examples

As an example with real world data, let us consider the data given in the contingency table 4. Applying the

above algorithm with the transformation hλ we obtain the following IQRoQ plots as detailed above. The

corresponding IQRoQ plots are shown in Figures 8(a) and (b). The IQRoQ plots suggest a value of around

λ = −0.5. The ’median polished’ contingency table for λ = −0.5 is given in Table 5.

We can also visualise the non-linear aggregation operator ⊕λ (here: λ = −0.5) that is used for the

non-additive median polish model. The non-linearity is clearly illustrated in Figure 9 which suggests that

strong row and column effects seem to even amplify each other.

We also apply the non-additive median polish model to the data set that was already used for Figure

5. The corresponding IQRoQ plots are shown in Figures 10(a) and (b). The IQRoQ plots indicate that we

choose a value of around λ = 0.4.

An Example Based on Clinical Data

We consider a data set from [14] containing a sample of male residents of Framingham in Massachusetts.

The age of the persons ranges between 40 and 59 year. Several attributes were taken into accout, among

them blood pressure and cholesterol level. The persons were classified whether they developed a coronary

heart disease within a period of six years. The blood pressure was divided into eight levels, P1 referring to

the lowest level (< 117), P2 to a blood pressure between 117 and 126 etc. and P8 corresponding to blood
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Figure 10: IQRoQ plots for the column and row effects of the Spleen data

pressures above 186. Similar to the blood pressure, the cholesterol level was divided into seven groups (C1:

< 200, C2: 200–209, C3: 210–219, C4: 220–244, C5: 245–259, C6: 260–284, C7: > 284).

17



Cholesterol level
Heart disease Pressure C1 C2 C3 C4 C5 C6 C7

absent P1 51 21 15 20 14 21 11
absent P2 66 25 24 61 24 17 18
absent P3 57 34 19 81 33 24 24
absent P4 64 19 26 75 20 32 19
absent P5 35 16 6 26 17 14 15
absent P6 12 10 11 14 11 11 8
absent P7 21 5 11 25 3 10 11
absent P8 4 1 3 9 6 6 6
present P1 2 0 0 0 0 1 0
present P2 0 2 1 8 0 5 1
present P3 2 0 2 2 0 2 4
present P4 1 0 0 6 3 2 4
present P5 2 0 0 3 2 4 1
present P6 1 0 0 1 0 2 4
present P7 3 0 0 2 2 6 3
present P8 1 0 3 1 1 1 1

Table 6: Coronary disease data from [14].

As one would expect from such a study, the number of observed cases with coronary disease within this

six year period is relatively small compared to number of persons not being classified as having a coronary

disease. This makes it quite difficult to see what would be expected, namely that a high level of cholesterol

and high blood pressure increase the risk of coronary disease.

Table 7 shows the result of applying median polish without any transformation to Table 6. This table

contains large residuals, the largest absolute residual of 45.375 at (P4 absent,C3) exceeds by far the row and

column effects. The absolute values of the residuals also exhibit a large variation. The relative variance of

the absolute residuals is 18.192. The principal expected effects can be guessed from the median polish result,

but could be doubted due to the large residuals compared to the row and column effects. It is obvious to

expect a positive row effect for the first eight rows, i.e. for the persons who did not show any signs of heart

disease, simply because this group of persons forms the large majority in the table. We would also expect

that this positive effect is smaller for larger levels of the blood pressure. This can be observed, but these

effects do not look significant compared to the large residuals. The column effects, i.e. the cholesterol levels,

seem to have a small influence. None of the column effects is larger than the mean (4.504) of the absolute

residuals, all column effects are even smaller than the median (1.438) of the absolute residuals.

Since we have zero values in the table, we cannot apply the logarithmic power transformation to the

data. In order to avoid this problem, we apply Laplace correction, i.e. we add a positive constant, say 1, to

18



Overall: 3.625

C1 C2 C3 C4 C5 C6 C7 row effect

P1 absent 33.000 5.000 −1.500 −0.125 −2.625 3.625 −5.625 13.125
P2 absent 40.500 1.500 0.000 33.375 −0.125 −7.875 −6.125 20.625
P3 absent 22.750 1.750 −13.750 44.625 0.125 −9.625 −8.875 29.375
P4 absent 36.500 −6.500 0.000 45.375 −6.125 5.125 −7.125 22.625
P5 absent 17.000 0.000 −10.500 5.875 0.375 −3.375 −1.625 13.125
P6 absent 0.000 0.000 0.5000 −0.125 0.375 −0.375 −2.625 7.125
P7 absent 8.750 −5.250 0.250 10.625 −7.875 −1.625 0.125 7.375
P8 absent −2.750 −3.750 −2.250 0.125 0.625 −0.125 0.625 1.875
P1 present 0.500 0.500 0.000 −3.625 −0.125 0.125 −0.125 −3.375
P2 present −2.500 1.500 0.000 3.375 −1.125 3.125 −0.125 −2.375
P3 present 0.000 0.000 1.500 −2.125 −0.625 0.625 3.375 −2.875
P4 present −1.750 −0.750 −1.250 1.125 1.625 −0.125 2.625 −2.125
P5 present 0.000 0.000 −0.500 −1.125 1.375 2.625 0.375 −2.875
P6 present −0.500 0.500 0.000 −2.625 −0.125 1.125 3.875 −3.375
P7 present 0.000 −1.000 −1.500 −3.125 0.375 3.625 1.375 −1.875
P8 present −1.000 0.000 2.500 −3.125 0.375 −0.375 0.375 −2.875

column effect 1.250 −0.750 −0.250 3.375 −0.125 0.625 −0.125

Table 7: Median polish for the data in Table 6.

all entries in the table. The IQRoQ plots for the Laplace corrected data set, shown in Figure 11, indicate

that a value for λ around 0.4 yields the most suitable power transformation.

Table 8 shows the result of median polish applied to the transformed data. The residuals are now smaller

compared to the row and column effects. The largest absolute residual is 3.756 at (P1 absent,C1). Even this

largest residual is smaller than three of the row effects which can then be considered significant. Also the

relative variance of the absolute values of the residuals is much smaller now. It is only 0.897. Now there is

also one column effect which is larger than the mean (0.787) of the absolute residuals and two column effects

are larger than the median (0.611) of the absolute residuals.

It is also interesting to take a look at the transformed data set that was found based on the IQRoQ plots.

Figure 12 visualises the original (left) and the transformed (right) contingency table. Both table show a

tendency of higher values in the upper half (persons with absent heart disease). But the difference between

the upper and the lower half is much clearer for the the transformed contingency table than for the original

one. This means that even without applying median polish, it might be useful to look at the transformed

contingency table generated by the transformation derived from the IQRoQ plots.
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Figure 11: IQRoQ plot for the row (left) and column effects (right) for the data in Table 6.

Conclusions

We have proposed two methods to improve the results of median. Either we apply a suitable power trans-

formation to the data before applying median polish. Based on the IQRoQ plots, the most suitable power

transformation can be chosen. Or, as an alternative, one can apply reversible transformations based on ad-

ditive generators, leading to non-additive median polish. Again, the most suitable reversible transformation

is chosen based on IQRoQ plots. The joint non-linear connection of column and row effects can be visualsied

by a function in two variables in order to better understand the nature of the interaction of column and

row effects. The example on heart disease has demonstrated that it can be useful to apply a transforma-

tion derived from IQRoQ plots, even if it is not necessarily intended to use median polish afterwards. The

transformed contingency table might already exhibit a clearer structure than the original table.

Software

The IQRoQ plots in this paper were generated by an implementation of the described method in R, a free

software environment for statistical computing and graphics [15] (see http://www.r-project.org/). The

simple R implementation for generating IQRoQ plots can be downloaded at

http://public.ostfalia.de/∼klawonn/hiss mp.R
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Overall: 1.756

C1 C2 C3 C4 C5 C6 C7 row effect

P1 absent 3.756 1.130 0.000 −0.520 −0.243 0.301 −0.849 3.423
P2 absent 3.570 0.244 0.000 2.578 −0.050 −1.844 −0.967 4.904
P3 absent 1.731 0.320 −1.859 3.034 0.050 −1.815 −1.111 5.990
P4 absent 3.125 −0.956 0.000 3.401 −0.943 0.052 −1.082 5.187
P5 absent 1.829 0.021 −2.400 0.108 0.050 −1.188 −0.291 3.689
P6 absent 0.000 0.459 0.589 −0.170 0.539 −0.139 −0.170 2.010
P7 absent 1.094 −1.485 0.050 1.107 −2.402 −0.910 0.025 2.549
P8 absent −0.818 −1.368 −0.415 0.121 0.627 −0.052 0.652 0.612
P1 present 0.570 0.101 0.000 −1.390 −0.050 0.070 −0.025 −1.656
P2 present −1.608 0.682 0.000 1.331 −0.849 1.092 −0.025 −0.857
P3 present 0.000 −0.470 0.809 −0.581 −0.620 0.080 1.664 −1.085
P4 present −0.713 −0.602 −0.703 0.851 1.100 −0.052 1.531 −0.953
P5 present 0.000 −0.470 −0.570 −0.108 0.759 0.960 0.203 −1.085
P6 present −0.010 0.101 0.000 −0.592 −0.050 0.651 2.234 −1.656
P7 present 0.000 −0.943 −1.044 −1.054 0.286 1.172 0.784 −0.612
P8 present −0.132 −0.021 1.731 −0.714 0.627 −0.052 0.652 −1.534

column effect 0.709 −0.201 −0.100 1.291 −0.050 0.629 −0.075

Table 8: Median polish for the data in Table 6 after power transformation with λ = 0.4.
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Figure 12: Heatmap visualisation of the data from Table 6 (left) and the data after transformation (right).
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