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Abstract

In this work we give a state-of-the-art review of two of the most established classes of fuzzy implications, viz., (S, N)- and
R-implications. Firstly, we discuss their properties, characterizations and representations. Many new results concerning fuzzy
negations and (S, N)-implications, notably their characterizations with respect to the identity principle and ordering property, are
presented, which give rise to some representation results. Finally, using the presented facts, an almost complete characterization of
the intersections that exist among some subfamilies of (S, N)- and R-implications are obtained.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy implications were introduced and studied in the literature as the generalization of the classical implication that
obeys the truth table provided in Table 1. Following are the two main ways of defining an implication in the Boolean
lattice (L, ∧, ∨, ¬):

p → q ≡ ¬p∨q, (1)

p → q ≡ max{t ∈ L|p ∧ t �q}, (2)

where p, q ∈ L and the relation � is defined in the usual way, i.e., p�q iff p∨q = q, for every p, q ∈ L.
The implication (1) is usually called the material implication, while (2) is from the intuitionistic logic framework,
where the implication is obtained as the residuum of the conjunction, and is often called as the pseudocomplement of p
relative to q (see [5]). Interestingly, despite their different formulas, definitions (1) and (2) are equivalent in the Boolean
lattice (L, ∧, ∨, ¬). On the other hand, in the fuzzy logic framework, where the truth values can vary in the unit interval
[0, 1], the natural generalizations of the above definitions, viz., (S, N)- and R-implications, are not equivalent. This
diversity is more a boon than a bane and has led to some intensive research on fuzzy implications for close to three
decades. Quite understandably then, the most established and well-studied classes of fuzzy implications are the above
(S, N)- and R-implications (cf. [10,14,15,22]).
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Table 1
Truth table for the classical implication

p q p → q

0 0 1
0 1 1
1 0 0
1 1 1

The main goal of this article is to give a state-of-the-art survey of these two families of fuzzy implications by
discussing their algebraic properties, characterizations, representations and presenting both existing and some new
results connected with their intersections.

The paper is organized as follows. Section 2 gives some preliminary results regarding basic fuzzy logic connectives.
Some new results concerning fuzzy negations, especially natural negations obtained from t-norms and t-conorms and
the related law of excluded middle have been presented. The definition of fuzzy implication and its basic algebraic
properties are introduced and their interdependencies are explored in Section 3. In the next two sections, which should
be seen as ‘state-of-the-art’, we recall the definitions of families of (S, N)- and R-implications listing their main
properties and characterization theorems. Subsequently, some representation results are also obtained. In Section 6 a
thorough analysis of the intersection between the above two classes is done and an almost complete characterization
of this overlap is given based on the results available so far.

2. Preliminaries: basic fuzzy logic connectives

We assume that the reader is familiar with the classical results concerning basic fuzzy logic connectives, but to make
this work self-contained, we introduce basic notations used in the text and we briefly mention some of the concepts
and results employed in the rest of the work. We start with the notation of the conjugacy (see [23, p. 156]). By � we
denote the family of all increasing bijections �: [0, 1] → [0, 1]. We say that functions f, g: [0, 1]n → [0, 1], where
n ∈ N, are �-conjugate, if there exists � ∈ � such that g = f�, where

f�(x1, . . . , xn) := �−1(f (�(x1), . . . ,�(xn))), x1, . . . , xn ∈ [0, 1].
Equivalently, g is said to be the �-conjugate of f. If A is a non-empty set, then in the family of all real functions from
A to R we can consider the order induced from the standard partial order on R, i.e., if f1, f2: A → R, then

f1 �f2 :⇐⇒ f1(x)�f2(x) for all x ∈ A.

If f1 �f2 and f1 
= f2, then we will consider the strict partial order induced from R and we will write f1 < f2.

Definition 2.1 (see Fodor and Roubens [14, p. 3]; Klement et al. [21, Definition 11.3]; Gottwald [15, Definition
5.2.1]). A decreasing function N : [0, 1] → [0, 1] is called a fuzzy negation if N(0) = 1, N(1) = 0. A fuzzy negation
N is called

(i) strict if it is strictly decreasing and continuous;
(ii) strong if it is an involution, i.e., N(N(x)) = x for all x ∈ [0, 1].

Example 2.2. The classical negation NC(x) = 1−x is a strong negation, while NK(x) = 1−x2 is only strict, whereas
ND1 and ND2—which are the least and greatest fuzzy negations—are non-strong negations:

ND1(x) =
{

1 if x = 0,

0 if x > 0,
ND2(x) =

{
1 if x < 1,

0 if x = 1.

For more examples of fuzzy negations see [14] or [22]. For interesting facts concerning strong negations see [27].

Definition 2.3 (see Schweizer and Sklar [33] and Klement et al. [21]). (i) An associative, commutative and increas-
ing operation T : [0, 1]2 → [0, 1] is called a t-norm if it has the neutral element equal to 1.
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(ii) An associative, commutative and increasing operation S: [0, 1]2 → [0, 1] is called a t-conorm if it has the neutral
element equal to 0.

If F is an associative binary operation on [a, b] with the neutral element e, then the power notation x
[n]
F , where

n ∈ N0, is defined by

x
[n]
F :=

⎧⎨
⎩

e if n = 0,

x if n = 1,

F (x, x
[n−1]
F ) if n > 1.

Definition 2.4 (Klement et al. [21, Definitions 1.23, 2.9 and 2.13]; Fodor and Roubens [14, Definition 1.7]). A t-norm
T (t-conorm S, respectively) is said to be

(i) continuous if it is continuous in both the arguments;
(ii) border continuous if it is continuous on the boundary of the unit square [0, 1]2, i.e., on the set [0, 1]2 \(0, 1)2;

(iii) left-continuous if it is left-continuous in each component;
(iv) right-continuous if it is right-continuous in each component;
(v) idempotent if T (x, x) = x (S(x, x) = x, respectively) for all x ∈ [0, 1];

(vi) Archimedean if for every x, y ∈ (0, 1) there is n ∈ N such that x
[n]
T < y (x[n]

S > y, respectively);
(vii) strict if T (S, respectively) is continuous and strictly monotone, i.e., T (x, y) < T (x, z) (S(x, y) < S(x, z),

respectively) whenever x > 0 (x < 1, respectively) and y < z;
(viii) nilpotent if T (S, respectively) is continuous and if each x ∈ (0, 1) is a nilpotent element, i.e., if for each x ∈ (0, 1)

there exists n ∈ N such that x
[n]
T = 0 (x[n]

S = 1, respectively);
(ix) positive if T (x, y) = 0 (S(x, y) = 1, respectively) implies that either x = 0 or y = 0 (x = 1 or y = 1,

respectively).

Remark 2.5. (i) For a continuous t-norm T the Archimedean property is given by the simpler condition, that
T (x, x) < x, for all x ∈ (0, 1) (see [15, Proposition 5.1.2]).

(ii) If a t-norm T is continuous and Archimedean, then T is nilpotent if and only if there exists some nilpotent element
of T, which is equivalent to the existence of some zero divisor of T, i.e., there exist x, y ∈ (0, 1) such that T (x, y) = 0
(see [21, Theorem 2.18]).

(iii) If a t-norm T is strict or nilpotent, then it is Archimedean. Conversely, every continuous and Archimedean t-norm
is either strict or nilpotent (see [21, p. 33]).

(iv) A continuous Archimedean t-norm is positive if and only if it is strict (see [14, p. 9]).
(v) By the duality between t-norms and t-conorms, similar properties as above hold for t-conorms with the appropriate

changes in either the inequality or the neutral element (cf. [21, Remark 2.20]; [14, Chapter 1]).

Example 2.6 (see Klement et al. [21]). Tables 2 and 3 list the basic t-norms and t-conorms with the properties they
satisfy. Note that TM, TP are positive t-norms, while TLK, TD and TnM are not. Similarly, SM, SP are positive t-conorms,
while SLK, SD and SnM are not.

Table 2
Examples of t-norms and their properties

Name Formula Properties

TM: minimum min(x, y) Continuous, idempotent
TP: product xy Strict
TLK: Łukasiewicz max(x + y − 1, 0) Nilpotent

TD: drastic product

{
0 if x, y ∈ [0, 1)

min(x, y) otherwise
Archimedean, non-continuous

TnM: nilpotent minimum

{
0 if x + y �1
min(x, y) otherwise

Non-Archimedean, left-continuous
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Table 3
Examples of t-conorms and their properties

Name Formula Properties

SM: maximum max(x, y) Continuous, idempotent
SP: probabilistic sum x + y − xy Strict
SLK: Łukasiewicz min(x + y, 1) Nilpotent

SD: drastic sum

{
1 if x, y ∈ (0, 1]
max(x, y) otherwise

Archimedean, non-continuous

SnM: nilpotent maximum

{
1 if x + y �1
max(x, y) otherwise

Non-Archimedean, right-continuous

Theorem 2.7 (Klement et al. [21, Theorem 5.11]). For a function T : [0, 1]2 → [0, 1] the following statements are
equivalent:

(i) T is a continuous t-norm.
(ii) T is uniquely representable as an ordinal sum of continuous Archimedean t-norms, i.e., there exists a uniquely

determined (finite or countably infinite) index set A, a family of uniquely determined pairwise disjoint open sub-
intervals {(a�, e�)}�∈A of [0, 1] and a family of uniquely determined continuous Archimedean t-norms (T�)�∈A

such that T = (〈a�, e�, T�〉)�∈A, i.e.,

T (x, y) =
⎧⎨
⎩ a� + (e� − a�) · T�

(
x − a�

e� − a�
,

y − a�

e� − a�

)
if x, y ∈ [a�, e�],

min(x, y) otherwise.

(3)

One can associate a fuzzy negation to any t-norm or t-conorm as given in the definition below.

Definition 2.8 (cf. Nguyen and Walker [31, Definition 5.5.2]; Klement et al. [21, p. 232]). (i) Let T be a t-norm.
A function NT : [0, 1] → [0, 1] defined as

NT (x) = sup{t ∈ [0, 1]|T (x, t) = 0}, x ∈ [0, 1] (4)

is called the natural negation of T.
(ii) Let S be a t-conorm. A function NS : [0, 1] → [0, 1] defined as

NS(x) = inf{t ∈ [0, 1]|S(x, t) = 1}, x ∈ [0, 1] (5)

is called the natural negation of S.

Remark 2.9. (i) It is easy to prove, that both NT and NS are fuzzy negations. In the literature NT is also called the
contour line C0 of T, while NS is called the contour line D1 of S (see [24,26]).

(ii) Since for any t-norm T and any t-conorm S we have T (x, 0) = 0 and S(x, 1) = 1 for all x ∈ [0, 1], the appropriate
sets in (4) and (5) are non-empty.

(iii) Notice that if S(x, y) = 1 for some x, y ∈ [0, 1], then y�NS(x) and if T (x, y) = 0 for some x, y ∈ [0, 1],
then y�NT (x).

Example 2.10. Table 4 gives the natural negations of the basic t-norms and t-conorms.

The next result be will useful in the sequel.

Proposition 2.11 (cf. Maes and De Baets [24, Theorem 1(ii) and Corollary 1]). If a t-conorm S is right-continuous,
then:

(i) for every x, y ∈ [0, 1] the following equivalence holds:

S(x, y) = 1 ⇐⇒ NS(x)�y; (6)
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Table 4
Examples of natural negations from t-norms and t-conorms

t-norm T NT t-conorm S NS

Positive ND1 Positive ND2
TLK NC SLK NC
TD ND2 SD ND1
TnM NC SnM NC

(ii) the infimum in (5) is the minimum, i.e.,

NS(x) = min{t ∈ [0, 1]|S(x, t) = 1}, x ∈ [0, 1],
where the right side exists for all x ∈ [0, 1];

(iii) NS is right-continuous.

Proof. (i) Suppose that S is a right-continuous t-conorm and assume firstly that S(x, y) = 1 for some x, y ∈ [0, 1],
so y ∈ {t ∈ [0, 1]|S(x, t) = 1}, and hence NS(x)�y. On the other side assume that NS(x)�y for some x, y ∈ [0, 1].
We consider two cases. If NS(x) < y, then there exists some t ′ < y such that S(x, t ′) = 1, and the monotonicity
of S implies that S(x, y) = 1. If NS(x) = y then either y ∈ {t ∈ [0, 1]|S(x, t) = 1} and thus S(x, y) = 1, or
y /∈ {t ∈ [0, 1]|S(x, t) = 1}. Therefore, there exists a decreasing sequence (ti)i∈N such that ti > y and S(x, ti) = 1
for all i ∈ N and limi→∞ ti = y. By the right-continuity of S we get

S(x, y) = S

(
x, lim

i→∞ ti

)
= lim

i→∞ S(x, ti) = lim
i→∞ 1 = 1,

a contradiction.
(ii) From the previous point we know that S and NS satisfy (6). Because NS(x)�NS(x) for all x ∈ [0, 1], one has

S(x, NS(x)) = 1, which means, by the definition of NS , that the infimum in (5) is the minimum.
(iii) The proof of this point is included in [24, Corollary 1]. �

Now we analyze the law of excluded middle, which in the classical case has the following form: p∨¬p = �.

Definition 2.12. Let S be a t-conorm and N a fuzzy negation. We say that the pair (S, N) satisfies the law of excluded
middle if

S(N(x), x) = 1, x ∈ [0, 1]. (LEM)

A graphical interpretation of the law of excluded middle (LEM) is the following: the graph of the negation N
demarcates the region on the unit square [0, 1]2 above which S = 1. It is possible that there are a few more points
below the graph of N on whom S assumes the value 1. For example, consider the Łukasiewicz t-conorm SLK and the
strict negation NK(x) = 1 − x2. Then SLK(NK(0.5), 0.5) = SLK(0.75, 0.5) = 1. Also notice that SLK(0.5, 0.5) = 1.

Now the following result is easy to see.

Lemma 2.13. Let S be a t-conorm and N a fuzzy negation. If the pair (S, N) satisfies (LEM), then

(i) N �NS ;
(ii) NS ◦ N(x)�x, for all x ∈ [0, 1].

Proof. (i) On the contrary, if for some x0 ∈ [0, 1] we have N(x0) < NS(x0), then S(N(x0), x0) < 1 by the definition
of NS .

(ii) From Definition 2.8 we have

NS(N(x)) = inf{t ∈ [0, 1]|S(N(x), t) = 1}, x ∈ [0, 1].
Now, since S(N(x), x) = 1 we have x�NS(N(x)) for all x ∈ [0, 1]. �



M. Baczyński, B. Jayaram / Fuzzy Sets and Systems 159 (2008) 1836–1859 1841

Example 2.14. Any t-conorm satisfies (LEM) with the greatest fuzzy negation ND2. Indeed, for any t-conorm S and
x ∈ [0, 1] we have

S(ND2(x), x) =
{

S(1, x) if x < 1
S(0, x) if x = 1

=
{

1 if x < 1
x if x = 1

= 1. (7)

From the previous result and Table 4 it follows, that if S is a positive t-conorm, then it satisfies (LEM) only with ND2.

Example 2.15. That the conditions in Lemma 2.13 are only necessary and not sufficient follow from the following
example. Consider the non-right-continuous nilpotent maximum t-conorm

SnM∗(x, y) =
{

1 if x + y > 1,

max(x, y) otherwise,
x, y ∈ [0, 1].

Then its natural negation is the classical negation, i.e., NS(x) = NC(x) = 1−x and NS ◦NC(x) = x for all x ∈ [0, 1].
But the pair (SnM∗ , NC) does not satisfy (LEM). Indeed, for x = 0.5 we get

SnM∗(NS(0.5), 0.5) = SnM∗(0.5, 0.5) = 0.5.

Interestingly, for the right-continuous t-conorms the condition (i) from Lemma 2.13 is both necessary and sufficient.

Proposition 2.16. For a right-continuous t-conorm S and a fuzzy negation N the following statements are equivalent:

(i) The pair (S, N) satisfies (LEM).
(ii) N �NS .

Proof. From Lemma 2.13 it is enough to show that (ii) �⇒ (i). Assume, that N(x)�NS(x) for all x ∈ [0, 1]. By virtue
of (6) we get, that S(x, N(x)) = 1 for all x ∈ [0, 1], so the pair (S, N) satisfies (LEM). �

In the class of continuous functions we get the following important fact.

Proposition 2.17 (cf. Fodor and Roubens [14, Theorem 1.8]). For a continuous t-conorm S and a continuous fuzzy
negation N the following statements are equivalent:

(i) The pair (S, N) satisfies (LEM).
(ii) S is a nilpotent t-conorm, i.e., S is �-conjugate with the Łukasiewicz t-conorm SLK, i.e., there exists � ∈ �,

which is uniquely determined, such that S has the representation

S(x, y) = �−1(min(�(x) + �(y), 1)), x, y ∈ [0, 1]
and

N(x)�NS(x) = �−1(1 − �(x)), x ∈ [0, 1].

Proof. (i) �⇒ (ii) Assume, that S is a continuous t-conorm, N a continuous fuzzy negation and the pair (S, N) satisfies
(LEM). Since S is continuous, it is uniquely representable as an ordinal sum of continuous Archimedean t-conorms
(see [21, Corollaries 5.12 and 5.5]). The negation N is continuous, so Theorem 3.4 from [22] implies that it has exactly
one fixed point e ∈ (0, 1) for which S(e, e) = S(N(e), e) = 1. Therefore, for all x�e we have S(x, x) = 1. Thus S is
not idempotent or strict. This fact follows also from Example 2.14, since they are both positive t-conorms.

Assume now that S is not Archimedean, i.e., from the above observation it is not nilpotent. Since it is continuous,
there exists x0 ∈ (0, 1) such that S(x0, x0) = x0 (cf. Remark 2.5(i)). Hence there exists a ∈ [x0, e] ⊂ (0, 1) such that
the summand 〈a, 1, S1〉 of S is such that S1 a nilpotent t-conorm, and it is well known that S1 is �-conjugate with the
Łukasiewicz t-conorm SLK for some unique � ∈ � (cf. [21, Corollary 5.7 and Remark 5.8]). One can calculate that in
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this case the natural negation of S has the following form:

NS(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if 0�x�a,

a + (1 − a)�−1
(

1 − �

(
x − a

1 − a

))
if a < x < 1,

0 if x = 1.

(8)

Indeed, firstly we show that NS(x) = 1 for x ∈ [0, a]. If we assume that a�NS(a), then by the monotonicity of S and
Proposition 2.16 we get

a = S(a, a)�S(NS(a), a) = 1,

contradictory to the assumption a < 1. Assume now that a < NS(a). The representation of an ordinal sum implies
that S(a, a) = a and S(a, 1) = 1, so by the continuity of S there exists y0 > a, such that NS(a) = S(a, y0), hence

NS(a) = S(a, y0) = S(S(a, a), y0) = S(a, S(a, y0)) = S(a, NS(a)) = 1.

Since NS is a negation, it is decreasing, so NS(x) = 1 for every x ∈ [0, a]. Next see that from the structure of the
ordinal sum and the formula for SLK we get, in particular, that

S(x, y) =
⎧⎨
⎩ a + (1 − a) min

(
�−1

(
�

(
x − a

1 − a

)
+ �

(
y − a

1 − a

))
, 1

)
if x, y ∈ [a, 1],

max(x, y) if x ∈ [a, 1], y ∈ [0, a),

from which we obtain (8) for x ∈ (a, 1]. Let us observe now that NS is not continuous for x = 1, because
limx→1− NS(x) = a < 1. From Lemma 2.13(i) we get that N �NS , but one can easily check that there does not
exist any continuous fuzzy negation which is greater than or equal to NS , a contradiction.

It shows that S is Archimedean, so it has to be nilpotent, and in this case a = 0. Therefore S is �-conjugate with
the Łukasiewicz t-conorm for some unique � ∈ �. Now, from (5) and (8) for � = � and a = 0 we have that
NS(x) = �−1(1 − �(x)) for all x ∈ [0, 1] and because of Lemma 2.13(i) we get N �NS .

(ii) �⇒ (i) The proof in this direction is immediate. �

Remark 2.18. We would like to underline, that in Theorem 1.8 of [14] the authors assume that N is strict. Further, the
assumption that N is continuous is crucial. As a counterexample consider the strict t-conorm SP, which is continuous
and satisfies (LEM) with non-continuous negation ND2. In particular, Propositions 1 and 2 in [25] cited from [14]
without any assumption on N are not correct.

Finally in this section we present some new results regarding De Morgan triples.

Definition 2.19 (Klement et al. [21, p. 232]). A triple (T , S, N), where T is a t-norm, S is a t-conorm and N is a strict
negation, is called a De Morgan triple if

T (x, y) = N−1(S(N(x), N(y))), S(x, y) = N−1(T (N(x), N(y)))

for all x, y ∈ [0, 1].

Theorem 2.20 (Klement et al. [21, p. 232]). For a t-norm T, t-conorm S and a strict fuzzy negation N the following
statements are equivalent:

(i) (T , S, N) is a De Morgan triple.
(ii) N is a strong negation and S is the N-dual of T, i.e., S(x, y) = N(T (N(x), N(y))), for all x, y ∈ [0, 1].
Using the above theorem it can be shown that the following relation exists between NT and NS .

Theorem 2.21. Let T be a left-continuous t-norm and S be a t-conorm. If (T , NT , S) is a De Morgan triple, then

(i) NS = NT is a strong negation,
(ii) S is right-continuous.
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Proof. (i) From Theorem 2.20 it follows that NT is a strong negation. Let us assume that NT 
= NS . Then there exists
x0 ∈ (0, 1) such that NT (x0) 
= NS(x0). We consider the following two cases:

(a) If NT (x0) < NS(x0), then there exists y ∈ (0, 1) such that NT (x0) < y < NS(x0). Since NT is a bijection there
exists y0 ∈ (0, 1) such that NT (y0) = y, i.e., NT (x0) < NT (y0) < NS(x0). Now, by the monotonicity of S and T, S
being the NT -dual of T and the definitions of NT , NS we have

S(x0, NT (y0)) 
= 1 �⇒ NT (T (NT (x0), NT ◦ NT (y0))) 
= 1

�⇒ T (NT (x0), y0) 
= 0

�⇒ y0 > NT ◦ NT (x0) = x0

�⇒ NT (y0) < NT (x0),

a contradiction to our assumption.
(b) On the other hand, if NT (x0) > NS(x0), then there exists y ∈ (0, 1) such that NT (x0) > y > NS(x0). Because

NT is a bijection there exists y0 ∈ (0, 1) such that NT (y0) = y, i.e., NT (x0) > NT (y0) > NS(x0). Similarly as above
we have

S(x0, NT (y0)) = 1 �⇒ NT (T (NT (x0), NT ◦ NT (y0))) = 1

�⇒ T (NT (x0), y0) = 0

�⇒ y0 �NT ◦ NT (x0) = x0

�⇒ NT (y0)�NT (x0),

a contradiction to our assumption.
(ii) If T is a left-continuous t-norm and NT is a strong negation, then it is straightforward to see that S, as an NT -dual

of T, is right-continuous. �

3. Fuzzy implications and basic algebraic properties

In the literature, especially at the beginnings, we can find several different definitions of fuzzy implications. In this
article we will use the following one, which is equivalent to the definition introduced by Fodor and Roubens [14,
Definition 1.15].

Definition 3.1. A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if, for all x, y, z ∈ [0, 1], it satisfies

I (x, z)�I (y, z) if x�y, (I1)

I (x, y)�I (x, z) if y�z, (I2)

I (0, 0) = 1, I (1, 1) = 1, I (1, 0) = 0. (I3)

The set of all fuzzy implications is denoted by FI.

We can easily deduce, that each fuzzy implication I is constant for x = 0 and for y = 1, i.e., I satisfies the following
properties, called left and right boundary conditions, respectively:

I (0, y) = 1, y ∈ [0, 1], (9)

I (x, 1) = 1, x ∈ [0, 1]. (10)

Therefore, I satisfies also the normality condition I (0, 1) = 1. Consequently, every fuzzy implication restricted to the
set {0, 1}2 coincides with the classical implication, so it fulfils the binary implication truth table, i.e., Table 1.

Definition 3.2 (cf. Trillas and Valverde [37],Dubois and Prade [10],Fodor and Roubens [14],Gottwald [15]). A fuzzy
implication I is said to satisfy

(i) the left neutrality property or is said to be left neutral, if

I (1, y) = y, y ∈ [0, 1]; (NP)
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(ii) the exchange principle, if

I (x, I (y, z)) = I (y, I (x, z)), x, y, z ∈ [0, 1]; (EP)

(iii) the identity principle, if

I (x, x) = 1, x ∈ [0, 1]; (IP)

(iv) the ordering property, if

x�y ⇐⇒ I (x, y) = 1, x, y ∈ [0, 1]; (OP)

(v) the law of contraposition with respect to a fuzzy negation N, CP(N), if

I (x, y) = I (N(y), N(x)), x, y ∈ [0, 1]. (CP)

Just as in the case of t-norms or t-conorms, a fuzzy negation can be obtained from fuzzy implications too as follows.

Definition 3.3. If I is a fuzzy implication, then the function NI : [0, 1] → [0, 1] defined by

NI (x) = I (x, 0), x ∈ [0, 1],
is called the natural negation of I.

In the following results we discuss some relationships that exist between the above properties of fuzzy implications.
They will be useful in the sequel.

Lemma 3.4 (Baczyński and Jayaram [3, Lemma 2.2], cf. Bustince et al. [6, Lemma 1]). Let I : [0, 1]2 → [0, 1]be any
function and N a fuzzy negation.

(i) If I satisfies (I1) and CP (N), then I satisfies (I2).
(ii) If I satisfies (I2) and CP (N), then I satisfies (I1).

(iii) If I satisfies (NP) and CP(N), then I satisfies (I3) and N = NI is a strong negation.

Lemma 3.5 (Baczyński and Jayaram [3, Corollary 2.3]). Let I be a fuzzy implication which satisfies (NP). If NI is not
a strong negation, then I does not satisfy the contrapositive symmetry with any fuzzy negation.

Lemma 3.6 (Baczyński and Jayaram [3, Lemma 2.4], cf. Bustince et al. [6, Lemma 1]). Let I : [0, 1]2 → [0, 1]be any
function and NI be a strong negation.

(i) If I satisfies CP (NI ), then I satisfies (NP).
(ii) If I satisfies (EP), then I satisfies (I3), (NP) and CP (NI ).

Corollary 3.7 (Baczyński and Jayaram [3, Corollary 2.5]). Let I be a fuzzy implication which satisfies (NP) and (EP).
Then I satisfies CP (N) with some fuzzy negation N if and only if N = NI is a strong negation.

Lemma 3.8 (Baczyński [2, Lemma 6]). If a function I : [0, 1]2 → [0, 1] satisfies (EP) and (OP), then I satisfies (I1),
(I3), (NP) and (IP).

Proposition 3.9 (cf. Fodor and Roubens [14, Corollary 1.1]). If a function I : [0, 1]2 → [0, 1] satisfies (EP) and (OP),
then the following statements are equivalent:

(i) NI is a continuous function.
(ii) NI is a strong negation.

From Proposition 3.9 and Lemmas 3.4, 3.6 and 3.8 we obtain the following very important result (see also [14,
Corollary 1.2]).
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Corollary 3.10. If a function I : [0, 1]2 → [0, 1] satisfies (EP), (OP) and NI is a continuous function, then I ∈ FI
and it satisfies (NP), (IP) and (CP) only with respect to NI , which is a strong negation.

The following result shows that conjugation preserves all the properties defined in this section.

Proposition 3.11 (cf. Baczyński [2, Lemma 11]). Let � ∈ �. If I : [0, 1]2 → [0, 1] satisfies (NP) ((EP), (IP), (OP)),
then I� also satisfies (NP) ((EP), (IP), (OP)). Moreover, if I is continuous so is I�.

In the next two sections we introduce the two main classes of fuzzy implications that have been well established
in the literature, viz., (S, N)- and R-implications. After giving their definitions, we discuss some of their properties
and also give their characterizations, where available. Also some representation results are obtained based on these
characterizations.

4. (S, N)-implications: properties and characterizations

It is well known in the classical logic that the unary negation ¬ can combine with any other binary operation to
generate rest of the binary operations. This distinction of the unary ¬ is also shared by the Boolean implication →, if
defined in the following usual way:

p → q ≡ ¬p∨q.

The definition as given above was the first to catch the attention of the researchers leading to the following class of
fuzzy implications.

4.1. Definition and examples

Definition 4.1 (cf. Trillas and Valverde [37], Dubois and Prade [10], Fodor and Roubens [14], Klir and Yuan [22]
and Alsina and Trillas [1]). A function I : [0, 1]2 → [0, 1] is called an (S, N)-implication if there exists a t-conorm
S and a fuzzy negation N such that

I (x, y) = S(N(x), y), x, y ∈ [0, 1]. (11)

If N is a strong negation, then I is called a strong implication (shortly S-implication). Moreover, if an (S, N)-implication
is generated from S and N, then we will often denote this by IS,N .

It should be noted that some authors use the name S-implication, even if the negation N is not strong (see [21,
Definition 11.5]). Since the name S-implication was firstly introduced in the fuzzy logic framework by Trillas and
Valverde [36,37] with the restrictive assumptions (S is a continuous t-conorm and N is a strong negation), we use, in a
general case, the name ‘(S, N)-implication’ proposed by Alsina and Trillas [1].

Example 4.2. The following Table 5 lists few of the well-known (S, N)-implications along with the underlying
t-conorms and fuzzy negations.

Remark 4.3 (cf. Klir and Yuan [22, Theorem 11.1]). It is easy to see that for a fixed fuzzy negation N, if S1, S2 are two
comparable t-conorms such that S1 �S2, then IS1,N �IS2,N . Similarly, if S is a fixed t-conorm, then for two comparable
fuzzy negations N1, N2 such that N1 �N2 we get IS,N1 �IS,N2 . Thus, from Example 2.2 and Table 5 we have that ID
and ITD are, respectively, the least and the greatest (S, N)-implications. Further, IKD and IDC are, respectively, the
least and the greatest S-implications obtainable from the classical negation NC. Since there does not exist any least and
greatest strong negation, there does not exist any least and greatest S-implication.

4.2. Properties of (S, N)-implications

In this section we analyze (S, N)-implications with respect to the algebraic properties given in Definition 3.2. We
begin with the following remark.
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Table 5
Examples of basic (S, N)-implications

S N (S, N)-implication IS,N Name Properties

SM NC IKD(x, y) = max(1 − x, y) Kleene-Dienes (NP), (EP)
SP NC IRC(x, y) = 1 − x + xy Reichenbach (NP), (EP)
SLK NC ILK(x, y) = min(1 − x + y, 1) Łukasiewicz (NP), (EP), (IP), (OP)

SnM NC IFD(x, y) =
{

1 if x �y

max(1 − x, y) if x > y
Fodor (NP), (EP), (IP), (OP)

SD NC IDC(x, y) =
⎧⎨
⎩

y if x = 1
1 − x if y = 0
1 if x < 1 and y > 0

– (NP), (EP), (IP)

SM NK IMK(x, y) = max(1 − x2, y) – (NP), (EP)

Any S ND1 ID(x, y) =
{

1 if x = 0
y if x > 0

Least (S, N)-implication (NP), (EP)

Any S ND2 ITD(x, y) =
{

1 if x < 1
y if x = 1

Greatest (S, N)-implication (NP), (EP), (IP)

Remark 4.4 (see Trillas and Valverde [37] and Baczyński and Jayaram [3]). (i) All (S, N)-implications are fuzzy
implications which satisfy (NP) and (EP).

(ii) If I is an (S, N)-implication obtained from a fuzzy negation N, then N = NI .
(iii) Because of Corollary 3.7 we get that an (S, N)-implication I satisfies CP(N) with some fuzzy negation N if and

only if N = NI is a strong negation, i.e., I is an S-implication.

Since not all (S, N)-implications satisfy the identity principle (IP) (for example IRC and IKD), we analyze this axiom
for (S, N)-implications now.

Lemma 4.5. For a t-conorm S and a fuzzy negation N the following statements are equivalent:

(i) The (S, N)-implication IS,N satisfies (IP).
(ii) The pair (S, N) satisfies (LEM).

Proof. (i) �⇒ (ii) If IS,N satisfies (IP), then S(N(x), x) = I (x, x) = 1, for all x ∈ [0, 1], i.e., the pair (S, N) satisfies
(LEM).

(i) �⇒ (ii) Conversely, if the pair (S, N) satisfies (LEM), then IS,N (x, x) = S(N(x), x) = 1 for all x ∈ [0, 1],
i.e., IS,N satisfies (IP). �

Now, using the above fact and Proposition 2.17 we get

Theorem 4.6 (cf. Trillas and Valverde [37, Theorem 3.3]). For a continuous t-conorm S and a continuous fuzzy nega-
tion N the following statements are equivalent:

(i) The (S, N)-implication IS,N satisfies (IP).
(ii) S is a nilpotent t-conorm and N �NS .

As noted earlier, not all natural generalizations of the classical implication to multi-valued logic satisfy the ordering
property (OP). In the following we discuss results on (S, N)-implications with respect to their ordering property (OP).

Theorem 4.7. For a t-conorm S and a fuzzy negation N the following statements are equivalent:

(i) The (S, N)-implication IS,N satisfies (OP).
(ii) N = NS is a strong negation and the pair (S, NS) satisfies (LEM).

Proof. (i) �⇒ (ii) If an (S, N)-implication IS,N generated from some t-conorm S and some fuzzy negation N satisfies
(OP), then it satisfies (IP). By Lemma 4.5 the pair (S, N) satisfies (LEM). Therefore, from Lemma 2.13, we know that
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N(x)�NS(x) and NS ◦ N(x)�x for all x ∈ [0, 1]. Assume, that for some x0 ∈ [0, 1] we have NS ◦ N(x0) < x0.
Then there exists y ∈ [0, 1] such that NS ◦ N(x0) < y < x0. But now, I (x0, y) = S(N(x0), y) = 1, i.e., x0 �y from
(OP), which is a contradiction. Hence x = NS ◦ N(x) for all x ∈ [0, 1]. By virtue of Proposition 3.8 from [3] we get,
that NS is a continuous fuzzy negation and N is a strictly decreasing fuzzy negation. Further, since NS is a negation,
we get

NS(NS(x))�NS(N(x)) = x, x ∈ [0, 1]. (12)

Let us fix an arbitrary x0 ∈ [0, 1]. Thus, again from the monotonicity of NS , we have NS(NS(NS(x0)))�NS(x0). On
the other side, since (12) is true for all x ∈ [0, 1], it holds for x = NS(x0). Therefore NS(NS(NS(x0)))�NS(x0).
Because x0 was arbitrarily fixed, as a result we obtain

NS(NS(NS(x))) = NS(x), x ∈ [0, 1].
But NS is a continuous negation, and so is onto, i.e., for every y ∈ [0, 1] there exists x ∈ [0, 1] such that y = NS(x).
Hence

NS(NS(y)) = NS(NS(NS(x))) = NS(x) = y, y ∈ [0, 1].
Thus NS is a strong negation and it is obvious now that N = NS .

(ii) �⇒ (i) Assume that S is any t-conorm such that NS is a strong negation and the pair (S, NS) satisfies (LEM). We
will show that the (S, N)-implication generated from S and NS satisfies (OP). To this end fix arbitrarily x, y ∈ [0, 1]
such that x�y. By the monotonicity of S we have

IS,NS
(x, y) = S(NS(x), y)�S(NS(x), x) = 1.

On the other hand, if IS,NS
(x, y) = 1 for some x, y ∈ [0, 1], then

1 = IS,NS
(x, y) = S(NS(x), y),

which implies, by Remark 2.9(iii), that y�NS ◦ NS(x) = x, i.e., IS,NS
satisfies (OP). �

The last result in this subsection shows some relationships between (S, N)-implications and their conjugates.

Theorem 4.8 (Baczyński and Jayaram [3, Theorem 5.5]). If IS,N is an (S, N)-implication generated from some
t-conorm S and some fuzzy negation N, then the �-conjugate of IS,N is also an (S, N)-implication generated from the
�-conjugate t-conorm of S and the �-conjugate fuzzy negation of N, i.e., if � ∈ �, then

(IS,N )� = IS�,N� .

4.3. Characterizations and representations of (S, N)-implications

A first characterization of S-implications was presented by Trillas and Valverde ([37, Theorem 3.2], see also [14,
Theorem 1.13]) and it can be written in the following form.

Theorem 4.9 (Baczyński and Jayaram [3, Theorem 2.8]). For a function I : [0, 1]2 → [0, 1] the following statements
are equivalent:

(i) I is an S-implication.
(ii) I satisfies (I1) (or (I2)), (NP), (EP) and (CP) with respect to a strong negation N.

The characterization of the family of all (S, N)-implications is still an open problem, but some partial results were
recently obtained by the authors in [3]. In the following we list them and use them in the sequel to obtain some
representation results for (S, N)-implications with certain algebraic properties.
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Theorem 4.10 (Baczyński and Jayaram [3, Theorems 2.6, 5.1 and 5.2]; Baczyński and Jayaram [4]). For a function
I : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) I is an (S, N)-implication generated from some t-conorm S and some continuous (strict, strong) fuzzy negation N.
(ii) I satisfies (I1) (or (I2)), (EP) and the function NI is a continuous (strict, strong) fuzzy negation.

Moreover, the representation of the (S, N)-implication (11) is unique in this case.

It should be noted, that the properties in Theorem 4.10 are mutually independent (see [3,4]).
In the class of continuous function we have the following important result.

Proposition 4.11 (Baczyński and Jayaram [3, Proposition 5.4]). For a function I : [0, 1]2 → [0, 1] the following state-
ments are equivalent:

(i) I is a continuous (S, N)-implication.
(ii) I is an (S, N)-implication with continuous S and N.

As an interesting consequence of the above characterization, Theorem 4.6 and the representation of strong negations
(see [35]; [14, Theorem 1.1]) we get the following corollary.

Corollary 4.12 (cf. Bustince et al. [6, Theorem 7]). For a function I : [0, 1]2 → [0, 1] the following statements are
equivalent:

(i) I continuous and satisfies (I1) (or (I2)), (EP), (IP) and NI is a strong negation.
(ii) I is an S-implication with a continuous t-conorm S, which satisfies (IP).

(iii) There exist �, � ∈ � such that

I (x, y) = �−1(min(�(�−1(1 − �(x))) + �(y), 1)), x, y ∈ [0, 1]

and

�−1(1 − �(x))��−1(1 − �(x)), x ∈ [0, 1].

Finally, we are able to prove one of the most important results connected with (S, N)-implications. It is usually called
in the literature as Smets–Magrez Theorem, since the equivalence between points (i) and (v) was presented by Smets
and Magrez in [34]. We would like to note, that the similar result has been obtained by Trillas and Valverde 2 years
earlier (see [37, Theorem 3.4]). In fact, in the article [34], the authors required more conditions than it is necessary,
which was shown by Fodor and Roubens (see [14, Theorem 1.15]) and Baczyński [2].

Theorem 4.13 (cf. Trillas and Valverde [37], Smets and Magrez [34], Fodor and Roubens [14], Baczyński [2]). For a
function I : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) I is continuous and satisfies (EP), (OP).
(ii) I is an (S, N)-implication obtained from a continuous t-conorm S and a continuous fuzzy negation N, which

satisfies (OP).
(iii) I is a continuous (S, N)-implication, which satisfies (OP).
(iv) I is an (S, N)-implication obtained from a nilpotent t-conorm and its natural negation.
(v) I is �-conjugate with the Łukasiewicz implication ILK, i.e., there exists � ∈ �, which is uniquely determined,

such that

I (x, y) = �−1(min(1 − �(x) + �(y), 1)), x, y ∈ [0, 1]. (13)

Proof. (i) �⇒ (ii) Assume, that I is a continuous function which satisfies (EP) and (OP). This implies that NI is a
continuous function. By virtue of Corollary 3.10 we obtain that I ∈ FI and I satisfies (NP), (IP). Moreover NI is a
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strong negation. Now, from Theorem 4.10, it follows that I is an (S, N)-implication generated from some t-conorm S
and some strong negation N. Since I is continuous, Proposition 4.11 implies that S is also continuous.

(ii) ⇐⇒ (iii) This equivalence is a consequence of Proposition 4.11.
(iv) ⇐⇒ (v) This equivalence is obvious and follows from the representation of nilpotent t-conorms.
(ii) �⇒ (v) Let us assume, that I is an (S, N)-implication obtained from a continuous t-conorm S and a continuous

fuzzy negation N, which satisfies (OP). From Remark 4.4 we see that I also satisfies (NP), (EP) and N = NI . Again
by virtue of Corollary 3.10 we get that NI is a strong negation and I satisfies also (IP). From Corollary 4.12 there exist
�, � ∈ � such that

I (x, y) = �−1(min(�(�−1(1 − �(x))) + �(y), 1)), x, y ∈ [0, 1]
and

NI (x) = �−1(1 − �(x))��−1(1 − �(x)) = NS(x), x ∈ [0, 1].
Since I satisfies (OP), by virtue of Theorem 4.7 we know, that NI = NS . In particular, I has the form (13).

(v) �⇒ (i) It can be easily verified that ILK is a continuous fuzzy implication which satisfies (EP) and (OP). Because
of Proposition 3.11 the function I given by (13) is also continuous and satisfies (EP), (OP). �

Remark 4.14. The continuity of the t-conorm S is important in the above theorem. Consider the Fodor implication
IFD. It is a non-continuous (S, N)-implication, not conjugate with the Łukasiewicz implication and obtained from the
right-continuous t-conorm SnM. But it satisfies both (EP) and (OP).

5. R-implications: properties and characterizations

From Section 4 we see that (S, N)-implications are the generalization of the material implication of classical two-
valued logic to fuzzy logic. From the isomorphism that exists between classical two-valued logic and classical set
theory one can immediately note the following set theoretic identity:

P ∪ Q = P \ Q = ∪{T |P ∩ T ⊆ Q},
where P, Q are subsets of some universal set. The above identity gives another way of defining the Boolean implication
and is employed in the intuitionistic logic. Fuzzy implications obtained as the generalization of the above identity form
the family of residuated implications, usually called as R-implications in the literature. In this section, we investigate
properties they possess, analogous to our treatment of (S, N)-implications in Section 4.

5.1. Definition and examples

Definition 5.1 (see Trillas and Valverde [37], Dubois and Prade [10], Fodor and Roubens [14] and Gottwald [15]).
A function I : [0, 1]2 → [0, 1] is called an R-implication if there exists a t-norm T such that

I (x, y) = sup{t ∈ [0, 1]|T (x, t)�y}, x, y ∈ [0, 1]. (14)

If an R-implication is generated from a t-norm T, then we will often denote this by IT .

Firstly observe, that since for any t-norm T and all x ∈ [0, 1] we have T (x, 0) = 0, the appropriate set in (14) is
non-empty. It is very important to note that the name ‘R-implication’ is a short version of ‘residual implication’, and IT

is also called as ‘the residuum of T’. This class of implications is related to a residuation concept from the intuitionistic
logic. In fact, it has been shown that in this context this name is proper only for left-continuous t-norms.

Proposition 5.2 (cf. Gottwald [15, Proposition 5.4.2 and Corollary 5.4.1]). For a t-norm T the following statements
are equivalent:

(i) T is left-continuous.
(ii) T and IT form an adjoint pair, i.e., they satisfy the residuation property

T (x, t)�y ⇐⇒ IT (x, y)� t, x, y, t ∈ [0, 1]. (RP)
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Table 6
Examples of basic R-implications

t-norm T R-implication IT Name Properties

TM IGD(x, y) =
{

1 if x �y

y if x > y
Gödel (NP), (EP), (IP), (OP)

TP IGG(x, y) =
{

1 if x �y
y

x
if x > y

Goguen (NP), (EP), (IP), (OP)

TLK ILK Łukasiewicz (NP), (EP), (IP), (OP)
TnM IFD Fodor (NP), (EP), (IP), (OP)
TD ITD Greatest R-implication (NP), (EP), (IP)

(iii) The supremum in (14) is the maximum, i.e.,

IT (x, y) = max{t ∈ [0, 1]|T (x, t)�y},
where the right side exists for all x, y ∈ [0, 1].

Example 5.3. Table 6 lists few of the well-known R-implications along with their t-norms from which they have been
obtained. Note that TD is not left-continuous but still ITD is a fuzzy implication.

Remark 5.4. It is easy to observe that if T1 and T2 are two comparable t-norms such that T1 �T2, then IT1 �IT2 . Thus,
since TD and TM are, respectively, the least and the greatest t-norms (see [21, Remark 1.5(i)]), from Table 6 we have
that IGD and ITD are, respectively, the least and the greatest R-implications. Further, since there does not exist any least
left-continuous t-norm, there does not exist any greatest R-implication generated from a left-continuous t-norm. IGD
is again the least R-implication generated from a left-continuous t-norm.

5.2. Properties of R-implications

Now we examine R-implications based on the properties introduced in Section 3.

Theorem 5.5 (cf. Fodor and Roubens [14] and Gottwald [15]). If T is any t-norm (not necessarily left-continuous),
then IT ∈ FI. Moreover, IT satisfies (NP) and (IP).

Proof. Let T be any t-norm and let IT be a function defined by (14). Firstly we show that IT satisfies axioms from Defi-
nition 3.1. Let x1, x2, y ∈ [0, 1] be arbitrarily fixed and assume that x1 �x2. We have to show that IT (x1, y)�IT (x2, y),
which is equivalent to the inequality

sup{t ∈ [0, 1]|T (x1, t)�y}� sup{t ∈ [0, 1]|T (x2, t)�y},
so it is enough to show the inclusion

{t ∈ [0, 1]|T (x1, t)�y} ⊃ {t ∈ [0, 1]|T (x2, t)�y}.
Take any t ∈ [0, 1] such that T (x2, t)�y. Since x1 �x2, from the monotonicity of a t-norm T we get T (x1, t)�T (x2, t),
thus T (x1, t)�y. Therefore IT satisfies (I1). Now assume that x, y1, y2 ∈ [0, 1] are arbitrarily fixed and y1 �y2. By
similar deduction as above we get, that (I2) follows from

{t ∈ [0, 1]|T (x, t)�y1} ⊂ {t ∈ [0, 1]|T (x, t)�y2},
which is the consequence of the assumption, that y1 �y2. Moreover,

IT (0, 0) = sup{t ∈ [0, 1]|T (0, t)�0} = sup{t ∈ [0, 1]|0�0} = 1,

IT (1, 1) = sup{t ∈ [0, 1]|T (1, t)�1} = sup{t ∈ [0, 1]|t �1} = 1,

IT (1, 0) = sup{t ∈ [0, 1]|T (1, t)�0} = sup{t ∈ [0, 1]|t �0} = 0,
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which shows, that IT ∈ FI. Further, for any y ∈ [0, 1] we get

IT (1, y) = sup{t ∈ [0, 1]|T (1, t)�y} = sup{t ∈ [0, 1]|t �y} = y,

so IT satisfies (NP). Finally, since T (x, 1) = x for all x ∈ [0, 1], we have

IT (x, x) = sup{t ∈ [0, 1]|T (x, t)�x} = 1. �

Without additional assumptions on a t-norm T, the residual implication IT may not satisfy other basic properties.

Example 5.6. (i) The R-implication ITD from Table 6 satisfies (EP), but does not satisfy (OP). Moreover, since the
natural negation of ITD is discontinuous, from Lemma 3.5 we see that ITD does not satisfy (CP) with any fuzzy negation.

(ii) Consider the non-left-continuous t-norm given in [21], Example 1.24(i) as follows:

TB∗(x, y) =
{

0 if (x, y) ∈ (0, 0.5)2,

min(x, y) otherwise,
x, y ∈ [0, 1].

Then the R-implication generated from TB∗ is given by:

ITB∗(x, y) =
⎧⎨
⎩

1 if x�y,

0.5 if x > y and x ∈ [0, 0.5),

y otherwise,
x, y ∈ [0, 1].

Obviously, ITB∗ satisfies (OP) but not (EP). To see this, let x = 0.4, y = 0.5 and z = 0.3. In this situation we have

ITB∗(x, ITB∗(y, z)) = ITB∗(0.4, ITB∗(0.5, 0.3)) = ITB∗(0.4, 0.3) = 0.5,

while

ITB∗(y, ITB∗(x, z)) = ITB∗(0.5, ITB∗(0.4, 0.3)) = ITB∗(0.5, 0.5) = 1.

(iii) Consider now the non-left-continuous t-norm T given in [21], Example 1.24(ii) as follows:

TB(x, y) =
{

0 if (x, y) ∈ (0, 1)2 \ [0.5, 1)2,

min(x, y) otherwise,
x, y ∈ [0, 1].

Then the R-implication generated from TB is given by:

ITB(x, y) =
⎧⎨
⎩

1 if x�y or x, y ∈ [0, 0.5),

0.5 if x ∈ [0.5, 1) and y ∈ [0, 0.5),

y otherwise,
x, y ∈ [0, 1].

It is obvious that ITB does not satisfy (OP). Now, putting x = 0.8, y = 0.5 and z = 0.3, we have

ITB(x, ITB(y, z)) = ITB(0.8, ITB(0.5, 0.3)) = ITB(0.8, 0.5) = 0.5,

while

ITB(y, ITB(x, z)) = ITB(0.5, ITB(0.8, 0.3)) = ITB(0.5, 0.5) = 1.

Hence ITB does not satisfy (EP), too.
(iv) Interestingly, if we consider the following non-left-continuous nilpotent minimum t-norm (see [26, p. 851])

TnM∗(x, y) =
{

0 if x + y < 1,

min(x, y) otherwise,
x, y ∈ [0, 1],

then the R-implication generated from TnM∗ is the Fodor implication IFD, which satisfies both (EP) and (OP).

Remark 5.7. Though both the t-norms TB∗ and TB are not left-continuous, TB∗ is a border continuous t-norm which,
as we show below, is an equivalent condition for the corresponding IT to have (OP).
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Proposition 5.8. For a t-norm T the following statements are equivalent:

(i) The R-implication IT satisfies (OP).
(ii) T is border continuous.

Proof. Let T be any t-norm and for any fixed x ∈ [0, 1], consider the vertical segment Tx(.) = T (x, .). Obviously,
Tx is a one-variable function from [0, 1] to [0, x]. Now notice that if T is a border continuous t-norm, then for every
x ∈ (0, 1) there exists a neighborhood Ux = (ax, 1], where ax ∈ (0, 1) is dependent on the chosen x, such that Tx is
continuous on Ux .

(i) �⇒ (ii) Let IT satisfy (OP). On the contrary, if T is not border continuous, then there exists an x0 ∈ (0, 1) such
that limy→1− T (x0, y) = z < x0. Now, by definition IT (x0, z) = sup{t ∈ [0, 1]|T (x0, t)�z} = 1, a contradiction to
the fact that IT satisfies (OP).

(ii) �⇒ (i) Let T be a border continuous t-norm. On the contrary, let IT not satisfy the ordering property (OP). Since
for any T we have that x�y �⇒ IT (x, y) = 1, there exists x0, y0 ∈ (0, 1) such that x0 > y0 and IT (x0, y0) = 1.
Let x′ = Tx0(ax0) = T (x0, ax0)�x0. Now, we have two cases. If y0 > x′ then there exists t ∈ Ux0 and t 
= 1 such
that Tx0(t) = y0 contradicting our assumption that IT (x0, y0) = 1. On the other hand, if y0 �x′ then by definition
IT (x0, y0)�ax < 1. Hence IT satisfies (OP). �

From Theorem 5.5 and straightforward calculations we get

Theorem 5.9 (see Fodor and Roubens [14, Theorem 1.14]). If IT is an R-implication based on a left-continuous
t-norm T, then IT ∈ FI and IT satisfies (NP), (EP), (IP), (OP) and the following inequality:

IT (x, T (x, y))�y, x, y ∈ [0, 1]. (15)

Moreover, IT is left-continuous with respect to the first variable and right-continuous with respect to the second
variable.

It should be noted that (15) is important in many applications of R-implications (see [32,22]).
Once again, as in the case of (S, N)-implications, it can be easily shown that the conjugate of an R-implication is

also an R-implication.

Proposition 5.10 (cf. Baczyński [2, Proposition 12]). If IT is an R-implication based on some t-norm T, then the
�-conjugate of IT is also an R-implication generated from the �-conjugate t-norm of T, i.e., if � ∈ �, then

(IT )� = IT� .

From Proposition 2.31 of [21] and the above Proposition 5.10 we have (see also [8]):

Proposition 5.11. For a t-norm T the following statements are equivalent:

(i) (IT )� = IT , for all � ∈ �.
(ii) IT = ITD or IT = IGD.

5.3. Characterizations and representations of R-implications

Our main goal in this subsection is to present the characterization of R-implications. In fact, presently such a charac-
terization is available only for R-implications obtained from left-continuous t-norms. We also discuss the representations
of R-implications for some special classes of left-continuous t-norms. To do this we consider the dual situation now, i.e.,
the method of obtaining t-norms from fuzzy implications by a residuation principle. Since for every fuzzy implication
I we have (10), the following function TI : [0, 1]2 → [0, 1] defined by

TI (x, y) = inf{t ∈ [0, 1]|I (x, t)�y}, x, y ∈ [0, 1] (16)
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is a well-defined function of two variables and similarly to Proposition 5.2 we have

Proposition 5.12 (Baczyński [2, Corollary 10]). For a fuzzy implication I the following statements are equivalent:

(i) I is right-continuous with respect to the second variable.
(ii) I and TI form an adjoint pair, i.e., they satisfy (RP).

(iii) The infimum in (16) is the minimum, i.e.,

TI (x, y) = min{t ∈ [0, 1]|I (x, t)�y}, (17)

where the right side exists for all x, y ∈ [0, 1].
Remark 5.13. It is interesting to note that formula (16) does not always generate a t-norm. For example, if I is the
Reichenbach implication IRC, then for x > 0 we obtain TIRC(x, 1) = 1, so TIRC is not a t-norm.

Using similar techniques as in the proof of Theorem 5.9 one can prove the following result.

Theorem 5.14 (cf. Fodor and Roubens [14, Theorem 1.14] or Gottwald [15, Theorem 5.4.1]). If I ∈ FI satisfies
(EP), (OP) and is right-continuous with respect to the second variable, then TI defined by (17) is a left-continuous
t-norm. Moreover I = ITI

, i.e.,

I (x, y) = max{t ∈ [0, 1]|TI (x, t)�y}, x, y ∈ [0, 1].
From Theorems 5.9 and 5.14 we get the following well-known characterization of R-implications generated from

left-continuous t-norms.

Corollary 5.15 (cf. Miyakoshi and Shimbo [30], see also Fodor and Roubens [14, Theorem 1.14]). For a function
I : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) I is an R-implication generated from a left-continuous t-norm.
(ii) I satisfies (I2), (EP), (OP) and is right-continuous with respect to the second variable.

It should be noted that in contrast to the characterization of (S, N)-implications the problem of mutual-independence
of the above properties is still an open problem.

We also have the following connection between a left-continuous t-norm T and the R-implication generated from T.

Lemma 5.16. If T is a left-continuous t-norm, then T = TIT
.

Once again, it should be noted that in the case when T is a non-left-continuous t-norm, the TIT
obtained can be

different from T. For example, consider the t-norm TnM∗ from Example 5.6(iv). Now, the R-implication is equal to the
Fodor implication ITnM∗ = IFD, while TIFD = TnM 
= TnM∗ .

From the above results we obtain the following characterization of left-continuous t-norms.

Corollary 5.17 (see Baczyński [2, Corollary 10]). For a function T : [0, 1]2 → [0, 1] the following statements are
equivalent:

(i) T is a left-continuous t-norm.
(ii) There exists a fuzzy implication I, which satisfies (EP), (OP) and is right-continuous with respect to the second

variable, such that T is given by (17).

The following interesting result has also been proven in [2].

Theorem 5.18 (Baczyński [2, Theorem 15]). If a function I : [0, 1]2 → [0, 1] satisfies (OP), (EP) and NI is strong,
then a function T : [0, 1]2 → [0, 1] defined as

T (x, y) = NI (I (x, NI (y))), x, y ∈ [0, 1],
is a t-norm. Additionally, T and I satisfy (RP).

For some classes of t-norms we have the following representations of R-implications.
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Theorem 5.19 (Fodor and Roubens [14, Theorem 1.16]). If T is a continuous Archimedean t-norm with the additive
generator t, i.e., a continuous, strictly decreasing function t : [0, 1] → [0, 1] with t (1) = 0, then

IT (x, y) = t−1(max(t (y) − t (x), 0)), x, y ∈ [0, 1]. (18)

Theorem 5.20 (De Baets and Mesiar [7], cf. Gottwald [15, Proposition 5.4.3]). If T is a continuous t-norm with the
ordinal sum structure (3) as given in Theorem 2.7, then

IT (x, y) =
{

�−1(IT�(��(x), ��(y))) if x > y and x, y ∈ [a�, e�],
IGD(x, y) otherwise,

for all x, y ∈ [0, 1], where �� is the affine transformation defined by ��(x) = x−a�
e�−a�

.

In the case, when a left-continuous t-norm T is represented as an ordinal sum of left-continuous t-subnorms a similar
representation for IT was obtained (see [29, Theorem 5]).

It is important to note that for continuous R-implications we have the following result, which is an other version of
Theorem 4.13.

Theorem 5.21 (cf. Miyakoshi and Shimbo [30]; Fodor [13, Corollary 2]). For a function I : [0, 1]2 → [0, 1] the fol-
lowing statements are equivalent:

(i) I is continuous and satisfies (EP), (OP).
(ii) I is a continuous R-implication based on some left-continuous t-norm.
(iii) I is an R-implication based on some continuous t-norm, with a strong natural negation NI .
(iv) I is an R-implication based on some nilpotent t-norm.
(v) I is �-conjugate with the Łukasiewicz implication ILK.

6. Intersections among families of (S, N)- and R-implications

In this section, we discuss the different overlaps that exist between the above families. Let us denote the different
families of fuzzy implications as follows:

• IS,N—the family of all (S, N)-implications;
• CIS,N—the family of all continuous (S, N)-implications;
• ISC,NC

—the family of all (S, N)-implications obtained from continuous t-conorms and continuous negations;
• IS—the family of all S-implications;
• IS,NS

—the family of all (S, N)-implications obtained from t-conorms and their natural negations;
• IS∗,N∗

S
—the family of all (S, N)-implications obtained from right-continuous t-conorms and their natural negations

which are strong;
• IT—the family of all R-implications;
• CIT—the family of all continuous R-implications;
• ITLC

—the family of all R-implications obtained from left-continuous t-norms;
• CITLC

—the family of all continuous R-implications obtained from left-continuous t-norms;
• ITC

—the family of all R-implications obtained from continuous t-norms;
• CITC

—the family of all continuous R-implications obtained from continuous t-norms;
• ILK—the family of all implications �-conjugate with the Łukasiewicz implication ILK.

In the following two subsections, we summarize the known intersections between the above subfamilies of (S, N)-
and R-implications based on the results cited and obtained earlier, which is also diagrammatically represented in
Figs. 1 and 2. In the next two subsections we discuss the relationships between families of (S, N)- and R-implications.
The final result will also be diagrammatically represented.

6.1. Intersections between subfamilies of (S, N)-implications

Because of Proposition 4.11 we get
CIS,N = ISC,NC

.
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Fig. 1. Intersections among the subfamilies of (S, N)-implications.

Fig. 2. Intersections among the subfamilies of R-implications.

From Tables 4 and 5, Remark 4.4(ii) and Proposition 3.11 we have that

ILK = IS,NS
∩ ISC,NC

= ISC,NC
∩ IS∗,N∗

S

� IS∗,N∗
S

= IS,NS
∩ IS.

6.2. Intersections between subfamilies of R-implications

By Theorem 5.21 we have
CITLC

= ILK.

Quite obviously, we have the following containments:
CITLC

= ILK�ITC
�ITLC

�IT.

Similarly we get
CIT ∩ ITC

= CIT ∩ ITLC
= CITC

= CITLC
= ILK.

It is still an open problem to find, if there exists a continuous R-implication generated from a non-continuous t-norm.
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6.3. Intersections between families of (S, N)- and R-implications: known results

One of the first works on the intersection of S- and R-implications was done by Dubois and Prade [9], wherein
they have shown that S-implications and R-implications could be merged into a single family, provided that the class
of triangular norms is enlarged to non-commutative conjunction operations. See also the follow-up works of Fodor
[11,12].

Firstly, note that since ITD is both an (S, N)- and R-implications, we have

ITD ∈ IS,N ∩ IT 
= ∅,

i.e., the intersection of (S, N)- and R-implications is non-empty. Because of Theorems 4.9, 5.9 and 5.21 we get

IS ∩ ITC
= ILK.

On the other hand, by Theorem 4.13 and Corollary 5.15 we have

CIS,N ∩ ITLC
= ILK.

The weaker version of the above two results is well known in the scientific literature and, in general, we say that the only
continuous S-implication and R-implication (generated from a left-continuous t-norm) is the Łukasiewicz implication
(up to a conjugation). But there are still some open problems connected with the intersection of (S, N)-implications
(S-implications) and R-implications. It follows from the fact that there are many R-implications obtained from t-norms
that are left-continuous but non-continuous and are still S-implications.

Example 6.1. The Fodor implication IFD is an example of non-continuous fuzzy implication, which is both an
R-implication and an S-implication.

A left-continuous t-norm T is said to have a strong induced negation, if the natural negation NT is strong. Let us
denote the following family of fuzzy implications as follows:

• IT∗—the family of all R-implications obtained from left-continuous t-norms having strong induced negations.

It is clear now from our discussion, that

IS ∩ ITLC
= IT∗�ILK.

Many families of left-continuous t-norms (up to a conjugation) with strong induced negations are known in the literature
(cf. [18, p. 36], see also [20, Theorem 1], and [25]). The first of such families is the nilpotent class of t-norms, i.e., they
are �-conjugate with the Łukasiewicz t-norm TLK. Another family consists of t-norms that are �-conjugate with the
nilpotent minimum t-norm TnM. Yet another family is the class of t-norms that are �-conjugate with the Jenei t-norm
family (TJ)�, for � ∈ [0, 0.5], where

(TJ)�(x, y) =
⎧⎨
⎩

0 if x + y�1,

x + y − 1 + � if x + y > 1 and x, y ∈ (�, 1 − �],
min(x, y) otherwise,

x, y ∈ [0, 1].

Note that (TJ)0 = TLK and (TJ)0.5 = TnM. Recently, Maes and De Baets [25] while studying fuzzified normal forms
obtained the following family of t-norms (TMD)�, for � ∈ [0, 0.5), where

(TMD)�(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x + y�1,

min(x, y) if x + y > 1 and min(x, y) ∈ (�, 1 − �],
x + y − 1 if x + y > 1 and (x + y�2 − � or min(x, y) ∈ [0, �]),
1 − � otherwise,

for x, y ∈ [0, 1]. Note also that (TMD)0 = TnM.
For the methods of obtaining these families see the works of Jenei [16,17,19,20] connected with the rotation and

the rotation-annihilation and the works of Maes and De Baets [25,26,28] connected with the triple rotation. In fact, it
can be shown that every t-norm (TMD)� can be obtained as a rotation-annihilation of a particular ordinal sum of the
Łukasiewicz t-norm TLK (see [25, p. 384]).
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6.4. Intersections between families of (S, N)- and R-implications: new results

A characterization of the fuzzy implications that fall under the following intersections

IS ∩ ITLC
and IS,N ∩ ITLC

has not been known so far. In this section we investigate the above intersections and show that

IS ∩ ITLC
= IS,N ∩ ITLC

= INT(T),NT
= IT∗ ,

where INT(T),NT
is the subfamily of fuzzy implications defined as follows:

• INT(T),NT
—the family of all (S, N)-implications obtained from the NT -dual t-conorms of the left-continuous t-norm

T whose natural negation NT is strong.

Theorem 6.2. For a left-continuous t-norm T, a t-conorm S and a fuzzy negation N the following statements are
equivalent:

(i) The R-implication IT is also an (S, N)-implication IS,N , i.e., IT = IS,N .
(ii) N = NT is a strong negation and (T , N, S) form a De Morgan triple.

Proof. (i) �⇒ (ii) Assume that there exist a left-continuous t-norm T, a fuzzy negation N and a t-conorm S such that
IT = IS,N . For better readability we denote this function by I. Since I is an R-implication, from Corollary 5.15 it
satisfies (OP). Since I is also an (S, N)-implication, by Theorem 4.7, we have that N = NS is a strong negation. On
the other side by virtue of Remark 4.4(ii) we get

N(x) = NIS,N
(x) = IS,N (x, 0) = IT (x, 0) = NT (x), x ∈ [0, 1].

Further, since I satisfies (OP), (EP) and NI is strong, from Theorem 5.18 we have

T (x, y) = NI (I (x, NI (y))) = NI (S(NI (x), NI (y))) = NT (S(NT (x), NT (y)))

= N(S(N(x), N(y))),

i.e., (T , NT , S) form a De Morgan triple.
(ii) �⇒ (i) Firstly see, that the R-implication IT is an (S, N)-implication. Indeed, since IT satisfies (I1), (EP) and

its natural negation NIT
= NT is a strong negation, by Theorem 4.10 we get that IT is an (S, N)-implication, i.e.,

IT = IS′,N ′ for an appropriate t-conorm S′ and a strong negation N ′. Observe now that IT = IS,NS
. Indeed, if (T , N, S)

form a De Morgan triple, then from our assumptions and Theorem 2.21 it follows that S is a right-continuous t-conorm
such that N = NS is a strong negation. Therefore

NS(x) = N(x) = NT (x) = NIT
(x) = IT (x, 0) = IS′,N ′(x, 0) = NIS′,N ′ (x) = N ′(x),

for all x ∈ [0, 1]. Hence IT = IS′,NS
. Finally, from the proof of (i) �⇒ (ii) above we know that T is the NS dual of S′

and by our assumption T is the NS dual of S. Hence S = S′, i.e., IT = IS,NS
. �

In fact, using Theorems 2.20 and 2.21 the above result can be restated as follows.

Theorem 6.3. For a left-continuous t-norm T and a t-conorm S the following statements are equivalent:

(i) The R-implication IT is also an (S, N)-implication IS,N .
(ii) The R-implication IT is also an S-implication IS,N with the strong negation NT .
(iii) (T , NT , S) form a De Morgan triple.

Remark 6.4. (i) The left-continuity of T is very important in the above theorems. For example, consider any t-conorm
S whose natural negation NS 
= ND2. But, IS,ND2 = ITD which is also an R-implication obtained from the non-left-
continuous t-norm TD. It is obvious that the triple (TD, ND2, S) do not form a De Morgan triple.

(ii) It should also be noted that even if T is a non-left-continuous t-norm, the NT can still be strong. Once again,
consider the t-norm TnM∗ from Example 5.6 (iv). Now, NTnM∗ = NC and ITnM∗ = IFD, which is an (S, N)-implication.
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Fig. 3. Intersections between families of (S, N)- and R-implications.

Theorem 6.5. For a right-continuous t-conorm S and a t-norm T the following statements are equivalent:

(i) The (S, N)-implication IS,NS
is also the R-implication IT .

(ii) (S, NS, T ) form a De Morgan triple.

The results presented in this section are also diagrammatically represented in Fig. 3, for which the following example
will be useful.

Example 6.6. Consider the following non-right-continuous t-conorm which is NC-dual of the t-norm TB∗ :

SB∗(x, y) =
{

1 if (x, y) ∈ (0.5, 1)2,

max(x, y) otherwise,
x, y ∈ [0, 1].

Then its natural negation is the discontinuous function given by

NSB∗ (x) =
⎧⎨
⎩

1 if x ∈ (0, 0.5),

0.5 if x ∈ (0.5, 1),

0 if x = 1,

x ∈ [0, 1].

The (S, N)-implication obtained from SB∗ and NSB∗ is given by

ISB∗ ,NSB∗ (x, y) =
⎧⎨
⎩

1 if x ∈ [0, 0.5],
0.5 if x ∈ (0.5, 1) and y ∈ [0, 0.5],
y otherwise,

x, y ∈ [0, 1].

Obviously, ISB∗ ,NSB∗ does not satisfy (IP), and therefore is not an R-implication.

7. Concluding remarks

In this work, we have given what should be seen as the ‘state-of-the-art’ review of two of the well-studied families of
fuzzy implications, viz., (S, N )- and R-implications, detailing their definitions, properties, characterizations and some
representation results, illustrated ably with examples. Also, we have obtained the exact intersections between some
subfamilies of the above classes of fuzzy implications.

The authors in [3] note that the method employed by them to obtain the above characterizations, viz., Theorem 4.10,
cannot be adopted for characterizing (S, N)-implications from non-continuous negations (see [3, Remark 4.4]). More-
over, the representation of (S, N)-implications in this case may not be unique. Also, characterization of R-implications
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generated from non-left-continuous t-norms is still unknown. All this discussion leaves us with the following open
problems.

Problem 7.1. Characterize the following:

(i) (S, N)-implications generated from non-continuous negations;
(ii) R-implications generated from non-left-continuous t-norms;

(iii) continuous R-implications generated from non-left-continuous t-norms;
(iv) the non-empty intersection IS,N ∩ IT.
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