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Abstract

Recently, Vemuri and Jayaram proposed a novel method of generating fuzzy implications from a given
pair of fuzzy implications. Viewing this as a binary operation ~ on the set I of all fuzzy implications
they obtained, for the first time, a monoid structure (I,~) on the set I. Some algebraic aspects of (I,~)
had already been explored and hitherto unknown representation results for the Yager’s families of fuzzy
implications were obtained in [Representations through a Monoid on the set of Fuzzy Implications, Fuzzy
Sets and Systems, 247, 51-67]. However, the properties of fuzzy implications generated or obtained using
the ~-composition have not been explored. In this work, the preservation of the basic properties like
neutrality, ordering and exchange principles, the functional equations that the obtained implications satisfy,
the powers w.r.t. ~ and their convergence, and the closures of some families of fuzzy implications w.r.t. the
operation ~, specifically the families of (S,N)-, R-, f - and g-implications, are studied. This study shows
that the ~-composition carries over many of the desirable properties of the original fuzzy implications to
the generated fuzzy implications and further, due to the associativity of the ~-composition one can obtain,
often, infinitely many new fuzzy implications from a single fuzzy implication through self-composition w.r.t.
the ~-composition.
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1. Introduction

Fuzzy implications, along with triangular norms (t-norms, in short) form the two most important fuzzy
logic connectives. They are a generalisation of the classical implication and conjunction, respectively, to
multi- valued logic and play an equally important role in fuzzy logic as their counterparts in classical logic.

Fuzzy implications on the unit interval [0, 1] are defined as follows.

Definition 1.1 ([4], Definition 1.1.1 & [27, 16]). A function I : [0, 1]2 → [0, 1] is called a fuzzy impli-
cation if it satisfies, for all x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions:

if x1 ≤ x2, then I(x1, y) ≥ I(x2, y) , i.e., I( · , y) is decreasing , (I1)
if y1 ≤ y2, then I(x, y1) ≤ I(x, y2) , i.e., I(x, · ) is increasing , (I2)
I(0, 0) = 1 , I(1, 1) = 1 , I(1, 0) = 0 . (I3)
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The set of all fuzzy implications will be denoted by I.

From Definition 1.1, it is clear that a fuzzy implication, when restricted to {0, 1}, coincides with the
classical implication. Table 1 (see also, Table 1.3 in [4]) lists some examples of basic fuzzy implications.

Name Formula
 Lukasiewicz ILK(x, y) = min(1, 1− x+ y)

Gödel IGD(x, y) =

{
1, if x ≤ y
y, if x > y

Reichenbach IRC(x, y) = 1− x+ xy
Kleene-Dienes IKD(x, y) = max(1− x, y)

Goguen IGG(x, y) =

{
1, if x ≤ y
y

x
, if x > y

Rescher IRS(x, y) =

{
1, if x ≤ y
0, if x > y

Yager IYG(x, y) =

{
1, if x = 0 and y = 0
yx, if x > 0 or y > 0

Weber IWB(x, y) =

{
1, if x < 1
y, if x = 1

Fodor IFD(x, y) =

{
1, if x ≤ y
max(1− x, y), if x > y

Least FI I0(x, y) =

{
1, if x = 0 or y = 1
0, if x > 0 and y < 1

Greatest FI I1(x, y) =

{
1, if x < 1 or y > 0
0, if x = 1 and y = 0

Most Strict ID(x, y) =

{
1, if x = 0
y, if x > 0

Table 1: Examples of fuzzy implications (cf. Table 1.3 in [4])

Fuzzy implications play an important role in approximate reasoning, fuzzy control, decision theory,
control theory, expert systems, fuzzy mathematical morphology, image processing, etc. - see for example
[9, 11, 21, 22, 57, 49, 54, 56] or the recent monograph exclusively devoted to fuzzy implications [4].

The different generation methods of fuzzy implications can be broadly classified into the following three
categories, viz,

(i) From binary functions on [0, 1], typically other fuzzy logic connectives, viz., (S,N)-, R-, QL-implications
(see [4]),

(ii) From unary functions on [0,1], typically monotonic functions, for instance, Yager’s f -, g-implications
(see [56]), or from fuzzy negations [7, 20, 35, 46],

(iii) From fuzzy implications (see [3, 6, 13, 12, 15, 19, 39, 46]).

1.1. Motivation for this work
Obtaining fuzzy implications from given fuzzy implications, the third method listed above, can be further

sub-divided into approaches that are either generative or constructive. By generative methods, we refer to
those works which propose a closed form formula for obtaining new fuzzy implications from given ones, often
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with the help of other fuzzy logic connectives, see for instance, [3, 26, 20]. By constructive methods, we refer
to those methods that somehow depend on the underlying geometry to construct a fuzzy implication from
a pair of fuzzy implications, often by specifying the values over different sub-regions of [0, 1]2. For instance,
the threshold and vertical threshold generation methods of Massanet and Torrens [39, 37, 40, 32] fall under
this category.

Recently, in [50] the authors had proposed a novel generative method, denoted ~, which derives fuzzy
implications from a given pair of fuzzy implications.

Definition 1.2 ([50], Definition 7). For any two fuzzy implications I, J we define I ~ J as

(I ~ J)(x, y) = I(x, J(x, y)), x, y ∈ [0, 1] . (1)

Note that the novelty in the proposed operation ~ arises from the following fact: It is the first composition
that does not employ any other fuzzy logic connective(s) to help in the generation and still leads to some
algebraic structures on the set I. In fact, the operation ~ not only leads to newer implications but also
to a richer algebraic structure, namely a non-idempotent monoid, on the set I of fuzzy implications. The
algebraic aspects of the monoid (I,~) have been already explored in [53] leading upto hitherto unknown
representations of the Yager’s families of fuzzy implications.

However, the properties of fuzzy implications generated or obtained using the ~-composition have not
been explored. For instance, given I, J ∈ I with a certain property, the question of whether I ~ J also has
this property is yet to be investigated. Thus there is a need for a comprehensive study of the preservation
of the basic properties, the functional equations that the obtained implications satisfy, the powers w.r.t. ~
and their convergence, and the closures of families of fuzzy implications w.r.t. the operation ~. This forms
the main motivation of this work.

1.2. Main contribution of the paper
In this work, we continue our study of the recently proposed generative method [50, 53], viz., the ~-

composition (Definition 1.2) on I. While some algebraic aspects have already been explored in [53], this
work can be broadly seen to discuss the closures of some subsets of I w.r.t. ~, or alternately, of investigating
the analytical aspects of the ~-composition. Specifically, we study the preservation of various attributes
of the given pair of fuzzy implications under the ~-composition, viz., (i) basic or desirable properties -
for instance, neutrality, ordering and exchange principles, (ii) the two main functional equations involving
fuzzy implications, namely, the law of importation and the contraposition principle, (iii) powers of fuzzy
implications under self-composition with ~ and their convergence, and (iv) closures of some families of
fuzzy implications w.r.t. the ~-composition.

This work clearly demonstrates that the ~-composition carries over many of the desirable properties of
the original fuzzy implications to the generated fuzzy implications (see Section 3.2). Further, due to the
associativity of the ~-composition one can obtain, often, infinitely many new fuzzy implications from a
single fuzzy implication through self-composition w.r.t. the ~-composition and once again, carrying over,
all the desirable properties to the newly generated fuzzy implications (see Section 5.2).

In Section 6, we study the effect of the ~-composition on fuzzy implications obtained from other gen-
eration methods. Specifically, we consider the families of (S,N)- and R-implications (Sections 6.1 and
6.2) which are representative of the first type of generation methods and the Yager’s families of f - and
g-implications (Sections 6.3 and 6.4) which are representative of the second type of generation methods.

In the course of this study, we have also proposed and discussed a concept of mutual exchangeability
(ME) of a pair of fuzzy implications (Definition 3.9), which plays a central role in our study. The property
(ME) can be seen as a generalisation of the usual exchange principle of a fuzzy implication to a pair of fuzzy
implications and thus, we believe, can enable one to understand the interactions between pairs of fuzzy
implications.
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1.3. Outline of the paper
The organisation of this paper is as follows. In Section 2 we list what are considered to be the basic or

desirable properties of fuzzy implications and review some of the major generative methods and summarise
the properties preserved by them. Section 3 introduces the proposed ~-composition on the set I and discusses
the basic properties preserved by this generation process, while Section 4 discusses the preservation of two of
the main functional equations related to fuzzy implications, viz., the law of importation and contrapositive
symmetry. In Section 5 we discuss the powers of fuzzy implications obtained by self-composition w.r.t. the
proposed ~-composition. Following this, we discuss the closures of some families of fuzzy implications w.r.t.
the proposed ~-composition in Section 6.

2. Fuzzy Implications from Fuzzy Implications: Existing Generative Methods

In this work, we restrict our focus to generative methods for obtaining new fuzzy implications from
existing ones. In the literature only a few such generative methods are known. In this section, we begin
by giving a brief review of the existing methods. Following this, we list out some of the main properties
desirable of a fuzzy implication and tabulate the known results, vis-á-vis those properties that are preserved
under the various generative methods.

2.1. Lattice of Fuzzy Implications:
The lattice operations of meet and join were the first to be employed towards generating new fuzzy

implications. Bandler and Kohout [8] obtained fuzzy implications by taking the meet and join of a given fuzzy
implication I and its reciprocal IN (x, y) = I(N(y), N(x)), where N is a strong negation (see Definition 2.5).
This method has been discussed extensively under the topic of contrapositivisation of fuzzy implications,
see Fodor [15], Balasubramaniam [6].

In general, given I, J ∈ I, the following ’meet’ (I > J) and ’join’ (I ? J) operations give rise to fuzzy
implications ([4], Theorem 6.1.1):

(I > J)(x, y) = max(I(x, y), J(x, y)), x, y ∈ [0, 1], I, J ∈ I , (Latt-Max)
(I ? J)(x, y) = min(I(x, y), J(x, y)), x, y ∈ [0, 1], I, J ∈ I . (Latt-Min)

2.2. Convex Classes of Fuzzy Implications:
We know that fuzzy implications are basically functions on [0,1]. Thus one can define convex combinations

of fuzzy implications in the usual manner.

Definition 2.1. Convex combination of two fuzzy implications I, J is defined as

K(x, y) = λI(x, y) + (1− λ)J(x, y), x, y ∈ [0, 1], λ ∈ [0, 1] ,

and is a fuzzy implication.

2.3. Conjugacy Classes of Fuzzy Implications:
Let Φ denote the set of all increasing bijections on [0, 1]. Note that if ([0, 1], ∗) and ([0, 1], �) are two

ordered groupoids, then ϕ(x ∗ y) = ϕ(x) � ϕ(y) is a groupoid homomorphism for any ϕ ∈ Φ. Conversely,
given a binary groupoid operation, one could obtain new groupoid operations from the above as follows:
x ∗ y = ϕ−1 (ϕ(x) � ϕ(y)).

Viewing a fuzzy implication as a groupoid on [0, 1], Baczyński and Drewniak [2, 45] obtained new
implications from given ones as above.

Definition 2.2 ([2], [4], Theorem 6.3.1). For any ϕ ∈ Φ and I ∈ I, the ϕ-conjugate of I defined as
follows is also a fuzzy implication, i.e., Iϕ ∈ I:

Iϕ(x, y) = ϕ−1 (I(ϕ(x), ϕ(y))) , x, y ∈ [0, 1] .

Definition 2.3 (cf. [12], [4]). A fuzzy implication I is called self-conjugate or invariant if Iϕ = I, for all
ϕ ∈ Φ. Iinv denotes the set of all invariant fuzzy implications.
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Name Formula
minimum TM(x, y) = min(x, y)

algebraic product TP(x, y) = xy
 Lukasiewicz TLK(x, y) = max(x+ y − 1, 0)

drastic product TD(x, y) =

{
0, if x, y ∈ [0, 1)
min(x, y), otherwise

nilpotent minimum TnM(x, y) =

{
0, if x+ y ≤ 1
min(x, y), otherwise

Table 2: Basic t-norms

Name Formula
maximum SM(x, y) = max(x, y)

probabilistic sum SP(x, y) = x+ y − xy
 Lukasiewicz SLK(x, y) = min(x+ y, 1)

drastic sum SD(x, y) =

{
1, if x, y ∈ (0, 1]
max(x, y), otherwise

nilpotent maximum SnM(x, y) =

{
1, if x+ y ≥ 1
max(x, y), otherwise

Table 3: Basic t-conorms

2.4. Compositions of Fuzzy Implications:
Definition 2.4 ([28], Definition 3.1). A binary operation T (S) : [0, 1]2 −→ [0, 1] is called a t-norm(t-
conorm), if it is increasing in both the variables, commutative, associative and has 1(0) as the neutral
element.

In the infix notation, usually a T (S) is denoted by ∗(⊕). Tables 2 and 3 list a few of the t-norms and
t-conorms that are considered basic in the literature, which will also be useful in the sequel.

Definition 2.5 ([28], Definition 11.3). A function N : [0, 1] −→ [0, 1] is called a fuzzy negation if N(0) =
1, N(1) = 0 and N is decreasing. A fuzzy negation N is called

(i) strict if, in addition, N is strictly decreasing and is continuous.
(ii) strong if it is an involution, i.e., N(N(x)) = x, for all x ∈ [0, 1] .

Table 4 lists the basic fuzzy negations, which will also be useful in the sequel.

Name Formula
Classical NC(x) = 1− x

Least ND1(x) =

{
1, if x = 0
0, if x > 0

Greatest ND2(x) =

{
1, if x < 1
0, if x = 1

Table 4: Basic fuzzy negations

Note that any binary function F : [0, 1]2 −→ [0, 1] can be treated as a binary fuzzy relation on [0, 1]. Once
again, treating a fuzzy implication I as a fuzzy relation, Baczyński and Drewniak [3] employed relational
composition operators to obtain new fuzzy implications.
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Definition 2.6 (cf. [3],[4], Definition 6.4.1 & Theorem 6.4.4). Let I, J ∈ I and ∗ be a t-norm. Then
sup–∗ composition of I, J is given as follows:

(I
∗◦ J)(x, y) = sup

t∈[0,1]

(I(x, t) ∗ J(t, y)), x, y ∈ [0, 1] . (COMP)

Further, I
∗◦ J ∈ I if and only if (I

∗◦ J)(1, 0) = 0.

2.5. Basic properties of fuzzy implications and their preservation by generative methods
In the above, we had recalled some of the generative methods of obtaining fuzzy implications from fuzzy

implications and the structures they impose on the set I of fuzzy implications. In the following we list a few
of the most important properties of fuzzy implications. Note that they are also a natural generalisation of the
corresponding properties of the classical implication to multi valued logic (see [4, 43, 48]). These properties
play a key role in characterising different fuzzy implications as well as applications of fuzzy implications in
different contexts.

Following this, we tabulate the known results w.r.t. the properties that are preserved by the above
generative methods in Table 5. Note that, this section is intended to only highlight the results in brief and
for the relevant results, their proofs and more details, we refer the readers to the already listed references,
viz., [3, 4, 44].

Definition 2.7 (cf. [4], Definition 1.3.1). • A fuzzy implication I is said to satisfy

(i) the left neutrality property (NP) if

I(1, y) = y, y ∈ [0, 1] . (NP)

(ii) the ordering property (OP), if

x ≤ y ⇐⇒ I(x, y) = 1 x, y ∈ [0, 1] . (OP)

(iii) the identity principle (IP), if

I(x, x) = 1, x ∈ [0, 1] . (IP)

(iv) the exchange principle (EP), if

I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ [0, 1] . (EP)

• A fuzzy implication I is said to be continuous if it is continuous in both the variables.
Let INP denote the set of fuzzy implications satisfying (NP). Similarly, let the subsets IIP, IOP, IEP

denote the set of fuzzy implications satisfying (IP), (OP) and (EP), respectively.

Property I J I > J I ? J Convex Combination I
∗◦ J

IP X X X X X X
OP X X X X X X
NP X X X X X ×
EP X X × × × ×

Self conjugacy X X X X × ×
Continuity X X X X X ×

Table 5: Closures of some generative methods w.r.t. different properties. For the relevant results and their proofs please see,
for instance, [1, 3, 4, 14].
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Remark 2.8. From Table 5 it is clear that while (NP), (IP) and (OP) are preserved by most of the
generative methods, the exchange principle (EP) is not usually preserved.

Even though, the preservation of (EP) is fully characterised for some constructive methods, like vertical
and horizontal threshold methods, see [39, 40], the preservation of (EP) by most of the generative methods
remains as an interesting open problem to investigate, see, [41]. For more details and examples, please refer
to [4], Chapter 6.

3. The ~-composition on I

In this section, we once again recall the definition of the ~-composition proposed in [50] (also presented
in [29, 42]) and show that this is indeed closed on the set I, i.e., it does indeed generate fuzzy implications
from given pair of fuzzy implications without any assumptions on the given fuzzy implications. Following
this we discuss the preservation of basic properties of fuzzy implications, viz., (NP), (IP), (EP) and (OP)
w.r.t. the ~-composition.

3.1. Introduction
Definition 3.1 ([50], Definition 7). Given I, J ∈ I, we define I ~ J : [0, 1]2 −→ [0, 1] as

(I ~ J)(x, y) = I(x, J(x, y)), x, y ∈ [0, 1] . (1)

Theorem 3.2 ([50], Theorem 10). The function I ~ J is a fuzzy implication, i.e., I ~ J ∈ I.

Table 6 (cf. Table 3, [53])) shows some new implications obtained from some of the basic fuzzy implica-
tions listed in Table 1 via the operation ~ defined in Definition 1.2.

I J I ~ J

IRC ILK

{
1, if x ≤ y
1− x2 + xy, if x > y

IGG IRC

1, if x ≤ 1− x+ xy
1− x+ xy

x
, otherwise

IKD IRS

{
1, if x ≤ y
1− x, if x > y

IRC IKD max(1− x2, 1− x+ xy)

IFD IRC

{
1, if x ≤ 1− x+ xy

1− x+ xy otherwise

IYG IGD

{
1, if x ≤ y
yx, if x > y

IGD ILK

{
1, if x ≤ 1+y

2

1− x+ y, otherwise

Table 6: Composition of some fuzzy implications w.r.t. ~ (see also Table 3, [53]).

3.2. Basic properties preserved by ~-generated implications
Given that I, J ∈ I satisfy a certain property P, we now investigate whether I ~ J satisfies the same

property or not. If not, then we attempt to characterise those implications I, J satisfying the property P
such that I ~ J also satisfies the same property.

Lemma 3.3 ([53], Lemma 2.8). If I, J ∈ I satisfy (NP)( (IP), self-conjugacy, continuity) then I~J satisfies
the same property.
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3.2.1. The Ordering Property and ~-generated implications
While the operation ~ preserves (NP) and (IP), this is not true with either (OP) or (EP), as is made

clear from the following remark.

Remark 3.4. (i) From Table 1, it is clear that both I = IGD, J = ILK satisfy (OP). However, I ~ J
does not satisfy (OP) because (I ~ J)(0.4, 0.2) = 1 but 0.4 > 0.2 (see Table 6 for its explicit formulae
or Example 2.9 (i) in [53]).

(ii) However, note that in the above example, J ~ I satisfies (OP), since J ~ I = J = ILK, satisfies (OP).
In fact, it is easy to check that I ~ IGD = I for all I ∈ IOP.

(iii) Yet another example where I ~ J is neither I nor J , can be obtained by taking I = IGG, the Goguen
implication, and

J(x, y) =

{
1, if x ≤ y,
y2, if x > y

.

Now, both I, J satisfy (OP) and so also their ~ composition given by

(I ~ J)(x, y) =

1, if x ≤ y,
y2

x
, if x > y

.

(iv) It is also interesting to note that even when not both of I, J satisfy (OP), one can have that I ~ J
satisfies (OP). To see this, let I = IGG, the Goguen implication which satisfies (OP), and I = IRC,
the Reichenbach implication which does not satisfy (OP). Now, I ~J = ILK which does satisfy (OP).

The following result characterises all fuzzy implications I, J ∈ IOP such that I ~ J ∈ IOP.

Theorem 3.5. Let I, J ∈ I satisfy (OP). Then the following statements are equivalent.
(i) I ~ J satisfies (OP).
(ii) J satisfies the following:

x > J(x, y) for all x > y . (2)

(iii) J(x, y) ≤ y for all x > y.

Proof. (i) =⇒ (ii): Let I ~ J satisfy (OP). Then (I ~ J)(x, y) = 1⇐⇒ x ≤ y,

i.e., I(x, J(x, y)) = 1⇐⇒ x ≤ y ,

i.e., x ≤ J(x, y)⇐⇒ x ≤ y ,
which implies x > J(x, y) for all x > y.

(ii) =⇒ (iii): Let J satisfy (2). If x > y, then there exists ε > 0, arbitrarily small, such that x > y+ε > y.
Now, from the antitonicity of J in the first variable and (2), we have J(x, y) ≤ J(y + ε, y) < y + ε.
Since ε > 0 is arbitrary, we see that J(x, y) ≤ y for all x > y.

(iii) =⇒ (i): Let J satisfy J(x, y) ≤ y for all x > y.
• Let x ≤ y. Then J(x, y) = 1 and consequently, (I ~ J)(x, y) = I(x, J(x, y)) = 1.
• Let x > y. Then we have J(x, y) ≤ y < x. From (OP) of I, it follows that I(x, J(x, y)) < 1.

In other words, we have x > y ⇐⇒ (I ~ J)(x, y) < 1 and hence I ~ J satisfies (OP).

Example 3.6. (i) Let us denote by I◦Ψ ⊂ IOP such that every I ∈ I◦Ψ is of the following form

I(x, y) =

{
1, if x ≤ y,
ψ(y), if x > y,

where ψ ∈ Ψ, the set of all increasing, in the sense of non-decreasing, functions defined on [0, 1] such
that ψ(0) = 0 and ψ(x) ≤ x for all x ∈ [0, 1]. Note that when ψ(x) = x for all x ∈ [0, 1], we get
I = IGD and when ψ(x) = 0, for all x ∈ [0, 1] we obtain IRS. Clearly, every I ∈ I◦Ψ satisfies (2) and
hence, if I, J ∈ I◦Ψ then I ~ J satisfies (OP). In fact, I ~ J ∈ I◦Ψ.
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(ii) However, I◦Ψ does not contain all fuzzy implications satisfying (2). To see this consider the following
fuzzy implication which does satisfy (2) but does not belong to I◦Ψ:

I(x, y) =

{
1, if x ≤ y,
min(y, 1− x

2 ), if x > y .

3.2.2. The Exchange Principle (EP) and ~-generated implications
Among the basic properties of fuzzy implications, the exchange principle (EP) is the most important.

Along with the ordering property (OP), (EP) implies many other properties. For instance, the following
result from [4] shows that (OP) and (EP) are almost sufficient to make an arbitrary binary function on [0, 1]
into a fuzzy implication with all the desirable properties.

Lemma 3.7 ([4], Lemma 1.3.4). If a function I : [0, 1]2 −→ [0, 1] satisfies (EP) and (OP), then I satisfies
(I1), (I3), (NP) and (IP).

Once again, as in the case of (OP), the following remark shows that the ~-composition does not always
preserve (EP).

Remark 3.8. (i) From Table 1.4 in [4], one notes that both the fuzzy implications I = IRC, J = IKD sat-
isfy (EP). Table 6 gives the formula for IRC~IKD. However, (IRC~IKD)(0.3, (IRC~IKD)(0.8, 0.5)) =
0.91 where as (IRC ~ IKD)(0.8, (IRC ~ IKD)(0.3, 0.5)) = 0.928. Thus showing that IRC ~ IKD does
not satisfy (EP) even if I, J satisfy (EP) (see also Example 2.9 (ii) in [53]).

(ii) Once again, as in the case of (OP), observe that for the same I, J their ~-composition J ~ I satisfies
(EP), since IKD ~ IRC = IRC.

From the above, we see that the ~-composition does not always preserve (EP). In the following we
define a property of a pair of fuzzy implications I, J which turns out to be a sufficient condition for the
preservation of (EP) by the ~-composition. In fact, as we will see later, this property plays an important
role in the sequel.

Definition 3.9. A pair (I, J) of fuzzy implications is said to be mutually exchangeable if

I(x, J(y, z)) = J(y, I(x, z)), x, y, z ∈ [0, 1]. (ME)

Remark 3.10. (i) Note that Definition 3.9 is different from the generalised exchange property (GEP)
discussed in Proposition 5.5 of [44]. However, when I = J ∈ I both (ME) and the (GEP) of [44] reduce
to the usual (EP) of I.

(ii) If I, J are mutually exchangeable, then I~J = J~I, i.e., I, J are commuting elements of ~. To see this,
let x = y in (ME), which then becomes I(x, J(x, z)) = J(x, I(x, z)). i.e., (I ~ J)(x, z) = (J ~ I)(x, z),
for all x, z ∈ [0, 1].

(iii) The following example illustrates that there exist distinct I, J ∈ I that satisfy (ME) such that I ~ J
also satisfies (ME). Let 0 ≤ ε ≤ δ < 1. Now observe that the implications defined by

I(x, y) =

{
1, if x ≤ ε,
y2, if x > ε

and J(x, y) =

{
1, if x ≤ δ,
y3, if x > δ

are such that the pair (I, J) satisfies (ME), but I ~ J given by

(I ~ J)(x, y) =

{
1, if x ≤ δ ,
y6, if x > δ ,

is neither equal to I nor J .
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(iv) In fact, one could define the following class of implications, for every ε ∈ [0, 1),

Iε(x, y) =

{
1, if x ≤ ε ,
ϕε(y), if x > ε ,

where ϕε ∈ Φ. Then it is clear that for any ε1 6= ε2 ∈ [0, 1), we have that the pair (Iε1 , Iε2) satisfies
(ME) and that their ~-composition is neither of them as long as ϕε1 , ϕε2 are different from the identity
function. In fact,

(Iε1 ~ Iε2)(x, y) =

{
1, if x ≤ max(ε1, ε2) ,
(ϕε1 ◦ ϕε2)(y), if x > max(ε1, ε2) .

(3)

Theorem 3.11. Let I, J ∈ I satisfy (EP) and be mutually exchangeable, i.e., satisfy (ME). Then I ~ J
satisfies (EP).

Proof. Let I, J ∈ IEP satisfy (ME) and x, y, z ∈ [0, 1].

(I ~ J)(x, (I ~ J)(y, z)) = I(x, J(x, (I ~ J)(y, z)))
= I(x, J(x, I(y, J(y, z))))
= I(x, I(y, J(x, J(y, z))))
= I(y, I(x, J(y, J(x, z))))
= I(y, J(y, I(x, J(x, z))))
= (I ~ J)(y, (I ~ J)(x, z)) .

Thus I ~ J satisfies (EP).

Remark 3.12. The condition that I, J ∈ IEP satisfy (ME) for I ~ J to satisfy (EP) is only sufficient but
not necessary. To see this, let

I(x, y) =

{
1, if x ≤ 0.3 ,
y2, if x > 0.3 ,

and J(x, y) =

{
1, if x ≤ 0.5 ,
sin(πy2 ), if x > 0.5 .

Now, I ~ J is given by (cf. formula (3) above)

(I ~ J)(x, y) =

{
1, if x ≤ 0.5 ,
sin2(πy2 ), if x > 0.5 .

It is easy to check that I, J, I ~ J ∈ IEP. However, if x = 0.6, y = 0.7, z = 0.8, then I(x, J(y, z)) = 0.9045
and J(y, I(x, z)) = 0.8443. Thus I, J fail to satisfy (ME).

So far, we have studied the basic properties of fuzzy implications w.r.t. the ~-composition. The summary
of the properties of fuzzy implications w.r.t. the ~-composition is shown in Table 7.

4. Functional Equations and the ~-generated implications

The study of functional equations involving fuzzy implications has attracted much attention not only
due to their theoretical aesthetics but also due to their applicational value. In this section, we present two of
the most important functional equations involving fuzzy implications, viz., the law of importation (LI) and
contraposition w.r.t. a strong negation N , CP(N), and study the following question: If a given pair of fuzzy
implications (I, J) satisfies a functional equation, does I ~ J also satisfy the same functional equation?
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Property I J I ~ J Remark
IP X X X
OP X X × Theorem 3.5
NP X X X
EP X X × Theorem 3.11

Self conjugacy X X X
Continuity X X X

Table 7: Closure of ~ w.r.t. different properties.

4.1. The Law of Importation and ~-generated implications
The law of importation (LI) has been shown to play a major role in the computational efficiency of fuzzy

relational inference mechanisms that employ fuzzy implications to relate antecedents and consequents, see
for instance, [49, 31].

Definition 4.1 ([4], Definition 1.5.1). An implication I is said to satisfy the law of importation (LI)
w.r.t. a t-norm T , if

I(x, I(y, z)) = I(T (x, y), z), x, y, z ∈ [0, 1]. (LI)

In the literature, one finds many weaker versions of the law of importation (LI) where the t-norm T is
generalised to a commutative conjunctor, for instance, see the version presented in Massanet and Torrens
[34]. However, here in this work we deal only with the classical version of the law of importation (LI),
i.e., where the conjunctor is a t-norm T . Note that any I ∈ I that satisfies the law of importation (LI)
automatically satisfies (EP) too, while the converse is not true, see for instance, [4, 34].

Remark 4.2. Note that even if I, J ∈ I satisfy (LI) w.r.t. the same t-norm T , I~J may satisfy (LI) w.r.t.
no t-norm, the same t-norm T or even a different t-norm T ′.

(i) Let I = IRC, J = IYG. It follows from Table 7.1 in [4], that both I, J satisfy (LI) w.r.t. the product
t-norm TP(x, y) = xy. However, I ~ J given by

(I ~ J)(x, y) =

{
1, if x = 0 and y = 0,
1− x+ xyx, if x > 0 or y > 0

does not satisfy (EP) since

(I ~ J)(0.2, (I ~ J)(0.3, 0.4)) = 0.9487 6= 0.8752 = (I ~ J)(0.3, (I ~ J)(0.2, 0.4)) .

It follows from Remark 7.3.1 in [4], that I ~ J does not satisfy (LI) w.r.t. any t-norm T .
(ii) Let I = IRC, J = IGG. It follows from Table 7.1 in [4] that I, J satisfy (LI) w.r.t. the t-norm T = TP.

Now, IRC ~ IGG = ILK. From Theorem 7.3.5 in [4], it follows that ILK satisfies (LI) w.r.t. only the
Lukasiewicz t-norm TLK(x, y) = max(0, x+ y− 1), which means that IRC ~ IGG does not satisfy (LI)
w.r.t. product t-norm TP but with a different t-norm TLK.

(iii) Consider the fuzzy implication I(n)(x, y) = 1− xn + xny, for some arbitrary but fixed n ∈ N. Then

I(n)(TP(x, y), z) = I(n)(xy, z) = 1− xnyn + xnynz , and
I(n)(x, I(n)(y, z)) = I(n)(x, 1− yn + ynz) = 1− xn + xn(1− yn + ynz) = 1− xnyn + xnynz .

Thus I(n) satisfies (LI) w.r.t. TP.
Now, let I(x, y) = I(1)(x, y) = IRC(x, y) = 1− x+ xy, and J(x, y) = I(2)(x, y) = 1− x2 + x2y. From
above, it follows that I, J both satisfy (LI) w.r.t. TP. Now (I ~ J)(x, y) = 1− x3 + x3y = I(3)(x, y),
which also satisfies (LI) w.r.t. TP.
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(iv) Finally, let us consider I, J ∈ I be defined as

I(x, y) =

{
1, if x < 1 ,
sin(πy2 ), if x = 1 ,

and J(x, y) =

{
1, if x < 1 ,
y3, if x = 1 .

Then it is easy to check that all of I, J and I ~ J (as given below) satisfy (LI) w.r.t. any t-norm T :

(I ~ J)(x, y) =

{
1, if x < 1 ,
sin(πy

3

2 ), if x = 1 .

The following result contains a sufficient condition on the implications I, J satisfying (LI) w.r.t. the
same t-norm T under which their composition I ~ J also satisfies (LI) w.r.t. the same T . Once again, we
see that (ME) plays an important role.

Lemma 4.3. Let I, J ∈ I satisfy (LI) w.r.t. a t-norm T . If I, J satisfy (ME) then I~J satisfies (LI) w.r.t.
the same t-norm T .

Proof. Let I, J ∈ I satisfy (LI) w.r.t. a t-norm T and satisfy (ME).

(I ~ J)(T (x, y), z) = I(T (x, y), J(T (x, y), z)) = I(x, I(y, J(T (x, y), z)))
= I(x, I(y, J(x, J(y, z)))) = I(x, J(x, I(y, J(y, z)))) d using (ME)
= I(x, J(x, (I ~ J)(y, z)))
= (I ~ J)(x, (I ~ J)(y, z)).

This completes the proof.

Remark 4.4. Note that, in Lemma 4.3, (ME) is only sufficient and not necessary. To see this, let I, J ∈ I
be as given in Remark 4.2(iii). Then it follows that

I(x, J(y, z)) =

{
1, if x < 1 or y < 1 ,
sin(πz

3

2 ), if x = 1 and y = 1 ,

and

J(y, I(x, z)) =

{
1, if x < 1 or y < 1 ,
sin3(πz2 ), if x = 1 and y = 1 ,

are not identically the same for all x, y, z ∈ [0, 1]. To see this, let z = 1
2 , for instance.

The following result gives a condition on I, J such that (ME) also becomes necessary for (LI).

Theorem 4.5. Let I, J ∈ I satisfy (LI) w.r.t. a t-norm T . Further, let I(x, ·) be one-one and J(x, ·) be
both one-one and onto, i.e., J(x, ·) is an increasing bijection on [0, 1] for all x ∈ (0, 1]. Then the following
statements are equivalent.

(i) I, J satisfy (ME).
(ii) I ~ J satisfies (LI) w.r.t. same T .

Proof. (i) =⇒ (ii): Follows from Lemma 4.3.
(ii) =⇒ (i): Let I ~ J satisfy (LI) w.r.t. same T . Then, for any x, y ∈ (0, 1),

(I ~ J)(T (x, y), z) = (I ~ J)(x, (I ~ J)(y, z))
=⇒ I(x, I(y, J(x, J(y, z)))) = I(x, J(x, I(y, J(y, z))))
=⇒ I(y, J(x, J(y, z)) = J(x, I(y, J(y, z))) . d∵ I(x, ·) is one-one

Since J(x, ·) is a bijection on [0, 1], for every t ∈ (0, 1) and any y ∈ (0, 1) there exists a z ∈ (0, 1) such
that t = J(y, z). Hence, we have I(y, J(x, t)) = J(x, I(y, t)) for all x, y, t ∈ [0, 1], i.e., I, J are mutually
exchangeable.
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4.2. Contrapositive Symmetry and ~-generated implications
Contrapositive symmetry of implications is a tautology in classical logic. Contrapositive symmetry of

fuzzy implications w.r.t. an involutive or a strong negation plays an equally important role in fuzzy logic as its
classical counterpart - especially in t-norm based multi-valued logics, see for instance, [17, 18, 23, 24, 25, 30].

Once again, many generalisations and weaker versions of the law of contraposition are considered in the
literature, see for instance, [4], Section 1.5. However, here we consider only the classical law of contraposition
where the involved negation is strong.

Definition 4.6 ([4], Definition 7.3). A fuzzy implication I is said to satisfy the contrapositive symmetry
w.r.t. a fuzzy negation N if

I(x, y) = I(N(y), N(x)), x, y ∈ [0, 1] . (CP)

In such a case, we often write that I satisfies CP(N).

Just as (EP) and (LI) are closely related, so are (CP) and (NP). In fact, as the following result shows if
a neutral fuzzy implication satisfies (CP) w.r.t. some fuzzy negation N , then it does so only with its natural
negation which should be necessarily strong.

Lemma 4.7 ([4], Lemma 1.5.4). Let I ∈ INP satisfy (CP) w.r.t. a fuzzy negation N . Then NI = N and
NI is strong.

However, it should be emphasised, that even if a fuzzy implication I does not satisfy (NP), it still can
satisfy (CP) with some fuzzy, even strong, negation, see [4], Example 1.5.10.

Remark 4.8. Once again, note that even if I, J ∈ I satisfy (CP) w.r.t. a fuzzy negation N , I~J may
satisfy (CP) w.r.t. no fuzzy negation N or the same fuzzy negation N .

(i) Let I = IRC and J = IKD. It is easy to check that IRC and IKD both satisfy CP(NC), i.e., (CP)
w.r.t. the classical strong negation NC(x) = 1 − x. Now, from the definition of ~, it follows that,
(IRC~IKD)(x, y) = max(1−x2, 1−x+xy) which has (NP). From Lemma 4.7 above, we see that since
IRC~IKD has (NP), if it satisfies (CP) w.r.t. some fuzzy negation N , then its natural negation should
be strong. However, we see that NIRC~IKD

(x) = (IRC ~ IKD)(x, 0) = max(1 − x2, 1 − x) = 1 − x2,
which is only strict but not strong. Hence, IRC ~ IKD does not satisfy (CP) w.r.t. any fuzzy negation
N .

(ii) Interestingly, if I = IKD and J = IRC then I~J = IKD ~ IRC = IRC, which satisfies (CP) w.r.t. the
same negation N .

In the rest of this section, we consider only neutral fuzzy implications, i.e., I, J ∈ INP. If such a pair
also satisfies (CP) w.r.t. the same fuzzy negation N , then the following result gives a necessary condition
for I ~ J to satisfy (CP).

Theorem 4.9. Let I, J ∈ INP satisfy (CP) w.r.t. a fuzzy negation N . If I ~ J also satisfies CP(N) then
I(x,N(x)) = N(x) for all x ∈ [0, 1].

Proof. Firstly, from Lemma 3.3, we see that I ~J ∈ INP and from Lemma 4.7 that NJ = N . Further, since
I ~ J satisfies (CP) w.r.t. N , once again from Lemma 4.7 we have that NI~J(x) = I(x, J(x, 0)) = N(x) or
equivalently, I(x,N(x)) = N(x).

In the following we show that if the considered pair I, J ∈ INP also posseses other desirable properties like
(EP) or (OP), then one obtains much stronger results. The following result is helpful in the characterisation
results given below. The family of (S,N)-implications will be dealt with presently in Section 6.1 below.

Theorem 4.10 ( cf. [10], Theorem 5). Let I be an (S,N)-implication, i.e., I(x, y) = S(N(x), y), where S
is a t-conorm and N is a negation. If N is also strong, then I(x,N(x)) = N(x) if and only if S = max.
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Theorem 4.11. Let I, J ∈ INP

⋂
IEP satisfy (CP) w.r.t. a fuzzy negation N . Then the following statements

are equivalent:

(i) I ~ J satisfies CP(N).
(ii) I(x, y) = max(N(x), y).

(iii) I ~ J = J .

Proof. (i) =⇒ (ii): Since I has (NP) and CP(N), we know from Lemma 4.7 that N = NI is strong.
Further, since I satisfies (EP), by the characterisation result for (S,N)-implications, viz., Theorem 6.3,
we see that I is an (S,N)-implication. Now, since I ~ J satisfies CP(N) with a strong negation N ,
from Theorem 4.9 we have that I(x,N(x)) = N(x) for all x ∈ [0, 1] and from Theorem 4.10 above we
have that I(x, y) = max(N(x), y).

(ii) =⇒ (iii): Let I(x, y) = max(N(x), y) for all x, y ∈ [0, 1]. From Lemma 4.7, it follows that NJ = N is
strong. Since J satisfies (EP), by the characterisation result for (S,N)-implications, viz., Theorem 6.3,
it follows that J is an (S,N)-implication with the strong negation N , say, J(x, y) = S(N(x), y) for
some t-conorm S. Now, (I ~J)(x, y) = I(x, J(x, y)) = max(N(x), S(N(x), y)) = S(N(x), y) = J(x, y)
for all x, y ∈ [0, 1].

(iii) =⇒ (i): It is straight-forward now.

Theorem 4.12. Let I, J ∈ INP

⋂
IOP satisfy (CP) w.r.t. the same fuzzy negation N . Then I ~ J does not

satisfy (CP) w.r.t. any negation N .

Proof. On the one hand, if I ~ J satisfies (OP), then from Theorem 4.9 we see that I(x,N(x)) = N(x) for
all x ∈ [0, 1]. In particular, if we take x = e ∈ (0, 1), the equilibrium point of N , i.e., N(e) = e, we have
that I(e,N(e)) = I(e, e) = N(e) = e < 1, a contradiction to the fact that I satisfies (OP).

On the other hand, if I ~ J does not satisfy (OP), then from Theorem 3.5, we know J(x0, 0) > x0 for
some x0 ∈ (0, 1). Now,

(I ~ J)(x0, 0) = I(x0, J(x0, 0)) ≥ I(x0, x0) = 1 d by (OP) of I
while, (I ~ J)(1, N(x0)) = I(1, J(1, N(x0))) = N(x0) ,

a contradiction to the fact that 0 < x0 < 1.

5. Powers of elements of I and Convergence.

From Theorem 3.2, it follows that if I, J ∈ I then I ~ J ∈ I. Further, if J = I then I ~ I is also an
implication on [0, 1]. Since the binary operation ~ is associative in I, see [53], one can define the powers of
a fuzzy implication I w.r.t. ~ in the following natural way.

Definition 5.1. Let I ∈ I. For any n ∈ N, we define the n-th power of I w.r.t. the binary operation ~ as
follows:

I
[n]
~ (x, y) = I

(
x, I

[n−1]
~ (x, y)

)
= I

[n−1]
~ (x, I(x, y)) , x, y ∈ [0, 1] . (4)

In this section, we firstly explore the limiting case behaviour of I [n]
~ for an I ∈ I, in general, and also

when I satisfies some of the other desirable properties. Further, we also investigate the following question:
If an I ∈ I satisfies a particular property P, say (EP), then whether I [n]

~ satisfies the same property for all
n ∈ N.

It is immediately clear that it is possible for some I ∈ I to be such that I ~ I = I (see, for instance,
[47]). Towards this end, we define the following characteristic of an I ∈ I w.r.t. the ~- composition.
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Implication(I) Order O(I) lim
n→∞

I
[n]
~

IRC ∞ IWB

IKD 1 IKD

IFD 2 I2
FD

IGD 1 IGD

IGG ∞ IWB

IRS 1 IRS

ILK ∞ IWB

IWB ∞ IWB

IYG ∞ IWB

I1 1 I1
I0 1 I0

Table 8: Powers of the basic fuzzy implications w.r.t. ~ and their orders.

5.1. Order of a fuzzy implication I w.r.t. ~

Definition 5.2. An I is said to be of fixed point order n w.r.t. ~ if there exists an n ∈ N such that n is
the smallest integer for which I

[n]
~ = I

[n+1]
~ . We denote it by O(I) and refer to it just as the order of an I.

Note that if, for a given I, no such n exists then we write O(I) =∞.

Table 8 tabulates the orders and the limiting case behaviour of the basic fuzzy implications listed in
Table 1. Note that I2

FD in Table 8 is obtained as

(IFD ~ IFD)(x, y) = I2
FD(x, y) =

{
1, if x ≤ y or x ∈ [0, 0.5] ,
max(1− x, y), otherwise .

If O(I) = 1 then I
[2]
~ = I and we do not obtain any new implications from I. In algebraic terms,

such I ∈ I form the set of idempotents in the monoid (I,~). Note that the characterisation of all such
idempotent elements is a non-trivial task and will be presented in a future work. Some partial results are
already available in [51, 52]. In the case when I comes from a specific family of fuzzy implications this
functional equation has been dealt with by many authors, see, [33, 36, 46, 55]. Since our motivation in
this work is to obtain new fuzzy implications from given ones, in the sequel we study only the case when
O(I) > 1.

It can be observed from Table 8, that for most of the basic fuzzy implications I listed in Table 1, I [n]
~

do converge to IWB in the limiting case. The following result explores the context in which this is true for
any general fuzzy implication.

Theorem 5.3. Let I ∈ I satisfy (LI) w.r.t. a t-norm T .

(i) Then I
[n]
~ (x, y) = I

(
x

[n]
T , y

)
, where x[n]

T = T
(
x, x

[n−1]
T

)
and x[1]

T = x for any x ∈ [0, 1].

(ii) Further, let T be Archimedean, i.e., for any x, y ∈ (0, 1) there exists an n ∈ N such that x[n]
T < y.

Then lim
n→∞

I
[n]
~ (x, y) =

{
1, if x < 1 ,
I(1, y), if x = 1 .

(iii) Moreover, if I ∈ INP then lim
n→∞

I
[n]
~ = IWB.

Proof. (i) Let x, y ∈ [0, 1]. Then I
[2]
~ (x, y) = I(x, I(x, y)) = I(T (x, x), y), since I satisfies (LI). Thus

I
[2]
~ (x, y) = I(x[2]

T , y). By induction, we obtain I
[n]
~ (x, y) = I(x[n]

T , y).
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(ii) Let ε > 0 and x < 1. Since T is Archimedean, for any ε > 0, there exists an m ∈ N such that x[m]
T < ε.

Thus, for any y ∈ [0, 1], I [n]
~ (x, y) = I(x[n]

T , y) −→ I(0, y), as n −→∞ and lim
n→∞

I
[n]
~ (x, y) = 1.

If x = 1, then I
[2]
~ (1, y) = I(1, I(1, y)) = I(T (1, 1), y) = I(1, y) and in general, I [n]

~ (1, y) = I(1, y).
(iii) Follows from (ii) and the fact that I(1, y) = y.

5.2. Properties preserved by I [n]
~ .

In this subsection, given an I ∈ I satisfying a particular property P, we investigate whether all the
powers I [n]

~ of I satisfy the same property or not.

Lemma 5.4. If I satisfies (EP) then the pair (I, I [n]
~ ) satisfies (ME).i.e.,

I(x, I [n]
~ (y, z)) = I

[n]
~ (y, I(x, z)), for all x, y, z ∈ [0, 1], n ∈ N. (5)

Proof. We prove this by using mathematical induction on n. For, n = 1, I satisfies (5), from the (EP) of I.
Assume that I satisfies (5) for n = k − 1. Now,

I(x, I [k]
~ (y, z)) = I(x, I(y, I [k−1]

~ (y, z)))

= I(x, I [k−1]
~ (y, I(y, z)))

= I
[k−1]
~ (y, I(x, I(y, z)))

= I
[k−1]
~ (y, I(y, I(x, z)))

= I
[k]
~ (y, I(x, z)), for all x, y, z ∈ [0, 1].

Thus the pair (I, I [k]
~ ) satisfies (ME) an this completes the proof.

Theorem 5.5. If I satisfies (EP) ( (NP) or (IP) or is self-conjugate or continuous) then the same is true
of I [n]

~ for all n ∈ N.

Proof. We prove this theorem for (EP) only, since the proof for others is easily obtainable. Let I ∈ IEP,
i.e., I satisfies (EP). We show that I [n]

~ also satisfies (EP) for all n ∈ I. Let x, y, z ∈ [0, 1]. Then

I
[n]
~ (x, I [n]

~ (y, z)) = I
(
x, I

[n−1]
~ (x, I [n]

~ (y, z))
)

= I(x, I [n−1]
~ (x, I(y, I [n−1]

~ (y, z))))

= I(x, I(y, I [n−1]
~ (x, I [n−1]

~ (y, z)))) d (I, I [n−1]
~ ) satisfy (ME), Theorem 5.4

= I(y, I(x, I [n−1]
~ (y, I [n−1]

~ (x, z))))

= I(y, I [n−1]
~ (y, I(x, I [n−1]

~ (x, z))))

= I
[n]
~ (y, I [n]

~ (x, z)) .

Theorem 5.6. Let I satisfy (OP). The following statements are equivalent.

(i) I
[2]
~ satisfies (OP).

(ii) x > I(x, y) for all x > y.
(iii) I

[n]
~ satisfies (OP) for all n ∈ N.

Proof. (i) =⇒ (ii): This follows from Theorem 3.5 with J = I.
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(ii) =⇒(iii): Let x > I(x, y) for all x > y. We prove that I [n]
~ satisfies (OP) for n. We do this by using

mathematical induction on n. Since I [n]
~ satisfies (OP) for n = 1, assume that I [k−1]

~ satisfies (OP).
Now we show that I [k]

~ has also (OP).

• Let x ≤ y. Then I(x, y) = 1. Hence I [k]
~ (x, y) = I

[k−1]
~ (x, I(x, y)) = 1.

• Let x > y. Then from our assumption, we have x > I(x, y) . Now from (OP) of I [k−1]
~ , it follows

that I [k]
~ (x, y) = I

[k−1]
~ (x, I(x, y)) < 1 and hence I [k]

~ satisfies (OP).

(iii) =⇒ (i): Follows trivially for n = 2.

Corollary 5.7. Let I satisfy (OP). If I [m]
~ satisfies (OP) for some m ∈ N then I

[n]
~ satisfies (OP) for all

n > m ∈ N.

Theorem 5.8. If I satisfies (LI) w.r.t. a t-norm T , then I
[n]
~ also satisfies (LI) w.r.t. the same t-norm T .

Proof. We prove this also by using mathematical induction on n. For n = 1, I [n]
~ satisfies (LI). Assume

that I [k−1]
~ satisfies (LI) w.r.t. the same t-norm T , i.e., I [k−1]

~ (T (x, y), z) = I
[k−1]
~ (x, I [k−1]

~ (y, z)) for all
x, y, z ∈ [0, 1]. From Theorem 5.3(i) recall that if I satisfies (LI) w.r.t. a t-norm T then I [k]

~ (x, y) = I(x[k]
T , y)

for all x, y ∈ [0, 1]. Now, for any x, y, z ∈ [0, 1],

I
[k]
~ (T (x, y), z) = I

(
(T (x, y))[k]

T , z
)

= I
(
T (T (x, y), (T (x, y))[k−1]

T ), z
)

= I
(
T (x, y), I((T (x, y))[k−1]

T , z)
)

= I
(
T (x, y), I [k−1]

~ (T (x, y), z)
)

= I
(
x, I(y, I [k−1]

~ (T (x, y), z))
)

= I
(
x, I(y, I [k−1]

~ (x, I [k−1]
~ (y, z)))

)
= I

(
x, I

[k−1]
~ (x, I(y, I [k−1]

~ (y, z)))
)

= I
[k]
~ (x, I [k]

~ (y, z)) .

This completes teh proof.

If I ∈ I satisfies (CP) w.r.t. some strong negation N , then I
[n]
~ may satisfy CP(N) or may not satisfy

CP w.r.t. any N .

(i) Let I(x, y) = max(N(x), y), for some strong negation N . Then clearly I satisfies (CP) w.r.t. N and
so does I [n]

~ for every n ∈ N.
(ii) If we let I = IRC, then I satisfies (CP) w.r.t. NC(x) = 1 − x. Since IRC satisfies both (NP)

and (EP), from Theorem 4.11 we see that, for I [2]
~ to satisfy CP(NC), I should be expressible as

I(x, y) = max(N(x), y) for some negation N . Clearly, this is not true, since IRC cannot be expressed
as max(N(x), y) for any negation N . Note that this also means that I [2]

~ does not (cannot) satisfy
(CP) w.r.t. any negation N .

Lemma 5.9. Let I ∈ INP

⋂
IEP satisfy (CP) w.r.t. a fuzzy negation N . Then the following statements are

equivalent:

(i) I
[n]
~ satisfies (CP) for all n ∈ N.

(ii) I(x, y) = max(N(x), y).
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Proof. (i) =⇒ (ii). Let I [n]
~ satisfies (CP) for all n ∈ N. i.e., I [2]

~ = I ~ I also satisfies (CP). From
Theorem 4.11, it follows that I(x, y) = max(N(x), y). Further, note that I [n]

~ = I, in this case, and
hence satisfies CP(N) for all n ∈ N.

(ii) =⇒ (i). Let I(x, y) = max(N(x), y). Then it follows that I [n]
~ = I for all n ∈ N and hence I [n]

~ satisfies
(CP) for all n ∈ N.

The following result follows trivially from Theorem 4.12:

Lemma 5.10. Let I ∈ I satisfy (NP) and (OP). Then I
[n]
~ does not satisfy (CP) for any n ∈ N.

6. Closures of Families of Fuzzy Implications w.r.t. the ~-composition

Among the many families of fuzzy implications, (S,N)-implications, R-implications and the Yager’s
families of f - and g-implications have received a lot of interest and importance from the research community
due to their use in both theoretical considerations and practical applications. Further, as noted earlier, they
are also representative families from the first and second type of generation methods of fuzzy implications.

In this section we study the closures of the above families of fuzzy implications w.r.t. the ~-composition.
More explicitly, we investigate the solutions to the following questions: If I, J ∈ I belong to a certain
family of fuzzy implications, then does I ~ J also belong to the same family? If it does not, then what
are the conditions on the underlying operations such that I ~ J also belongs to the same family? Finally,
we investigate the effect on any member of each of these families under self-composition w.r.t. the ~-
composition, or equivalently the powers of implications from these families.

Note that, while the families of f - and g-implications have been completely characterised, see [38], the
families of (S,N)- and R-implications, though two of the oldest, are yet to be characterised completely.
In this work, we deal only with those sub-families of (S,N)- and R-implications for which characterisation
results are available.

6.1. (S,N)-implication and the ~-composition
One of the first generalisations of a classical implication to the setting of fuzzy logic, in fact, multi-valued

logic is based on the classical material implication p =⇒ q ≡ ¬p∨ q. The family of (S,N)-implications were
obtained by substituting a fuzzy negation N for ¬ and a t-conorm S for the join / maximum operation ∨
in the preceeding formula and hence the nomenclature.

Definition 6.1 ([4], Definition 2.4.1). A function I : [0, 1]2 −→ [0, 1] is called an (S,N) implication if
there exist a t-conorm S and a fuzzy negation N such that

I(x, y) = S(N(x), y), x, y ∈ [0, 1]. (6)

If I is an (S,N)-implication then we will often denote it by IS,N . The family of all (S,N)-implications will
be denoted by IS,N. Table 9 gives some of the basic (S,N)-implications.

S N (S,N)-implication IS,N
SM NC IKD

SP NC IRC

SLK NC ILK

SnM NC IFD

any S ND1 ID
any S ND2 IWB

Table 9: Examples of basic (S,N)-implications. Please refer to Tables 1 and 3
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Proposition 6.2 (cf. [4], Proposition 2.4.3). If IS,N is an (S,N)-implication, then IS,N ∈ I. Further, IS,N
satisfies (NP), (EP) and NIS,N

= N .

In the literature, the only available characterisations for (S,N)-implications are those that are obtained
from continuous negations. Note that such characterisations have also been obtained based on (LI), see [34].

Theorem 6.3 ([4], Theorems 2.4.10 – 2.4.12). For a function I : [0, 1]2 −→ [0, 1] the following statements
are equivalent:

(i) I is an (S,N)-implication with a continuous (strict, strong) fuzzy negation N .
(ii) I satisfies (I1), (EP) and NI is a continuous (strict, strong) fuzzy negation.

Moreover, the representation of (S,N)-implication (6) is unique in this case.

6.1.1. Closure of IS,N w.r.t. the ~-composition
In general, the ~-composition of two (S,N)-implications need not be an (S,N)-implication. To see this,

let I, J ∈ IS,N. Then from Proposition 6.2, it follows that I, J satisfy (EP). But from Remark 3.8, it follows
that I ~ J need not satisfy (EP) which implies that I ~ J need not be again an (S,N)-implication. Thus
the ~-composition of two (S,N)-implications need not be again an (S,N)-implication.

Remark 6.4. (i) On the one hand, if we let I(x, y) = SP(1 − x, y), J(x, y) = SP(1 − x2, y), which are
(S,N)-implications, then (I ~ J)(x, y) = SP(1− x3, y), is an (S,N)-implication.

(ii) On the other hand, if I = IRC, J = IKD both of which are (S,N)-implications(see Table 9), then their
~-composition IRC ~ IKD, as given in Table 6, is not an (S,N)-implication since it does not satisfy
(EP). To see this, let x = 0.3, y = 0.8 and z = 0.5. Then

(I ~ J)(0.3, (I ~ J)(0.8, 0.5)) = 0.91 ,

where as
(I ~ J)(0.8, (I ~ J)(0.3, 0.5)) = 0.928 .

Thus I ~ J does not satisfy (EP) and hence I ~ J does not become an (S,N)-implication.

The following result gives a sufficient condition for I ~ J ∈ IS,N.

Theorem 6.5. Let I(x, y) = S(N1(x), y) and J(x, y) = S(N2(x), y) be two (S,N)-implications. Then I~J
is also an (S,N)-implication.

Proof. Let I(x, y) = S(N1(x), y), J(x, y) = S(N2(x), y) be two (S,N)-implications. Now,

(I ~ J)(x, y) = I(x, J(x, y)) = I(x, S(N2(x), y)) = S(N1(x), S(N2(x), y)) = S(S(N1(x), N2(x)), y) .

Since for every t-conorm S and fuzzy negations N1, N2, the function S(N1(x), N2(x)) is again a fuzzy
negation, we get (I ~ J)(x, y) = S(S(N1(x), N2(x)), y) is an (S,N)-implication with S being the t-conorm
and S(N1(x), N2(x)) the fuzzy negation.

Remark 6.6. Note that the converse of Theorem 6.5 is not true. For example, we know that IWB(x, y) =
S(ND2(x), y) for any t-conorm S. Let I(x, y) = S1(N(x), y) be an (S,N)-implication where S1 is a t-conorm
different from S. Then I ~ IWB = IWB = IWB ~ I, is an (S,N)-implication but S 6= S1.

Let us denote some special subsets of IS,N by the following:

• IS,NC - (S,N)-implications obtained from continuous negations.

• ISC,NC - (S,N)-implications obtained from continuous t-conorms and continuous negations.
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6.1.2. Closure of IS,NC w.r.t. the ~-composition
Let us consider I, J ∈ IS,NC , i.e., I(x, y) = S1(N1(x), y) and J(x, y) = S2(N2(x), y), where S1, S2 are

t-conorms and N1, N2 are two continuous negations. Clearly, I ~ J satisfies (I1). Note, however that, even
when we consider only (S,N)-implications obtained from continuous negations, we have that the natural
negation of I ~ J given by

NI~J(x) = (I ~ J)(x, 0) = I(x, J(x, 0)), x ∈ [0, 1] ,

may not be continuous. For instance, when I(x, y) = SnM(1−x, y) = IFD(x, y) and J(x, y) = SP(1−x, y) =
IRC(x, y) = 1− x+ xy, we obtain

NI~J(x) =

{
1, if x ≤ 1

2

1− x, if x > 1
2 .

Clearly, NI~J is not continuous at x = 1
2 .

As is already shown above, I ~ J may not preserve (EP). Clearly, if the pair (I, J) satisfies (ME) then
from Theorem 3.11 we know that I ~ J will satisfy (EP). While, this is neither sufficient nor necessary to
ensure I~J ∈ IS,N, the following result shows that this is equivalent to the condition S1 = S2 of Theorem 6.5
when I, J ∈ IS,NC .

Theorem 6.7. Let I(x, y) = S1(N1(x), y), J(x, y) = S2(N2(x), y) be two (S,N)-implications such that
N1, N2 are continuous negations. Then the following statements are equivalent.

(i) S1 = S2.
(ii) I, J satisfy (ME).

Proof. (i) =⇒ (ii). Let S1 = S2 = S. Then we have I(x, y) = S(N1(x), y), J(x, y) = S(N2(x), y). Now,

L.H.S of (ME) = S(N1(x), S(N2(y), z)) = S(S(N1(x), N2(y)), z) , and

R.H.S of (ME) = S(N2(y), S(N1(x), z)) = S(S(N1(x), N2(y)), z) .

Thus I, J satisfy (ME).
(ii) =⇒ (i). Let I, J satisfy (ME).i.e., I(x, J(y, z)) = J(y, I(x, z)) for all x, y, z ∈ [0, 1]. This implies that

S1(N1(x), S2(N2(y), z)) = S2(N2(y, S1(N1(x), z)))

for all x, y, z ∈ [0, 1]. Letting z = 0, we obtain, for any x, y ∈ [0, 1],

S1(N1(x), N2(y)) = S2(N1(x), N2(y)) .

Since the ranges of N1, N2 are equal to [0, 1], we get, S1(a, b) = S2(a, b) for all a, b ∈ [0, 1].

Finally, if we restrict the underlying t-conorm S also to be continuous, i.e., if we consider ISC,NC ( IS,N,
then the following result is immediate:

Corollary 6.8. Let I, J ∈ ISC,NC . If I, J satisfy (ME) then I ~ J ∈ ISC,NC .

6.1.3. Powers of (S,N)-implications w.r.t. the ~-composition
Note that if I ∈ IS,N, then it satisfies (EP) and hence from Theorem 5.5 it follows that I [n]

~ satisfies (EP)
for all n ∈ N.

From Theorem 6.5 we have the following:

Lemma 6.9. Let I ∈ IS,N. Then I
[n]
~ is also an (S,N)-implication.
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6.2. R-implications and the ~-composition
A second family of fuzzy implications obtained under the first category of the generation processes listed

in the Introduction, is the family of residual implications. This is a generalisation of the implication in
the classical intuitionistic logic to the setting of fuzzy logic. Once again, for more details on this family
regarding their properties, intersections with other families, etc., see for instance, [4].

Definition 6.10 ([4], Definition 2.5.1). A function I : [0, 1]2 −→ [0, 1] is called an R- implication if
there exists a t-norm T such that

I(x, y) = sup{t ∈ [0, 1]|T (x, t) ≤ y}, x, y ∈ [0, 1].

If I is an R-implication generated from a t-norm T , then it is denoted by IT and IT ∈ I. The family of
all R-implications will be denoted by IT.

t-norm T R-implication IT
TM IGD

TP IGG

TLK ILK

TD IWB

TnM IFD

Table 10: Examples of basic R-implications. For detailed formulae, please see Tables 1 and 2.

As in the case of (S,N)-implications, the characterisation of R-implications is available only for R-
implications obtained from left-continuous t-norms.

Theorem 6.11 ([4], Theorem 2.5.17). For a function I : [0, 1]2 −→ [0, 1] the following statements are
equivalent:

(i) I is an R-implication generated from a left-continuous t-norm.
(ii) I satisfies (I2), (EP), (OP) and it is right-continuous with respect to the second variable.

Moreover, the representation of R-implication, up to a left-continuous t-norms, is unique in this case.

The set of all R-implications generated from left-continuous t-norms will be denoted by ITLC ( IT. Once
again, we focus on the problem of, if I, J ∈ ITLC then does I ~ J ∈ ITLC?

6.2.1. Closure of ITLC w.r.t. ~-composition
The composition of two R-implications from left-continuous t-norms need not be an R-implication ob-

tained from a left-continuous t-norm.

Remark 6.12. (i) On the one hand, let I = IGD, J = ILK. Clearly I, J ∈ ITLC (see Table 10). However,
from Remark 3.4 we know that IGD ~ ILK does not satisfy (OP) and hence from the characterisation
Theorem 6.11 we see that IGD ~ ILK /∈ ITLC .

(ii) On the other hand, consider the Goguen and Gödel implications IGG, IGD which are twoR-implications
generated from left-continuous t-norms TP, TM, respectively. Then IGG ~ IGD = IGG ∈ ITLC .

In fact, the following result shows that the ~-composition of two R-implications, not necessarily from
left-continuous t-norms, is an R-implication only if one of them is the Gödel implication IGD.

Lemma 6.13. Let I, J ∈ IT and let both I, J satisfy (OP). Then the following statements are equivalent.

(i) I ~ J satisfies (OP).
(ii) J = IGD.

(iii) I ~ J = I.
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Proof. (i) =⇒(ii). Let I ~ J satisfy (OP). Then from Theorem 3.5, it follows that y ≥ J(x, y) for all
x > y. Since J is an R-implication it follows that J(x, y) ≥ y for all x, y ∈ [0, 1]. Thus J(x, y) = y for
all x > y and hence J = IGD.

(ii) =⇒(iii). This follows from a direct verification.

(iii) =⇒(i). This follows from our assumption.

For more details on when an I ∈ IT satisfies (OP), please refer to [5], Proposition 5.8.

6.2.2. Powers of R-implications w.r.t. the ~-composition
From Lemma 6.13 the following result is obvious:

Lemma 6.14. Let I ∈ ITLC . Then the following statements are equivalent.

(i) I
[n]
~ ∈ IT for all n ∈ N.

(ii) I = IGD.

6.3. f -implications and the ~-composition
While the previous sections dealt with the ~-composition on the families of fuzzy implications obtained

from other fuzzy logic connectives, in the following sections we deal with the Yager’s families of fuzzy
implications, which were proposed by Yager in [56].

In this and the following sections we present the definitions, some relevant properties and characterisa-
tions of these families and proceed along the lines similar to that of Sections 6.1 and 6.2, exploring their
closures w.r.t. the operation ~.

Definition 6.15 ([4], Definition 3.1.1). Let f : [0, 1] −→ [0,∞] be a strictly decreasing and continuous
function with f(1) = 0. The function I : [0, 1]2 −→ [0, 1] defined by

I(x, y) = f−1(x · f(y)) , x, y ∈ [0, 1] , (7)

with the understanding 0 · ∞ = 0, is called an f-implication. If I is an f -implication then it is denoted by
If . The family of all f -impllications will be denoted by IF.

It has been shown that there are only two types of f -generators depending on the value f takes at 0, i.e.,
either f(0) = ∞ or f(0) < ∞. In fact, when f(0) < ∞ it can be modified to a normed generator f ′ such
that f ′(0) = 1 but the f -implications generated are the same, i.e., If ≡ If ′ . See [4], Chapter 5 for more
details.

Let us denote by

• IF,∞ – the family of all f -generated implications such that f(0) =∞.

• IF,1 – the family of all f -generated implications such that f(0) <∞.

In the following, we list out some important but relevant results that give the properties and character-
isations of the family of f -implications.

Theorem 6.16 ([4], Theorem 3.17). If f is an f -generator, then

(i) If satisfies (NP) and (EP).
(ii) If is continuous except at the point (0, 0) if and only if f(0) =∞.

(iii) If is continuous if and only if f(0) <∞, i.e., If ∈ IF,1.

Theorem 6.17 (cf. [38], Theorem 6). Let I : [0, 1] −→ [0, 1] be a binary function. Then the following
statements are equivalent.

(i) I is an f -implication with f(0) <∞, i.e., I ∈ IF,1.
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(ii) I satisfies (LI) w.r.t. TP and NI is strict negation.

Moreover f -generator is unique upto a positive multiplicative constant and it is given by f(x) = N−1
I (x).

Theorem 6.18 (cf. [38], Theorem 12). Let I : [0, 1]2 −→ [0, 1] be a binary function. Then the following
statements are equivalent.

(i) I is an f -implication with f(0) =∞, i.e., I ∈ IF,∞.
(ii) I satisfies (LI) w.r.t. TP, I is continuous except (0, 0) and I(x, y) = 1⇐⇒ x = 0 or y = 1.

6.3.1. Closure of IF w.r.t. the ~-composition
Let I, J ∈ IF. From Theorem 6.16, it follows that both I, J satisfy (EP). However, from Remark 3.8,

we know that I ~ J need not satisfy (EP). Thus the ~-composition of two f -implications need not be an
f -implication.

Remark 6.19. (i) If we consider the fuzzy implications I = IYG ∈ IF,∞ and J = IRC ∈ IF,1. Their
composition I ~ J = IYG ~ IRC is as given in Remark 4.2(i). Once again, from the same remark, we
see that IYG ~ IRC does not satisfy (EP) and hence cannot satisfy (LI) w.r.t. any t-norm T . Clearly,
now, IYG ~ IRC /∈ IF.

(ii) Let I(x, y) = IRC(x, y) = 1 − x + xy, J(x, y) = 1 − x2 + x2y. Then NJ(x) = 1 − x2, a strict
negation. Moreover, from Remark 4.2(iii), J satisfies (LI) w.r.t. TP. Finally from Theorem 6.17,
it follows that J ∈ IF. Now, it is analogous to see the composition I ~ J which will be given by
(I ~ J)(x, y) = 1− x3 + x3y, also belong to IF.

To begin with, the following results show that, if the ~-composition of two f -implications If1 , If2 is again
an f -implication, then either both If1 , If2 ∈ IF,∞ or both If1 , If2 ∈ IF,1.

Lemma 6.20. Let If1 , If2 ∈ IF be such that If1 ~If2 = Ih ∈ IF, for some f -generators f1, f2, h. If f1(0) <∞
and f2(0) <∞ then h(0) <∞.

Proof. Let If1 , If2 be two f -implications such that If1 ~ If2 = Ih is an f -implication. Then f1, f2, h satisfy
the following equation.

f−1
1

(
x · f1 ◦ f−1

2 (x · f2(y))
)

= h−1(x · h(y)), x, y ∈ [0, 1]. (8)

Let x > 0 and y = 0. Then

f−1
2 (x · f2(0)) > 0 =⇒ f1(f−1

2 (x · f2(0))) <∞
=⇒ x · f1 ◦ f−1

2 (x · f2(0)) <∞
=⇒ f−1

1

(
x · f1 ◦ f−1

2 (x · f2(0))
)
> 0 , i.e., L.H.S. of (8) > 0 .

Thus we have R.H.S. of (8) > 0 or equivalently, h−1(x · h(0)) > 0. Now, if h(0) =∞ then x · h(0) =∞ and
hence h−1(x · h(0)) = 0, a contradiction. Thus h(0) <∞. This completes the proof.

Theorem 6.21. Let If1 , If2 ∈ IF be such that If1 ~ If2 = Ih ∈ IF, for some f -generators f1, f2, h. Then
If1 , If2 ∈ IF,∞ ⇐⇒ Ih ∈ IF,∞.

Proof. Let If1 , If2 ∈ IF be such that If1 ~ If2 = Ih is an f -implication, for some f -generators f1, f2, h.

(=⇒). Let f1(0) =∞ = f2(0). We prove that h(0) =∞. Now, If1 ~ If2 = Ih is the expression given in
(8). Once again, let x > 0 and y = 0 in (8). Then

L.H.S. of (8) = f−1
1 (x · f1 ◦ f−1

2 (x · f2(0))

= f−1
1 (x · f1 ◦ f−1

2 (x · ∞))

= f−1
1 (x · f1 ◦ f−1

2 (∞))

= f−1
1 (x · f1(0))

= f−1
1 (x · ∞) = f−1

1 (∞) = 0.
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Now R.H.S. of (8) = h−1(x ·h(0)) = 0 implies that x ·h(0) = h(0). Since x > 0, either h(0) = 0 or h(0) =∞.
Now, from monotonicity of h, it follows that h(0) =∞.

(⇐=). Let h(0) = ∞. We prove that f1(0) = ∞ = f2(0). Now, R.H.S. of (8) = h−1(x · h(0)) = 0 and
hence L.H.S. of (8) = f−1

1 (x · f1f
−1
2 (x · f2(0))) = 0. i.e., x · f1f

−1
2 (x · f2(0)) = f1(0).

Suppose that f1(0) <∞. Once again, we have the following implications:

f1 ◦ f−1
2 (x · f2(0)) <∞ =⇒ f−1

2 (x · f2(0)) > 0 =⇒ f2(0) <∞ .

However, from Lemma 6.20, we know that if f1(0) < ∞ and f2(0) < ∞ then h(0) < ∞, a contradiction to
the fact that h(0) =∞.

Similar to Theorem 6.21, we have the following result:

Corollary 6.22. Let If1 , If2 ∈ IF be such that If1 ~ If2 = Ih ∈ IF, for some f -generators f1, f2, h. Then
If1 or If2 ∈ IF,1 ⇐⇒ Ih ∈ IF,1.

Proof. On the one hand, if Ih ∈ IF,1 then the fact that one of If1 or If2 should belong to IF,1 follows from
the contrapositive of Theorem 6.21.

On the other hand, if one of If1 or If2 ∈ IF,1 but If1 ~ If2 = Ih ∈ IF, then once again it is clear from
Theorem 6.21 that Ih cannot be in IF,∞ and hence is in IF \ IF,∞ = IF,1.

Note that what the above results show is, if two f -implications compose to give an f -implication, then
where their composition would fall. However, it is not true that the composition of any arbitrary pair of
f -implications from IF,∞ or IF,1 will again be an f -implication, as the following example shows.

Example 6.23. (i) Let If1(x, y) = IYG(x, y) and If2(x, y) = log2(1 + (2y − 1)x) whose f -generator is
f2(x) = − ln(2x − 1). From Example 3.1.3 (i) and (iv) in [4], it follows that both If1 , If2 ∈ IF,∞. Now,
If1 ~ If2 is given by

(If1 ~ If2)(x, y) =

{
1, if x = 0 and y = 0 ,
log2(1 + (2y

x − 1)x), otherwise .

It is easy to check that
(If1 ~ If2)(0.3, (If1 ~ If2)(0.5, 0.8)) = 0.2761 ,

while
(If1 ~ If2)(0.5, (If1 ~ If2)(0.3, 0.8)) = 0.2242 .

This implies that If1 ~ If2 does not satisfy (EP) and hence If1 ~ If2 6∈ IF,∞.

(ii) Let f1(x) = 1− x2 and f2(x) =

{
1 + x(e−1)

e , if x ≤ e ,
e+ (x−e)e

e−1 , if x ≥ e .
where e =

√
5− 1
2

. Clearly, both f1, f2 are

decreasing functions with f1(0) = f2(0) = 1 and f1(1) = f2(1) = 0 ( in fact, both f1, f2 are fuzzy
negations), and hence can be used as f -generators to obtain f -implications, If1 , If2 ∈ IF,1 using (7),
where f−1

1 (x) =
√

1− x for x ∈ [0, 1] and f−1
2 = f2 on [0, 1]. Now,

(If1 ~ If2)(x, y) = f−1
1 (x · f1 ◦ f2(x · f2(y))) , x, y ∈ [0, 1] .

Once again, it is easy to check that

(If1 ~ If2)(0.6, (If1 ~ If2)(0.7, 0)) = 0.8904 ,

while
(If1 ~ If2)(0.7, (If1 ~ If2)(0.6, 0)) = 0.9036 .

This implies that If1 ~ If2 does not satisfy (EP) and hence If1 ~ If2 6∈ IF,1.
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In the following, we investigate the conditions under which the ~-composition of two f -implications will
be an f -implication. Towards this end, we present a few small but important results.

Lemma 6.24 ([4], Lemma 3.1.8). Let If be an f -implication. Then If (·, y) is one-one for all y ∈ (0, 1).

Lemma 6.25. Let If be an f -implication and let x > 0 . Then

(i) If (x, ·) is one-one for all x ∈ (0, 1].
(ii) Further, if f(0) =∞ then If (x, ·) is an increasing bijection on [0, 1].

Proof. Let I = If be an f -implication and let x > 0.

(i) Let y1, y2 ∈ [0, 1] and If (x, y1) = If (x, y2). Then

f−1(x · f(y1)) = f−1(x · f(y2)) =⇒ x · f(y1) = x · f(y2)
=⇒ f(y1) = f(y2)
=⇒ y1 = y2 .

Thus If (x, ·) is one-one for all x ∈ (0, 1].
(ii) Let f(0) =∞. Now, If (x, 0) = f−1(x · f(0)) = f−1(x · ∞) = f−1(∞) = 0 and If (x, 1) = 1.

Since f is continuous, the range of If (x, ·) is the entire [0, 1] and hence If (x, ·) is an increasing bijection on
[0, 1].

Remark 6.26. In Lemma 6.25(ii), if f(0) <∞ then If (x, ·) need not be a bijection on [0, 1] for all x > 0.
For example, let f(x) = 1− x, which is the f -generator of the Reichenbach implication IRC ∈ IF,1. Clearly
f(0) = 1 < ∞. When x = 0.2, If (0.2, y) = 0.8 + 0.2y for all y ∈ [0, 1]. Here the range of If (0.2, ·) is equal
to [0.8, 1].

Theorem 6.27. Let If1 , If2 ∈ IF,∞. Then the following statements are equivalent.

(i) If1 ~ If2 ∈ IF,∞.
(ii) If1 ~ If2 satisfies (LI) w.r.t. TP.

(iii) If1 , If2 are mutually exchangeable, i.e., the pair (If1 , If2) satisfies (ME).

Proof. (i) =⇒ (ii): Let If1 ~ If2 ∈ IF,∞. Then from the characterisation result, Theorem 6.18, of f -
implications with f(0) =∞, it follows that If1 ~ If2 satisfies (LI) w.r.t. TP.

(ii) =⇒ (iii): Now assume that If1 ~ If2 satisfies (LI) w.r.t. TP. From Lemma 6.25(i), it follows that If1
is one-one and from Lemma 6.25(ii) that If2 is a bijection on [0, 1]. Now, from Theorem 4.5 it follows
immediately that If1 , If2 are mutually exchangeable.

(iii) =⇒ (i): Let If1 , If2 be mutually exchangeable. Then from Theorem 4.5, If1 ~ If2 satisfies (LI) w.r.t.
TP. Since If1 , If2 are continuous except at (0, 0), If1 ~ If2 is also continuous except at (0, 0). Moreover

(If1 ~ If2)(x, y) = 1⇐⇒ If1(x, If2(x, y)) = 1
⇐⇒ x = 0 or If2(x, y) = 1
⇐⇒ x = 0 or x = 0 or y = 1
⇐⇒ x = 0 or y = 1 .

Now, from Theorem 6.18 we see that If1 ~ If2 ∈ IF,∞.

In the case If1 , If2 ∈ IF,1, then we have only some sufficient conditions as the following results show.

Lemma 6.28. If If1 , If2 ∈ IF,1, then NIf1~If2
is a strict negation.
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Proof. Let If1 , If2 ∈ IF,1. Then from Theorem 6.17 we know that NIf1
, NIf2

are strict negations. Now,

(NIf1~If2
)(x) = (If1 ~ If2)(x, 0) = f−1

1 (x · f1f
−1
2 (x · f2(0))) = f−1

1 (x · f1(NIf2
(x))).

Clearly, NIf1~If2
being the composition of continuous functions is continuous. To show that it is a strict

negation, it suffices to show that it is strictly decreasing. From the antitonicity of f1, f2 we have the following
implications:

x1 < x2 =⇒ NIf2
(x1) > NIf2

(x2)

=⇒ f1(NIf2
(x1)) < f1(NIf2

(x2))

=⇒ x1 · f1(NIf2
(x1)) < x1 · f1(NIf2

(x2)) < x2 · f1(NIf2
(x2))

=⇒ f−1
1 (x1 · f1(NIf2

(x1))) > f−1
1 (x2 · f1(NIf2

(x2)))

i.e., (NIf1~If2
)(x1) > (NIf1~If2

)(x2) .

This completes the proof.

Theorem 6.29. Let If1 , If2 ∈ IF,1. If If1 , If2 are mutually exchangeable then If1 ~ If2 ∈ IF,1.

Proof. Let If1 , If2 ∈ IF,1. Then from Theorem 6.17, If1 , If2 satisfy (LI) w.r.t. TP and NIf1
, NIf2

are strict
negations. Now from Lemma 4.3, if If1 , If2 are mutually exchangeable then If1 ~ If2 satisfies (LI) w.r.t. TP.
Moreover from Lemma 6.28, it follows directly that NIf1~If2

is a strict negation. Again from Theorem 6.17
it follows that If1 ~ If2 ∈ IF,1.

Note, however, it is not clear whether the converse of Lemma 6.29 is true, i.e., whether the mutual
exchangeability of If1 , If2 ∈ IF,1 is also necessary for If1 ~ If2 ∈ IF,1 and hence we have only the following
result, the proof of which follows from Theorem 6.17 and Lemma 6.29.

Corollary 6.30. Let If1 , If2 ∈ IF,1. Let us consider the following statements:

(i) If1 ~ If2 ∈ IF,1.
(ii) If1 ~ If2 satisfies (LI) w.r.t. TP.

(iii) If1 , If2 are mutually exchangeable.

Then, the following implications are true: (i) ⇐⇒ (ii) and (iii) =⇒ (i).

6.3.2. Powers of f -implication w.r.t. ~.
Theorem 6.31. If If ∈ IF,∞ then (If )[n]

~ ∈ IF,∞ for all n ∈ N.

Proof. Let If ∈ IF,∞. The proof is by induction on n.
Note that (If )[2]

~ = (If ~ If )(x, y) = If (x, If (x, y)), since If satisfies (EP), the (repeated) pair (If , If )
satisfies (ME) and from Theorem 6.27(iii) we see that If ~ If ∈ IF,∞.

Now, let us assume that (If )[k−1]
~ ∈ IF,∞. Since (If )[k−1]

~ ∈ IF,∞, (If )[k−1]
~ satisfies (LI) w.r.t. TP and is

continuous except at (0, 0) and (If )[k−1]
~ (x, y) = 1⇐⇒ x = 0 or y = 1. Since If , (If )[k−1]

~ satisfy (EP) from
Theorem 6.16 and then from Lemma 5.4, we see that If , (If )[k−1]

~ satisfy (ME). Now, from Theorem 6.27,
it follows that (If )[k]

~ = If ~ (If )[k−1]
~ ∈ IF,∞.

The proof of the following result is similar to that of Theorem 6.31.

Theorem 6.32. If If ∈ IF,1 then (If )[n]
~ ∈ IF,1 for all n ∈ N.

Corollary 6.33. If If ∈ IF then (If )[n]
~ ∈ IF for all n ∈ N.

Lemma 6.34. Let I = If be an f -implication. Then I
[n]
~ (x, y) = I(xn, y) for all x, y ∈ [0, 1], n ∈ N.
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Proof. Let I = If be an f -implication. Since we know I satisfies (LI) w.r.t. the product t-norm TP(x, y) =
xy, the result follows immediately from Theorem 5.3.

Lemma 6.35. Let I ∈ IF. Then O(I) =∞.

Proof. Suppose for some m ∈ N, I [m]
~ = I

[m+1]
~ . Let x, y ∈ (0, 1) be arbitrarily chosen. Then

If (xm, y) = If (xm+1, y) =⇒ f−1 (xm · f(y)) = f−1(xm+1 · f(y))

=⇒ xm · f(y) = xm+1 · f(y)
=⇒ x = 0 or y = 1 or x = 1 ,

which is a contradiction. Thus O(I) =∞.

Corollary 6.36. No f -implication satisfies the idempotent equation

I(x, I(x, y)) = I(x, y), x, y ∈ [0, 1]. (9)

6.4. g-implications and the ~-composition
In this section, we discuss the closure of the ~-composition w.r.t. the second family of fuzzy implications

proposed by Yager, viz., the g-implications. The results and proofs in this section largely mirror those that
were given in the earlier section that dealt with f -implications (Section 6.3) and hence only a sketch of the
proof is given wherever necessary.

Definition 6.37 ([4], Definition 3.2.1). Let g : [0, 1] −→ [0,∞] be a strictly increasing and continuous
function with g(0) = 0. The function I : [0, 1]2 → [0, 1] defined by

I(x, y) = g(−1)

(
1
x
· g(y)

)
, x, y ∈ [0, 1] ,

with the understanding 1
0 =∞ and ∞· 0 =∞, is called a g-generated implication, where the function g(−1)

is the pseudo inverse of g given by

g(−1)(x) =

{
g−1(x), if x ∈ [0, g(1)] ,
1, if x ∈ [g(1), ∞] .

The family of all g-generated implications is denoted by IG. Once again, it can be shown that it is
sufficient to consider two types of g-generators, viz., those with g(1) =∞ and g(1) = 1. Let us denote by

• IG,∞ – the family of all g-generated implications such that g(1) =∞.

• IG,1 – the family of all g-generated implications such that g(1) <∞.

For more details, please see Chapter 3 of [4] and [38].

Proposition 6.38 ([4], Proposition 4.4.1). The following equalities are true:

IF,1 ∩ IG = ∅ ,
IF ∩ IG,1 = ∅ ,

IF,∞ = IG,∞ .

Lemma 6.39. Let Ig1 , Ig2 ∈ IG be such that Ig1 ~ Ig2 = Ih ∈ IG. Then Ig1 , Ig2 ∈ IG,∞ ⇐⇒ Ih ∈ IG,∞.

Proof. Proof follows from Proposition 6.38 and Theorem 6.21.
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Corollary 6.40. Let Ig1 , Ig2 ∈ IG be such that Ig1 ~ Ig2 = Ih ∈ IG. Then Ig1 or Ig2 ∈ IG,1 ⇐⇒ Ih ∈ IG,1.

Theorem 6.41. Let Ig1 , Ig2 ∈ IG,∞. Then the following are equivalent:

(i) Ig1 ~ Ig2 ∈ IG,∞.
(ii) Ig1 ~ Ig2 satisfies (LI) w.r.t. TP.

(iii) Ig1 , Ig2 are mutually exchangeable.

Proof. Proof follows from Proposition 6.38 and Theorem 6.27.

Theorem 6.42. Let Ig1 , Ig2 ∈ IG,1. If Ig1 , Ig2 are mutually exchangeable then Ig1 ~ Ig2 ∈ IG,1.

6.4.1. Powers of g-implication w.r.t. ~.
The proofs of the following results are anologous to those in Section 6.3.2.

Theorem 6.43. If Ig ∈ IG,∞ then (Ig)
[n]
~ ∈ IG,∞ for all n ∈ N.

Theorem 6.44. If Ig ∈ IG,1 then (Ig)
[n]
~ ∈ IG,1 for all n ∈ N.

Corollary 6.45. If Ig ∈ IG then (Ig)
[n]
~ ∈ IG for all n ∈ N.

Lemma 6.46. Let I = Ig be an g-implication. Then I
[n]
~ (x, y) = I(xn, y) for all x, y ∈ [0, 1], n ∈ N.

Lemma 6.47. Let I ∈ IG. Then O(I) =∞.

Corollary 6.48. No g-implication satisfies the idempotent equation (9).

7. Concluding Remarks

Recently, in [50], the authors had proposed a novel generative method to obtain a fuzzy implication
from a given pair of fuzzy implications. The ~-composition proposed in [50] not only gave rise to new fuzzy
implications but also imposed a monoid structure on I, the set of all fuzzy implications. The algebraic aspects
of the ~-composition were explored in [53] and based on the results some hitherto unknown representations
of some families of fuzzy implications were obtained.

In this work, we have investigated the analytical aspects of the ~-composition. We have shown that the
~-composition carries over most of the properties of the underlying fuzzy implications. Further, we have
investigated the preservation of the law of importation (LI) and contraposition w.r.t. a strong negation N
under the ~-composition. The choice of these functional equations were not only dictated by their centrality
but also due to their relevance in further exploration, as shown by the dependence of many of the results in
Sections 5 and 6 on them. In future works, we intend to study other functional equations involving fuzzy
implications like distributivity, T -conditionality, etc.

This study also has necessitated the introduction of the concept of mutual exchangeability (ME) between
a pair of fuzzy implications, which plays a central role in our investigation. In fact, (ME) can be seen as
one generalisation of the exchange principle (EP) and hence deserves further exploration.

It is also heartening to note that due to the associativity of the ~-composition, one can define powers
of fuzzy implications w.r.t. the ~-composition. Exploring this, we have shown that it is possible to obtain
infinitely many new fuzzy implications from a single given fuzzy implication by self-composition with the
~-composition, often carrying all the desirable properties. Towards this end, once again, a new concept of
order of a fuzzy implication w.r.t. the ~-composition was proposed.

Finally, since our proposed method falls under the third category of generating fuzzy implications (under
the broad classification espoused in Section 1), we have also studied its effect on fuzzy implications obtained
from the other two categories. Specifically, we considered the families of (S,N)- and R-implications (Sec-
tions 6.1 and 6.2) which are representative of the first type of generation methods and the Yager’s families
of f - and g-implications (Sections 6.3 and 6.4) which are representative of the second type of generation
methods. It was shown that these families are not completely closed w.r.t. the ~-composition.
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We believe that determining the closures of these families, though a highly non-trivial task, can be
immensely beneficial in obtaining newer perspectives on the set of fuzzy implications, as was similarly
shown in [53] with group actions on the monoid (I,~) that gave rise to hitherto unknown representations
for the Yager’s families of f - and g-implications. For instance, fuzzy implications that fall within the closure
but outside of the families of, say (S,N)- or R-implications, can be seen as a ~-composition of two (S,N)-
or R-implications for an appropriate pair of fuzzy implications.

Note that while discussing the powers of an I ∈ I w.r.t. the ~-composition, one can also discuss the
periodicity of I w.r.t. the ~-composition, i.e., the question of when I

[n]
~ = I for an n > 2 and not for

any n0 < n. Of course, if O(I) = 1 then the periodicity of I is 1 and, further, I is idempotent w.r.t. the
~-composition. We intend to take up exploration along the above lines in the near future.
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