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Abstract

In this work, we solve an open problem related to the preservation of the exchange principle (EP) of fuzzy
implications under lattice operations (Problem 3.1, Fuzzy Sets and Systems 261(2015), 112–123.). We show
that generalizations of the commutativity of antecedents (CA) to a pair of fuzzy implications (I, J), viz.,
the generalized exchange principle and the mutual exchangeability are sufficient conditions for the solution
of the problem. Further, we determine conditions under which these become necessary too. Finally, we
investigate the pairs of fuzzy implications from different families such that (EP) is preserved by the join and
meet operations.
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1. Introduction

Fuzzy implications are one of the important logical connectives in fuzzy logic. These operators generalize
the classical implication from {0, 1}-setting to many valued setting. Fuzzy implications on the unit interval
[0, 1] are defined as follows:

Definition 1.1 ([1], Definition 1.1.1). A function I : [0, 1]2 −→ [0, 1] is called a fuzzy implication if it
satisfies, for all x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions:

if x1 ≤ x2, then I(x1, y) ≥ I(x2, y) , (I1)

if y1 ≤ y2, then I(x, y1) ≤ I(x, y2) , (I2)

I(0, 0) = 1 , I(1, 1) = 1 , I(1, 0) = 0 . (I3)

Let I denote the set of fuzzy implications defined on [0, 1].

1.1. Fuzzy Implications and the exchange principle(EP)

Let −→ denote the classical implication. Then, from classical logic, it follows that

p −→ (q −→ r) ≡ q −→ (p −→ r), (CA)

which is known as the commutativity of antecedents(CA).
Note that, a straightforward generalization of (CA) to the many-valued setting need not hold true always

and thus leads to the notion of the exchange principle(EP) of a fuzzy implication, which is defined as follows:
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Name Formula (EP)
 Lukasiewicz ILK(x, y) = min(1, 1− x+ y) X

Gödel IGD(x, y) =

{
1, if x ≤ y
y, if x > y

X

Reichenbach IRC(x, y) = 1− x+ xy X
Kleene-Dienes IKD(x, y) = max(1− x, y) X

Goguen IGG(x, y) =

{
1, if x ≤ y
y

x
, if x > y

X

Rescher IRS(x, y) =

{
1, if x ≤ y
0, if x > y

×

Fodor IFD(x, y) =

{
1, if x ≤ y
max(1− x, y), if x > y

X

Least FI I0(x, y) =

{
1, if x = 0 or y = 1

0, if x > 0 and y < 1
×

Greatest FI I1(x, y) =

{
1, if x < 1 or y > 0

0, if x = 1 and y = 0
X

Table 1: Examples of fuzzy implications (cf. Table 1.3 in [1])

Definition 1.2 (cf. [1], Definition 1.3.1). A fuzzy implication I is said to satisfy the exchange principle
(EP), if for all x, y, z ∈ [0, 1],

I(x, I(y, z)) = I(y, I(x, z)) . (EP)

Let IEP denote the set of fuzzy implications satisfying (EP).

Table 1 (see also, Table 1.3 in [1]) lists some examples of basic fuzzy implications along with whether
they satisfy the exchange principle (EP) or not.

1.2. Motivation for this work

In this work, we investigate the problem (Problem 3.1 in [3], which is stated below as Problem 1.4) of
preservation of (EP) by the lattice operations of fuzzy implications, which are defined as in the following
result:

Theorem 1.3 ([1], Theorem 6.1.1). The family (I,≤) is a complete, completely distributive lattice with the
lattice operations

(I ∨ J)(x, y) := max(I(x, y), J(x, y)) , x, y ∈ [0, 1] ,

(I ∧ J)(x, y) := min(I(x, y), J(x, y)) , x, y ∈ [0, 1] ,

where I, J ∈ I.

The fact that the lattice operations of fuzzy implications do not preserve (EP) (see, Remark 6.1.5 in [1])
has led to the following open problem.

Problem 1.4 ([3], Problem 3.1). Characterize the subfamily of all fuzzy implications ((S,N)- implica-
tions, R- implications, etc.) for whose elements the lattice operations preserve (EP).
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While the scope of the originally proposed problem was limited to some families of fuzzy implications,
noting that the families of (S,N)-implications, R-implications obtained from left-continuous t-norms, the
Yager’s families of f - and g-implications do satisfy (EP), in this work, we attempt to find the solutions of
Problem 1.4 in a more general setting. Hence we consider the following modified problem:

Problem 1.5 (cf. [3], Problem 3.1). From the class of all fuzzy implications satisfying (EP), character-
ize the pairs of fuzzy implications which satisfy (EP) under the lattice operations of meet and join, i.e., find
all pairs I, J ∈ IEP, such that both I ∧ J, I ∨ J ∈ IEP.

This forms the main motivation of this work.

1.3. Outline of the paper

The organization of the paper is as follows: In Section 2, we show that the solutions of Problem 1.5 do
exist, in general, by providing some suitable examples of I, J ∈ IEP such that I ∨ J and I ∧ J satisfy (EP)
and investigate some basic conditions for a pair (I, J) to satisfy the same. We recall also some important
generalizations of (CA), viz., the generalized exchange principle(GEP) and the mutual exchangeability(ME).
Following this, in Section 3, we show that either of (GEP) or (ME) is a sufficient condition for the lattice
operations to preserve (EP). Later on, in Section 4, we show that the properties (GEP) and (ME) are
also necessary under some conditions, namely, the Lattice Exchangeability Inequlaities (LEE). Finally, we
investigate pairs from some specific but major families of fuzzy implications that satisfy (ME) and (GEP)
in Sections 5 and 6, respectively.

2. Preliminaries

In this section, we first present some examples of I, J ∈ IEP which show that (EP) of I ∨ J does not
always imply that of I ∧J and vice versa. Next, we show that there exist nontrivial solutions of Problem 1.5
by presenting some suitable examples. Finally, we recall two important generalizations of (CA), namely,
(GEP) and (ME), that were already proposed in different contexts and discuss their independence.

To start with, in the following, we present a family of fuzzy implications whose elements do satisfy (EP).
For an α ∈ [0, 1], let us define Iα as follows:

Iα(x, y) =


1, if x = 0 or y = 1,

0, if x = 1 and y = 0,

α, otherwise.

(1)

Note that Iα ∈ I for every α ∈ [0, 1]. Further, observe that when α = 0, Iα = I0, is the least fuzzy
implication and when α = 1, Iα = I1, is the greatest fuzzy implication (For formulae, see, Table 1). It is
easy to see that Iα ∈ IEP, for all α ∈ [0, 1].

In the following, we present an example which shows that (EP) of I ∨ J and that of I ∧ J are, indeed,
independent. i.e., given I, J ∈ IEP, the fact that I ∨ J satisfies (EP) need not imply that I ∧ J also satisfies
(EP) and vice versa.

Example 2.1. (i) Let I = Iα ∈ IEP be defined as in (1) for some α ∈ [0, 1] and J = IRC ∈ IEP. Then
Iα ∨ J and Iα ∧ J , respectively, are as given below:

(Iα ∨ J)(x, y) =


1, if x = 0 or y = 1,

0, if x = 1 and y = 0,

max(α, 1− x+ xy) otherwise,

(Iα ∧ J)(x, y) =


1, if x = 0 or y = 1,

0, if x = 1 and y = 0,

min(α, 1− x+ xy), otherwise.
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(Iα ∧ J)
(
x, (Iα ∧ J)(y, z)

)
=


1, if x = 0 or y = 0 or z = 1,

0, if x = 1 and y = 1 and z = 0,

min(α, 1− xy + xyz), otherwise,

= (Iα ∧ J)
(
y, (Iα ∧ J)(x, z)

)
,

which implies that Iα ∧ J satisfies (EP) for all α ∈ [0, 1]. Now, we have that

(Iα ∨ J)
(
x, (Iα ∨ J)(y, z)

)
=


1, if x = 0 or y = 0 or z = 1,

0, if x = 1 and y = 1 and z = 0,

max(1− x+ αx, 1− xy + xyz), otherwise,

(Iα ∨ J)
(
y, (Iα ∨ J)(x, z)

)
=


1, if x = 0 or y = 0 or z = 1,

0, if x = 1 and y = 1 and z = 0,

max(1− y + αy, 1− xy + xyz), otherwise.

However, it can be shown that Iα∨J does not satisfy (EP) for any α ∈ (0, 1). In fact, let x = 1, y = 1−α
and z = 0. Then we have

(Iα ∨ J)
(
x, (Iα ∨ J)(y, z)

)
= α ,

while (Iα ∨ J)
(
y, (Iα ∨ J)(x, z)

)
= α+ α(1− α) 6= α for any α ∈ (0, 1) .

Of course, in the case α = 0 we have Iα ∨ J = I0 ∨ J = J = IRC, which satisfies (EP). Similarly, if
α = 1 we have Iα ∨ J = I1 ∨ J = I1, which satisfies (EP).

(ii) Let I, J ∈ I be defined as follows (See, [2]):

I(x, y) =

{
0, if x = 1 and y < 1,

1, otherwise,
and J(x, y) =

{
0, if x > 0 and y = 0,

1, otherwise.

Then from Example 1.5.10 in [1], it follows that I, J ∈ IEP. Also note that the point-wise maximum
of I, J , i.e., I ∨J is equal to I1, the greatest fuzzy implication (see Table 1 for formula), which satisfies
(EP). However, the point-wise minimum of I, J , i.e., I ∧ J , which is given as follows does not satisfy
(EP).

(I ∧ J)(x, y) =

{
0, if (x > 0 and y = 0) or (x = 1 and y < 1),

1, otherwise.

To see that I ∧ J does not satisfy (EP), let x = 1, y = 0.2 and z = 0.3. Then we get,

(I ∧ J)(x, (I ∧ J)(y, z)) = 1 6= 0 = (I ∧ J)(y, (I ∧ J)(x, z)).

2.1. Existence of the solutions of Problem 1.5

In this section, we first show that there exist solutions of Problem 1.5. Consequently, we obtain the
equivalent formulations of solutions of Problem 1.5.

Example 2.2. (i) Let I, J ∈ IEP and I ≤ J under the usual point-wise ordering of functions. Clearly,
I ∨ J = J and I ∧ J = I, which satisfy (EP). Thus when I, J are comparable, I ∨ J and I ∧ J always
satisfy (EP).

(ii) However, there do exist I, J ∈ IEP that are not comparable but whose join and meet satisfy (EP).
For instance, let I, J ∈ I be defined as follows:

I(x, y) =

{
1, if x = 0,

sin(πy2 ), if x > 0,
and J(x, y) =

{
1, if x = 0,

y2, if x > 0.

Clearly, I, J are not comparable, but as can be easily seen I, J, I ∨ J and I ∧ J ∈ IEP.
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In fact, one can generalize Example 2.2(ii) to obtain further solutions of Problem 1.5 as in the following.
Let Φ denote the set of increasing functions ϕ defined on [0, 1] such that ϕ(0) = 0 and ϕ(1) = 1 . Let S

be the set of all fuzzy implications of the following form:

I(x, y) =

{
1, if x = 0,

ϕ(y), if x > 0,

where ϕ ∈ Φ. Then it is easy to check that any I ∈ S satisfies (EP) and hence S ( IEP. Further, for
any I, J ∈ S, the implications I ∨ J, I ∧ J ∈ IEP. In the case, if ϕ,ψ are incomparable then I, J are also
incomparable.

Remark 2.3. From Example 2.2(i), it follows that the lattice operations always preserve (EP) if the pair
(I, J) under consideration are comparable fuzzy implications. Clearly, these are largely trivial solutions and
hence in the following we investigate the solutions of Problem 1.5, in general.

Now, in the following, we present some important results that will be useful in the investigations of pairs
of fuzzy implications for which the lattice operations do preserve (EP).

Proposition 2.4 ([1], Propositions 7.2.15 and 7.2.26). For a function I : [0, 1]2 −→ [0, 1] the following
statements are equivalent:

(i) I is increasing in the second variable, i.e., I satisfies (I2).

(ii) I satisfies I(x,min(y, z)) = min(I(x, y), I(x, z)) for all x, y, z ∈ [0, 1].

(iii) I satisfies I(x,max(y, z)) = max(I(x, y), I(x, z)) for all x, y, z ∈ [0, 1].

In the following, we present some equivalent formulations of the fact that I ∨ J, I ∧ J satisfy (EP), both
when I, J ∈ I and when I, J ∈ IEP, which will be useful in the sequel. Towards this, we have the following
result, which follows from Proposition 2.4.

Lemma 2.5. Let I, J ∈ I. Then the following statements are equivalent:

(i) I ∧ J ∈ IEP.

(ii) I, J satisfy the following equation for all x, y, z ∈ [0, 1]:

min
{
I(x, I(y, z)), I(x, J(y, z)), J(x, I(y, z)), J(x, J(y, z))

}
= min

{
I(y, I(x, z)), I(y, J(x, z)), J(y, I(x, z)), J(y, J(x, z))

}
. (2)

Proof. Let I, J ∈ I and K1 = I ∧ J . Let also x, y, z ∈ [0, 1]. Then we get

K1(x,K1(y, z)) = K1(x,min(I(y, z), J(y, z))), d By using definition of I ∧ J = K1

= min(I(x,min(I(y, z), J(y, z))), J(x,min(I(y, z), J(y, z)))),

d By using definition of I ∧ J = K1

= min(min(I(x, I(y, z)), I(x, J(y, z))),min(J(x, I(y, z)), J(x, J(y, z))))

d By using Proposition 2.4

= min(I(x, I(y, z)), I(x, J(y, z)), J(x, I(y, z)), J(x, J(y, z))).

Similarly, one can get, for all x, y, z ∈ [0, 1], that

K1(y,K1(x, z)) = min(I(y, I(x, z)), I(y, J(x, z)), J(y, I(x, z)), J(y, J(x, z))).

Now, it follows directly that (i) ⇐⇒ (ii).
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Further, if I, J ∈ IEP, then we see that (2) becomes (3) and we have the following corollary:

Corollary 2.6. Let I, J ∈ IEP. Then the following statements are equivalent:

(i) I ∧ J ∈ IEP.

(ii) I, J satisfy the following equation:

min
{
I(x, I(y, z)), I(x, J(y, z)), J(x, I(y, z)), J(x, J(y, z))

}
= min

{
I(x, I(y, z)), I(y, J(x, z)), J(y, I(x, z)), J(x, J(y, z))

}
. (3)

Along the lines of Lemma 2.5 and Corollary 2.6, we get the following result:

Lemma 2.7. Let I, J ∈ I. Then the following statements are equivalent:

(i) I ∨ J ∈ IEP.

(ii) I, J satisfy the following equation for all x, y, z ∈ [0, 1]:

max
{
I(x, I(y, z)), I(x, J(y, z)), J(x, I(y, z)), J(x, J(y, z))

}
= max

{
I(y, I(x, z)), I(y, J(x, z)), J(y, I(x, z)), J(y, J(x, z))

}
. (4)

Further, if I, J ∈ IEP, then we see that (4) is equivalent to

max
{
I(x, I(y, z)), I(x, J(y, z)), J(x, I(y, z)), J(x, J(y, z))

}
= max

{
I(x, I(y, z)), I(y, J(x, z)), J(y, I(x, z)), J(x, J(y, z))

}
. (5)

Note that the results contained in Lemmas 2.5 - 2.7 are only some equivalent formulations of the fact that
I∨J, I∧J ∈ IEP, in general. It should be emphasized that these results do not contain any characterizations
of fuzzy implications I, J such that I ∨ J, I ∧ J ∈ IEP.

2.2. Some generalizations of (CA)

In the following, we recall two important generalizations of (CA) proposed in different contexts, which
play an important role in the sequel.

2.2.1. Generalized Exchange Principle(GEP)

Definition 2.8. Let A be a subset of [0, 1]3. A pair (I, J) of fuzzy implications is said to satisfy the
generalized exchange principle (GEP) on A, if for all (x, y, z) ∈ A,

I(x, J(y, z)) = I(y, J(x, z)) ,

J(x, I(y, z)) = J(y, I(x, z)) .

}
(GEP)

In the case if A = [0, 1]3, for simplicity, we often state that the pair (I, J) satisfies (GEP).

Remark 2.9. Note that, in the original definition of (GEP) in [4], the pair (I, J) satisfies (GEP) if only
the first of the above two conditions, viz., I(x, J(y, z)) = I(y, J(x, z)), is true and with A = [0, 1]3. In that
sense, given I, J ∈ I, our definition requires both the pairs (I, J) and (J, I) to satisfy (GEP). However, to
avoid cumbersome repetitions, we continue to consider the definition given in Definition 2.8 in this work.

Example 2.10. In the following, we present some examples related to (GEP).
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(i) Let I, J ∈ I be defined as follows:

I(x, y) =

{
1, if x ≤ 0.4,

1− x+ xy, if x > 0.4,
and J(x, y) =

{
1, if x ≤ 0.4,

max(1− x, y), if x > 0.4.

Then the pair (I, J) satisfies (GEP) on A = [0, 0.4]× [0, 0.4]× [0, 1].

(ii) Let I, J ∈ I be defined as follows:

I(x, y) =

{
1, if x = 0,

y3, if x > 0,
and J(x, y) =

{
1, if x = 0,

y4, if x > 0.

Then the pair (I, J) satisfies (GEP).

(iii) Let I = IRS and J ∈ I be defined as follows:

J(x, y) =

{
0, if x > 0 and y = 0,

1, otherwise.

Then it follows that, for all x, y, z ∈ [0, 1],

I(x, J(y, z)) = I(y, J(x, z)) =

{
1, if x = 0 or y = 0 or z > 0,

0, otherwise.

However, when x = 0.3, y = 0.2 and z = 0.25, it follows that

J(x, I(y, z)) = 1 6= 0 = J(y, I(x, z)).

Thus, the two equations in (GEP) are mutually independent.

(iv) Let I = IKD, J = IRC. Then for x = 0.2, y = 0.4 = z, we get

I(x, J(y, z)) = 0.8 6= 0.88 = I(y, J(x, z))

and for x = 1, y = 0.3, z = 0.4, J(x, I(y, z)) = 0.7 6= 0.82 = J(y, I(x, z)),

which clearly shows that I, J satisfy none of the equations of (GEP).

2.2.2. Mutual Exchangeability (ME) of a pair of Fuzzy Implications

Another important generalization of (CA) is the mutual exchangeability (ME) of a pair (I, J) of fuzzy
implications, which has been proposed in the context of preservation of (EP) under the ~-composition of
fuzzy implications. For more about this, please see [5, 8].

For our context, we redefine (ME) of a pair (I, J) of fuzzy implications as follows.

Definition 2.11. Let B be a subset of [0, 1]3. A pair (I, J) of fuzzy implications is said to be mutually
exchangeable on B, if for all (x, y, z) ∈ B,

I(x, J(y, z)) = J(y, I(x, z)). (ME)

In the case if B = [0, 1]3, we just say that the pair (I, J) satisfies (ME), which is same as the one presented
in Definition 3.9 in [8].

In the following, we present an example related to (ME).

Example 2.12. (i) The pair (I, J) of fuzzy implications defined in Example 2.10(i) satisfies (ME) on
B = [0, 0.4]× [0, 0.4]× [0, 1].
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(ii) Let 0 ≤ ε, δ < 1. Now, consider the following fuzzy implications:

I(x, y) =

{
1, if x ≤ ε ,
y2, if x > ε ,

and J(x, y) =

{
1, if x ≤ δ ,
y3, if x > δ .

Now, it is easy to verify that

I(x, J(y, z)) =

{
1, if x ≤ ε or y ≤ δ,
z6, if x > ε and y > δ,

= J(y, I(x, z)),

which implies that the pair (I, J) satisfies (ME), i.e., B = [0, 1]3.
(iii) Let I = IKD, J = IRC and x = 0.2, y = 0.4 = z. Then it follows that,

I(x, J(y, z)) = 0.8 6= 0.92 = J(y, I(x, z)),

which clearly shows that the pair (I, J) does not satisfy (ME).

So far, in this section, we have discussed two important generalizations of (CA), viz., (ME) and (GEP).
In the following, we present some pairs (I, J) of fuzzy implications which establish the independence of the
concepts (ME) and (GEP).

Remark 2.13. (i) Let I, J ∈ I be defined as in Example 2.12(i), with ε = δ. Then, it is easy to verify
that the pair (I, J) satisfies both (GEP) and (ME) on A = B = [0, 1]3.

(ii) Now, we present a pair (I, J) of fuzzy implications satisfying (GEP) and not satisfying (ME). Let
ε ∈ [0, 1). Define I, J ∈ I as follows:

I(x, y) =

{
1, if x ≤ ε ,
y3, if x > ε ,

and J(x, y) =

{
1, if x ≤ ε ,
sin(πy2 ), if x > ε .

Now, from definition of I and J , it follows that

I(x, J(y, z)) =

{
1, if x ≤ ε or y ≤ ε,
sin3(πz2 ), if x > ε and y > ε,

= I(y, J(x, z)),

and J(x, I(y, z)) =

{
1, if x ≤ ε or y ≤ ε,
sin(πz

3

2 ), if x > ε and y > ε,
= J(y, I(x, z)),

for all x, y, z ∈ [0, 1]. Thus the pair (I, J) satisfies (GEP). However, it can be noticed that

I(x, J(y, z)) =

{
1, if x ≤ ε or y ≤ ε,
sin3(πz2 ), if x > ε and y > ε,

while, J(y, I(x, z)) =

{
1, if x ≤ ε or y ≤ ε,
sin(πz

3

2 ), if x > ε and y > ε,

which implies that the pair (I, J) does not satisfy (ME).
(iii) Let I, J ∈ I be defined as in Example 2.12(ii). Then, it follows that the pair (I, J) satisfies (ME).

However, in the case ε 6= δ, we get that

I(x, J(y, z)) =

{
1, if x ≤ ε or y ≤ δ,
z6, if x > ε and y > δ,

6=

{
1, if x ≤ δ or y ≤ ε,
z6, if x > δ and y > ε,

= I(y, J(x, z))

implies that the pair (I, J) does not satisfy (GEP).
(iv) From above points, it follows that (ME) defined in Definition 2.11 is different from (GEP) defined in

Definition 2.8. However, when I = J ∈ I both (ME) and the (GEP) reduce to the usual (EP) of I.
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3. Sufficient conditions on I, J ∈ IEP such that I ∨ J, I ∧ J satisfy (EP)

Let A,B ⊆ [0, 1]3 be such that A ∪ B = [0, 1]3. Then, in this section, for any I, J ∈ IEP, we show that
(GEP) of (I, J) on A and (ME) of (I, J) on B, or vice-versa, is a sufficient condition for a pair (I, J) to be
a solution of Problem 1.5. Towards this, we have the following result.

Theorem 3.1. Let I, J ∈ IEP and the pair (I, J) satisfy (GEP) on A and (ME) on B where A,B are such
that A ∪ B = [0, 1]3. Then both I ∧ J and I ∨ J ∈ IEP.

Proof. Let I, J ∈ IEP and the pair (I, J) satisfy (GEP) on A and (ME) on B where A,B are such that
A ∪ B = [0, 1]3. In the following, we show only that I ∧ J ∈ IEP. Let K1 = I ∧ J and x, y, z ∈ [0, 1].

• Let (x, y, z) ∈ A. Then (I, J) satisfies (GEP). Now, from (EP) of I, J and (GEP) of (I, J) and
Corollary 2.6, it follows that

K1(x,K1(y, z)) = min(I(x, I(y, z)), I(x, J(y, z)), J(x, I(y, z)), J(x, J(y, z)))

dFrom Corollary 2.6 and Proposition 2.4

= min(I(y, I(x, z)), I(y, J(x, z)), J(y, I(x, z)), J(y, J(x, z)))

d By using (EP) of I, J and (GEP) of (I, J)

= K1(y,K1(x, z)), dFrom Corollary 2.6 and Proposition 2.4

or equivalently, K1 = I ∧ J satisfies (EP) on A.

• Let (x, y, z) ∈ B. Then (I, J) satisfies (ME). Then, once again, by using (EP) of I, J and (ME) of
(I, J) and Corollary 2.6, we get

K1(x,K1(y, z)) = min(I(x, I(y, z)), I(x, J(y, z)), J(x, I(y, z)), J(x, J(y, z)))

dFrom Corollary 2.6 and Proposition 2.4

= min(I(y, I(x, z)), J(y, I(x, z)), I(y, J(x, z)), J(y, J(x, z)))

d By using (EP) of I, J and (ME) of (I, J)

= K1(y,K1(x, z)), dFrom Corollary 2.6 and Proposition 2.4

or equivalently, K1 = I ∧ J satisfies (EP) on B.

Remark 3.2. Let I, J ∈ IEP and the pair (I, J) satisfy (GEP) on A and (ME) on B where A,B are such
that A ∪ B = [0, 1]3. Then we have the following conditions:

(i) If A = ∅ then the pair (I, J) satisfies (ME). This implies that (ME) is a sufficient condition for lattice
operations to preserve (EP).

(ii) If B = ∅ then the pair (I, J) satisfies (GEP). This implies that (GEP) is a sufficient condition for
lattice operations to preserve (EP).

Thus we have the following corollary emphasizing the importance of (GEP) and (ME).

Corollary 3.3. Let I, J ∈ IEP. If the pair (I, J) satisfies either (GEP) or (ME), then both I ∧ J and
I ∨ J ∈ IEP.

Remark 3.4. The converse of Corollary 3.3 need not be true always. i.e., if for given I, J ∈ I, if their
lattice operations I ∨ J and I ∧ J satisfy (EP) then the pair (I, J) need not satisfy (ME) or (GEP) or both
always. To see this, let I = IKD and J = IRC, which satisfy (EP) (see, Table 1.4 in [1] ). Since, IKD < IRC,
with usual point-wise ordering (see, Example 1.1.6 in [1]), it follows that I ∨ J = IRC and I ∧ J = IKD also
satisfy (EP). Moreover, from Examples 2.10(iv) and 2.12(iii), it follows that the pair (I, J) does not satisfy
either (GEP) or (ME), respectively.

Clearly, this also means that the conditions in Theorem 3.1 are, again, only sufficient but not necessary.
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4. Necessary conditions on I, J ∈ IEP such that I ∨ J, I ∧ J satisfy (EP)

Let I, J ∈ IEP. In Theorem 3.1, we have shown that (GEP) and (ME) of (I, J) on A,B respectively, is
a sufficient condition for I ∨ J and I ∧ J to satisfy (EP). In this section, we show that these properties also
become necessary under some conditions. Towards this end, we define the following:

Definition 4.1. Let I, J ∈ I. Then we say that the pair (I, J) satisfies Lattice Exchangeable Equations
(LEE) if it satisfies the following equations, for all x, y, z ∈ [0, 1]:

max(I(x, J(y, z)), J(x, I(y, z))) = max(I(y, J(x, z)), J(y, I(x, z))) , (LEE-1)

min(I(x, J(y, z)), J(x, I(y, z))) = min(I(y, J(x, z)), J(y, I(x, z))) . (LEE-2)

In the following, we present an example regarding (LEE).

Example 4.2. Let Iα1 , Iα2 ∈ IEP be defined as in (1) and I, J ∈ IEP be defined as follows:

I(x, y) = IRC(x, y) = 1− x+ xy and J(x, y) = 1− x+ xy2 .

It can be verified that the pair of fuzzy implications (Iα1
, Iα2

) does satisfy the (LEE) equations, while the
pair (I, J) does not, for example, at x = 0.4, y = 0.7 and z = 0.6.

In the following, we take up the task of investigating the solutions of (LEE-1) and (LEE-2). Before doing
so, let us define the following set.

D = {(x, y, z) ∈ [0, 1]3|I(x, J(y, z)) ≥ J(x, I(y, z))}.

Let us denote by

• D1 = {(x, y, z) ∈ D|(y, x, z) ∈ D}

• D2 = {(x, y, z) ∈ D|(y, x, z) ∈ Dc}

• D3 = {(x, y, z) ∈ Dc|(y, x, z) ∈ D}

• D4 = {(x, y, z) ∈ Dc|(y, x, z) ∈ Dc}

Note that Di’s form a partition of [0, 1]3.

Theorem 4.3. Let I, J ∈ I. If the pair (I, J) satisfies (LEE-1) and (LEE-2), then (I, J) satisfies (GEP)
on D1 ∪ D4 and (ME) on D2 ∪ D3.

Proof. Let I, J ∈ I and the pair (I, J) satisfy (LEE-1) and (LEE-2).

(i) Let (x, y, z) ∈ D1 ∪ D4.

• Let (x, y, z) ∈ D1. Then from the definition of D1, it follows that both (x, y, z), (y, x, z) ∈ D.
Again, from the definition ofD, we get the inequalities I(x, J(y, z)) ≥ J(x, I(y, z)) and I(y, J(x, z)) ≥
J(y, I(x, z)). Now, from these inequalities, (LEE-1) and (LEE-2) become I(x, J(y, z)) = I(y, J(x, z)),
J(x, I(y, z)) = J(y, I(x, z)), respectively, which together imply the satisfiability of (GEP) by the
pair (I, J) on D1.

• Let (x, y, z) ∈ D4. Then from the definition of D4, it follows that both (x, y, z), (y, x, z) ∈ Dc.
Again, from the definition ofD, we get the inequalities I(x, J(y, z)) ≤ J(x, I(y, z)) and I(y, J(x, z)) ≤
J(y, I(x, z)). Now, from these inequalities, (LEE-1) and (LEE-2) become J(x, I(y, z)) = J(y, I(x, z)),
I(x, J(y, z)) = I(y, J(x, z)), respectively, which together imply the satisfiability of (GEP) by the
pair (I, J) on D4.

(ii) Let (x, y, z) ∈ D2 ∪ D3.
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• Let (x, y, z) ∈ D2. Then from the definition of D2, it follows that (x, y, z) ∈ D and (y, x, z) ∈ Dc.
Again, from the definition ofD, we get the inequalities I(x, J(y, z)) ≥ J(x, I(y, z)) and I(y, J(x, z)) ≤
J(y, I(x, z)). Now, from these inequalities, (LEE-1) becomes I(x, J(y, z)) = J(y, I(x, z)), which
implies the satisfiability of (ME) by the pair (I, J) on D2.

• Let (x, y, z) ∈ D3. Then from the definition of D3, it follows that (x, y, z) ∈ Dc and (y, x, z) ∈ D.
Again, from the definition ofD, we get the inequalities I(x, J(y, z)) ≤ J(x, I(y, z)) and I(y, J(x, z)) ≥
J(y, I(x, z)). Now, from these inequalities, (LEE-2) becomes I(x, J(y, z)) = J(y, I(x, z)), which
implies the satisfiability of (ME) by the pair (I, J) on D3.

This completes the proof.

Corollary 4.4. Let the pair (I, J) satisfy (LEE-1) and (LEE-2). Then the following conditions hold true:

(i) If either D1 = [0, 1]3 or D4 = [0, 1]3 then the pair (I, J) satisfies (GEP).
(ii) If either D2 = [0, 1]3 or D3 = [0, 1]3 then the pair (I, J) satisfies (ME).

Proof. Proof follows directly from Theorem 4.3 and Definitions 2.8, 2.11.

Recall from Theorem 3.1, that for a given I, J ∈ IEP, the satisfiability of (GEP) on A and (ME) on B,
where A ∪ B = [0, 1]3, is a sufficient condition for I ∨ J, I ∧ J ∈ IEP. Further, in Theorem 4.3, we have
shown that the above sufficient conditions also become necessary under some conditions, namely, (LEE-1)
and (LEE-2). Thus, the characterizations of solutions of Problem 1.5, under the assumptions of (LEE-1)
and (LEE-2), can be summarized as given below, whose proof directly follows from Theorems 3.1 and 4.3.

Theorem 4.5. Let I, J ∈ IEP and the pair (I, J) satisfy (LEE-1) and (LEE-2). Then the following
statements are equivalent:

(i) I ∨ J, I ∧ J ∈ IEP.
(ii) The pair (I, J) satisfies (GEP) on A and (ME) on B, where A = D1 ∪ D4 and B = D2 ∪ D3.

Remark 4.6. In Theorem 4.5 the satisfaction of both (LEE-1) and (LEE-2) are important. To see this, let
I = IKD and J = IRC, which satisfy (EP) (see, Table 1.4 in [1] ).

Now, if we let x = 0.3, y = 0.4 and z = 0.5, then

min(I(x, J(y, z)), J(x, I(y, z))) = 0.8 < 0.85 = min(I(y, J(x, z)), J(y, I(x, z))),

which implies that the pair (I, J) does not satisfy (LEE-1).
On the one hand, since, IKD < IRC, with usual point-wise ordering (see, Example 1.1.6 in [1]), it follows

that I ∨ J = IRC and I ∧ J = IKD also satisfy (EP).
On the other hand, let us consider the point ū = (x, y, z) = (0.2, 0.4, 0.4) ∈ [0, 1]3. From the following

I(x, J(y, z)) = 0.8 6= 0.88 = I(y, J(x, z)) ,

I(x, J(y, z)) = 0.8 6= 0.92 = J(y, I(x, z)) ,

it is clear that (I, J) satisfies neither (ME) nor (GEP) at ū. Thus there does not exist any partition A,B of
[0, 1]3 such that (I, J) satisfies (ME) on A and (GEP) on B.

Since (ME) and (GEP) play an important role in the characterizations of solutions of Problem 1.5, it is
of interest to know the pairs (I, J) of fuzzy implications that do satisfy (ME) or (GEP). We take up this
investigation in the following sections.

5. Pairs of fuzzy implications satisfying (ME)

From Theorem 3.1, it follows that (ME) of a pair (I, J) of fuzzy implications satisfying (EP) is a sufficient
condition for I ∨ J and I ∧ J to satisfy (EP). Due to the variety of fuzzy implications and the complexity
of the functional equation, it is not an easy task to investigate the pairs of fuzzy implications that do
satisfy (ME). However, in [5], the solutions of (ME), but only for the families of fuzzy implications whose
characterizations are well established, have been investigated. In the following, we recall some important
results, from [5], that form the solutions of (ME) and thus the solutions of Problem 1.4.
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5.1. (S,N)-implications satisfying (ME)

In this section, we present the solutions of (ME) for fuzzy implications that come from the family of all
(S,N)-implications. Before doing so, we recall the definition of (S,N)-implications.

Definition 5.1 ([1], Definition 2.4.1). A function I : [0, 1]2 −→ [0, 1] is called an (S,N)-implication if
there exist a t-conorm S and a fuzzy negation N such that

I(x, y) = S(N(x), y), x, y ∈ [0, 1].

Let us denote by

• IS,N - the family of (S,N)-implications,

• IS,N - the set of (S,N)-implications with trivial range negations N ,

• IS,NC - the set of (S,N)-implications with continuous negations N .

Clearly, IS,N , IS,NC ( IS,N ( I.
Let us begin by considering the (S,N)-implications whose negations are trivial.

Proposition 5.2 ([5], Proposition 4.1). Let I be an (S,N)-implication whose negation N has trivial range,
i.e., N(x) ∈ {0, 1} for all x ∈ [0, 1]. Then I satisfies (ME) with every J ∈ I.

From Proposition 5.2, it follows that if at least one of I, J belongs to IS,N then the pair (I, J) satisfies
(ME) and hence becomes the solution of Problem 1.4.

In the case, if I, J ∈ IS,NC and satisfy (ME), then as the following result suggests the two t-conorms
involved in the definition must be the same.

Theorem 5.3 ([8], Theorem 6.7). Let I(x, y) = S1(N1(x), y) and J(x, y) = S2(N2(x), y) be two (S,N)-
implications such that N1, N2 are continuous negations. Then the following statements are equivalent:

(i) The pair (I, J) satisfies (ME).

(ii) S1 = S2.

5.2. R-implications satisfying (ME)

Definition 5.4 ([1], Definition 2.5.1). A function I : [0, 1]2 −→ [0, 1] is called an R- implication if there
exists a t-norm T such that

I(x, y) = sup{t ∈ [0, 1]|T (x, t) ≤ y}, x, y ∈ [0, 1].

If I is an R-implication generated from a t-norm T , then it is denoted by IT and IT ∈ I.
Since the characterization results are not available for all R-implications, we consider only the R-

implications that are obtained from left-continuous t-norms and let us denote this class by ITLC .

Theorem 5.5 ([5], Theorem 5.1). Let I = IT1
, J = IT2

∈ ITLC .The following statements are equivalent:

(i) The pair (I, J) satisfies (ME).

(ii) I = J .

Before presenting the pairs (I, J) of fuzzy implications that satisfy (ME) from the families of f - and
g-implications, we recall two important definitions that will be useful in the sequel.

In [6], the authors have proposed a generating method of fuzzy implications, namely, the ~-composition.

Definition 5.6 ([6], Definition 7 and [7]). For any I, J ∈ I, we define I ~ J : [0, 1]2 −→ [0, 1] as

(I ~ J)(x, y) = I(x, J(x, y)), x, y ∈ [0, 1] .
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Since the ~-composition defined as in Definition 5.6 is associative one can define the powers of I ∈ I as
follows:

Definition 5.7 ([8], Definition 5.1). Let I ∈ I. For any n ∈ N, we define the n-th power of I w.r.t. the
binary operation ~ as follows:

For n = 1, I
[n]
~ = I,

and for n ≥ 2, I
[n]
~ (x, y) = I

(
x, I

[n−1]
~ (x, y)

)
= I

[n−1]
~ (x, I(x, y)) ,

for all x, y ∈ [0, 1].

5.3. f -implications satisfying (ME)
The family of f -implications is proposed by Yager in [9] by using unary monotone functions on [0, 1].

They are defined as follows:

Definition 5.8 ([1], Definition 3.1.1). Let f : [0, 1] −→ [0,∞] be a strictly decreasing and continuous
function with f(1) = 0. The function I : [0, 1]2 −→ [0, 1] defined by

I(x, y) = f−1(x · f(y)) , x, y ∈ [0, 1] ,

with the understanding 0 · ∞ = 0, is called an f-implication.

Let us denote the family of f -implications by IF. Now, the following result establishes the pairs (I, J) of
f -implications that do satisfy (ME).

Theorem 5.9 ([5], Theorem 6.6). Let I, J be two f -implications. Then the following statements are equiv-
alent:

(i) The pair (I, J) satisfies (ME).

(ii) J = I
[n]
~ for some n ∈ N.

5.4. g-implications satisfying (ME)
Like f -implications, the family of g-implications was also proposed by Yager in [9]. They are defined as

follows:

Definition 5.10 ([1], Definition 3.2.1). Let g : [0, 1] −→ [0,∞] be a strictly increasing and continuous
function with g(0) = 0. The function I : [0, 1]2 −→ [0, 1] defined by

I(x, y) = g(−1)
(

1

x
· g(y)

)
, x, y ∈ [0, 1] ,

with the understanding 1
0 =∞ and ∞· 0 =∞, is called a g-generated implication, where the function g(−1)

is the pseudo inverse of g given by

g(−1)(x) =

{
g−1(x), if x ∈ [0, g(1)] ,

1, if x ∈ [g(1), ∞] .

Let us denote the family of g-implications by IG. As in the case of f -implications, we get the following
result.

Theorem 5.11 ([5], Theorem 7.4). Let I, J be two g-implications. Then the following statements are
equivalent:

(i) The pair (I, J) satisfies (ME).

(ii) J = I
[n]
~ for some n ∈ N.

The summary of the results obtained in this section are presented in Table 2, wherein given an I from a
particular sub-family IX of fuzzy implications, we seek a J - again in IX - such that the pair (I, J) satisfies
(ME) and hence, from Theorem 3.1, becomes a solution of Problem 1.4. We present also the final form of
the implications I ∨J and I ∧J obtained from them. Note that for some families of fuzzy implications there
exist only trivial solutions of Problem 1.4.
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Family I(x, y) = J(x, y) = (I ∨ J)(x, y) = (I ∧ J)(x, y) =

IS,N

{
1, if x ≤ ε,
y, if x > ε,

Any J

{
1, if x ≤ ε,
max(y, J(x, y)) if x > ε,

{
J(x, y), if x ≤ ε,
min(y, J(x, y)) if x > ε,

IS,NC S(N1(x), y) S(N2(x), y) S(max(N1(x), N2(x)), y) S(min(N1(x), N2(x)), y)
ITLC I(x, y) I(x, y) I(x, y) I(x, y)

IF I(x, y) I
[n]
~ (x, y) I

[n]
~ (x, y) I(x, y)

IG I(x, y) I
[n]
~ (x, y) I

[n]
~ (x, y) I(x, y)

Table 2: Some solutions of Problem 1.5

6. Pairs of fuzzy implications satisfying (GEP)

In this section, we attempt to find the pairs (I, J) of fuzzy implications that do satisfy (GEP). Once
again keeping the complexity of the functional equation (GEP) in mind, we restrict ourselves to do so for
the families (S,N)-, R-, f - and g- of fuzzy implications.

Note that all of these families of fuzzy implications satisfy the left neutrality property (NP), which is
defined as below:

Definition 6.1 (cf. [1], Definition 1.3.1). A fuzzy implication I is said to satisfy the left neutrality prop-
erty (NP) if

I(1, y) = y, y ∈ [0, 1] . (NP)

Lemma 6.2. Let I, J ∈ I satisfy (NP). If the pair (I, J) satisfies (GEP) then I = J .

Proof. The substitution of x = 1 in (GEP) and (NP) of I, J ∈ I will yield I = J .

From Lemma 6.2, it is clear that if I, J belong to one of the following families of fuzzy implications,
viz.,(S,N)-, R-, f -, g- implications, and satisfy (GEP), then I = J and hence it trivially follows that both
I ∨ J and I ∧ J satisfy (EP).

Remark 6.3. From Lemma 6.2, it does appear that (GEP) is a very strong sufficient condition, especially,
for all fuzzy implications that do possess (NP), to satisfy Problem 1.4.

However, there exist fuzzy implications I, J ∈ IEP which do not satisfy (NP) but still satisfy (GEP) and
hence both I ∨ J and I ∧ J satisfy (EP). For example, let I, J ∈ I be defined as follows:

I(x, y) =

{
1, if x ≤ ε ,
ϕ(y), if x > ε ,

J(x, y) =

{
1, if x ≤ ε ,
ψ(y), if x > ε ,

for some ε ∈ [0, 1] and ϕ,ψ ∈ Φ and neither of ϕ,ψ is the identity function on [0, 1].
In this context, (ME) perhaps is a milder sufficient condition. For instance, from Table 2 we see that for

the families of (S,N)-, f - and g- implications, we still have non-trivial solutions of Problem 1.4.

7. Concluding Remarks

In this paper, we have investigated the solutions of an open problem, viz., Problem 3.1 from [3], related
to the preservation of the exchange principle (EP) of fuzzy implications under the lattice operations of
pointwise meet and join. Our study has shown the significance of two of the generalizations of (CA), viz.,
(GEP) and (ME) in obtaining the solutions of the problem.

While (GEP) and (ME) are independently sufficient for the lattice operations of fuzzy implications to
preserve (EP), these conditions are not necessary. However, the newly proposed pair of equations, namely
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the Lattice Exchangeable Equations (LEE-1) and (LEE-2) make (GEP) and (ME) also a necessity for a pair
of fuzzy implications to be a solution of Problem 1.5.

Since the pairs (I, J) of fuzzy implications satisfying either (GEP) or (ME) are the most general solutions
of the problem, known so far, we have investigated them for those families of fuzzy implications whose
complete characterizations are known. However, this problem has to be investigated in general. So are
the problems dealing with the satisfaction of (GEP) or (ME) of a fixed pair of fuzzy implications (I, J) on
different domains A,B ( [0, 1]3. Further, the solutions of (LEE) are themselves worthy of study in their
own right.
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