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Abstract

This paper is a short note contribution to the topic of fuzzy relational in-
ference (FRI) systems and the preservation of their desirable properties. It
addresses the two main fuzzy relational inferences – compositional rule of
inference (CRI) introduced by Zadeh and the Bandler-Kohout subproduct
(BK-Subproduct) – and their combination with two fundamental fuzzy re-
lational models of fuzzy rule bases, namely, the Mamdani-Asilian and the
implicative models.

The goal of this short note article, is threefold. Firstly, we show that
one of the results provided in [37], namely the robustness related to the
combination of BK-subproduct and implicative fuzzy rule base model, was
not proven correctly as it used an incorrect lemma. However, we will show
that the result itself is still valid as an alternative and valid proof will be
provided. Secondly, we present some of the results provided already in [23]
and later on in other works in the perspective of the preservation of the
desirable properties. Finally, we provide readers with a brief yet important
discussion on consequences of these results in the light of the theoretical as
well as practical aspects of building fuzzy inference systems.
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1. Introduction

The notion of fuzzy inference systems (or fuzzy rule based systems) de-
notes systems incorporating the fundamental idea of Zadeh to imitate the
human way of thinking based on fuzzy rules, see e.g. [41]. The application
potential has been proven to be huge and the list of successful applications
as well as deep theoretical studies would quickly exceed the page limit and
hence let us only mention the very first by Mamdani and Assilian [21] as
a tribute to the authors.

If we restrict our focus on the fuzzy relational inference1, we face the
following situation. Let X, Y be non-empty classical sets (universes) and the
sets of all fuzzy sets on X(Y ) are denoted by F(X) (resp. F(Y )). A fuzzy
(IF-THEN) rule base is a set of n fuzzy rules usually given in the following
form:

IF x is Ai THEN y is Bi , i = 1, . . . , n , (1)

where the fuzzy sets Ai ∈ F(X) and Bi ∈ F(Y ), represent some properties.
Given an observation A′ ∈ F(X), a corresponding output fuzzy set B′ ∈

F(Y ), is inferred with the help of fuzzy inference mechanism and the given
fuzzy rule base. Thus, an inference mechanism may be generally viewed as
an arbitrary mapping from F(X) to F(Y ) [11, 12]. However, as mentioned
above, we will focus on the fuzzy relational inference mechanism initiated by
Zadeh in 1973.

Fuzzy relational inference mechanisms use a fuzzy relation R to model
a given fuzzy rule base. Here, a fuzzy IF-THEN rule of the form (1) is
represented as a fuzzy relation R ∈ F(X × Y ). Then, given a fact x is A′,
the inferred output y is B′ is obtained as a composition of A′ and R, i.e.,

B′ = A′@R , (2)

1Let this restriction be not viewed as a lack of respect to other approaches but rather
as a necessary technical narrowing of the class of problems we are facing. The authors
are fully aware of other approaches, mainly e.g. Similarity Based Reasoning [32]. It is
also worth mentioning that under certain conditions, an equivalent fuzzy relation based
description of some of these inference systems can be built, see [4] so, the outcomes of this
article are still also highly related to these other systems.
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where A′ ∈ F(X), B′ ∈ F(Y ) and @ is a fuzzy relational composition or
more precisely an image of the fuzzy set A′ under the fuzzy relation R that
is derived from the fuzzy relational composition.

Clearly, for different models R of the fuzzy rules and for different com-
positions @ we obtain different fuzzy relational inference systems, often with
varying properties. Let us recall two most commonly employed classes of
fuzzy relations R to model a given fuzzy rule base and two well-established
fuzzy relational inference mechanisms based on different fuzzy compositions.

Most often used class of models stems from the already mentioned suc-
cessful application by Mamdani and Assilian [21] and uses the following
fuzzy relation Ř ∈ F(X × Y ):

Ř(x, y) =
n∨

i=1

(Ai(x) ∗Bi(y)) , x ∈ X, y ∈ Y . (3)

This, say Cartesian product approach, originally used the minimum oper-
ation (∗ = ∧), and it has been later on generalized for other conjunctors.
It makes sense to consider this class of models restricted to arbitrary yet
meaningful and rich enough class of operations, e.g. left-continuous t-norms
[17].

Alternatively, in order to capture the conditional form of fuzzy rules (1),
the following fuzzy relation R̂ ∈ F(X × Y ):

R̂(x, y) =
n∧

i=1

(Ai(x)→ Bi(y)) , x ∈ X, y ∈ Y , (4)

can also be chosen to model the fuzzy rule base. It deals with a correctly
defined fuzzy implication→ [1], which is often a residual implication derived
from a left-continuous t-norm ∗.

With respect to the short-note nature of this article, we do not find it
appropriate to stress the difference between both models in detail but as
this issue deserves importance, we provide readers with relevant references
[3, 8, 26] and we add an important note, that both the models have sound
logical foundations, see e.g. [9, 13, 27].

Two of the commonly employed fuzzy relational compositions @ are the
sup−∗ and inf −I compositions [18], which when employed lead to the follow-
ing fuzzy relational inferences. The Compositional Rule of Inference (CRI)
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introduced by Zadeh [41], infers the output B′ in the following way:

B′(y) =
∨
x∈X

(A′(x) ∗R(x, y)) , y ∈ Y , (5)

where ∗ is a again a conjunctor, typically a (left-continuous) t-norm [17]. For
CRI scheme, we use the following notation:

B′ = A′ ◦R . (6)

The second inference, based on the Bandler-Kohout subproduct (BK-
Subproduct, for short) [2], was up to our best knowledge firstly used by
Pedrycz [28] and although it is much less frequently used, it has started to
attract attention in the recent years [20, 22, 34, 38]. The output B′ inferred
by the BK-Subproduct is obtained as follows:

B′(y) =
∧
x∈X

(A′(x)→ R(x, y)) , y ∈ Y (7)

where→ is a residual implication. For BK-Subproduct, we use the following
notation to indicate the scheme:

B′ = A′ CR . (8)

As one can see, for the sake of simplicity and clarity, everything may
be elaborated in the framework of residuated lattice (see, e.g., [27]) L =
(L,∧,∨, ∗,→, 0, 1) as the underlying algebraic structure. We assume the
readers to be familiar with basic properties of these structures and also with
the fact, that each left-continuous t-norm ∗ generates such a structure [5] so,
we only add references to relevant sources [13, 27]. The basic properties are
also listed in [37], of which the following are essential in the sequel:∨

i∈I

ai → b =
∧
i∈I

(ai → b) , (9)

a→ (b→ c) = (a ∗ b)→ c = (b ∗ a)→ c , (10)

(a→ b) ∗ c ≤ a→ (b ∗ c) . (11)

For better understanding, let us adopt the notation from [29] and later
on used also in [37] and consider the following structure

S = (X, Y, {Ai, Bi}i=1,...,n,L,@) ,
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where X, Y are the universes, Ai ∈ F(X), Bi ∈ F(Y ) for all i = 1, . . . , n are
the antecedent and consequent fuzzy sets in the fuzzy rule base, @ : F(X)×
F(X × Y ) → F(Y ) is the chosen inference (fuzzy relational composition)
and finally, L is the fixed residuated lattice on the unit interval [0, 1] that
provides us with the involved operations.

By the choice of the fuzzy relation R modeling the fuzzy rule base and
by the choice of @, we define a fuzzy function f@

R (A) : F(X) → F(Y ) such
that f@

R (A) = A@R, for an arbitrary A ∈ F(X).

2. Motivation

The goals of this article, that richly stems from findings in [37, 23] and
in [39], is threefold. So, let us firstly recall what was provided in the above
cited works.

In [37], the authors demonstrated, that BK-Subproduct is at least as good
as well-known and much more often used CRI. The authors recalled, that the
crucial property, that is interpolativity (i.e. preservation of modus ponens)
can be ensured under the very same conditions for both inferences and that
in the case of the BK-Subproduct, the interpolativity is also equivalent to
the “continuity” as it has been defined and proved in [29]. Further, they have
shown, that the other advantageous properties, e.g. robustness, equivalence
of FITA and FATI inference strategies or an existence of hierarchical infer-
ence algorithm that significantly reduces the computational costs, are not
dependent on the chosen inference but rather on an appropriate combination
of the inference and the fuzzy rule base model. In particular, for the three
latter properties, one has to either combine CRI with the Mamdani-Assilian
model Ř or BK-Subproduct with the implicative model R̂. Let us note that
these facts were already known for the first combination [16, 14] and the
authors of [37] proved them for the latter one in order to show that both
approaches are equally good.

Now, the threefold goal of this paper is as follows.

• Firstly, we show, that one of the results provided in [37], namely the ro-
bustness related to the combination of BK-subproduct and implicative
fuzzy rule base model, was not proved correctly as it used an incorrect
lemma. However, the result itself is still valid and an alternative valid
proof is provided.
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• Secondly, we present some of the results provided already by Moser
and Navara [23] and later on by Štěpnička and Mandal [39] in
the perspective of the preservation of the desirable properties discussed
in our previous paper.

• Finally, we provide readers with a brief yet important discussion on
consequences of these results in the light of the theoretical as well as
practical aspects of building fuzzy inference systems.

The structure of the rest of the paper clearly follows these three goals.

3. Goal 1: Robustness of BK-Subproduct and implicative models

In [16], Klawonn and Castro constructed their approach to the no-
tion of robustness of fuzzy inference systems in a natural way. In particular,
they shown that (cit. [16]) “the output obtained from CRI for a given in-
put fuzzy set A′ does not change if we substitute A′ by its extensional hull
Â′”. The important assumption is, that the input A′ is extensional w.r.t
the same fuzzy equivalence relation2 to which also the antecedent fuzzy sets
are extensional. Indeed, “a fuzzified input does not change the outcome of
a rule as long as the fuzzy set obtained by the fuzzification is contained in
the extensional hull of the original crisp input value” [16]. Furthermore, the
authors finally conclude that it does not make sense to measure more exactly
than the indistinguishability admits. This approach formalizes the robustness
of the inference in scenarios where there can be slight discrepancies between
the intended input and the actual input.

The result was originally provided for CRI with both Ř and R̂, but only
for a single rule [16]. In [37] it was generalized for more rules, which, on the
other hand, required the restriction to the use of Ř only. It was formulated
as follows.

Theorem 1. ([37], Theorem 3.20) Let S = (X, Y, {Ai, Bi}i=1,...,n,L, ◦) be
a structure for fuzzy rules (1). Let E be a fuzzy equivalence relation on X
with respect to which each Ai is extensional for i = 1, . . . , n. If A′ ∈ F(X),

2With respect to the limited size of a short note paper, we again assume that the
readers are familiar with the basic definitions of fuzzy equivalence relations (also similarity
or indistinguishability), and the extensional hull.
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then A′ ◦ Ř = Â′ ◦ Ř , where Â′ is the extensional hull of A′ w.r.t. the fuzzy
equivalence relation E.

Furthermore, in [37] the authors provided an analogous result for the
combination of BK-Subproduct and the implicative model of a fuzzy rule
base R̂, which we recall below.

Theorem 2. ([37], Theorem 3.23) Let S = (X, Y, {Ai, Bi}i=1,...,n,L,C) be
a structure for fuzzy rules (1). Let E be a fuzzy equivalence relation on X
with respect to which each Ai is extensional, for i = 1, . . . , n. If A′ ∈ F(X),

then A′ C R̂ = Â′ C R̂.

These generalizations to multiple rules provided by Theorems 1 and 2 are
on the other hand restrictive w.r.t. the chosen combination of the inference
mechanism and the fuzzy rule base model. As we have mentioned above,
Klawonn and Castro in [16] proved that, assuming the CRI inference,
for a single rule the robustness is preserved no matter the choice of the
model. Although a single rule fuzzy rule base is useless in practice, there is
an undoubted importance of the result for so-called FITA inference strategies,
where instead of a single fuzzy relation representing the whole fuzzy rule base
(1), one takes a single fuzzy relation for every single fuzzy rule and performs
n inferences, each inference only with help of a single fuzzy rule. In other
words, in FITA strategies, the fuzzy rule base (1) is viewed as n fuzzy rule
bases of a single rule and Klawonn and Castro actually provide a strong
result stating, that in this case, one may deal with both the conjunctive as
well as implicative model of a fuzzy rules base.

This significance of this result can hardly be exaggerated, bearing in mind
that many applications adopt the FITA strategies rather than FATI strate-
gies (first-aggregate-then-infer) [10] encoded usually in the fuzzy relational
representation by Ř or R̂. Therefore, authors in [37] provided again an anal-
ogous result for the BK-Subproduct, which we recall below.

Theorem 3. ([37], Theorem 3.22) Let S = (X, Y, {A,B},L,C) be a struc-
ture for a single fuzzy rule. Let E be a fuzzy equivalence relation on X with
respect to which A is extensional. Let A′ ∈ F(X) be any fuzzy set, then

A′ C R̂ = Â′ C R̂ and A′ C Ř = Â′ C Ř.

The authors built the proof of the second part of the Theorem, in partic-
ular of the equality

A′ C Ř = Â′ C Ř
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on an alternative representation of an extensional hull of a fuzzy set, that was
also provided in [37]. However, this representation was not proved correctly.
We repeat the incorrect proposition and we show, why it cannot be correct.

Proposition 4. (Proposition 3.21 in [37], INCORRECT!) Let µ ∈ F(X)
and E a fuzzy equivalence relation on X. Then the extensional hull of µ may
be expressed as follows

µ̂(x) =
∧
{E(x, y)→ µ(y) | y ∈ X} . (12)

Indeed, if µ̂(x) was given as above, then it would necessarily lead to the
following

µ̂(x) =
∧
y∈X

E(x, y)→ µ(y) ≤ E(x, x)→ µ(x) = µ(x)

while as we know, the opposite inequality, i.e., µ(x) ≤ µ̂(x) holds. This easily
demonstrates, why the above recalled proposition cannot hold in general.

However, although the equality formulated in Proposition 4 (Proposi-
tion 3.21 in [37]) does not hold, it does not necessarily mean that the second
part of Theorem 3 (Theorem 3.22 in [37]) is not valid anymore. In fact, the
opposite is true, as we show below.

Proof of Theorem 3. (of Theorem 3.22 in [37])

The first equality
A′ C R̂ = Â′ C R̂

is proven in [37] and hence we concentrate on proving the second equality

A′ C Ř = Â′ C Ř.

As the antitonicity of residuated implication → ensures that

A′ C Ř ≥ Â′ C Ř

holds, it is sufficient to prove the other inequality, namely

A′ C Ř ≤ Â′ C Ř.

Recall that, for any y ∈ Y ,

(Â′ C Ř)(y) =
∧
x∈X

(
Â′(x)→ (A(x) ∗B(y))

)
.
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Taking the right hand side of the equality, then for any x ∈ X, we have

Â′(x)→ (A(x) ∗B(y))

=

(∨
z∈X

(A′(z) ∗ E(x, z))

)
→ (A(x) ∗B(y))

=
∧
z∈X

(
(A′(z) ∗ E(x, z))→ (A(x) ∗B(y))

)
d by (9)

=
∧
z∈X

(
A′(z)→

(
E(x, z)→ (A(x) ∗B(y))

))
d by (10)

≥
∧
z∈X

(
A′(z)→

((
E(x, z)→ A(x)

)
∗B(y)

))
d by (11)

≥
∧
z∈X

(A′(z)→ (A(z) ∗B(y))) d by definition of E

= (A′ C Ř)(y) .

which proves the desired inequality and thus, the whole Theorem. �
This proof closes the first goal of the paper related to robustness of fuzzy

inference systems with the use of the BK-Subproduct C as the inference
mechanism. As we have shown, the previous results are still valid, however,
the proof has to be constructed in a different way.

4. Goal 2: Preservation of desirable properties

This section focuses on the preservation of desirable properties of the
above mentioned fuzzy inference systems. Mainly, it stems from the axiom-
atization provided by Moser and Navara [23] and later on followed in
[39, 33]. In fact, the most important results actually stem partly from even
older publications [15, 25] related to the solvability of fuzzy relational equa-
tions and thus, consequently, to interpolativity alias preservation of modus
ponens. Note that this property is perhaps the most crucial one for fuzzy
inference systems incorporating fuzzy inputs. Let us only briefly recall the
most important results from the field of the solvability of fuzzy relational
equations that are gathered from the sources referred above and from the
following ones [7, 31, 28, 6].

The main idea behind interpolativity is expressed by the following equal-
ity f@

R (Ai) = Bi which says nothing else but the fact that if an input A′ is
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equal to one of the antecedents, say to Ai, the inferred output B′ has to be
equal to the respective consequent Bi. This leads us to deal with a system
of fuzzy relational equations [31] where

Ai@R = Bi , i = 1, . . . , n , (13)

is solved with respect to an unknown R ∈ F(X × Y ).

Theorem 5. System (13) with @ = ◦ (@ = C) is solvable if and only if
R̂ (Ř) is a solution of this system. In the case of solvability, R̂ (Ř) is the
greatest (least) solution of (13) with @ = ◦ (@ = C) .

Theorem 5 actually states that the implicative model R̂ (or Mamdani-
Assilian model Ř) should be the first choice whenever dealing with the infer-
ence mechanism modelled by ◦ (or C, respectively). However, if there exist
some reasons, for example preservation of robustness, lower computational
complexity or the existence of hierarchical inference that is identical to the
non-hierarchical one [37, 14], the combination of Mamdani-Assilian model Ř
and the CRI inference ◦ (implicative model R̂ and the BKS inference C) can
be used as well without harming the preservation of modus ponens. Indeed,
some additional assumptions, specified in the Theorem below, have to be
imposed.

Theorem 6. [15, 25] Let all Ai for i = 1, . . . , n be normal. Then Ř (R̂) is
a solution of (13) with @ = ◦ (@ = C) if and only if the condition∨

x∈X

(Ai(x) ∗ Aj(x)) ≤
∧
y∈Y

(Bi(y)↔ Bj(y)) (14)

holds for any i, j ∈ {1, . . . , n}.

Now, let us focus on the impact of Theorem 6. On one hand, it gives a
positive result. On the other hand, condition (14) contains a hidden trap.
This condition may be easily fulfilled for t-norms with zero divisors such as
the  Lukasiewicz t-norm, while in the case of t-norms without zero divisors,
meeting the criterion is not so easy.

Indeed, on the one hand if you consider the  Lukasiweicz t-norm and,
moreover, you assume the antecedent fuzzy sets to meet the Ruspini parti-
tion axioms [30], which is a well-known sufficient condition for the solvability
of both systems of fuzzy relational equations [36, 35], left-hand side of (14)
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will equal to zero and thus, the criterion (14) will be trivially fulfilled. Con-
sequently, for this particular algebra, the Ruspini partition will not only be
a sufficient condition, but it will be even sufficient for the use of the models,
that may provide some computational or robustness advantages.

On the other hand, considering the t-norm without zero divisors, such as
the Gödel t-norm (minimum) or the Goguen t-norm (product), one encoun-
ters a peculiar situation. It can be easily checked, that the right-hand side of
(14) equals to zero whenever the consequents Bi and Bj have mutually dif-
ferent support. Only in case of totally equal supports of all consequents, the
right-hand side is non-trivially positive. However, having totally the same
consequent supports is not a desirable condition at all. Now, if we allow the
right-hand side to be equal to zero by using consequents with different sup-
ports, we need to set up the antecedents in such a way that also the left-hand
side of (14) equals to zero. Then again, recall that ∗ is now a t-norm without
zero divisors which means that the antecedents would have to be disjoint in
a crisp sense! Consequently, either we have to deal with undesirable conse-
quents, or with antecedents that do not overlap. Thus we are forced to work
with sparse rule bases, which is not desirable either, however sophisticated
the fuzzy interpolation techniques that we employ may be [19, 40].

It was Moser and Navara [23] who pointed out this drawback. They
constructed three natural axioms for “well-behaving” fuzzy inference sys-
tems. The first one was the often mentioned interpolativity, i.e. model R
has to solve the corresponding system of fuzzy relational equations; the sec-
ond one was the significance of outputs produced by normal inputs ; and the
third one was a sort of local monotonicity.

Let us concentrate on the first two axioms, as the last one is usually easy
to satisfy [23, 24, 39, 33]. The first one is clear and should be fulfilled every
time. The second one actually says that if the input is normal, the output
should be meaningful, providing some valuable information. The extreme
case of non-fulfillment of this axiom is the empty fuzzy set equal to 0 on
the whole output universe in the case of Mamdani-Assilian systems or, the
universal fuzzy set attaining normality on the whole output universe in the
case of implicative rules. These extreme cases are exactly the outputs we
obtain whenever we deal with a sparse fuzzy rule base and the input does
not fire any of the fuzzy rules. This may easily happen in the case of a sparse
fuzzy rule base and the normality of the fuzzy input does not help at all.
One would have to use one of the above cited fuzzy interpolation techniques
[19, 40] but then she/he would not work with fuzzy relational interpretation
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encoded in R̂ or Ř anymore.
As we have mentioned, due to Theorem 6, for t-norms without zero divi-

sors and for consequents with different supports, one may ensure the inter-
polativity only in the case of a sparse fuzzy rules base. This fact is mirrored
in the result provided by Moser and Navara in [23] which essentially
states that for the CRI inference and the Mamdani-Assilian model Ř, assum-
ing the t-norm without zero divisors, the first two axioms cannot be satisfied
simultaneously.

This unpleasant fact, that in some cases the two axioms may never be
satisfied simultaneously, has been shown also for the combination of the BK-
Subproduct and the implicative fuzzy rule base model R̂, see [39, 33]3.

5. Goal 3: Discussion on practical settings

The third goal of this article is to briefly discuss the impact of the findings
presented above to appropriate practical settings of fuzzy rule based systems.

Note that in [37] the authors have shown that BK-Subproduct, although
much less known and often ignored, as an inference mechanism is as appro-
priate as the much more frequently used CRI. Although one of the findings
in [37] was not proven correctly, we provided readers with an alternative
proof showing that the stated property still holds and thus nothing changes
on the above statement about the equal practical importance of both – BK-
Subproduct and CRI.

This result was supported by the secondary message of the article [37]
which was that most of the advantages, such as lower computational costs or
robustness, do not stem from the choice of the inference mechanism itself but
rather from the choice of a favorable combination of the inference mechanism
and the fuzzy relational model of a fuzzy rule base.

However, one has to be careful in order to preserve fundamental theo-
retical properties such as interpolativity, that actually entitle us to use the
inference mechanism in the context of logically motivated reasoning. In the

3Note, that for the use of the implicative model R̂, the original second axiom provided
in [23] had to be modified in order to capture the same property. Indeed, these two
approaches are dual [8] and so, the axioms have to be also dually formulated. Therefore,
the universal fuzzy set replaces the empty fuzzy set in the axiom in order to determine a
non-significant output.
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light of other results [15, 23, 24, 39, 33] one has to seriously take into ac-
count this warning while building a fuzzy inference system. The choice of
basic elements of such systems, such as the underlying algebraic structure
of the connectives or fuzzy sets partitioning the input universe X, seem to
be of even more crucial importance.

In particular, one should consult each fuzzy inference system with basic
rules already before the building phase of such a system. For the sake of
clarity, we list and discuss them briefly in order to explain their importance.

1. If there is no particular reason for reducing computational costs, for
using a hierarchical inference4 or for assuring the robustness in the
“Klawonn-Castro” sense, it is a safe choice to use the combination
of R̂ and CRI or, of Ř and the BK-Subproduct.

2. If there is a reason to use one of the theoretically less preferable combi-
nations, i.e., either R̂ with BK-Subproduct or Ř with CRI, one should
not consider using algebras without zero divisors, viz., Gödel, prod-
uct, etc., for the interpretation of the used connectives.  Lukasiewicz or
other t-norms with zero divisors can provide an appropriate setting.

3. If the above choice of the usage of the combination of R̂ with BK-
Subproduct or Ř with CRI has been made because of strong reasons,
then assuming the well-chosen (e.g.  Lukasiewicz) algebra, one should
carefully choose a way to build antecedent fuzzy sets that preserve
the desirable properties. The choice of the underlying algebra is not
sufficient, it only gives a chance. Only after satisfying some other as-
sumptions, e.g. forming an appropriate (e.g. Ruspini) partition, the
inequality (14) is satisfied and the interpolativity is preserved without
harming the other Moser-Navara axioms. Only then can one fully har-
ness the power of all the advantages described in detail in [37] that rise
out of this setting.

4 Note that either of the following, viz., the equivalence of FITA and FATI strategies
or the existence of an equivalent hierarchical inference mechanism ensures lower computa-
tional costs. However, the second approach brings yet another advantage - that of easier
interpretability as it actually reduces the number of input variables for the price of a
greater number of fuzzy rule bases.
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[25] L. Nosková, Systems of fuzzy relation equation with inf-→ composition:
solvability and solutions, J. of Electrical Engineering 12(s) (2005) 69–72.

[26] V. Novák, S. Lehmke, Logical structure of fuzzy IF-THEN rules, Fuzzy
Sets and Systems 157 (15) (2006) 2003–2029.

[27] V. Novák, I. Perfilieva, J. Močkoř, Mathematical Principles of Fuzzy
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