
Fuzzy Sets and Systems ( ) –
www.elsevier.com/locate/fss

Intersections between some families of (U,N)- and RU-implications
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Abstract

(U,N)-implications and RU-implications are the generalizations of (S,N)- and R-implications to the framework of uninorms,
where the t-norms and t-conorms are replaced by appropriate uninorms. In this work, we present the intersections that exist between
(U,N)-implications and the different families of RU-implications obtainable from the well-established families of uninorms.
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1. Introduction

Fuzzy implications, which are a generalization of the classical two-valued implications to the multi-valued setting,
play an important role in many applications, viz., approximate reasoning, fuzzy control, fuzzy image processing, etc.
(see [13,22,4]). Hence, it is beneficial to have a repertoire of fuzzy implications at one’s disposal. Towards this end, many
families of fuzzy implications have been proposed, often as a generalization of the classical logic formulae by suitably
substituting classical logic operations with their fuzzy logic counterparts. For instance, (S,N)-implications generalize
the material implication from the classical logic with a t-conorm instead of the disjunction, while R-implications
obtained from a t-norm generalize the intuitionistic (residual) logic implication to the framework of fuzzy logic,
whereas QL-implications are the fuzzy counterparts of quantum logic implication.

Each of these families possesses many different properties. For the interrelationships between main axioms of fuzzy
implications see [7,4, Chapter 1] and the recent article by Shi et al. [26]. The suitability of a particular family or
families of fuzzy implications to a given application under consideration largely depends on the properties that the
fuzzy implications in them possess. It is in this context that the investigation into overlaps that exist among the families
of fuzzy implications assumes significance. Clearly, fuzzy implications that belong to the intersection of two or more
families possess all the properties of the corresponding families, thus making them suitable for more applications.

Many works dealing with investigations into intersections between different families of fuzzy implications are known
in the literature. Intersections between (S,N)- and R-implications was firstly done by Dubois and Prade [12], see also
the works of Fodor [14,15]. Recently, in [3], a complete characterization of the intersection of the above two families
was given. Following this, the intersections between QL-implications and the above two families of fuzzy implications
has also been characterized, see [6]. Earlier, the authors, in [2], had also investigated the intersections between the
family of f- and g-generated fuzzy implications proposed by Yager.
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2 M. Baczyński, B. Jayaram / Fuzzy Sets and Systems ( ) –

(U,N)-implications are a generalization of (S,N)-implications, where a t-conorm S is replaced by a uninorm U. A
similar generalization of R-implications from the setting of t-norms to the setting of uninorms, referred to here as
RU-implications, has been done by De Baets and Fodor [10]. Ruiz and Torrens have investigated, quite extensively,
fuzzy implications generated from uninorms [24] and their distributivity [23,25].

Recently, some characterizations of (U,N)-implications were given by the authors in [5]. However, a similar charac-
terization for RU-implications is yet to be done. Still, many properties and results relating to RU-implications obtained
from the main classes of uninorms have been investigated and established. Based on these results, in this work we
investigate the intersections that exist between the above two families of fuzzy implications obtained from uninorms.
We obtain precise and almost complete overlaps that exist among these families.

Our article has been divided into several parts. After introducing the necessary preliminaries on the basic fuzzy
logic operations, viz., fuzzy implications and uninorms in Sections 2 and 3, we present the definition, properties
and characterization results – where available – of the families of (U,N)- and RU-implications in Sections 4 and 5,
respectively. Section 6 contains the main results of this work—investigation of the intersections that exist between the
above two families of fuzzy implications obtained from uninorms, presenting complete and precise overlaps that exist
among these families.

2. Fuzzy implications and negations

In this work the following equivalent definition introduced by Fodor and Roubens [17, Definition 1.15] (see also [4])
is used.

Definition 2.1. A function I : [0, 1]2 → [0, 1] is called a fuzzy implication, if it satisfies, for all x, y, z ∈ [0, 1], the
following conditions:

if x≤y, then I (x, z)≥I (y, z), (I1)

if y≤z, then I (x, y)≤I (x, z), (I2)

I (0, 0) = 1, (I3)

I (1, 1) = 1, (I4)

I (1, 0) = 0. (I5)

A fuzzy implication I is said to satisfy the exchange principle, if

I (x, I (y, z)) = I (y, I (x, z)) for all x, y, z ∈ [0, 1]. (EP)

Definition 2.2 (Klement et al. [19, Definition 11.3]). A decreasing function N : [0, 1] → [0, 1] is called a fuzzy nega-
tion, if N (0) = 1, N (1) = 0. Further, a fuzzy negation N is called

(i) strict, if it is strictly decreasing and continuous;
(ii) strong, if it is an involution, i.e., N (N (x)) = x for all x ∈ [0, 1].

Definition 2.3. Let I : [0, 1]2 → [0, 1] be a fuzzy implication and � ∈ [0, 1[. If the function N�
I : [0, 1] → [0, 1]

given by

N�
I (x) = I (x, �) for all x ∈ [0, 1],

is a fuzzy negation, then it is called the natural negation of I with respect to �.

It should be noted that for any fuzzy implication I we have (I5), so for � = 0 we have the natural negation NI = N 0
I

of I (see [1]). Also � should be less than 1 for fuzzy implications, since I (1, 1) = 1 by (I4).

Please cite this article as: M. Baczyński, B. Jayaram, Intersections between some families of (U,N)- and RU-implications, Fuzzy Sets and
Systems (2010), doi:10.1016/j.fss.2010.07.011

http://dx.doi.org/10.1016/j.fss.2010.07.011
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3. Uninorms

We assume that the reader is familiar with the classical results concerning uninorms, so we only recall basic definitions
and facts which will be useful in the sequel. Uninorms were introduced by Yager and Rybalov in 1996 [27] (see also
[18]) as a generalization of triangular norms and conorms. For the recent overview of this family of operations see [16].

Definition 3.1. An associative, commutative and increasing operation U : [0, 1]2 → [0, 1] is called a uninorm, if there
exists e ∈ [0, 1], called the neutral element of U, such that

U (e, x) = U (x, e) = x for all x ∈ [0, 1].

Remark 3.2 (cf. Fodor et al. [18]).
(i) If e = 0, then U is a t-conorm and if e = 1, then U is a t-norm.

(ii) The neutral element e corresponding to a uninorm U is unique.
(iii) For any uninorm U we have U (0, 1) ∈ {0, 1}. A uninorm U such that U (0, 1) = 0 is called conjunctive and if

U (0, 1) = 1, then it is called disjunctive.
(iv) The structure of a uninorm U with the neutral element e ∈]0, 1[ is always the following. It is like a t-norm on the

square [0, e]2, like a t-conorm on the square [e, 1]2 and it takes values between the minimum and the maximum
in the other cases.

There are several different classes of uninorms introduced in the literature. We only mention relevant details and
results which will be useful in the sequel, connected with the three main classes of uninorms.

3.1. The classes of UMin and UMax

Uninorms verifying that both functions U (·, 0) and U (·, 1) are continuous except at the point e were characterized
by Fodor et al. [18], as follows.

Theorem 3.3. Let e ∈]0, 1[. For a function U : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) U is a conjunctive uninorm with the neutral element e, such that the function x�U (x, 1) is continuous for all
x ∈ [0, e[.

(ii) There exist a t-norm T and a t-conorm S such that

U (x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e · T
( x

e
,

y

e

)
if x, y ∈ [0, e],

e + (1 − e) · S

(
x − e

1 − e
,

y − e

1 − e

)
if x, y ∈ [e, 1],

min(x, y) otherwise,

for all x, y ∈ [0, 1], (1)

Theorem 3.4. Let e ∈]0, 1[. For a function U : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) U is a disjunctive uninorm with the neutral element e, such that the function x�U (x, 0) is continuous for all
x ∈]e, 1].

(ii) There exist a t-norm T and a t-conorm S such that

U (x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e · T
( x

e
,

y

e

)
if x, y ∈ [0, e],

e + (1 − e) · S

(
x − e

1 − e
,

y − e

1 − e

)
if x, y ∈ [e, 1],

max(x, y) otherwise,

for all x, y ∈ [0, 1], (2)

The class of uninorms of the form (1) is denoted by UMin, while the class of uninorms of the form (2) is denoted by
UMax. Note that, even if a t-norm T, a t-conorm S and e ∈]0, 1[ are fixed, a uninorm is not uniquely defined—it can be
conjunctive or disjunctive. If U is a conjunctive (disjunctive) uninorm, then we will write U c

T,S,e (U d
T,S,e, respectively).
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3.2. Idempotent uninorms

A uninorm U such that U (x, x) = x for all x ∈ [0, 1] is said to be an idempotent uninorm. The class of all idempotent
uninorms will be denoted by UIdem. Martín et al. [20] have characterized all idempotent uninorms, which subsumes
the results of Czogała and Drewniak [8] and De Baets [9], who first characterized the class of left-continuous and
right-continuous idempotent uninorms.

Theorem 3.5 (Martín et al. [20]). Let e ∈ [0, 1]. For a function U : [0, 1]2 → [0, 1] the following statements are
equivalent:

(i) U is an idempotent uninorm with the neutral element e.
(ii) There exists a decreasing function g: [0, 1] → [0, 1] with a fixed point e, i.e., g(e) = e, satisfying

g(x) = 0 for all x ∈]g(0), 1],

g(x) = 1 for all x ∈ [0, g(1)[,

inf{y|g(y) = g(x)}≤g(g(x))≤ sup{y|g(y) = g(x)}, for all x ∈ [0, 1],

such that U has the following form:

U (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min(x, y) if (y < g(x)) or (y = g(x) and x < g(g(x))),

max(x, y) if (y > g(x)) or (y = g(x) and x > g(g(x))),

max(x, y)

or if y = g(x) and x = g(g(x)),

min(x, y),

for all x, y ∈ [0, 1].

and U is commutative on the set {(x, y)|y = g(x) and x = g(g(x))}.

Recently it was shown that the above conditions required on the function g are in fact not sufficient in order to be U
always a uninorm. In fact g should be an ID-symmetrical function (see Ruiz-Aguilera et al. [28]).

Example 3.6. Let e ∈]0, 1[ be fixed and let us consider the functions gc, gd : [0, 1] → [0, 1] as defined below:

gc(x) =
{

1 if x < e,

e if x≥e,
gd (x) =

{
e if x≤e,

0 if x > e.

Then the corresponding idempotent uninorms generated by them are the first kind of uninorms considered by Yager
and Rybalov [27]:

U c,e
YR(x, y) =

{
max(x, y) if x, y ∈ [e, 1],

min(x, y) otherwise,
U d,e

YR(x, y) =
{

min(x, y) if x, y ∈ [0, e],

max(x, y) otherwise.

3.3. Representable uninorms

Analogous to the representation theorems for continuous Archimedean t-norms and t-conorms, Fodor et al. [18] have
proven the following result.

Theorem 3.7 (Fodor et al. [18]). Let e ∈]0, 1[. For a function U : [0, 1]2 → [0, 1] the following statements are
equivalent:

(i) U is a strictly increasing and continuous uninorm on ]0, 1[2 with the neutral element e such that U is self-dual,
except in points (0, 1) and (1, 0), with respect to a strong negation N with the fixed point e, i.e.,

U (x, y) = N (U (N (x), N (y))), for all x, y ∈ [0, 1]2 \ {(0, 1), (1, 0)}.
Please cite this article as: M. Baczyński, B. Jayaram, Intersections between some families of (U,N)- and RU-implications, Fuzzy Sets and
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(ii) U has a continuous additive generator, i.e., there exists a continuous and strictly increasing function h: [0, 1] →
[−∞, ∞], such that h(0) = −∞, h(e) = 0 and h(1) = ∞, which is uniquely determined up to a positivemulti-
plicative constant, such that

U (x, y) =
{

0, if (x, y) ∈ {(0, 1), (1, 0)},
h−1(h(x) + h(y)), otherwise,

for all x, y ∈ [0, 1],

or

U (x, y) =
{

1 if (x, y) ∈ {(0, 1), (1, 0)},
h−1(h(x) + h(y)), otherwise,

for all x, y ∈ [0, 1].

Uninorms that can be represented as in Theorem 3.7 are called representable uninorms and this class will be denoted
by URep. It should be noted that these operations appeared first in [11].

Remark 3.8.
(i) Note that once the additive generator h is fixed, by its strictness e is also unique and hence h generates a unique (up

to the constant value on the set {(0, 1), (1, 0)}) representable uninorm. If a conjunctive and representable uninorm
is generated by h, then we will denote it by U c

h . Similarly, if a disjunctive and representable uninorm is generated
by h, then we will denote it by U d

h .
(ii) It is interesting to note that every representable uninorm Uh (conjunctive or disjunctive) gives rise to a natural

negation, obtained as

NUh (x) = h−1(−h(x)), for all x ∈ [0, 1], (3)

which is a strong negation (see Definition 2.2). Also, Uh is self-dual with respect to its natural negation.

Example 3.9. For the additive generator h1(x) = ln(x/(1 − x)), we get the following disjunctive and representable
uninorm (in this case e = 1

2 ):

U d
h1

(x, y) =
⎧⎨
⎩

1 if (x, y) ∈ {(0, 1), (1, 0)},
xy

(1 − x)(1 − y) + xy
, otherwise,

for all x, y ∈ [0, 1].

For other examples of representable uninorms see [18].

3.4. Intersections between the above classes of uninorms

Remark 3.10.
(i) For a representable uninorm U, we have U (x, 1) = 1 for all x > 0 and U (x, 0) = 0 for all x < 1. Hence, if U is

conjunctive, then the function x�U (x, 1) is not continuous at x = 0, while if U is disjunctive, then the function
x�U (x, 0) is not continuous at x = 1. Therefore no representable uninorm belongs to either UMin or UMax.

(ii) For a representable uninorm generated from h we have

U (x, x) = h−1(h(x) + h(x)) = h−1(2h(x)) � x

whenever x ∈]0, 1[\{e}. Therefore no representable uninorm is idempotent.
(iii) From the representation results of UMin and UMax of Fodor et al. [18] (see the uninorms U c,e

YR, U d,e
YR) one can see

that an equivalent condition for an idempotent uninorm to belong to UMin or UMax is that its associated function g
should have either the representation gc or gd given in Example 3.6. Let us denote these sub-classes of idempotent
uninorms by

UI,Gc = {U ∈ UIdem|g = gc and e ∈]0, 1[},
UI,Gd = {U ∈ UIdem|g = gd and e ∈]0, 1[}.
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From the above discussion it is clear that the following relationships exist among the above families of uninorms:

UMin ∩ URep = UMax ∩ URep = UIdem ∩ URep = ∅,

UMin ∩ UIdem = UI,Gc ,

UMax ∩ UIdem = UI,Gd .

4. (U,N)-operations and (U,N)-implications

A natural generalization of (S,N)-implications (see [1]) in the uninorm framework is to consider a uninorm in the
place of a t-conorm.

Definition 4.1. A function I : [0, 1]2 → [0, 1] is called a (U,N)-operation, if there exist a uninorm U and a fuzzy
negation N such that

IU,N (x, y) = U (N (x), y), for all x, y ∈ [0, 1]. (4)

If I is a (U,N)-operation generated from a uninorm U and a negation N, then we will denote it by IU,N .

Proposition 4.2 (Baczyński and Jayaram [5, Proposition 5.2]). If IU,N is a (U,N)-operation obtained from a uninorm
U with e ∈]0, 1[ as its neutral element, then

(i) IU,N satisfies (I1), (I2), (I5) and (EP),
(ii) N e

IU,N
= N .

If e ∈]0, 1[, then not for every uninorm U the (U,N)-operation is a fuzzy implication. The following result charac-
terizes those (U,N)-operations which satisfy (I3) and (I4).

Theorem 4.3 (cf. De Baets and Fodor [10, p. 98]). For a uninorm U with the neutral element e ∈]0, 1[ the following
statements are equivalent:

(i) The (U,N)-operation IU,N is a fuzzy implication.
(ii) U is a disjunctive uninorm, i.e., U (0, 1) = U (1, 0) = 1.

Following the terminology used by Mas et al. [21] for the QL-implications, only if the (U,N)-operation IU,N is a
fuzzy implication we use the term (U,N)-implication.

Theorem 4.4 (Baczyński and Jayaram [1, Theorem 6.4]). For a function I : [0, 1]2 → [0, 1] the following statements
are equivalent:

(i) I is a (U,N)-implication generated from some uninorm U with the neutral element e ∈]0, 1[ and some continuous
fuzzy negation N.

(ii) I satisfies (I1), (I3), (EP) and the function N e
I is a continuous negation for some e ∈]0, 1[.

Moreover, the representation (4) of (U,N)-implication is unique in this case.

Example 4.5. In the following, we give examples of (U,N)-implications obtained using the classical strong negation
NC(x) = 1 − x for all x ∈ [0, 1], and for different uninorms. Note that IKD is the Kleene–Dienes implication given by
IKD(x, y) = max(1 − x, y), for all x, y ∈ [0, 1].

(i) Let us consider the disjunctive uninorm ULK from the class UMax generated by the triple (TLK, SLK, 0.5), where
TLK denotes the Łukasiewicz t-norm TLK(x, y) = max(x + y − 1, 0) and SLK denotes the Łukasiewicz t-conorm
SLK(x, y) = min(x + y, 1), for all x, y ∈ [0, 1]. Then

IULK,NC(x, y) =

⎧⎪⎨
⎪⎩

max(y − x + 0.5, 0), if max(1 − x, y)≤0.5,

min(y − x + 0.5, 1), if min(1 − x, y) > 0.5,

IKD(x, y), otherwise,

for all x, y ∈ [0, 1].
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(ii) Let us consider the disjunctive uninorm UM from the class UMax generated from the triple (TM, SM, 0.5), where
TM denotes the minimum t-norm TM(x, y) = min(x, y) and SM denotes the maximum t-conorm SM(x, y) =
max(x, y), for all x, y ∈ [0, 1]. Observe that UM is also an idempotent uninorm. Then

IUM,NC (x, y) =
{

min(1 − x, y), if max(1 − x, y)≤0.5,

IKD(x, y), otherwise,
for all x, y ∈ [0, 1].

(iii) Let us consider the disjunctive representable uninorm U d
h1

from Example 3.9. Then

IU d
h1

,NC
(x, y) =

⎧⎨
⎩

1, if (x, y) ∈ {(0, 0), (1, 1)},
(1 − x)y

x + y − 2xy
, otherwise,

for all x, y ∈ [0, 1].

5. RU-implications

Analogous to the definition of R-implications from t-norms (see [3]), one can also define residual operations from
uninorms.

Definition 5.1. A function I : [0, 1]2 → [0, 1] is called an RU-operation, if there exists a uninorm U such that

I (x, y) = sup{t ∈ [0, 1]|U (x, t)≤y}, for all x, y ∈ [0, 1]. (5)

If I is an RU-operation generated from a uninorm U, then we will often denote it by IU .

Proposition 5.2 (see De Baets and Fodor [10]). If U is a uninorm with the neutral element e ∈]0, 1[, then IU satisfies
(I1), (I2), (I4), (I5). Moreover, IU (e, y) = y for all y ∈ [0, 1].

The following result characterize those RU-operations which satisfy (I3).

Proposition 5.3 (cf. De Baets and Fodor [10, Proposition 7]). For a uninorm U with neutral element e ∈]0, 1[ the
following statements are equivalent:

(i) IU is a fuzzy implication.
(ii) U (0, y) = 0 for all y ∈ [0, 1[.

Here again only if the RU-operation IU is a fuzzy implication we use the term RU-implication. The block structure
of a uninorm U precludes any further investigations on the basic properties of RU-implications unless the class to which
U belongs is known.

5.1. RU-implications from uninorms in the class UMin

Firstly let us consider a uninorm U in the class UMax. Observe that from Proposition 5.3 we get that the RU-operation
generated from U is not a fuzzy implication. Therefore in this subsection we consider only (conjunctive) uninorms in
UMin.

Theorem 5.4 (cf. De Baets and Fodor [10, Theorem 6]). If U c
T,S,e ∈ UMin, then the RU-implication obtained from U

is given by

IU c
T,S,e

(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

e · IT

( x

e
,

y

e

)
, if x, y ∈ [0, e[ and x > y,

e + (1 − e) · IS

(
x − e

1 − e
,

y − e

1 − e

)
, if x, y ∈ [e, 1] and x≤y,

e, if x, y ∈ [e, 1] and x > y,

IGD(x, y), otherwise

for all x, y ∈ [0, 1],

Please cite this article as: M. Baczyński, B. Jayaram, Intersections between some families of (U,N)- and RU-implications, Fuzzy Sets and
Systems (2010), doi:10.1016/j.fss.2010.07.011

http://dx.doi.org/10.1016/j.fss.2010.07.011
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where IS(x, y) = sup{t ∈ [0, 1]|S(x, t)≤y}, i.e., it is the residual of the t-conorm S, obtained from (5) by employing S
instead of the uninorm U and IGD is the Gödel implication defined by the formula

IGD(x, y) =
{

1, if x≤y,

y, if x > y,
for all x, y ∈ [0, 1].

Example 5.5.
(i) Let us consider the conjunctive uninorm ULK = (TLK, SLK, 0.5) ∈ UMin. Then

IULK (x, y) =

⎧⎪⎨
⎪⎩

0.5 + y − x, if (x, y ∈ [0, 0.5[ and y < x) or (x, y ∈ [0.5, 1] and y > x),

0.5, if x, y ∈ [0.5, 1] and y≤x

IGD(x, y), otherwise,

for all x, y ∈ [0, 1].

(ii) Let us consider the conjunctive uninorm UM = (TM, SM, 0.5) ∈ UMin. Then

IUM (x, y) =

⎧⎪⎨
⎪⎩

y, if x, y ∈ [0.5, 1] and y > x,

0.5, if x, y ∈ [0.5, 1] and y≤x,

IGD(x, y), otherwise,

for all x, y ∈ [0, 1].

Remark 5.6. If U ∈ UMin with the neutral element e ∈]0, 1[, then the natural negation of IU with respect to e is the
function

N e
IU

(x) =
{

1, if x ∈ [0, e[,

e, if x ∈ [e, 1],

which is not a fuzzy negation. In fact, from the formula of IU given in Theorem 5.4, it can be seen that, for any � ∈]0, 1[,
the natural negation of IU with respect to � is not a fuzzy negation, since N�

IU
(1) = � if � ∈]0, e[ and N�

IU
(1) = e if

� ∈ [e, 1].

5.2. RU-implications from idempotent uninorms

Firstly we cite the following result on RU-implications generated from idempotent uninorms.

Proposition 5.7. For a uninorm U ∈ UIdem which has the generator g the following statements are equivalent:

(i) IU is a fuzzy implication.
(ii) g(0) = 1.

The following result of Ruiz and Torrens [24] gives the general structure of an IU obtained from such idempotent
uninorms, which subsumes an earlier result by De Baets and Fodor [10].

Theorem 5.8 (Ruiz and Torrens [24, Theorem 4]). If U ∈ UIdem has the generator g such that g(0) = 1, then the
RU-implication obtained from U is given by

IU (x, y) =
{

max(g(x), y), if x≤y,

min(g(x), y), if x > y,
for all x, y ∈ [0, 1]. (6)

Example 5.9.
(i) Let us consider the idempotent uninorm U c,e

YR ∈ UMin, with the associated function gc given in Remark 3.10(ii).
Then its RU-implication is given by

IU c,e
YR

(x, y) =

⎧⎪⎨
⎪⎩

y, if (y < x and y≤e) or (y≥x and x≥e),

e, if y < x and y > e,

1, otherwise,

for all x, y ∈ [0, 1].
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(ii) Let us consider the right-continuous idempotent uninorm generated by the classical negation NC(x) = 1 − x ,
which is obviously not in UMin, given by

UNC (x, y) =
{

min(x, y), if y < 1 − x,

max(x, y), if y≥1 − x,
for all x, y ∈ [0, 1].

Then its RU-implication is given by

IUNC
(x, y) =

{
min(1 − x, y), if y < x,

max(1 − x, y), if y≥x,
for all x, y ∈ [0, 1].

(iii) Let us consider the right-continuous idempotent uninorm generated by the strict negation NK(x) = 1 − x2, which
is again not in UMin, given by

UNK (x, y) =
{

min(x, y), if y < NK(x),

max(x, y), if y≥NK(x),
for all x, y ∈ [0, 1].

Then its RU-implication is given by

IUNK
(x, y) =

{
min(NK(x), y), if y < x,

max(NK(x), y), if y≥x,
for all x, y ∈ [0, 1].

5.3. RU-implications from representable uninorms

Since every representable uninorm satisfies condition (ii) in Proposition 5.3, every RU-operation generated from a
representable uninorm is a fuzzy implication. In this case we have the following representation of the RU-implications.

Theorem 5.10 (De Baets and Fodor [10, Theorem 7]). If Uh ∈ URep, then the RU-implication obtained from Uh is
given by

IUh (x, y) =
{

1, if (x, y) ∈ {(0, 0), (1, 1)},
h−1(h(y) − h(x)), otherwise,

for all x, y ∈ [0, 1]. (7)

Example 5.11. Let us consider the disjunctive representable uninorm U d
h1

given in Example 3.9. Its RU-implication
given in Theorem 5.10 is also the (U,N)-implication IU d

h1
,NC

given as in Example 4.5(iii).

Proposition 5.12 (cf. De Baets and Fodor [10]). If Uh ∈ URep with the neutral element e ∈]0, 1[, then

(i) IUh (x, x) = e for all x ∈]0, 1[,
(ii) the function N e

IUh
(x) = NUh (x) = h−1(−h(x)) is defined for all x ∈ [0, 1] and is a strong negation,

(iii) IUh satisfies the law of contraposition with respect to NUh , i.e., IUh (x, y) = IUh (NUh (y), NUh (x)), for all x, y ∈
[0, 1].

Proof. Let Uh be a representable uninorm with the additive generator h and the neutral element e ∈]0, 1[.

(i) From (7), we see that IUh (x, x) = h−1(h(x) − h(x)) = h−1(0) = e, for all x ∈]0, 1[. However, note that
IUh (0, 0) = IUh (1, 1) = 1.

(ii) The natural negation of IUh with respect to e is

N e
IUh

(x) = IUh (x, e) = h−1(h(e) − h(x)) = h−1(−h(x)) = NUh (x), for all x ∈ [0, 1],

by Remark 3.8(ii), and is a strong negation.
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10 M. Baczyński, B. Jayaram / Fuzzy Sets and Systems ( ) –

(iii) If (x, y) ∈ {(0, 0), (1, 1)}, then the contrapositivity is obvious from the boundary conditions. If (x, y) ∈ [0, 1]2 \
{(0, 0), (1, 1)}, then from the previous point we have

IUh (NUh (y), NUh (x)) = h−1(h(h−1(−h(x))) − h(h−1(−h(y))))

= h−1(−h(x) + h(y)) = IUh (x, y). �

6. Intersection between (U,N)- and RU-implications

In the previous sections we have discussed two families of fuzzy implications derived from uninorms, viz., (U,N)-
implications and RU-implications. In the case of RU-implications from uninorms, we have specifically considered
uninorms U from the three main families of UMin,URep and UIdem. In this section we discuss the intersections that exist
among these families of fuzzy implications. Towards this end, we introduce the following notations to denote these
families of fuzzy implications:

• IU,N: the family of all (U,N)-implications;
• IU,NC

: the family of all (U,N)-implications obtained from continuous negations;
• IUM : the family of all RU-implications generated from uninorms in UMin;
• IUI : the family of all RU-implications generated from uninorms in UIdem;
• IUR : the family of all RU-implications generated from uninorms in URep.

Needless to state, in the case e = 0 we have IU,N is the set of all (S,N)-implications, while if e = 1 we have IU

is the set of all R-implications obtained from t-norms. Hence, in the sequel, we consider only uninorms with neutral
elements in ]0, 1[.

6.1. Intersection between IU,N and IUM

Because of Proposition 4.2(ii) and Remark 5.6 we get

IU,N ∩ IUM = ∅.

6.2. Intersection between IU,N and IUR

Proposition 6.1 (cf. De Baets and Fodor [10, Proposition 10]). Let Uh be a representable uninorm with the additive
generator h. Then the RU-implication IUh is also a (U,N)-implication obtained from the disjunctive representable
uninorm U d

h given by the formula

U d
h (x, y) =

{
1, if (x, y) ∈ {(0, 1), (1, 0)},
Uh(x, y), otherwise,

forall x, y ∈ [0, 1],

and its natural negation NUh , i.e., IUh = IU d
h ,NUh

.

Proof. Observe that by Remark 3.8(ii) we get

IU d
h ,NUh

(x, y) = U d
h (NUh (x), y) =

{
1, if (NUh (x), y) ∈ {(0, 1), (1, 0)}
h−1(h(NUh (x)) + h(y)), otherwise

=
{

1, if (x, y) ∈ {(0, 0), (1, 1)}
h−1(h(h−1(−h(x))) + h(y)), otherwise

=
{

1, if (x, y) ∈ {(0, 0), (1, 1)}
h−1(−h(x) + h(y)), otherwise

= IUh (x, y),
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for all x, y ∈ [0, 1]. From the uniqueness of the representation of (U,N)-implications generated from continuous
negations we get the claim. �

Let us denote by

• IUd
R,NUR

: the family of all (U,N)-implications obtained from disjunctive representable uninorms and their strong

natural negations;
The above result can be summarized as follows (see Remark 6.12):

IU,N ∩ IUR = IUd
R,NUR

,

IUR = IUd
R,NUR

�IU,NC
�IU,N.

Remark 6.2. We know that an R-implication IT obtained from a continuous t-norm is also an (S,N)-implication – in
fact, with a strong N – if and only if the t-norm T is nilpotent. The above results seem to suggest that representable
uninorms are generalizations of nilpotent t-norms and t-conorms, whereas their definition indicates that they are, in
fact, obtained from generators of strict t-norms and t-conorms.

6.3. Intersection between IU,N and IUI

Ruiz and Torrens [24] have investigated the conditions under which the RU-implication from an idempotent uninorm
is also a (U,N)-implication obtained from a strong N. In fact, it can be shown (see Proposition 6.8) that the strongness
of N need not be assumed and is consequential of the continuity.

Definition 6.3. A function g: [0, 1] → [0, 1] is called

(i) sub-involutive, if g(g(x))≤x for all x ∈ [0, 1],
(ii) super-involutive, if g(g(x))≥x for all x ∈ [0, 1].

Lemma 6.4. Let N : [0, 1] → [0, 1] be a continuous negation. If, in addition, N is either sub-involutive or super-
involutive, then N is involutive i.e., it is a strong negation.

Proof. We give the proof only for the case when N is sub-involutive. Since a fuzzy negation N is continuous on [0,1]
it is onto. Now, for any x ∈ [0, 1] there exists a y ∈ [0, 1] such that x = N (y). Consequently, we get

x = N (y) 
⇒ N (x) = N (N (y))≤y 
⇒ N (N (x))≥N (y) = x,

i.e., N (N (x))≥x . Since N is sub-involutive, we also have that N (N (x))≤x , whence N is involutive. �

Lemma 6.5. Let UI be an idempotent uninorm such that g(0) = 1. If the R-implication IUI is also a (U,N)-implication
generated from some uninorm U with the neutral element e ∈]0, 1[ and some fuzzy negation N, then N = g.

Proof. From Proposition 4.2(ii) the negation of IUI with respect to e is a fuzzy negation N. Hence we get

N (x) = N e
IU,N

(x) = N e
IUI

(x) = IUI (x, e) =
{

max(g(x), e), if x≤e,

min(g(x), e), if x > e,
for all x ∈ [0, 1].

But g(e) = e and g is decreasing, so N = g. �

The above results imply that we should consider only idempotent uninorms generated from fuzzy negations. The other
necessary condition for a (U,N)-implication is the exchange principle. Characterization of RU-implications generated
from idempotent uninorms that satisfy (EP) has been obtained by Ruiz and Torrens [24].
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Theorem 6.6 (Ruiz and Torrens [24, Theorem 5]). If U ∈ UIdem has the generator g such that g(0) = 1, then the
following statements are equivalent:

(i) RU-implication IU satisfies (EP).
(ii) The following property is satisfied:

if g(g(x)) < x for some x ∈ [0, 1], then x > e and g(x) = e. (8)

Corollary 6.7. Let U ∈ UIdem have the generator g such that g(0) = 1. If g is super-involutive, then the RU-implication
IU satisfies (EP).

Proposition 6.8. Let N be a continuous negation and U be an idempotent uninorm obtained from N. Then the following
statements are equivalent:

(i) RU-implication IU satisfies (EP).
(ii) N is strong.

Proof. (i) 
⇒ (ii) Let N be a continuous negation with a fixed point e ∈]0, 1[ and U be an idempotent uninorm
obtained from N. If the RU-implication obtained from U satisfies (EP), then N satisfies the condition (8). We show that
N (N (x))≥x for all x ∈ [0, 1] by discussing the following two cases.

If x≤e, then by (8) we see that N (N (x))≥x .
Let us suppose that there exists x > e such that N (N (x)) < x . By Theorem 6.6 and (8), we have N (x) = e. Since

N is continuous and decreasing, there exists y < e such that N (y) = x > e = N (e) = N (x). Once again, by the
continuity of N, if z′ is such that N (y) = x > z′ > e = N (e), then there exists z such that y < z < e and N (z) = z′.
Now, from these two inequalities and formula for UI in Theorem 3.5 we get

U (x, z) = min(x, z) = z,

since z < N (x) = e. By the commutativity of U we have U (z, x) = z. But x � N (z) = z′, which implies x < N (z) = z′,
a contradiction.

Hence there does not exist any x ∈ [0, 1] such that N (N (x)) < x , i.e., N is super-involutive. From Lemma 6.4, we
have that N is strong.

(ii) 
⇒ (i) This follows from Corollary 6.7. �

The above investigations lead us to the fact that we should consider only two cases: N is non-continuous or N is
strong. Let us consider the case when N is strong. In fact, De Baets and Fodor [10, Proposition 12] were the first to
obtain a sufficient condition in this case, which was later strengthened by Ruiz and Torrens [24, Proposition 8]. The
following result is a further generalization made possible by Proposition 6.8 above.

Theorem 6.9. Let UI be an idempotent uninorm obtained from a continuous function g, N a fuzzy negation and U a
uninorm. Then the following statements are equivalent:

(i) The RU-implication IUI is also a (U,N)-implication IU,N .
(ii) g = N is a strong negation and U is given by the formula

U (x, y) =
{

UI (x, y), if y � g(x),
max(x, y), if y = g(x),

for all x, y ∈ [0, 1]. (9)

Proof. (ii) 
⇒ (i) If g is a strong negation, then in particular g(0) = 1, so IUI is an RU-implication given by the
formula (6). When g is a strong negation, then we get (cf. Theorem 3.5)

UI (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min(x, y), if y < g(x),
max(x, y), if y > g(x),
max(x, y)
or if y = g(x),
min(x, y),

for all x, y ∈ [0, 1].
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Therefore the function U, given by the formula (9), is a well defined right-continuous idempotent uninorm. Now for
any x, y ∈ [0, 1] we get

IU,g(x, y) = U (g(x), y) =
{

UI (g(x), y), if y � x

max(g(x), y), if y = x
=

⎧⎪⎨
⎪⎩

min(g(x), y) if y < x

max(g(x), y) if y > x

max(g(x), y) if x = y

=
{

min(g(x), y), if y < x

max(g(x), y), if y≥x
= IUI (x, y).

(i) 
⇒ (ii) Since IU is a fuzzy implication, we know that g(0) = 1 by Proposition 5.7. Lemma 6.5 implies that
g = N is a continuous fuzzy negation. From Proposition 6.8 we deduce that g is a strong negation. From the just
proved implication (ii) 
⇒ (i) and the uniqueness of the representation of (U,N)-implications generated from strong
negations we get the claim. �

Corollary 6.10 (cf. [10, Proposition 12]). Let N be a strong negation and let U be the disjunctive right-continuous
idempotent uninorm obtained from N. Then the corresponding (U,N)-and RU-implications are identical, i.e., IU,N = IU .

Remark 6.11. It immediately follows that the RU-implication given in Example 5.9(ii) is a (U,N)-implication, while
the RU-implication presented in Example 5.9(iii) is not.

Let us denote by

• IUI∗ : the family of all RU-implications generated from uninorms in UIdem whose generator is a strong negation.
• IU

I∗d
N

,N : the family of all (U,N)-implications obtained from right-continuous disjunctive idempotent uninorms, whose

generator g is a strong negation N, and this N.

Using the above notations, the presented results can be summarized as follows:

IUI ∩ IU,NC
= IUI∗ = IU

I∗d
N

,N .

6.4. Intersection between IUM and IUR

From Proposition 6.1, we know that IUR ⊂ IU,N, while from Section 6.1 we know that IU,N ∩ IUM = ∅. Hence

IUM ∩ IUR = ∅.

6.5. Intersection between IUM and IUI

From Examples 5.5(ii) and 5.9(i) with e = 0.5, we see that IUM ∩ IUI �∅. In fact, since UMin
⋂UIdem = UI,Gc (see

Remark 3.10(iii)), it can be easily seen that

IUM ∩ IUI = IUI∗ ,

where IUI∗ denotes the family of RU-implications generated from uninorms in UI,Gc .

6.6. Intersection between IUR and IUI

From Proposition 5.12(i), we see that if I ∈ IUR , then I (x, x) = e, for all x ∈]0, 1[. If I ∈ IUI then, from Theorem
5.8 and since g is decreasing and e ∈]0, 1[, there exists x > e = g(e)≥g(x), i.e., I (x, x) � e. Hence

IUR ∩ IUI = ∅.

Remark 6.12. From the listed examples the following observations can be made.

(i) The (U,N)-implication IULK,NC in Example 4.5(i) shows that IU,NC
�IUI∗ ∪ IUR .
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Fig. 1. Intersections between some families of (U,N)- and RU-implications.

(ii) The RU-implication IUNK
from Example 5.9(iii) shows that IUI�IUI∗ ∪ IUI∗ .

(iii) The RU-implication IULK from Example 5.5(i) shows that IUM�IUI∗ .
(iv) Let us consider the idempotent uninorm UM from the class UMax and the discontinuous Gödel negation

ND(x) =
{

1 if x = 0,

0 if x > 0,
for all x ∈ [0, 1].

Then the (U,N)-implication obtained from them is given by

IUM,ND (x, y) =

⎧⎪⎨
⎪⎩

0, if y≤0.5,

1, if x = 0,

y, otherwise,

for all x, y ∈ [0, 1].

Clearly, IUM,ND ∈ IU,N \ IU,NC
. Moreover, it is not an RU-implication generated from any idempotent uninorm

since IUM,ND(0.5, 0.5) = 0, while IU (0, 5, 0, 5)≥0.5 for any idempotent uninorm U.

The main results presented in this section are also diagrammatically represented in Fig. 1. We also see that this
discussion leaves us with the following open problem.

Problem 6.13. Is the intersection (IU,N \ IU,NC
) ∩ IUI non-empty? If yes, then characterize this intersection.
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