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Abstract

Several works have proposed the construction of distance functions using fuzzy logic connectives to
proffer further applications of the corresponding connectives. In these works, the authors define a distance
function using t-norms, t-conorms, copulas, or quasi-copulas, all of which are either associative, commutative
or monotonic fuzzy logic connectives. In this work, we define a distance function, denoted dI , from a
non-associative, non-commutative, and mixed-monotonic fuzzy logic connective, viz., a fuzzy implication
I, and study the above distance function along two aspects. Firstly, we investigate the necessary and
sufficient conditions for dI to be a metric, wherein the role played by a transitivity type functional inequality
involving the considered fuzzy implication and the  Lukasiewicz t-conorm is highlighted. In the recent past,
monometrics w.r.t. a ternary relation, called the betweenness relation, have garnered a lot of attention for
their important role in decision making and penalty-based data aggregation. One of the major challenges
herein is that of obtaining monometrics on a given betweenness set. Our second contribution in this work is
in establishing the existence of pseudo-monometrics using dI , from whence it appears that fuzzy implications
are a natural choice for obtaining pseudo-monometrics on a given betweenness set.
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1. Introduction

The idea of constructing a distance function from fuzzy logic connectives such as t-norms, and its dual
t-conorms, was originally introduced by Alsina in [1], wherein it was shown that this distance function turns
out to be a metric if the t-norm is a copula. The converse, however, need not be true, i.e., t-norms that are
not copulas can give rise to a metric, for instance, continuous non-strict Archimedean t-norms (see [2]).

In [3], metrics are constructed for the more general case of any t-norm and t-conorm, and a characteriza-
tion of t-norms that define metrics is given in case the t-norms have the same zero region as the  Lukasiewicz
t-norm. There have been other works in literature that show the construction of a family of distance func-
tions on the unit interval, induced from quasi-copulas [4] and symmetric difference functions [5] on [0, 1]. In
[5], a complete characterisation of the triple (T, S,N) of t-norm, t-conorm, and fuzzy negation that define
symmetric difference functions, which are metrics, is given.

1.1. Motivation for and Contributions of this work:

Note that all the above referenced works have considered only associative, monotonic, or commutative
fuzzy logic operations on [0, 1] to define distance functions. This gives us the first of the twin motivations,
viz., to construct distance functions from fuzzy implications on [0, 1], which are non-associative, mixed-
monotonic and non-commutative.

Alsina, in his work [4] dealing with the construction of metrics obtained from quasi-copulas, has also
shown that various concepts of dependencies between random variables can be expressed in terms of the
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proposed metrics. This leads us to the second of our motivations in this work, viz., to explore the context
or scenarios where such constructed distance functions are both natural and of significant utility.

Keeping the above goals, we firstly propose a way of constructing distance functions dI from fuzzy
implications I on [0, 1] 1. However, these distance functions are not always metrics. We explore a necessary
and sufficient condition for the above distance function to be a metric. A transitivity type functional
inequality involving the considered fuzzy implication and the  Lukasiewicz t-conorm SLK plays an important
role herein. Investigating this functional inequality for the main families of fuzzy implications illustrates the
plethora of examples that can give rise to metrics under the proposed construction.

Recently, monometrics w.r.t. a ternary relation B, called the betweenness relation, have garnered a lot of
attention for their important role in decision making and penalty-based data aggregation. One of the major
challenges herein is that of obtaining monometrics on a given betweenness set. Our second contribution in
this work is in establishing the existence of (pseudo-)monometrics using dI on a class of betweenness sets.
We also present a complete characterisation of such a class of betweenness sets obtained from an underlying
partial order.

Our work highlights both the proposed distance function and fuzzy implications as natural choices in
the setting of pseudo-monometrics over betweenness sets.

2. Distance Function from Fuzzy Implications

In this section, we begin by recalling the definitions of fuzzy implication and distance function. We then
construct a distance function dI from fuzzy implications on [0, 1]. We also give a sufficient and necessary
condition for dI to be a metric and show the important role played by the (S, I)-transitivity (SIT) in making
it a metric.

Definition 1. A function I : [0, 1]2 → [0, 1] is said to be fuzzy implication if the following properties hold
for any x1, x2, y1, y2, x, y ∈ X :

(i) x1 ≤ x2 =⇒ I(x2, y) ≤ I(x1, y), i.e., I(·, y) is decreasing.

(ii) y1 ≤ y2 =⇒ I(x, y1) ≤ I(x, y2), i.e., I(x, ·) is increasing.

(iii) I(0, 0) = 1, I(1, 1) = 1, and I(1, 0) = 0.

We shall denote the set of all fuzzy implications by I.

A few basic examples of fuzzy implications can be seen in Table 1.

Definition 2. A symmetric function d : X ×X → [0,∞[ is called a distance function on X if it satisfies
the following property for any x, y ∈ X :

x = y =⇒ d(x, y) = 0 . (P1)

Further, it is called a metric if the converse of (P1) holds, and it also satisfies the triangle inequality, i.e.,
for any x, y, z ∈ X ,

d(x, z) ≤ d(x, y) + d(y, z) . (P2)

Definition 3. Let I ∈ I and define dI : [0, 1]× [0, 1]→ [0, 1] as

dI(x, y) =

{
0, if x = y ,

I(min(x, y),max(x, y)), otherwise .

Theorem 1. (i) dI is a distance function on [0, 1].

1Note that a preliminary version of this work, containing our then nascent explorations, was presented at the 9th PREMI
(Kolkata, India, 15-18 September, 2021) [6] and 19th IPMU (Milan, Italy, 11-15 July, 2022) [7].
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(ii) dI satisfies the converse of (P1) iff I satisfies the following condition2:

I(x, y) > 0,whenever x < y, x, y ∈ [0, 1]. (1)

Proof. (i) Since the functions max and min are symmetric, dI is also symmetric, and clearly, dI(x, x) = 0.
Hence, dI is a distance function.

(ii) I satisfies (1) ⇐⇒ I(min(x, y),max(x, y)) > 0 when x 6= y ⇐⇒ dI(x, y) > 0 when x 6= y ⇐⇒ dI
satisfies the converse of (P1).

Example 1. Consider the fuzzy implication IRC(x, y) = 1− x+ xy. Then

dIRC
(x, y) =

{
0, if x = y ,

1−min(x, y) + xy, otherwise .

Clearly, dIRC
is a distance function and satisfies the converse of (P1). Further, it can be verified that dIRC

also satisfies the triangle inequality and hence, it is a metric.

However, every fuzzy implication satisfying (1) need not give rise to a metric, for instance, see the
example below.

Example 2. Consider the fuzzy implication I defined as follows:

I(x, y) =


1, if x = 0 ,

min

(
1 + 4y

3
, 1

)
, if x < 0.11 ,

y, otherwise .

Then

dI(x, y) =



0, if x = y ,

1, if x = 0 or y = 0 ,

min

(
1 + 4 max(x, y)

3
, 1

)
, if min(x, y) < 0.11 ,

max(x, y), otherwise .

Note that dI doesn’t satisfy the triangle inequality since

dI(0.1, 0.11) + dI(0.11, 0.45) = 0.48 + 0.45 = 0.93 6≥ 0.933 = dI(0.1, 0.45) .

2.1. When is dI a metric?

In this section, we discuss the necessary and sufficient condition for dI to be a metric. The following
functional inequality will play an important role in the characterisation.

Definition 4. Given a t-conorm S and a fuzzy implication I on [0, 1], the pair (S, I) is said to satisfy
(S, I)-transitivity if

S(I(x, y), I(y, z)) ≥ I(x, z) , for all x, y, z ∈ [0, 1] . (SIT)

Remark 1. In the literature, (S, I)-transitivity has already been discussed in different contexts.

2We would like to mention that throughout the paper, we will only consider fuzzy implications that satisfy (1) unless stated
otherwise.
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(i) In [8, 9], (SIT) emerges as a generalisation of the triangle inequality to S-triangle inequality to show
that the complement of T -equivalence fuzzy relation comes out to be an S-pseudometric i.e., a distance
function that satisfies (S, d)-transitivity.

(ii) The functional inequality (SIT) appears as (S,R)-transitivity which has also been used as the dual
concept of T -transitivity, see [10, 11], where R is a binary fuzzy relation. It captures the following
negative transitivity - if x is not related to y and y is not related to z under a relation R, then we
insist that x should also not be related to z under R, i.e., R(x, y) = 0 & R(y, z) = 0 =⇒ R(x, z) = 0.
In fact, this property is also named as the negative S-transitivity in the literature, see Definition 2.13
in [11]. Note that a fuzzy implication can be viewed as a fuzzy relation on [0, 1] since it is a mapping
from the unit square to the unit interval.

Definition 5. Let A ⊂ [0, 1]3 be given as A = {(x, y, z) ∈ [0, 1]3 | x < y < z}.

Lemma 1. Let S be a t-conorm and I be a fuzzy implication on [0, 1]. Then the pair (S, I) satisfies the
(S, I)-transitivity for every triplet (x, y, z) ∈ Ac, where Ac is the complement of A defined in Definition 5.

Proof. Let (x, y, z) ∈ Ac. Then either x ≥ y or y ≥ z.

(i) Case-1: x ≥ y
Since I is decreasing in the first variable, we have I(x, z) ≤ I(y, z) ≤ max(I(x, y), I(y, z)). Hence
I(x, z) ≤ S(I(x, y), I(y, z)) since SM(x, y) = max(x, y) is the smallest t-conorm.

(ii) Case-2: y ≥ z
Since I is increasing in the second variable, we have I(x, z) ≤ I(x, y) ≤ max(I(x, y), I(y, z)). As above,
we see that I(x, z) ≤ S(I(x, y), I(y, z)).

From the above lemma, it is clear that for a given t-conorm S and a fuzzy implication I, proving (SIT)
on [0, 1]3 is equivalent to proving (SIT) on A. We shall make use of this fact in the upcoming results by
showing the satisfaction of (SIT) only on A.

We now discuss the necessary and sufficient condition for dI to be a metric, highlighting the importance
of studying the functional inequality (SIT).

Theorem 2. dI is a metric iff I satisfies (SLK, I)-transitivity where SLK(x, y) = min(x+ y, 1).

Proof. (=⇒) Suppose dI is a metric. Consider a triplet (x, y, z) ∈ A i.e., x < y < z, then I(x, y) + I(y, z) =
dI(x, y) + dI(y, z) ≥ dI(x, z) = I(x, z). Hence,

min(1, I(x, y) + I(y, z)) ≥ I(x, z) =⇒ SLK(I(x, y), I(y, z)) ≥ I(x, z).

Hence, I satisfies (SLK, I)-transitivity.
(⇐=) Since dI is a distance function and we consider only I ∈ I satisfying (1), it suffices to show that dI
satisfies the triangle inequality. Suppose I satisfies (SLK, I)-transitivity.

(i) Case-1: (x, y, z) ∈ Ac \ {(x, y, z) | z < y < x}
Triangle Inequality follows from the definition of I and dI .

(ii) Case-2: z < y < x
It follows from (SLK, I)-transitivity, that dI(x, y) + dI(y, z) = I(y, x) + I(z, y) ≥ I(z, x) = dI(x, z).

(iii) Case-3: x < y < z
It follows from (SLK, I)-transitivity, that dI(x, y) + dI(y, z) = I(x, y) + I(y, z) ≥ I(x, z) = dI(x, z).

Corollary 1. If I satisfies (S, I)-transitivity w.r.t. any S ≤ SLK, then dI yields a metric.
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Implication Type Formula I(x, y) Metric dI(x, y)

 Lukasiewicz (S,N)- ILK : min(1, 1− x+ y)

{
0, if x = y ,

1, if x 6= y .

Gödel R- IGD :

{
1, if x ≤ y ,
y, if x > y .

{
0, if x = y ,

1, if x 6= y .

Reichenbach (S,N)- IRC : 1− x+ xy

{
0, if x = y ,

1−min(x, y) + xy, if x 6= y .

Kleene-Dienes (S,N)- IKD : max(1− x, y)


0, if x = y ,

max(1− x, y), if x < y ,

max(1− y, x), if x > y .

Goguen R- IGG :

{
1, if x ≤ y ,
y, if x > y .

{
0, if x = y ,

1, if x 6= y .

Rescher R- IRS :

{
1, if x ≤ y ,
0, if x > y .

{
0, if x = y ,

1, if x 6= y .

Yager Yager- IYG :

{
1, if x = 0 and y = 0 ,

yx, if x > 0 and y > 0 .


0, if x = y ,

yx, if x < y ,

xy, if x > y .

Weber (S,N)- IWB :

{
1, if x < 1 ,

y, if x ≥ 1 .

{
0, if x = y ,

1, if x 6= y .

Fodor R- IFD :

{
1, if x ≤ y ,
max(1− x, y), if x > y .

{
0, if x = y ,

1, if x 6= y .

Table 1: Examples of metrics obtained from some fuzzy implications

Example 3. In Table 1, we present the basic fuzzy implications as given in [12]. Note that they satisfy
(SLK, I)-transitivity and thus yield metrics through dI .

By Corollary 2, given later, the fuzzy implications ILK, IGD, IGG, IRS, IWB, IFD satisfy the (SLK, I)-
transitivity but only yield the discrete metric.

It is easy to verify that Yager implication IYG also satisfies (SLK, I)-transitivity by Lemma 2 given below,
since IYG(x, y) ≥ 0.5 whenever x ≤ y. By a similar reasoning, it can be seen that both the Reichenbach IRC

and the Kleene-Dienes IKD implications also satisfy (SLK, I)-transitivity.

We clearly see the importance of (S, I)-transitivity w.r.t.  Lukasiewicz t-conorm, and it leads to an
interesting problem of investigating the fuzzy implications that satisfy (SLK, I)-transitivity. We shall discuss
the same in the next section.

Remark 2. Note that while the metric dI is obtained on [0, 1], one can easily lift it to any X 6= ∅. Let
f : X → [0, 1]. Define d∗I : X × X → [0, 1] as follows: for any x, y ∈ X ,

d∗I(x, y) = dI(f(x), f(y)) =

{
0, if x = y ,

I(min(f(x), f(y)),max(f(x), f(y))), otherwise .
(2)

Clearly, d∗I is a distance function on X and it is a metric if dI is a metric.

We thus see that we can obtain a metric on any non-empty set X through d∗I by mapping the elements
of X to the unit interval. We shall see the applicability of d∗I in the sequel.
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3. (SLK, I)-transitivity

In this section, we discuss the sufficient conditions under which some families and transformations of
fuzzy implications satisfy (SLK, I)-transitivity, and hence yield a metric through dI .

3.1. (SLK, I)-transitivity of I ∈ I obtained from other FLCs

Certain families of fuzzy implications are constructed by generalising classical tautologies. Typically
these are obtained from other fuzzy logic connectives (FLCs). In this section, we study the satisfaction of
(SLK, I)-transitivity by some of the major families obtained through such constructions, viz., R-, (S,N)-,
and QL- implications. We shall make use of the following results for the same.

Lemma 2. An I ∈ I satisfying I(x, x) ≥ 0.5 for every x ∈ [0, 1], satisfies (SLK, I)-transitivity.

Proof. Consider a triplet (x, y, z) ∈ A i.e., x < y < z, then

SLK(I(x, y), I(y, z)) ≥ SLK(I(x, x), I(z, z)) ≥ SLK(0.5, 0.5) = 1 ≥ I(x, z) .

Corollary 2. An I ∈ I satisfying the identity principle,

I(x, x) = 1 for all x ∈ [0, 1] , (IP)

satisfies (SLK, I)-transitivity.

3.1.1. R-implication

As has been mentioned already, many families of fuzzy implications originated as a generalisation of
implications from different classical logics. R-implications are a generalisation of the implication in the
classical intuitionistic logic to the setting of fuzzy logic and are defined as follows.

Definition 6. An I ∈ I is called an R-implication, denoted IT , if there exists a t-norm T such that for
all x, y ∈ [0, 1],

IT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y} .

From Corollary 2 and the fact that IT from any T satisfies the identity principle (IP), the following
result follows:

Corollary 3. An R-implication IT always satisfies (SLK, IT )-transitivity. Further, it generates a discrete

metric i.e., dIT (x, y) =

{
0, if x = y ,

1, otherwise .

Note that the fuzzy implications ILK, IGG, IGD, IWB, IFD are in fact, R-implications, and as can be
noted from Table 1, they generate the discrete metric through dI .

3.1.2. (S,N)-implication

(S,N)-implications are a generalisation of the material implication of the classical logic to the setting of
fuzzy logic and are defined as follows.

Definition 7. An I ∈ I is called an (S,N)-implication, denoted IS,N , if there exist a t-conorm S, and a
fuzzy negation N such that for all x, y ∈ [0, 1],

IS,N (x, y) = S(N(x), y) .

Lemma 3. Every IS,N where either S ≤ SLK or N ≥ NC, satisfies (SLK, IS,N )-transitivity, where NC(x) =
1− x.
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Proof. Consider a triplet (x, y, z) ∈ A, i.e., x < y < z. Then for S ≤ SLK, we have

IS,N (x, z) = S(N(x), z) ≤ SLK(N(x), z)

= min(1, N(x) + z)

≤ min(1, S(N(x), y) + S(N(y), z)) [ Since S(x, y) ≥ max(x, y)]

= min(1, IS,N (x, y) + IS,N (y, z))

= SLK(IS,N (x, y), IS,N (y, z)) .

Now, consider the case where N ≥ NC. Then

SLK(IS,N (x, y), IS,N (y, z)) = min(1, IS,N (x, y) + IS,N (y, z))

= min(1, S(N(x), y) + S(N(y), z))

≥ min(1, S(NC(x), y) + S(NC(y), z))

≥ min(1, 1− x+ z) = 1

≥ IS,N (x, z) .

Lemma 4. Every IS,N satisfying the law of excluded middle

S(N(x), x) = 1 for every x ∈ [0, 1] , (LEM)

satisfies (SLK, IS,N )-transitivity. Further, such an IS,N will always generate a discrete metric.

Proof. Since IS,N satisfies (LEM), it also satisfies (IP). Hence, from Corollary 2, IS,N will satisfy (SLK, IS,N )-
transitivity.

The fuzzy implications ILK, IRC, IKD, IFD are, in fact, (S,N)-implications. As can be noted from
Table 1, unlike the R-implications, they can generate non-discrete metrics through dI .

However, not every (S,N)-implication satisfies (SLK, IS,N )-transitivity as shown in Example 2, which is
an (S,N)-implication generated from the following S and N :

S(x, y) = min(x+ y + xy, 1) , N(x) =


1, if x = 0,
1
3 , if x < 0.11,

0, otherwise.

.

3.1.3. QL-implication

QL-implications are a generalisation of the quantum logic implication to the setting of fuzzy logic and
are defined as follows.

Definition 8. An I ∈ I is called a QL-implication, denoted IT,S,N , if there exist a t-norm T, a t-conorm
S, and a fuzzy negation N such that

IT,S,N (x, y) = S(N(x), T (x, y)) , x, y ∈ [0, 1] .

Lemma 5. Let S be a t-conorm such that S ≤ SLK, then the QL-implication IT,S,N satisfies (SLK, IT,S,N )-
transitivity.
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Implication Formula I(x, y) Metric dI(x, y)

IPC 1− (max(x(x+ xy2 − 2y), 0))
1
2


0, if x = y ,

1− (max(x(x+ xy2 − 2y), 0))
1
2 , if x < y ,

1− (max(y(y + yx2 − 2x), 0))
1
2 , if x > y .

IPR 1− (max(x(1 + xy2 − 2y), 0))
1
2


0, if x = y ,

1−max(x(1 + xy2 − 2y), 0)
1
2 , if x < y ,

1−max(y(1 + yx2 − 2x), 0)
1
2 , if x > y .

Table 2: Examples of metrics obtained from some QL-implications

Proof. Consider a triplet (x, y, z) ∈ A i.e., x < y < z. Then

IT,S,N (x, z) = S(N(x), T (x, z)) ≤ SLK(N(x), T (x, z))

= min(1, N(x) + T (x, z))

≤ min(1, N(x) + T (y, z))

≤ min(1, S(N(x), T (x, y)) + S(N(y), T (y, z))) [ Since S(x, y) ≥ max(x, y)]

≤ min(1, IT,S,N (x, y) + IT,S,N (y, z))

= SLK(IT,S,N (x, y), IT,S,N (y, z)).

Lemma 6. The QL-implication IT,S,N satisfies (SLK, IT,S,N )-transitivity when any of the following is true:

(i) T = TM(x, y) = min(x, y),

(ii) T = TD(x, y) =

{
min(x, y), if max(x, y) = 1,

0, otherwise.
,

(iii) S is a positive t-conorm,

(iv) S = SD(x, y) =

{
1, if x, y ∈ (0, 1],

max(x, y), otherwise.
,

(v) N = ND2(x) =

{
0, if x = 1 ,

1, otherwise .
.

Proof. From Example 4.9, and Propositions 4.7, 4.17 in [13], it can be seen that the QL-implications IT,S,N
obtained from any of the above t-norms T , t-conorms S or the fuzzy negationN are such that IT,S,N (x, y) = 1
whenever x ≤ y. Then, for a triplet (x, y, z) ∈ A, i.e., x < y < z, we have

SLK(IT,S,N (x, y), IT,S,N (y, z)) = min(1, IT,S,N (x, y) + IT,S,N (y, z)) = min(1, 2) = 1 = IT,S,N (x, z) .

Hence, IT,S,N satisfies (SLK, IT,S,N )-transitivity.

Note that the QL-implications IT,S,N obtained from any of the t-norms T , t-conorms S or the fuzzy
negation N given in Lemma 6 will always generate a discrete metric. Interestingly, the fuzzy implica-
tions ILK, IRC, IKD, IFD, IWB are also QL-implications and generate a variety of metrics through dI , see
Table 1. Table 2 lists examples of metrics obtained from QL-implications, IPC and IPR, that are not
(S,N)-implications.

3.2. (SLK, I)-transitivity of Transformations of Fuzzy Implications

In this section, we show the sufficient conditions under which different transformations of fuzzy implica-
tions satisfy (SLK, I)-transitivity.
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Let Φ denote the family of all increasing bijections φ : [0, 1]→ [0, 1] .
Define the family of increasing bijections that are super-additive and sub-additive on admissible argu-

ments x, y ∈ [0, 1], denoted by Φ+ and Φ+ respectively, as follows:

Φ+ := {φ ∈ Φ | φ(x+ y) ≥ φ(x) + φ(y)} ,
Φ+ := {φ ∈ Φ | φ(x+ y) ≤ φ(x) + φ(y)} .

To begin with, we have the following easy to prove result:

Lemma 7. φ ∈ Φ+ ⇐⇒ φ−1 ∈ Φ+.

We now recall the definitions of certain transformations of fuzzy implications and study the conditions
under which they satisfy (SLK, I)-transitivity.

Definition 9 (cf. [14]). Given φ ∈ Φ, and an I ∈ I, the following transformations of I always yield an
implication:

(i) I
[1]
φ (x, y) = φ−1(I(φ(x), φ(y))),

(ii) I
[2]
φ (x, y) = φ(I(x, φ−1(y))),

(iii) I
[3]
φ (x, y) = φ(I(φ−1(x), y)),

(iv) I
[4]
φ (x, y) = φ(I(x, y)).

Lemma 8. Let I ∈ I satisfying I(x, x) ≥ 0.5 for every x ∈ [0, 1].

(i) If φ(0.5) ≤ 0.5 then I
[1]
φ satisfies (SLK, I

[1]
φ )-transitivity.

(ii) If φ(0.5) = 0.5 and φ(x) ≤ x then I
[2]
φ satisfies (SLK, I

[2]
φ )-transitivity.

(iii) If φ(x) ≥ x then I
[3]
φ satisfies (SLK, I

[3]
φ )-transitivity.

(iv) If φ(0.5) ≥ 0.5 then I
[4]
φ satisfies (SLK, I

[4]
φ )-transitivity.

Proof. (i) Consider a triplet (x, y, z) ∈ A i.e., x < y < z. Then

SLK(I
[1]
φ (x, y), I

[1]
φ (y, z)) = min(1, I

[1]
φ (x, y) + I

[1]
φ (y, z))

= min
(
1, φ−1 (I(φ(x), φ(y))) + φ−1 (I(φ(y), φ(z)))

)
Then, by mixed-monotonicity of I,

SLK(I
[1]
φ (x, y), I

[1]
φ (y, z)) ≥ min

(
1, φ−1 (I(φ(x), φ(x))) + φ−1 (I(φ(z), φ(z)))

)

Since I(x, x) ≥ 0.5 and φ(0.5) ≤ 0.5, we have

SLK(I
[1]
φ (x, y), I

[1]
φ (y, z)) ≥ min

(
1, φ−1(0.5) + φ−1(0.5)

)
≥ min(1, 0.5 + 0.5) = 1

≥ I [1]φ (x, z) .

(ii) Consider a triplet (x, y, z) ∈ A i.e., x < y < z. Then

SLK(I
[2]
φ (x, y), I

[2]
φ (y, z)) = min(1, I

[2]
φ (x, y) + I

[2]
φ (y, z))

= min
(
1, φ

(
I(x, φ−1(y))

)
+ φ

(
I(y, φ−1(z))

))
9



Then, by mixed-monotonicity of I,

SLK(I
[2]
φ (x, y), I

[2]
φ (y, z)) ≥ min

(
1, φ

(
I(x, φ−1(x))

)
+ φ

(
I(z, φ−1(z))

))
≥ min (1, φ (I(x, x)) + φ (I(z, z))) [ Since φ(x) ≤ x]

≥ min (1, φ(0.5) + φ(0.5)) [ Since I(x, x) ≥ 0.5]

≥ min(1, 0.5 + 0.5) = 1 [ Since φ(0.5) = 0.5]

≥ I [2]φ (x, z) .

(iii) Consider a triplet (x, y, z) ∈ A i.e., x < y < z. Then

SLK(I
[3]
φ (x, y), I

[3]
φ (y, z)) = min(1, I

[3]
φ (x, y) + I

[3]
φ (y, z))

= min
(
1, φ

(
I(φ−1(x), y)

)
+ φ

(
I(φ−1(y), z)

))
Then, by mixed-monotonicity of I,

SLK(I
[3]
φ (x, y), I

[3]
φ (y, z)) ≥ min

(
1, φ

(
I(φ−1(x), x)

)
+ φ

(
I(φ−1(z), z)

))
≥ min (1, φ (I(x, x)) + φ (I(z, z))) [ Since φ(x) ≥ x]

≥ min (1, 0.5 + 0.5) = 1 [ Since I(x, x) ≥ 0.5]

≥ I [3]φ (x, z) .

(iv) Can be proven similarly as (i).

Lemma 9. Let I satisfy (SLK, I)-transitivity.

(i) If φ ∈ Φ+ then I
[1]
φ satisfies (SLK, I

[1]
φ )-transitivity.

(ii) If φ ∈ Φ+, and φ(y) ≥ y, then I
[3]
φ satisfies (SLK, I

[3]
φ )-transitivity.

(iii) If φ ∈ Φ+ then I
[4]
φ satisfies (SLK, I

[4]
φ )-transitivity.

Proof. (i) Suppose I
[1]
φ does not satisfy (SLK, I

[1]
φ )-transitivity, i.e., there exist x, y, z ∈ [0, 1] such that

I
[1]
φ (x, y) + I

[1]
φ (y, z) < I

[1]
φ (x, z). Thus,

φ−1 (I(φ(x), φ(y))) + φ−1 (I(φ(y), φ(z))) < φ−1 (I(φ(x), φ(z)))

=⇒ φ
(
φ−1(I(φ(x), φ(y))) + φ−1(I(φ(y), φ(z)))

)
< φ

(
φ−1(I(φ(x), φ(z)))

)
= I(φ(x), φ(z)) . (3)

Since φ ∈ Φ+, we have that

φ
(
φ−1

(
I(φ(x), φ(y))

))
+ φ

(
φ−1

(
I(φ(x), φ(y))

))
≤ φ

(
φ−1(I(φ(x), φ(y))) + φ−1(I(φ(y), φ(z)))

)
=⇒ φ

(
φ−1

(
I(φ(x), φ(y))

))
+ φ

(
φ−1

(
I(φ(x), φ(y))

))
< I(φ(x), φ(z)) [ By (3)]

=⇒ I(φ(x), φ(y)) + I(φ(y), φ(z)) < I(φ(x), φ(z)) ,

which is a contradiction as I satisfies (SLK, I)-transitivity.

(ii) Suppose I
[3]
φ does not satisfy (SLK, I

[3]
φ )-transitivity, i.e., there exist x, y, z ∈ [0, 1] such that I

[3]
φ (x, y)+

I
[3]
φ (y, z) < I

[3]
φ (x, z). Thus,

φ
(
I(φ−1(x), y)

)
+ φ

(
I(φ−1(y), z)

)
< φ

(
I(φ−1(x), z)

)
=⇒ φ−1

(
φ(I(φ−1(x), y)) + φ(I(φ−1(y), z))

)
< φ−1

(
φ(I(φ−1(x), z))

)
= I(φ−1(x), z) . (4)

10



Since φ ∈ Φ+, we have that

φ−1
(
φ
(
I(φ−1(x), y)

))
+ φ−1

(
φ
(
I(φ−1(y), z)

))
≤ φ−1(φ(I(φ−1(x), y)) + φ(I(φ−1(y), z)))

=⇒ φ−1
(
φ
(
I(φ−1(x), y)

))
+ φ−1

(
φ
(
I(φ−1(y), z)

))
< I(φ−1(x), z) [ By (4)]

=⇒ I(φ−1(x), y) + I(y, z) < I(φ−1(x), y) + I(φ−1(y), z) < I(φ−1(x), z) , [ Since φ(y) ≥ y]

which is a contradiction as I satisfies (SLK, I)-transitivity.

(iii) Can be proven similarly as (i).

Examples 4 and 5 present some transformations under which (SLK, I)-transitivity is preserved and the
corresponding metrics are also presented.

Example 4. Let φ(x) = x2. Thus, φ−1(x) =
√
x . Clearly, φ ∈ Φ+ since

φ(x+ y) = (x+ y)2 ≥ x2 + y2 ≥ φ(x) + φ(y).

Let I = IRC. Then,

I
[1]
φ (x, y) =

√
IRC(x2, y2) =

√
1− x2 + x2y2 ,

d
I
[1]
φ

(x, y) =


0, if x = y ,√

1− x2 + x2y2, if x < y ,√
1− y2 + x2y2, if y < x .

Example 5. Let φ(x) = sin
(
π
2x
)
. Thus, φ−1(x) = 2

π sin−1 (x) . Since

φ(x+ y) = sin
(π

2
(x+ y)

)
= sin

(π
2
x
)

cos
(π

2
y
)

+ sin
(π

2
y
)

cos
(π

2
x
)

≤ sin
(π

2
x
)

+ sin
(π

2
y
)

= φ(x) + φ(y) ,

we see that φ ∈ Φ+. Once again letting I = IRC, we obtain

I
[2]
φ (x, y) = sin

(
π

2
IRC

(
x,

2

π
sin−1 (y)

))
= sin

(
π

2

[
1− x+

2

π
x sin−1 (y)

])

d
I
[2]
φ

(x, y) =


0, if x = y ,

sin
(
π
2 [1− x+ 2

πx sin−1(y)]
)
, if x < y ,

sin
(
π
2 [1− y + 2

πy sin−1(x)]
)
, if y < x .

I
[3]
φ (x, y) = sin

(
π

2
IRC

(
2

π
sin−1 (x) , y

))
= sin

(π
2
− sin−1(x) + y sin−1(x)

)
.

d
I
[3]
φ

(x, y) =


0, if x = y ,

sin
(
π
2 − sin−1(x) + y sin−1(x)

)
, if x < y ,

sin
(
π
2 − sin−1(y) + x sin−1(y)

)
, if y < x .

I
[4]
φ (x, y) = sin

(π
2
IRC(x, y)

)
= sin

(π
2

[1− x+ xy]
)
.

d
I
[4]
φ

(x, y) =


0, if x = y ,

sin
(
π
2 [1− x+ xy]

)
, if x < y ,

sin
(
π
2 [1− x+ xy]

)
, if y < x .
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3.3. (SLK, I)-transitivity of I ∈ I obtained from Unary Generators
Yet another way to obtain fuzzy implications are through unary operations on [0, 1]. Yager proposed

this approach formally in [15] using the additive generators of Archimedean t-norms. Since then there have
been many such proposals.

3.3.1. f -implications

In this section, we discuss the (SLK, I)-transitivity of f -implications using the representation theorem
for the family of f -implications given in [14].

Definition 10 ([16], Definition 3.1.1). Let f : [0, 1]→ [0,∞] be a strictly decreasing and continuous function
with f(1) = 0. With the understanding 0 · (+∞) = 0, If ∈ I and is called an f -implication, when defined as
follows:

If (x, y) = f−1 (x · f(y)) , for all x, y ∈ [0, 1] .

Example 6. Following are prototypical examples of f -implications and they satisfy (SLK, I)-transitivity:

(i) Yager: IYG(x, y) =

{
1, if x = y = 0 ,

yx, otherwise .

(ii) Reichenbach: IRC(x, y) = 1− x+ xy .

Remark 3. Let us denote the family of all f -implications whose generators f satisfy f(0) = 1 by IF,1, and
those with f(0) = +∞ by IF,+∞. The family of all f -implications is, in fact, IF = IF,+∞ ∪ IF,1.

Theorem 3 ([14], Corollary 5.9). (i) If ∈ IF,1 iff If = I
[2]
RCφ

for some φ ∈ Φ.

(ii) If ∈ IF,+∞ iff If = I
[2]
YGφ

for some φ ∈ Φ.

Lemma 10. Let φ ∈ Φ such that φ(x) ≤ x for every x ∈ [0, 1], and φ(0.5) = 0.5. Then

(i) any I ∈ I [2]RCφ
⊆ IF,1 satisfies (SLK, I)-transitivity.

(ii) any I ∈ I [2]YGφ
⊆ IF,+∞ satisfies (SLK, I)-transitivity.

3.3.2. g-implications

In this section, we discuss the (SLK, I)-transitivity of g-implications using the representation theorem
for the family of g-implications given in [14].

Definition 11 ([16], Definition 3.1.1). Let g : [0, 1]→ [0,∞] be a strictly increasing and continuous function
with g(0) = 0. With the understanding 1

0 = +∞ and (+∞).0 = +∞, Ig ∈ I and is called a g-implication,
when defined as follows:

Ig(x, y) = g−1
(

1

x
· g(y)

)
, for all x, y ∈ [0, 1] .

Example 7. Following are prototypical examples of g-implications and they satisfy (SLK, I)-transitivity:

(i) Yager: IYG(x, y) =

{
1, if x = y = 0 ,

yx, otherwise .

(ii) Goguen: IGG(x, y) =

{
1, if x ≤ y ,
y

x
, otherwise .

Remark 4. Let us denote the family of all g-implications whose generators g satisfy g(1) = 1 by IG,1 and
those with g(1) = +∞ by IG,+∞. The family of all g-implications is, in fact, IG = IG,+∞ ∪ IG,1.

Theorem 4 ([14], Corollary 5.17). (i) Ig ∈ IG,1 iff Ig = I
[2]
GGφ

for some φ ∈ Φ.

(ii) Ig ∈ IG,+∞ iff Ig = I
[2]
YGφ

for some φ ∈ Φ.

Lemma 11. Let φ ∈ Φ such that φ(x) ≤ x for every x ∈ [0, 1], and φ(0.5) = 0.5. Then

(i) any I ∈ I [2]GGφ
⊆ IG,1 satisfies (SLK, I)-transitivity.

(ii) any I ∈ I [2]YGφ
⊆ IG,+∞ satisfies (SLK, I)-transitivity.
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4. Pseudo-monometrics from Fuzzy Implications

Recently, (pseudo-)monometrics w.r.t. betweenness relations have garnered a lot of attention, mainly
due to their application in decision making and penalty based data aggregation (see [17, 18, 19]). In this
section, we begin by taking a look at the usefulness of (pseudo-)monometrics in applications. We then recall
the definitions of these notions and show that dI and d∗I are essentially pseudo-monometrics on appropriate
betweenness sets.

4.1. Applications of (Pseudo-)Monometrics

Monometrics(or pseudo-monometrics) play an integral role in the applications dealing with rationalisation
of ranking rules, penalty-based aggregation, and binary classification.

In the problem of aggregation of rankings, given a profile of rankings, the aim is to obtain a single
ranking that best represents the nature of this given profile. The aggregated rankings can be characterised
as minimizing the distance from a consensus state using a distance function. In [18], it was proposed that the
distance function should be replaced by a monometric, which essentially preserves the betweenness relation
under consideration.

The study of penalty-based aggregation has been mainly confined to the domain of real numbers. In [17],
the definition of penalty-based function was extended to accommodate more general structures and expand
its scope beyond real numbers by demanding compatibility with a betweenness relation. It was shown that
penalty-based functions could be constructed using monometrics on the given betweenness relation.

A distance function appears in almost every DA/ML algorithm, either explicitly as a metric or a norm,
or implicitly as its dual, similarity measure, for instance, in the form of an inner product. That the general
purpose distances may not be appropriate for all situations is well-known, see for instance, an excellent
articulation of the same in [20]. In [21], authors have claimed that the distance functions compatible with
the relational structure(pseudo-monometrics) present in the data are the most appropriate in the problem
of binary classification, especially in nearest-neighbor classification.

4.2. Pseudo-monometric on Betweenness Relations

We shall now discuss some preliminary order-theoretic concepts before presenting the definitions of
betweenness and pseudo-monometrics.

Definition 12. Let P 6= ∅. A partial order on P is a binary relation ≤ on P such that, for all a, b, c ∈ P,
the following properties hold:

• Reflexivity: a ≤ a,

• Antisymmetry: If a ≤ b and b ≤ a, then a = b,

• Transitivity: If a ≤ b and b ≤ c, then a ≤ c.

Definition 13. Let (P,≤) be a partially ordered set or poset. An element a in P is said to be

• the least element (minimum element) if for every element b in P, we have that a ≤ b.

• the greatest element (maximum element) if for every element b in P, we have that a ≥ b.

Definition 14. A poset (P,≤) is called

• bounded below if there exists a least element.

• bounded above if there exists a greatest element.

• bounded if it is both bounded below and above.
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Definition 15. Let B be a ternary relation on an X 6= ∅. Then B is said to be a betweenness relation if
B satisfies the following for any o, x, y, z ∈ X :

(x, y, z) ∈ B ⇐⇒ (z, y, x) ∈ B , (BS)

(x, y, z) ∈ B ∧ (x, z, y) ∈ B ⇐⇒ y = z , (BU)

(o, x, y) ∈ B ∧ (o, y, z) ∈ B =⇒ (o, x, z) ∈ B . (BT)

Remark 5. (i) (X ,B) is known as a Betweenness set or a Beset. Also, (x, y, z) ∈ B is read as ’y is in
between x and z’.

(ii) The minimal betweenneess relation B0 on X is defined as follows:

B0 = {(x, y, z) ∈ X 3 | x = y ∨ y = z} .

(iii) For an arbitrary but fixed o ∈ X , the following is a partial order on X [22]:

x � y iff (o, x, y) ∈ B . (5)

(iv) Conversely, a betweenness relation B can be defined from a partial order � on X as follows [22]:

B� = B0 ∪ {(x, y, z) ∈ X 3 | x � y � z ∨ z � y � x} . (6)

Example 8. We present below a few examples of betweenness relations.

(i) (cf. [19]) Consider a metric space (X , d). Then the ternary relation Bd, defined on X , as

Bd := {(a, b, c) ∈ X 3 | d(a, b) + d(b, c) = d(a, c)} . (BD)

is a betweenness relation.

(ii) ([cf. [23]) Let (L,∧,∨) be a lattice. Then the ternary relation BL, defined on L, as

BL := {(a, b, c) ∈ L3 | (a ∧ b) ∨ (b ∧ c) = b = (a ∨ b) ∧ (b ∨ c)} . (BL)

is a betweenness relation.

(iii) ([cf. [23]) Let V be a vector space. Then the ternary relation BA, defined on V , as

BA := {(a, b, c) ∈ V 3 | b = λa+ (1− λ)c, λ ∈ [0, 1]} . (BA)

is a betweenness relation.

Now, we present the definition of pseudo-monometric as given in [24].

Definition 16. Consider a betweenness set (X ,B). A distance function d : X × X → [0,∞) is called a
pseudo-monometric (w.r.t. B) if for every (x, y, z) ∈ B, it holds that:

max(d(x, y), d(y, z)) ≤ d(x, z) . (MC)

Note that if a function d satisfies (P1) and its converse, along with (MC), we shall refer to it as a
monometric [17].

Often, in applications, one is either given or able to determine the beset (X ,B). However, it is not well
known how to construct pseudo-monometrics on it. In the following sections, we show that the construction
detailed in the previous section offers us a solution to the problem of constructing pseudo-monometrics in
the case when betweenness relation is obtained from a partial order.
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4.2.1. Pseudo-monometric on the beset obtained from a totally ordered set

In this section, we begin by showing that dI is indeed a natural choice for obtaining pseudo-monometric
w.r.t. the betweenness set obtained from the usual total order on [0, 1]. Note that in this section I need not
satisfy (1).

Let us define a betweenness relation B≤ on [0, 1] where ≤ denotes the usual total order on it:

B≤ = {(x, y, z) ∈ [0, 1]3 | x ≤ y ≤ z ∨ z ≤ y ≤ x}.

Lemma 12. dI is a pseudo-monometric on ([0, 1],B≤).

Proof. Since dI(x, x) = 0 and dI(x, y) = dI(y, x), it is a distance function. Suppose (x, y, z) ∈ B≤. Without
loss of generality, assume x ≤ y ≤ z. By the definition of I, we have I(x, z) ≥ I(x, y), and I(x, z) ≥ I(y, z).
Thus

I(x, z) ≥ max(I(x, y), I(y, z)) =⇒ dI(x, z) ≥ max(dI(x, y), dI(y, z)) . (7)

Hence, dI is a pseudo-monometric on ([0, 1],B≤).

From (7), it can be clearly seen that fuzzy implications - due to their mixed monotonicity - are both a
natural choice and a rich source for construction of pseudo-monometrics.

Now, we see that by mapping X to [0, 1], the above distance function can be lifted to a pseudo-monometric
on X for a suitably defined betweenness relation. The proof follows along similar lines as the proof of
Lemma 12.

Lemma 13. Let ([0, 1],B≤) be the beset obtained from the usual ordering on [0, 1] and f : X → [0, 1] be any
mapping. Let us define a betweenness relation B on X as follows:

(x, y, z) ∈ B ⇐⇒ (f(x), f(y), f(z)) ∈ B≤ .

Then the distance d∗I , as defined in (2), is a pseudo-monometric on the beset (X ,B).

Further, if we are given a totally ordered set (X ,≤), and let (X ,B≤) be the corresponding beset. Once
again, if there exists an f : X → [0, 1] which is an order-preserving mapping, i.e., x � y =⇒ f(x) ≤ f(y),
then clearly, one can easily show that d∗I defined on X is a pseudo-monometric on (X ,B≤).

We now see that the above results can be extended to a poset, which is not a chain. In the rest of the
section, we shall see results pertaining to partially ordered sets.

4.2.2. Pseudo-monometric on the beset obtained from a partially ordered set

We begin by discussing the case where the betweenness set is obtained from a partially ordered set as in
(6) and show the existence of a monometric on it. In our quest to prove it, we shall make use of the following
result which shows the existence of an order-preserving map from a partially ordered set to a totally ordered
set.

Theorem 5. Let (X ,�) be a partially ordered set. Then there always exists a non-constant order-preserving
map f : X → [0, 1], i.e., x � y implies f(x) ≤ f(y).

Proof. Let α ∈ X be arbitrary but fixed and α ↓ denote the downset of α in (X ,�), i.e., α ↓= {z ∈ X | z ≤ α}.
Define f : X → [0, 1] as

f(x) =

{
0.2, if x ∈ α ↓ ,
0.4, otherwise .

Suppose a � b. If a ∈ α ↓, f(a) = 0.2 ≤ f(b), and if a 6∈ α ↓, then b 6∈ α ↓, and f(a) = f(b) = 0.4.
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In the above proof, we provided an explicit construction for an order-preserving f , essentially showing
that an order-preserving f exists from (X ,�) to the unit interval endowed with the usual order. While the
proof offers one such construction of f , there can be various other constructions depending on the cardinality
of X . We provide some alternate constructions in the following remark.

Remark 6. (i) Note that if f is a constant function, we will get the discrete metric through d∗I , which is
always a trivial monometric on (X ,B�).

(ii) If the cardinality of X is either finite or countable then the following f is one such order-preserving
map:

f(x) = 1− 1

h(x) + 1
,

where h(x) gives the maximum of the heights of x from the minimal element of each of its chains.
Example 9 provides yet another mapping with a clear visualisation of such a projection in Fig. 1 (a).

(iii) Some constructions for examples where X is of infinite cardinality, are provided in Examples 10, 11
and 12.

Using any such f , we can obtain a distance function on (X ,�) through d∗I defined as in (2), and by using
the mixed-monotonicity property of I, we can prove that it is a pseudo-monometric on (X ,B�).

Now, we are ready to prove one of the main results of this work - that of showing that if a betweenness
relation B is obtained from an underlying partial order� on X , then there always exists a pseudo-monometric
on X . In fact, the proof of the result is not only existential in nature but also constructive.

Theorem 6. Let (X ,�) be a poset, and (X ,B�) the beset obtained as given in (6). Then there exists a
non-trivial, i.e., a non-discrete, pseudo-monometric on (X ,B�).

Proof. Given (X ,�), from Theorem 5, we know there exists an order-preserving map f : X → [0, 1]. Let
(x, y, z) ∈ (X ,B�). Without loss of generality, assume that x � y � z. Thus f(x) ≤ f(y) ≤ f(z), and
by the definition of a fuzzy implication I, I(f(x), f(y)) ≤ I(f(x), f(z)), and I(f(y), f(z)) ≤ I(f(x), f(z)).
Thus we see that the d∗I as defined in (2) satisfies the following inequalities,

d∗I(x, y) ≤ d∗I(x, z) ,
d∗I(y, z) ≤ d∗I(x, z) ,

and hence is a pseudo-monometric on (X ,B�).

The following is an example of a (pseudo-)monometric on (X ,B�) where the cardinality of X is finite.

Example 9. Consider X = {o, x, y, z}. Let (X ,�) be a partially ordered set as given in Fig. 1 (a). Then

B� = B0 ∪ {(o, x, z), (z, x, o), (o, y, z), (z, y, o)} .

Now, define a mapping f : X → [0, 1] as in Table 3 (a):

X o x y z
f 0.25 0.5 0.5 0.75

d∗I o x y z
o 0 0.875 0.875 0.9375
x 0.875 0 0.75 0.875
y 0.875 0.75 0 0.875
z 0.9375 0.875 0.875 0

Table 3: (a) The mapping f (b) The pairwise distance matrix on X under d∗I

A geometric visualisation of the mapping f is given in Fig. 1 (a).
Consider I = IRC. We obtain the distance function d∗I on X as given in Table 3 (b). Clearly, d∗I is a

pseudo-monometric w.r.t. B�. In fact, it is a monometric on B� as IRC satisfies (1).
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(a) Finite poset
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]0, 1− t[ ]1− t, 1[

0

(b) Uncountable poset

Figure 1: Hasse Diagrams of the posets in Examples 9 and 11

1

2 3 5 7 . . .

−1

−2 −3 −5 −7 . . .

4 6 10 15 . . . −4 −6 −10 −15 . . .

8 12 20 30 . . . −8 −12 −20 −30 . . .

0

Figure 2: Hasse Diagram of the poset in Example 10.

The following is an example, once again, of a pseudo-monometric on (X ,B�). However, the considered
set X is now a countable one.

Example 10. Consider the set of all integers Z. Let (Z,�) be a partially ordered set defined as x � y ⇐⇒
there exists a z ∈ Z such that |z|.y = x. The Hasse diagram of the partially ordered set is given in Fig. 2.
Now, define an order-preserving mapping f : Z→ [0, 1] as follows:

f(x) =


0, if x = 0 ,

1, if x = −1 or x = 1 ,

1−
|Ix|∑
n=1

1

2n
, otherwise .

where |Ix| denotes the sum of powers of primes in the prime factorisation of x. For instance, |I12| = 2+1 = 3
since 12 = 22 × 31, and |I−30| = 1 + 1 + 1 = 3 since −30 = (−1)× 21 × 31 × 51.

Consider the fuzzy implication I(x, y) =


1, if x = 0 or y = 1 ,

y − x, if x < y ,

0, otherwise .

.
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Then d∗I on Z is given by

d∗I(x, y) =


0, if x = y ,

1, if x or y ∈ {1,−1, 0} ,
max(|Ix|,|Iy|)∑

n=min(|Ix|,|Iy|)+1

1

2n
, otherwise .

.

By Theorem 6, d∗I is indeed a pseudo-monometric w.r.t. B�. In fact, it is a monometric on B� as I satisfies
(1).

The following are examples of pseudo-monometrics on (X ,B�), where X is an uncountable set.

Example 11. Let X = [0, 1] and let t0 ∈]0, 1[ be arbitrary but fixed. Consider the poset (X ,�) whose Hasse
diagram is given in Fig. 1 (b). Let (X ,B�) be the beset obtained from � through (6).

Now, define a mapping f : X →]0, 1[ as in Table 4 (a). Note that the second column should be read as f
mapping the entire open interval ]0, 1− t0[ to 0.4 and similarly f(]1− t0, 1[) = 0.4.

X 0 ]0, 1− t0[ ]1− t0, 1[ 1− t0 1
f 0.2 0.4 0.4 0.8 1

d∗I 0 y ∈]0, 1− t0[ y ∈]1− t0, 1[ 1− t0 1
0 0 0.88 0.88 0.96 1

x ∈]0, 1− t0[ 0.88 0 0.76 0.92 1
x ∈]1− t0, 1[ 0.88 0.76 0 0.92 1

1− t0 0.96 0.92 0.92 0 1
1 1 1 1 1 0

Table 4: (a) The mapping f (b) The pairwise distance matrix on X under d∗I

Consider I = IRC. We obtain the distance function d∗I on X as given in Table 4 (b). Clearly, d∗I is a
pseudo-monometric w.r.t. B�. In fact, it is a monometric on B� as IRC satisfies (1).

Example 12. Consider the partially ordered set (P(N),⊆), where P(N) denotes the power set of the set
of natural numbers, partially ordered through inclusion. The Hasse diagram of the corresponding partially
ordered set is given in Fig. 3. Now, define an order-preserving mapping f : P(N)→ [0, 1] as follows:

f(X) =


0, if X = φ ,

1, if X = N ,
|X|∑
n=1

1

2n
, otherwise .

Consider the fuzzy implication I(x, y) =


1, if x = 0 or y = 1 ,

y − x, if x < y ,

0, otherwise .

.

Then d∗I on P(N) is given by

d∗I(X,Y ) =


0, if X = Y ,

1, if X or Y ∈ {φ,N} ,
max(|X|,|Y |)∑

n=min(|X|,|Y |)+1

1

2n
, otherwise .

.

Once again, by Theorem 6, d∗I is a pseudo-monometric w.r.t. B⊆. In fact, it is a monometric on B� as
IRC satisfies (1).
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N

N \ {1} N \ {2} N \ {3} N \ {4} . . .

{1, 2} {1, 3} {2, 3} {1, 4} . . .

{1} {2} {3} {4} . . .

φ

Figure 3: Hasse Diagram of the poset in Example 12

5. Besets Obtainable from a Poset: A Characterisation

While Theorem 6 depicts the existence of pseudo-monometrics on besets obtained from partially ordered
sets, the existence of a pseudo-monometric on an arbitrary beset is not clear.

In the following results, by providing a characterisation of betweenness sets obtained from a bounded
below poset, we illustrate the scope and applicability of Theorem 6.

Theorem 7. Let (X ,B) be a betweenness set such that B satisfies the following property with a special
element e ∈ X : whenever x 6= y 6= z ∈ X ,

(x, y, z) ∈ B ⇐⇒

{
{(e, x, y), (e, y, z)} ⊂ B

or {(e, y, x), (e, z, y)} ⊂ B .
. (8)

Let us define the relation x �e y ⇐⇒ (e, x, y) ∈ B. Then the following are true:

(i) (X ,�e) is a poset bounded below by e.

(ii) The natural betweenness obtained from �e coincides with B, i.e., B = B�e .

Proof. (i) From Remark 5 (iii), we see that �e is a partial order and since (e, e, x) ∈ B for any x ∈ X ,
e �e x. Hence, the poset (X ,�e) is bounded below by e.

(ii) Let us assume that (x, y, z) ∈ B. Then, by (8), (e, x, y), (e, y, z) ∈ B or (e, y, x), (e, z, y) ∈ B. This
implies x �e y �e z or z �e y �e x. Hence, (x, y, z) ∈ B�e which implies B ⊆ B�e .
Now, let us assume that (x, y, z) ∈ B�e . Then, (e, x, y), (e, y, z) ∈ B�e or (e, y, x), (e, z, y) ∈ B�e ,
which implies x �e y and y �e z or y �e x and z �e y, respectively. Hence, (e, x, y), (e, y, z) ∈ B or
(e, y, x), (e, z, y) ∈ B, clearly implying by (8) that (x, y, z) ∈ B.
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The final result of this section completely characterises the betweenness relations that can be obtained
through (6) from a given partial order.

Theorem 8. Let (X ,B) be a betweenness set. The betweenness relation B is induced from a bounded below
poset iff there exists an e ∈ X such that (8) is true.

Proof. (=⇒) Let us assume that B is induced from a poset (X ,�) that is bounded below by e. Consider
x 6= y 6= z.

Let (x, y, z) ∈ B = B�. Then, x � y � z or z � y � x. Since e is the bottom element, we have
e � x � y � z or e � z � y � x. This implies (e, x, y) and (e, y, z) ∈ B or (e, z, y) and (e, y, x) ∈ B.

Conversely, let us assume that {(e, x, y), (e, y, z)} ⊂ B. This implies e �e x �e y and e �e y �e z =⇒
x �e y �e z. Hence, (x, y, z) ∈ B. Similarly, we can show that {(e, y, x), (e, z, y)} ⊂ B =⇒ (x, y, z) ∈ B.

(⇐=) It follows from Theorem 7.

Since Theorem 6 asserts the existence of pseudo-monometric on the betweenness relation induced from
partially ordered sets, we have the following corollary.

Corollary 4. Let (X ,B) be a betweenness set such that B satisfies (8) with a special element e ∈ X . Then
there exists a pseudo-monometric on (X ,B).

6. Concluding Remarks:

In this submission, we introduced and investigated the distance function dI , defined as in 3, using a non-
associative, non-symmetric, and mixed-monotonic operator: fuzzy implication. The role of (S, I)-transitivity
in the characterisation of fuzzy implications that yield a metric through dI has been noted in this work.
However, note that, so far the authors were unable to find a QL-implication that did not satisfy (SLK, I)-
transitivity, leading one to suspect if this functional inequality could somehow quintessentially capture the
geometry and flavour of this family of fuzzy implications, whose characterisation has remained both open
and challenging. For these reasons, we believe that it is worthwhile to study the (SIT) functional inequality
in its own right.

By demonstrating the role of dI in defining pseudo-monometrics on certain betweenness relations, fuzzy
implications, and indeed dI , suggest themselves to be both a natural choice and a rich source for obtaining
such distance functions. While our result shows the existence of pseudo-monometrics on betweenness rela-
tions obtained precisely from partially ordered sets, it would be worthwhile to investigate the applicability
of dI on other betweenness relations. Some initial steps in this direction are already underway.
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[12] M. Baczyński, B. Jayaram, Yager’s classes of fuzzy implications: Some properties and intersections, Kybernetika 43 (2007)
157 – 182.

[13] M. Baczyski, B. Jayaram, QL-implications: Some properties and intersections, Fuzzy Sets and Systems 161 (2) (2010)
158–188, featured issue : Selected Papers from the FSTA 2008 Conference.

[14] N. R. Vemuri, B. Jayaram, Representations through a monoid on the set of fuzzy implications, Fuzzy Sets and Systems
247 (2014) 51–67.

[15] R. R. Yager, On some new classes of implication operators and their role in approximate reasoning, Information Sciences.
167 (1-4) (2004) 193–216.
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[18] R. Pérez-Fernández, M. Rademaker, B. De Baets, Monometrics and their role in the rationalisation of ranking rules,
Information Fusion 34 (2017) 16 – 27.
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