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Abstract

Special implications were introduced by Hájek and Kohout [Fuzzy implications and generalized quantifiers, Int. J. Uncertain.
Fuzziness Knowl.-Based Syst. 4 (1996) 225–233] in their investigations on some statistics on marginals. They have either suggested
or only partially answered three important questions, especially related to special implications and residuals of t-norms. In this
work we investigate these posers in-depth and give complete answers. Toward this end, firstly we show that many of the properties
considered as part of the definition of special implications are redundant. Then, a geometric interpretation of the specialty property
is given, using which many results and bounds for such implications are obtained. We have obtained a characterization of general
binary operations whose residuals become special. Finally, some constructive procedures to obtain special fuzzy implications are
proposed and methods of obtaining special implications from existing ones are given, showing that there are infinitely many fuzzy
implications that are special but cannot be obtained as residuals of t-norms.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

A fuzzy implication is the generalization of the classical one to fuzzy logic, much the same way as a t-norm and
a t-conorm are generalizations of the classical conjunction and disjunction, respectively. There exist many families
of fuzzy implications, most of which are a straight-forward generalization of their classical counterparts, viz., (S,N)-,
R- and QL-implications, while others are obtained rather in a novel way, for instance, the f- and g-implications proposed
by Yager [27]. We shall see them in more detail later.
Special implicationswere introduced byHájek andKohout [18] in their investigations on some statistics onmarginals

and have shown that they are related to special GUHA-implicative quantifiers (see, for instance, [15–17]). Thus, special
fuzzy implications are related to data mining. In their quest to obtain some many-valued connectives as extremal
values of some statistics on contingency tables with fixed marginals, they especially focussed on special homogenous
implicational quantifiers and showed that “Each special implicational quantifier determines a special implication.
Conversely, each special implication is given by a special implicational quantifier”.

∗Corresponding author. Tel.: +919840213094; fax: +914425398777.
E-mail addresses: jbala@iitm.ac.in, jbala.dmacs@gmail.com (B. Jayaram), mesiar@math.sk (R. Mesiar).

0165-0114/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.fss.2008.11.004

http://www.elsevier.com/locate/fss
mailto:jbala@iitm.ac.in
mailto:jbala.dmacs@gmail.com
mailto:mesiar@math.sk


2064 B. Jayaram, R. Mesiar / Fuzzy Sets and Systems 160 (2009) 2063–2085

Table 1
Examples of fuzzy implications.

Name Formula

Largest I1(x, y) =
{
0 if x = 1 and y = 0,

1 otherwise.

Łukasiewicz ILK(x, y) = min(1, 1 − x + y)

Gödel IGD(x, y) =
{
1 if x� y

y if x > y

Goguen IGG(x, y) =
⎧⎨
⎩

1 if x� y
y

x
if x > y

Rescher IRS(x, y) =
{
1 if x� y

0 if x > y

Weber IWB(x, y) =
{
1 if x < 1

y if x = 1

Fodor IFD(x, y) =
{
1 if x� y

max(1 − x, y) if x > y

Definition 1.1. A fuzzy implication I is said to be special, if for any � > 0 and for all x, y ∈ [0, 1] such that
x + �, y + � ∈ [0, 1] the following condition is satisfied:

I (x, y)� I (x + �, y + �). (SP)

The definition of a fuzzy implication will be given presently (see Definition 2.1).
For a quick overview of the context in which they were introduced see Sainio et al. [25]. In fact, [18] itself can be

seen as a follow up of the much earlier work of Bandler and Kohout [5], wherein they investigate the semantics of
fuzzy implication operators based on a check-list paradigm. See also the related works of Bandler and Kohout [6,7].

1.1. Motivation for this work

In [18], the authors have either suggested or only partially answered the following posers:

Problem 1. Which R-implications are special, i.e., if T is any t-norm and IT is obtained as its residual, then what are
the necessary and/or sufficient conditions for IT to satisfy (SP)?

Problem 2. Conversely, which special implications can be expressed as residuals of a t-norm T?

Problem 3. In their conclusion, they remark “It is an interesting research program to investigate other classes of fuzzy
implications (satisfying other axioms from Klir’s list or similar)”.

Hájek and Kohout [18] themselves predominantly considered fuzzy implications obtained as residuals of continuous
t-norms. Recently, Sainio et al. [25] have attempted Problem 1 and shown that an R-implication from a left-continuous
t-norm T is a special implication, i.e., satisfies (SP), only if T is continuous.

The authors in [18] have given a partial answer to Problem 2 by stating that “Not all special implications are
R-implications”. In fact, as given therein, the least and largest special implications are the Rescher implication IRS and
I1 (see Table 1 for their formulae), respectively. It can be seen from Remark 3.15(i) that IRS and I1 cannot be obtained
as residuals of any t-norm (not necessarily left-continuous).
As can be seen, so far, the property (SP) has been investigated only for the fuzzy implications obtained as residuals

of left-continuous t-norms, whereas there remain many other established families of fuzzy implications and hence,
determining whether any of them contain sub-families of special implications, i.e., Problem 3, assumes significance.
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1.2. Organization and main results of this work

In this work, we firstly show that the specialty condition on a fuzzy implication, by itself, is quite strong and
imposes, independently and along with other properties, quite some restrictions on the set of all fuzzy implications.
Consequently, we show that many of the conditions required in the definition of special implications, both in [18,25],
are redundant. Following this, we give a geometric interpretation of the specialty condition and hence obtain bounds
on special implications on different domains of [0, 1]2 (Section 2.2).
Equipped with this geometric insight, we attempt the above three problems. Firstly, notice that Sainio et al. [25] have

attempted Problem 1 only for R-implications obtained from left-continuous t-norms. Once again, we show that the
left-continuity of the underlying t-norm T need not be assumed and that it follows from (SP). Thus the condition (SP)
on an IT becomes an alternative, though a stringent, sufficient condition for T to be continuous. In fact, in Section 4, we
consider the above problem in a more general setting and obtain an equivalent condition on an underlying monotone
binary operation for its residual to be special. We remark here that from this simple, but elegant, characterization and
already known results on t-norms all the results in Sainio et al. [25] can be obtained. The preliminaries required for
this work are covered in Section 3.
Once again, based on the obtained characterization and already available results, in Section 5, we give a complete

answer to Problem 2. Following this, in Section 6, we investigate the other most established families of fuzzy implica-
tions, viz., (S,N)-, f- and g-implications. However, our studies show that these families do not seem to give rise to newer
special implications. Hence, the most natural question that arises is this: Are there any other special implications, than
those that could be obtained as residuals of t-norms?

We systematically attempt to give an answer to the above question by the following ways:

(i) investigating residuals of more generalized conjunctions than t-norms (Section 7),
(ii) proposing new construction methods for special fuzzy implications (Section 8), and
(iii) generating special implications from special implications, which would mean that one could create infinitely many

special implications from a given one (Section 9).

2. Fuzzy implications

2.1. Definition and some desirable properties

In the literature, especially in the beginning, we can find several different definitions of fuzzy implications. In this
work we will use the following one, which is equivalent to the definition proposed by Fodor and Roubens [13].

Definition 2.1. A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it satisfies, for all x, x1, x2, y, y1, y2 ∈
[0, 1], the following conditions:

if x1�x2, then I (x1, y)� I (x2, y), i.e., I ( · , y) is decreasing, (I1)

if y1� y2, then I (x, y1)� I (x, y2), i.e., I (x, · ) is increasing, (I2)

I (0, 0) = 1, (I3)

I (1, 1) = 1, (I4)

I (1, 0) = 0. (I5)

The set of all fuzzy implications will be denoted by FI.

The most important desirable properties of fuzzy implications are presented below (see Fodor and Roubeus [13]).

Definition 2.2. A fuzzy implication I is said to satisfy

(i) the left neutrality property if

I (1, y) = y, y ∈ [0, 1]; (NP)
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(ii) the exchange principle, if

I (x, I (y, z)) = I (y, I (x, z)), x, y, z ∈ [0, 1]; (EP)

(iii) the identity principle, if

I (x, x) = 1, x ∈ [0, 1]; (IP)

(iv) the ordering property, if

I (x, y) = 1 ⇐⇒ x� y, x, y ∈ [0, 1]. (OP)

A fuzzy negation N is a generalization of the classical complement or negation ¬, whose truth table consists of the
two conditions: ¬0 = 1 and ¬1 = 0.

Definition 2.3 (Fodor and Roubens [13]). A function N : [0, 1] → [0, 1] is called a fuzzy negation if N (0)=1, N (1)=0
and is decreasing.

Further, a fuzzy negation N is called strong if it is an involution, i.e., N (N (x)) = x for all x ∈ [0, 1]. The classical
negation, NC(x) = 1− x , is an involutive fuzzy negation, whereas the Gödel negations, ND1 and ND2—which are the
least and largest fuzzy negations—are non-strong negations:

ND1(x) =
{
1 if x = 0,

0 if x > 0,
ND2(x) =

{
1 if x < 1,

0 if x = 1.

Definition 2.4. Let I be a fuzzy implication. The function NI defined by

NI (x) := I (x, 0), x ∈ [0, 1] (1)

is a fuzzy negation, i.e., NI (0) = 1, NI (1) = 0 and NI is non-increasing. NI is called the natural negation of I or the
negation induced by I.

Proposition 2.5. Consider an I : [0, 1]2 → [0, 1].

(i) If I satisfies (I3), (I4) and (SP) then I satisfies (IP).
(ii) Let I satisfy (I1). I satisfies (IP) if and only if I satisfies (OP′):

x� y �⇒ I (x, y) = 1, x, y ∈ [0, 1]. (OP′)

Proof. (i) Since I is special, we have 1 = I (0, 0)� I (x, x)� I (1, 1) = 1 for any x ∈ (0, 1), i.e., I satisfies (IP).
(ii) That (OP′) implies (IP) is immediate by taking x = y. On the other hand, let I satisfy (IP), i.e., I (y, y) = 1 for

any y ∈ [0, 1]. If x� y then by (I1), I (x, y)� I (y, y) = 1, i.e., I satisfies (OP′). �

Remark 2.6. In the definition of special implications, the authors in [18] require that I satisfy (I1)–(I5), (IP) and (SP),
while in [25] it is required that I satisfy (I1)–(I5), (OP′) and (SP). From Proposition 2.5, we see that properties (IP) and
(OP′) are redundant in the definition of a special implication. Note that in Definition 1.1 it is only required that I is a
fuzzy implication, i.e., I satisfies (I1)–(I5).

2.2. Special implications: a geometric perspective

Let I be a fuzzy implication. It is interesting to study how (SP) affects the geometry of I on [0, 1]2. Firstly, from
Proposition 2.5, we see that I satisfies (IP) which means that all the points above the main diagonal of the unit square
are mapped to 1 by I. On the other hand, if x > y, by (SP), for any � > 0 we have the following string of inequalities:

I (x, y)� I (x + �, y + �)� I (x + 2�, y + 2�)� · · · � I (1, 1 − x + y), (2)
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Fig. 1. Plots of Łukasiewicz, Gödel, Goguen and Fodor implications. (a) Łukasiewicz implication ILK; (b) Gödel implication IGD; (c) Goguen
implication IGG and (d) Fodor implication IFD.

i.e., (SP) essentially states that as we travel parallel to the main diagonal I should be non-decreasing. Fig. 1 amply
illustrates this point: while the Łukasiewicz, Gödel and Goguen implications are special, the Fodor implication is not
(see Remark 2.8).

From (2) we can easily see the following result:

Proposition 2.7. (i) If I is a special fuzzy implication that satisfies (NP), then I satisfies (OP). Also the natural negation
of I is less than the classical negation, i.e., NI �NC.
(ii) The Łukasiewicz implication ILK is the largest special implication that satisfies (NP), while IGD is the smallest

special implication that satisfies (NP).

Proof. (i) Since I is special, we know that I satisfies (OP′). Hence, it suffices to show that whenever I (x, y) = 1 �⇒
x� y. This immediately follows from (2), since by (NP), we have

1 = I (x, y)� I (1, 1 − x + y) = 1 − x + y �⇒ x� y.

Moreover, for any x ∈ [0, 1] we have

NI (x) = I (x, 0)� I (1, 1 − x)�1 − x = NC(x).



2068 B. Jayaram, R. Mesiar / Fuzzy Sets and Systems 160 (2009) 2063–2085

(ii) This is obvious from (2) again, since I (x, y)�1 − x + y whenever x > y. Once again, that IGD is the smallest
special implication that satisfies (NP) is obvious from point (i) and property (I1) of IGD. �

Remark 2.8. We only note that the condition I (x, y)�1 − x + y whenever x > y is only necessary for an I that
satisfies (NP) to be special and is not sufficient. For example, consider the Fodor implication IFD, which satisfies both
(NP) and (OP). For any x > y, we have IFD(x, y) = max(1− x, y)�1− x + y, but, as can be seen from Table 3, IFD is
the R-implication obtained from the non-continuous (but left-continuous) nilpotent minimum t-norm TnM which, from
Theorem 4.2, we see is not a special implication. In fact, for any t ∈ [0, 1

2 ] we have that IFD(
1
2 + t, t) = max(12 − t, t),

which is strictly decreasing on t ∈ [0, 1
4 ].

3. Conjunctors and their residuals

We assume that the reader is familiar with the classical results concerning basic fuzzy logic connectives, but to
make this work more self-contained, we introduce basic notations used in the text and we briefly mention some of the
concepts and results employed in the rest of the work.

3.1. Increasing bijections on [0, 1]

By�we denote the family of all increasing bijections�: [0, 1] → [0, 1].We say that functions f, g: [0, 1]n → [0, 1],
where n ∈ N, are �-conjugate (cf. [21, p. 156]), if there exists � ∈ � such that g = f�, where

f�(x1, . . . , xn) := �−1( f (�(x1), . . . , �(xn))), x1, . . . , xn ∈ [0, 1].

Equivalently, g is said to be the �-conjugate of f.

Definition 3.1. A real function � on [0, 1] is said to be

(i) concave if, for every x, y, x + � ∈ [0, 1], y�x and 0 < �,

�(x) − �(y)��(x + �) − �(y + �);

(ii) convex if, for every x, y, x + � ∈ [0, 1], y�x and 0 < �,

�(x) − �(y)��(x + �) − �(y + �).

3.2. Fuzzy conjunctions: triangular norms

The following definitions and results, with proofs, can be found in the literature, see for example Klement et al. [20],
Nelsen [24].

Definition 3.2. A function T : [0, 1]2 → [0, 1] is called a triangular norm (shortly t-norm) if it satisfies, for all
x, y, z ∈ [0, 1], the following conditions:

T (x, y) = T (y, x), (T1)

T (x, T (y, z)) = T (T (x, y), z), (T2)

if y� z, then T (x, y)�T (x, z), i.e., T (x, · ) is increasing, (T3)

T (x, 1) = x . (T4)

The class of t-norms is rather large and some subclasses of t-norms have been well investigated.
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Table 2
Basic t-norms.

Name Formula Properties

Minimum TM(x, y) = min(x, y) Idempotent, continuous, positive

Algebraic product TP(x, y) = xy Strict, positive

Łukasiewicz TLK(x, y) = max(x + y − 1, 0) Nilpotent

Drastic product TD(x, y) =
{
0 if x, y ∈ [0, 1)

min(x, y) otherwise
Archimedean, non-continuous

Nilpotent minimum TnM(x, y) =
{
0 if x + y�1

min(x, y) otherwise
Left-continuous

Definition 3.3. A t-norm T is called

(i) continuous if it is continuous in both the arguments;
(ii) left-continuous if it is left-continuous in each component;
(iii) border continuous if it is continuous on the boundary of the unit square [0, 1]2, i.e., on the set [0, 1]2\(0, 1)2;
(iv) Archimedean, if for all x, y ∈ (0, 1) there exists an n ∈ N such that x [n]T < y;
(v) strict, if it is continuous and strictly monotone, i.e., T (x, y) < T (x, z) whenever x > 0 and y < z;
(vi) nilpotent, if it is continuous and if each x ∈ (0, 1) is a nilpotent element of T, i.e., if there exists an n ∈ N such

that x [n]T = 0;
(vii) positive, if whenever T (x, y) = 0 then either x = 0 or y = 0 or both.

Example 3.4. Table 2 lists a few of the common t-norms along with their classification.

The following characterization theorem is based on properties of their underlying generators (see [20], Theorem 5.1)
and will be useful later on in this work.

Theorem 3.5. For a function T : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) T is a continuous Archimedean t-norm.
(ii) Thasa continuous additive generator, i.e., there exists a continuous, strictly decreasing function f : [0, 1] → [0, ∞]

with f (1) = 0, which is uniquely determined up to a positive multiplicative constant, such that

T (x, y) = f (−1)( f (x) + f (y)), x, y ∈ [0, 1],

where f (−1) is the pseudo-inverse of f given by

f (−1)(x) =
{

f −1(x) if x ∈ [0, f (0)],

0 if x ∈ ( f (0),∞].

Finally, we have the following complete representation of continuous t-norms (cf. [20], Theorem 5.11).

Theorem 3.6. For a function T : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) T is a continuous t-norm.
(ii) T is uniquely representable as an ordinal sum of continuous Archimedean t-norms, i.e., there exist a uniquely

determined (finite or countably infinite) index set A, a family of uniquely determined pairwise disjoint open sub-
intervals {(a�, e�)}�∈A of [0, 1] and a family of uniquely determined continuous Archimedean t-norms (T�)�∈A
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such that

T (x, y) =
⎧⎨
⎩ a� + (e� − a�) · T�

(
x − a�

e� − a�
,
y − a�

e� − a�

)
if x, y ∈ [a�, e�],

min(x, y) otherwise.

In this case we will write T = (〈a�, e�, T�〉)�∈A.

Definition 3.7. A function F : [0, 1]2 → [0, 1] is said to be 1-Lipschitz, or said to satisfy 1-Lipschitzianity, in the first
variable if

|F(x1, y) − F(x2, y)|� |x1 − x2|, x1, x2, y ∈ [0, 1]. (3)

Similarly, one can define 1-Lipschitzianity of a binary function F in the second variable. Quite naturally, we have:

Definition 3.8. A function F : [0, 1]2 → [0, 1] is said to be 1-Lipschitz, or said to satisfy 1-Lipschitzianity, if it satisfies
1-Lipschitzianity in both the variables, i.e.,

|F(x1, y1) − F(x2, y2)|� |x1 − x2| + |y1 − y2|, x1, x2, y1, y2 ∈ [0, 1]. (4)

Obviously, for commutative binary operations 1-Lipschitzianity in one variable implies 1-Lipschitzianity in both the
variables. Any 1-Lipschitz t-norm T is also continuous but the converse, in general, is not true (see [20],
Example 1.26).

Definition 3.9 (Cf. Durante and Sempi [11], Durante et al. [12], Genest et al. [14], Nelsen [24]). Consider amapping
C : [0, 1]2 → [0, 1].

(i) C is a semi-copula if it is non-decreasing in both variables and C(1, x) = C(x, 1) = x for every x ∈ [0, 1].
(ii) A semi-copula C is a quasi-copula if it is 1-Lipschitz.
(iii) A semi-copula C is a copula if it is 2-increasing, viz.,

C(x1, y1) + C(x2, y2)�C(x1, y2) + C(x2, y1) (5)

for all x1, x2, y1, y2 ∈ [0, 1] such that x1�x2 and y1� y2.

In the case of t-norms, we have the following results, see for instance, Schweizer and Sklar [20,26].

Theorem 3.10. For a t-norm T the following are equivalent:

(i) T satisfies 1-Lipschitzianity.
(ii) T is a quasi-copula.
(iii) T is a copula.

Theorem 3.11. Let T be a continuous Archimedean t-norm with continuous additive generator f. The following are
equivalent:

(i) T is a copula.
(ii) f is a convex function.

From the above two results and the representation result Theorem 3.6 of continuous t-norms, we have the following
corollary:

Corollary 3.12. Let T be a continuous t-norm which has the uniquely determined ordinal sum T = (〈a�, e�, T�〉)�∈A,
where each t-norm T�, � ∈ A is generated by a continuous additive generator f�. The following are equivalent:

(i) T is a copula.
(ii) For � ∈ A, the t-norm T� is a copula.
(iii) For � ∈ A, the additive generator f� is a convex function.
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Table 3
Examples of basic R-implications.

t-norm T R-implication IT

TM IGD

TP IGG

TLK ILK

TD IWB

TnM IFD

3.3. R-implications

Definition 3.13. A function IT : [0, 1]2 → [0, 1] is called an R-implication if there exists a t-norm T such that

IT (x, y) = sup{t ∈ [0, 1]|T (x, t)� y}, x, y ∈ [0, 1]. (6)

IT is also called the residual of the t-norm T.

Example 3.14. Table 3 lists few of the well-known R-implications along with their t-norms fromwhich they have been
obtained.

Remark 3.15. The following properties of R-implications can be found in many works, for example [13].

(i) For any t-norm T, not necessarily left-continuous, IT ∈ FI and satisfies (NP), (IP).
(ii) IT satisfies (OP) if and only if T is border continuous (see [3], Proposition 5.8).
(iii) If T is left-continuous, then IT also satisfies (EP).
(iv) If T1�T2 then IT1 � IT2 .
(v) If � ∈ �, then (IT )� = IT� , i.e., the �-conjugate of the residual of a t-norm is the residual of the �-conjugate of

the t-norm.

If the t-norm T is left-continuous, then we have the following characterization of R-implications generated from
left-continuous t-norms.

Theorem 3.16. For a function I : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) I is an R-implication generated from a left-continuous t-norm.
(ii) I satisfies (I2), (EP), (OP) and it is right-continuous with respect to the second variable.

Moreover, the representation of R-implication, up to left-continuous t-norms, is unique in this case.

Remark 3.17. It should be remarked that the mutual exclusivity of the above properties is not fully proven, i.e.,
there does not exist any example of a function I that satisfies (EP), (OP), but such that either I satisfies (I2) or is
right-continuous with respect to the second variable, but not both.

4. Which R-implications are special, i.e., satisfy (SP)?

Remark 4.1. The following observations are immediate from Remark 3.15.

(i) IRS and I1 do not satisfy (NP) and hence cannot be obtained as an R-implication of any t-norm.
(ii) From Proposition 2.7(ii), we see that if IT satisfies (SP) then TLK�T �TM, i.e., the Gödel and the Lukasiewicz

implications, viz., IGD and ILK, respectively, are the smallest and the largest R-implications that are also special
(see Remark 3.15(iv)).
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As noted already in the introduction, recently, Sainio et al. [25] have shown the following:

Theorem 4.2 (Sainio et al. [25], Propositions 1 and 2, Corollary 2). (i) An R-implication IT from a left-continuous
t-norm T satisfies (SP) if and only if T satisfies the 1-Lipschitz condition.
(ii) An R-implication IT from a continuous Archimedean t-norm T satisfies (SP) if and only if the additive generators

of T is convex.

Theorem 4.3 (Sainio et al. [25], Theorem 2). Let T be a left-continuous t-norm and IT the R-implication obtained
from T. The following statements are equivalent:

(i) IT satisfies (SP).
(ii) T has an ordinal sum representation (〈e�, a�, T�〉)�∈A, where each t-norm T�, � ∈ A is generated by a convex

additive generator f�.

From Remark 3.15 (ii) it might appear that the condition of left-continuity on T can be relaxed. The following result
shows that, on the contrary, the left-continuity, in fact even the continuity of T, is implied and need not even be assumed.

To this end, we present the following result, Proposition 4.4, in its most general sense. The importance of Proposition
4.4 is threefold. Firstly, note that this result characterizes those underlying operators whose residuals satisfy the special
property (SP). Secondly, as will be shown in Theorem 4.6, the original results obtained in Sainio et al. [25], viz.,
Theorems 4.2 and 4.3, can be obtained as easy corollaries of Proposition 4.4 and known results on t-norms. Finally,
the characterization also allows us to search for residuals of more general conjunctions satisfying the special property
(SP) (see Section 7).

Proposition 4.4. Let C be any binary function on [0, 1] that is non-decreasing in both the variables. Let IC denote the
residual of C obtained using formula (6). The following statements are equivalent:

(i) The residual IC of C satisfies (SP).
(ii) sup{t |C(x, t)� y}� sup{t |C(x + �, t)� y + �}.
(iii) C satisfies (SPC), for any x, y, t ∈ [0, 1] and every suitable � ∈ (0, 1),

C(x, t)� y �⇒ C(x + �, t)� y + �. (SPC)

(iv) C is 1-Lipschitz in the first variable.

Proof. (i) ⇐⇒ (ii): By definition of IC and the monotonicity of C.
(ii) �⇒ (iii): Let sup{t |C(x, t)� y} = t∗ and sup{t |C(x + �, t)� y + �} = t ′. Since t∗ � t ′, for any t < t∗ we have

C(x, t)� y and since t < t ′, this also implies C(x + �, t)� y + �.
(iii) �⇒ (ii): It is immediate, since C satisfies (SPC) implies that {t |C(x, t)� y} ⊂ {t |C(x + �, t)� y + �} and hence

(ii) follows.
(iii) �⇒ (iv): Let x1, x2, y ∈ [0, 1] be arbitrarily fixed and let x1 < x2. Then, letting � = x2 − x1, by (SPC) we have

that, if C(x1, y)� z then C(x2, y) = C(x1 + �, y)� z + � and hence we have

C(x2, y) − C(x1, y)� z + � − z = � = x2 − x1.

(iv) �⇒ (iii): The converse is obvious. �

Corollary 4.5. Let C be any binary function on [0, 1] that is non-decreasing in both the variables. If C satisfies (SPC),
then C is continuous in the first variable.
By the commutativity of a t-norm T, from the above results we see that an R-implication can be special only if the

underlying T is 1-Lipschitz. Thus, from Theorems 3.10, 3.11 and Corollary 3.12, the following result, which is more
general than Theorem 4.3, follows immediately.

Theorem 4.6. Let T be any t-norm (not necessarily left-continuous) and IT the R-implication obtained from T. The
following statements are equivalent:

(i) IT satisfies (SP).
(ii) T satisfies (SPC).
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(iii) T satisfies the 1-Lipschitz condition.
(iv) T has an ordinal sum representation (〈e�, a�, T�〉)�∈A, where each t-norm T�, � ∈ A is generated by a convex

additive generator f�.

Remark 4.7. (i) It should be emphasized that for an arbitrary function C, its residual IC /∈ FI. In Section 7 we will
deal with the necessary and sufficient conditions on C to ensure this.
Note that, if C is a t-norm T, then its residual is the R-implication IT ∈ FI. However, if C is either a t-subnorm F

or a uninorm U (see Definition 7.2), which are non-decreasing in both variables, then their residuals IF , IU /∈ FI, in
general. In the case, C is a fuzzy disjunction, for example, a t-conorm S (see Definition 6.1), their residuals IS /∈ FI
are known as the co-implications (see [8,10]).

5. Which special implications are R-implications?

Now, we attempt the converse problem, which was also the original problem of Hájek and Kohout [18]: “Which
special implications are R-implications?” The authors themselves have opined that “Not all special implications are
R-implications”. In fact, as given therein, the least and largest special implications are the Rescher implication IRS
and I1 (see Table 1), respectively. It is immediate from Remark 3.15(i) that, since IRS and I1 do not satisfy (NP), they
cannot be obtained as residuals of any t-norm (not necessarily left-continuous). On the other hand, it can be easily
verified that ILK, IGD and IGG are all special implications which are also R-implications.

Note, firstly, that any 1-Lipschitz t-norm T is continuous, and hence left-continuous. From Theorem 4.6 we see that
if a fuzzy implication I satisfies (SP) and is obtained as a residual of a t-norm T, then T satisfies 1-Lipschitzianity. From
Theorem 3.10 we know that a t-norm T satisfies 1-Lipschitzianity if and only if T is a quasi-copula, whose residuals
were characterized recently by Durante et al. [12].

Theorem 5.1 (Durante et al. [12], Theorem 3.9). Let Q be a quasi-copula. Then the residual IQ of Q is left-continuous
with respect to the first variable, right-continuous with respect to the second variable and satisfies (I1), (I2), (OP), (NP)
and the following properties: for any x, y, � ∈ (0, 1)

I (x + �, y)� I (x, y − �), (7)

I (x, y)� I (x, y − �) + �. (8)
Using Theorems 3.16 and 5.1, we obtain the following.

Theorem 5.2. The following statements are equivalent:

(i) A special implication I is also a residual of some t-norm T.
(ii) I is right-continuous with respect to the second variable and satisfies (I2), (EP), (OP) and (7).

Proof. (i) �⇒ (ii): Let I be a special implication and a residual of some t-norm T. From Theorems 3.10 and 4.6, we
see that T is a quasi-copula and hence by Theorem 5.1, I—as its residual—is right-continuous with respect to the
second variable and satisfies (I2), (OP) and (7). Since any quasi-copula is continuous and hence is left-continuous,
from Theorem 3.16 we see that I also satisfies (EP).
(ii)�⇒ (i): If I is right-continuous with respect to the second variable and satisfies (I2), (EP), (OP), then by Theorem

3.16 there exists a left-continuous t-norm T such that I = IT . Since y, � ∈ (0, 1) are arbitrary in (7), substituting y + �
for y we see that I is a special fuzzy implication. �

6. Special implications and other families of fuzzy implications

So farwehaveonly been concernedwith fuzzy implications thatwere obtainable as residuals of t-norms,whereas there
aremany other established families of fuzzy implications, that vary both in their construction and the properties that they
satisfy. In this section, we investigate whether any of these families contain some sub-families of special implications.
Towards this end, we consider the following families of fuzzy implications, viz., (S,N)-, f- and g-implications. In each
of these cases, we investigate whether any of them contain a subclass of special implications.
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6.1. (S,N)-Implications and (SP)

The generalization of the classical binary disjunction is the fuzzy union, interpreted in many cases by the triangular
conorms. The classical disjunction can be defined from the classical conjunction and negation as follows:

p ∨ q = ¬(¬p ∧ ¬q).

This duality extends to fuzzy logic operations too and the development of the theory of triangular conorms largely
mirrors this duality.

Definition 6.1 (Klement et al. [20]). A t-conorm is a function S: [0, 1]2 → [0, 1] such that it satisfies (T1), (T2), (T3)
and S(x, 0) = S(0, x) = x for all x ∈ [0, 1].

Definition 6.2 (Fodor and Roubens [13]). A function IS,N : [0, 1]2 → [0, 1] is called an (S,N)-implication if there
exist a t-conorm S and a fuzzy negation N such that

IS,N (x, y) = S(N (x), y), x, y ∈ [0, 1]. (9)

Proposition 6.3. If IS,N is an (S,N)-implication, then

(i) IS,N ∈ FI and IS,N satisfies (NP), (EP);
(ii) the natural negation of IS,N is the negation N used in its definition, i.e., NIS,N = N .

Now, from Proposition 2.7(i) we see that an IS,N that satisfies (SP) must also satisfy (OP) and the negation N �NC.
However, not all (S,N)-implications satisfy (OP) and we have the following result from Baczyński and Jayaram [3].

Theorem 6.4 (Baczyński and Jayaram [3], Theorem 4.7). For a t-conorm S and a fuzzy negation N the following state-
ments are equivalent:

(i) The (S, N )-implication IS,N satisfies (OP).
(ii) N = NS is a strong negation and S(NS(x), x) = 1 for all x ∈ [0, 1], where NS is called the natural negation of S

or the negation induced by S and is given as follows:

NS(x) = inf{y ∈ [0, 1] | S(x, y) = 1}, x ∈ [0, 1]. (10)

From the above discussion it is evident that IS,N is a function that satisfies (I2), (EP), (OP). As noted in Remark
3.17 we can only conjecture that IS,N also is right-continuous with respect to the second variable, and hence is an
R-implication obtained from a left-continuous t-norm, in which case we do not obtain any new special implications
other than those contained in Theorem 4.6.

6.2. f-Implications and (SP)

Recently, Yager [27] introduced two new classes of fuzzy implications from the additive generators of t-norms and
t-conorms called f- and g-implications, respectively. For more details, we refer the readers to Yager [27], Baczyński
and Jayaram [2]. We only give the relevant results here.

Definition 6.5 (Yager [27]). Let f : [0, 1] → [0, ∞] be a strictly decreasing and continuous function with f (1) = 0.
The function I : [0, 1]2 → [0, 1] defined by

I (x, y) = f −1(x · f (y)), x, y ∈ [0, 1], (11)

with the understanding 0 · ∞ = 0, is called an f-generated implication. The function f itself is called an f-generator of
the I generated as in (11). In such a case, to emphasize the apparent relation we will write I f instead of I.
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Proposition 6.6. If f is an f-generator, then

(i) I f ∈ FI;
(ii) I f satisfies (NP);
(iii) I f does not satisfy (OP).

From the above result and Proposition 2.7 we see that no f-implication can be a special implication.

6.3. g-Implications and (SP)

Definition 6.7 (Yager [27, p. 202]). Let g: [0, 1] → [0, ∞] be a strictly increasing and continuous function with
g(0) = 0. The function I : [0, 1]2 → [0, 1] defined by

I (x, y) = g(−1)
(
1

x
· g(y)

)
, x, y ∈ [0, 1], (12)

with the understanding 1
0 = ∞ and ∞ · 0 = ∞, is called a g-generated implication, where the function g(−1) in (12)

is the pseudo-inverse of g given by

g(−1)(x) =
{
g−1(x) if x ∈ [0, g(1)],

1 if x ∈ [g(1),∞].

The function g itself is called a g-generator of the I generated as in (12). Once again, we will often write Ig instead of I.

Proposition 6.8. If g is a g-generator, then

(i) Ig ∈ FI;
(ii) Ig satisfies (NP);
(iii) Ig satisfies (OP) if and only if Ig is the Goguen implication IGG.

From the above result and Proposition 2.7 we see that the only g-implication that is a special implication is the
Goguen implication IGG.

6.4. Are there any other special implications?

From the above discussion, it can be seen that the families of (S,N)-, f- and g-implications do not lead to any new
special implications. Then the most natural question that arises is this: Are there any other special implications, than
those that could be obtained as residuals of t-norms?

Consider the Baczyński implication [1]:

IBZ(x, y) = min(max(0.5,min(1 − x + y, 1)), 2 − 2x + 2y).

From the plot of the Baczyński implication IBZ in Fig. 4(a) it can be easily seen that IBZ satisfies (SP), a fact that
can also be verified from the formula. Interestingly, IBZ does not belong to any of the families of fuzzy implications
considered so far (see Baczyński and Jayaram [4]).
In the rest of this work, we systematically attempt to give an answer to the above question by the following ways:

1. Investigating residuals of more generalized conjunctions than t-norms,
2. Proposing new construction methods for special fuzzy implications, and
3. Generating special implications from special implications, which would mean that one could create infinitely many

special implications from a given one.

7. Residuals of generalized conjunctions

T-norms are only one particular generalization of conjunctions on {0, 1} to the interval [0, 1]. Other notable general-
izations are the t-subnorms and uninorms. In this section, we investigate whether the residuals of thesemore generalized
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conjunctions satisfy (SP). Finally, we determine the class of binary operations with minimal properties whose residuals
satisfy (SP). Moreover, we also show that these operations are in a one-to-one bijection with their residuals.
However, note firstly, that from Remark 4.7, we know that not for every arbitrary function C, its residual IC ∈ FI.

The following result can be easily obtained:

Theorem 7.1 (cf. Demirli and De Baets [9], Theorem 4.1). Let C be a function from [0, 1]2 to [0, 1] and let IC denote
its residual, using formula (6). Then we have the following equivalences:

(i) IC satisfies (I1) if and only if C is non-decreasing in the first variable.
(ii) IC satisfies (I2) if and only if C is non-decreasing in the second variable.
(iii) IC satisfies (I3) if and only if C(0, 1) = 0.
(iv) IC satisfies (I4) always.
(v) IC satisfies (I5) if and only if C(1, x) > 0 for all x ∈ (0, 1].

7.1. Residuals of T-subnorms

Definition 7.2 (Jenei [19]). A t-subnorm is a function M : [0, 1]2 → [0, 1] such that it satisfies (T1), (T2), (T3) and
M(x, y)� min(x, y) for all x, y ∈ [0, 1].

Obviously, every t-norm is a t-subnorm, however, the converse is not true. Usually, for emphasis, a t-subnorm that
is not a t-norm is called a proper t-subnorm (see [23]).
Note that it is not insisted that M(1, x) > 0 for all x ∈ (0, 1]. It is clear now, from Theorem 7.1, that residuals

obtained from t-subnormsM using formula (6) need not satisfy (I5) and hence need not be fuzzy implications. However,
such residuals, if required, can be suitably redefined at the point (1, 0) to make them fuzzy implications. Hence, without
loss of generality, we consider the residuals of t-subnorms to be fuzzy implications.
We now investigate which subclass of t-subnorms give rise to residuals that satisfy (SP). SinceM is non-decreasing

in both variables, by Proposition 4.4, we see that a necessary condition on a t-subnorm M for the corresponding IM
to satisfy (SP) is that M be 1-Lipschitz in both variables and hence continuous. In the following, we list some of the
relevant results on continuous t-subnorms, see [22,23].

Theorem 7.3 (Mesiar and Mesiarová [23], Theorem 2). For a function M : [0, 1]2 → [0, 1] the following statements
are equivalent:

(i) M is a continuous t-subnorm.
(ii) M is an ordinal sum of continuous Archimedean t-norms and a continuous Archimedean t-subnorm, i.e., there exist

a uniquely determined (finite or countably infinite) index set K, a family of uniquely determined pairwise disjoint
open sub-intervals {(ak, bk)}k∈K of [0, 1] with bk0 = 1 for some k0 ∈ K, Mk0 is a continuous Archimedean proper
t-subnorm and Mk is a continuous Archimedean t-norm for all k � k0 such that

M(x, y) =
⎧⎨
⎩ ak + (bk − ak) · Mk

(
x − ak
bk − ak

,
y − ak
bk − ak

)
if x, y ∈ (ak, bk],

min(x, y) otherwise.

In this case we will write M = (〈ak, bk, Mk〉)k∈K.

In other words, the above result states that a continuous t-subnorm is made up of ordinal summands all of which are
continuous Archimedean t-norms, except for the summand at the top-right of the unit square, which is a continuous
Archimedean t-subnorm. Although, a representation of continuous Archimedean t-subnorms, in general, is not yet
known, the following result is available.

Theorem 7.4 (Mesiar and Mesiarová [22], Theorem 3). For a function M : [0, 1]2 → [0, 1] the following statements
are equivalent:

(i) M is a continuous strictly monotone Archimedean t-subnorm.
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(ii) There is a continuous strictly decreasing mapping m: [0, 1] → [0, ∞] with m(0) = ∞, such that

M(x, y) = m−1(m(x) + m(y)), x, y ∈ [0, 1]. (13)

Theorem 7.5 (Mesiar and Mesiarová [23], Theorem 3). For a continuous Archimedean t-subnorm M the following
statements are equivalent:

(i) A continuous non-increasing mapping m: [0, 1] → [0, ∞] is an additive generator of M, i.e., M(x, y) =
m(−1)(m(x) + m(y)) for all x, y ∈ [0, 1], where m(−1) is the pseudo-inverse of m given as follows:

m(−1)(x) = {z ∈ [0, 1]|m(z) > x}, x ∈ [0, 1]. (14)

(ii) m is such that m(1) > 0 and m is strictly monotone on the interval [0,m(−1)(2m(1))].

The proof of the following result is a straight-forward calculation based on the convexity of the generators and their
pseudo-inverses.

Theorem 7.6. Let M be a continuous t-subnorm such that its last summand has an additive generator and IM its
residual. If M has an ordinal sum representation as given in Theorem 7.3 and each of the summands is generated by a
convex additive generator mk , then IM satisfies (SP).

In the following Table 4 we give some examples of t-subnorms along with their residuals. The fact that these residuals
are fuzzy implications and also satisfy (SP) can be easily seen from the geometric interpretation of the speciality property
given in Section 2.2 and their plots given in Fig. 2(a)–(c). Note that M2(1, y) = 0 for all y�a and hence the need to
suitably redefine its residual at (1, 0). However, this redefinition does not affect IM2 from satisfying (SP), since the point
(1, 0) is, in a sense, “a one-point line” that is parallel to the main diagonal and can be redefined independently. Although
all the t-subnorms M1–M3 are continuous, M1 is Archimedean and strictly monotone, while M2 is only Archimedean,
whereas M3 is not Archimedean. However, the t-subnorms M1–M3 can be generated from convex generators (see [22],
Example 1).

Remark 7.7. The convexity of the additive generator of a t-subnorm is not necessary for the obtained residual to satisfy
(SP). Consider, for example, the following continuous but non-convex additive generator and its pseudo-inverse:

m4(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3 − 4x if x ∈ [
0, 1

4

]
,

2 if x ∈ [ 1
4 ,

1
2

]
,

4 − 4x if x ∈ [ 1
2 ,

3
4

]
,

1 if x ∈ [ 3
4 , 1

]
,

m(−1)
4 (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if x ∈ [0, 1),

1 − x

4
if x ∈ [1, 2),

3 − x

4
if x ∈ [2, 3],

0 if x ∈ [3, ∞].

Then the continuous t-subnorm M4 generated from m4 and its residual IM4 are given as follows (note that IM4 (1, 0)
has been suitably redefined):

M4(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x + y − 5
4 if x, y ∈ [ 12 ,

3
4 ] and y + x� 5

4 ,

x − 1
2 if x ∈ [ 12 ,

3
4 ] and y ∈ [ 34 , 1],

y − 1
2 if y ∈ [ 12 ,

3
4 ] and x ∈ [ 34 , 1],

1
4 if x, y ∈ [ 34 , 1],

0 otherwise,

IM4 (x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

5

4
− x + y if y ∈ [0, 1

4 ], x ∈ [ 12 ,
3
4 ] and x − y� 1

2 ,

y + 1
2 if y ∈ [0, 1

4 ], x ∈ [ 34 , 1] and (x, y) � (1, 0),

0 if (x, y) = (1, 0),

1 otherwise.

From the plot of IM4 , given in Fig. 2(d), it is clear that IM4 indeed is a special fuzzy implication.
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Table 4
Examples of some t-subnorms whose residuals satisfy (SP).

T-subnormM Residual IM

M1 :
x · y
2

IM1 :

⎧⎪⎨
⎪⎩

1 if (x, y) = (0, 0)

min

(
1,

2 · y
x

)
otherwise

M2 : max(0,min(x + y − 1, x − a, y − a, 1 − 2a)), a ∈ [0, 0.5] IM2 :

⎧⎪⎨
⎪⎩

0 if (x, y) = (1, 0)

y + max(a, 1 − x) if y� min(x − a, 1 − 2a)

1 otherwise

M3 : max(0,min(x + y − 0.5, x, y, 0.5)) IM3 :

{
1 if min(x, 0.5)� y

max(y, y − x + 0.5) otherwise

7.2. Residuals of uninorms

Definition 7.8 (Yager and Rybalov [28]). A uninorm is a function U : [0, 1]2 → [0, 1] such that it satisfies (T1), (T2),
(T3) and there exists an e ∈ [0, 1] such that U (x, e) = U (e, x) = x for all x ∈ [0, 1].

Remark 7.9. (i) It is easy to see that if e = 1 then U is a t-norm.
(ii) Any uninorm U with neutral element e ∈ (0, 1) behaves like a t-norm on the square [0, e]2 and as a t-conorm on

the square [e, 1]2. In fact, for every uninorm U there exists a t-conorm S such that, on [e, 1]2, U can be expressed as

U (x, y) = 1 − e + S

(
x − e

1 − e
,
y − e

1 − e

)
. (15)

(iii) In the case of residuals from uninorms obtained as in (6) with a uninorm U instead of a t-norm T (let us denote
them as IU ), we only remark that, once again, an IU is a fuzzy implication if and only ifU (x, 0) = 0 for all x ∈ (0, 1).

Unfortunately, when we generalize the t-norm to a uninorm we do not obtain any special implications as their
residuals, as shown below.

Proposition 7.10. If U is a uninorm, then its residual IU does not satisfy (SP).

Proof. Let U be a uninorm with neutral element e ∈ (0, 1). Firstly, we show that IU does not satisfy (IP). Let us fix an
arbitrary x ∈ (e, 1). Clearly, x = U (e, x)�U (x, x)�U (x, 1) = 1. For any 1 > t > x , from (15), we have that

U (x, t) = 1 − e + S

(
x − e

1 − e
,
t − e

1 − e

)
�1 − e + t − e

1 − e
= t,

i.e., IU (x, x) = sup{t |U (x, t)�x}�1, i.e., IU does not satisfy (IP). The result now follows from Proposition 2.5(i). �

7.3. Residuals of semi-copulas

From Theorem 7.1 and Proposition 4.4 the following result easily follows:

Theorem 7.11. Let C : [0, 1]2 → [0, 1] be such that it is non-decreasing in both variables, 1-Lipschitz in the first
variable and

C(1, x) > 0, x ∈ (0, 1], (16)

C(x, 1)�x, x ∈ [0, 1]. (17)

Then the residual IC of C is a special fuzzy implication.
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Fig. 2. Plots of the residuals of the t-subnorms (see Example 4 and Remark 7.7). (a) IM1 , (b) IM2 , (c) IM3 , (d) IM4 .

Since for any I ∈ FI we have that I (x, 1) = 1 for any x ∈ [0, 1] the following definition is valid.

Definition 7.12. For an I ∈ FI we define a mapping CI : [0, 1]2 → [0, 1] as

CI (x, y) = inf{t ∈ [0, 1] | I (x, t)� y}, x, y ∈ [0, 1]. (18)

CI is also called the deresiduum of I (see [12]).

It is well-known that for certain classes of binary operations on [0, 1], in fact, conjunctors there exists a one-to-one
bijection between them and their residuals. Hence, we now investigate the minimal assumptions required on a binary
operation C on [0, 1] so as to obtain, on the one hand, special fuzzy implications as their residuals, and on the other
hand, a one-to-one bijection between them and such residuals. We see that semi-copulas that are 1-Lipschitz in the first
variable are exactly the class of operations that we are looking for.

Theorem 7.13. Let C be a semi-copula that is 1-Lipschitz in the first variable. Then the residual IC of C is a special
fuzzy implication that also satisfies (NP), i.e., IC ∈ FI and satisfies (NP) and (SP).
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Conversely, if I ∈ FI and satisfies (NP) and (SP), then its deresiduum CI is a semi-copula that is 1-Lipschitz in the
first variable.

Proof. If C is a semi-copula that is 1-Lipschitz in the first variable, then from Theorem 7.11 we see that IC is a special
fuzzy implication. Note also that IC satisfies (NP), since

IC (1, y) = sup{t |C(1, t)� y} = y, y ∈ [0, 1]. (19)

Conversely, let I ∈ FI and satisfy (NP) and (SP). Firstly, from Proposition 2.7(i) we have that I satisfies (OP). Let
CI be defined as in (18). From Theorem 7.1 we see that CI is monotonic in both the variables. The following equalities
show that CI indeed is a semi-copula:

CI (x, 1) = inf{t ∈ [0, 1] | I (x, t)�1} = x by (OP),

CI (1, x) = inf{t ∈ [0, 1] | I (1, t)�x} = x by (NP).

From Proposition 4.4 it follows that CI is 1-Lipschitz in the first variable. �

8. Special implications: some constructions

Thus far we have investigated known families of fuzzy implications for sub-families that satisfy (SP). In this section,
we propose specific methods to construct special implications, often with some additional desirable property.

8.1. Neutral special implications with a given negation

Other than the special implications obtained as residuals of t-norms, the special implications seen so far in this work,
viz., as residuals of t-subnorms or the Baczyński implication IBZ, do not satisfy the neutrality property (NP). Note,
firstly, that if a special implication I also satisfies (NP), then its natural negation NI is less than the classical negation
NC. Given a negation N �NC, we now propose a method to construct special fuzzy implications that also satisfy (NP).
Let a fuzzy negation N �NC be given. Define the function IN : [0, 1]2 → [0, 1] as follows:

IN (x, y) =
⎧⎨
⎩
1 if x� y,

y + N (x − y)(1 − x)

1 − x + y
if x > y,

x, y ∈ [0, 1]. (20)

It can be easily verified that IN is a special fuzzy implication and that it satisfies (NP). In fact, the implications obtained
from the negations NC and ND1 using (20) are the Łukasiewicz and theGödel implications, respectively, i.e., INC = ILK
and IND1 = IGD. Moreover, these are the only fuzzy implications obtained using (20) and are residuals of a t-norm.
Fig. 3 gives the plots of special implications constructed from (20) for the strict negation N1(x) = 1 − √

x and the
strong negation N2(x) = (1 − √

x)2.
However, for a given negation N the special implications IN may not be the minimal fuzzy implications, in the sense

of the underlying order on [0, 1]2. In the next subsection, we propose a method whose construction will ensure this.

8.2. Minimal special implications with a given negation

Definition 8.1. Let f : [−1, 1] → [0, 1] be any non-increasing function such that f (u) = 1 whenever u�0 and
f (1) = 0. Define the function I ( f ): [0, 1]2 → [0, 1] as follows:

I ( f )(x, y) = f (x − y), x, y ∈ [0, 1]. (21)

Remark 8.2. (i) Once again, it can be easily verified that I ( f ) is a special fuzzy implication.
(ii) It is also immediately clear that the natural negation of I ( f ) is NI ( f ) = f |[0,1].
(iii) I ( f ) is the minimal special implication with respect to the negation N = NI ( f ) = f |[0,1]. Indeed, note that for

every point on the line parallel to the diagonal, viz., on the line joining (x, 0) and (1, 1− x) for any arbitrary x ∈ (0, 1),
we have that I ( f ) is a constant value equal to the function value, i.e., I ( f )(x, 0) = I ( f )(1, 1 − x) = f (x).
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Fig. 3. Plots of some special fuzzy implications constructed using (20). (a) IN1 with N1(x) = 1 − √
x , (b) IN2 with N2(x) = (1 − √

x)2.

(iv) Obviously, an I ( f ) satisfies (NP) if and only if f (x) = 1 − x on [0, 1], in which case we get the Łukasiewicz
implication.

8.3. A specific method

Finally, we give a very specific way of obtaining special implications from existing ones. To this end, let us consider
the following generalization of IBZ:

I 〈�,�〉
BZ (x, y) = min(max(�,min(1 − x + y, 1)), � − � · x + � · y),

where � ∈ (0, 1); ��1. It can be easily verified that I 〈�,�〉
BZ satisfies (SP). In fact, the value � ∈ (0, 1) determines the

“height” at which the graph of the function becomes “flat”. In the case when � = 1, I 〈�,1〉
BZ is nothing but the Łukasiewicz

implication ILK for any � ∈ (0, 1). In the case when � > 1 is fixed and varying � ∈ (0, 1), the plot of I 〈�,�〉
BZ is nothing

but cutting the Łukasiewicz implication ILK flat at the level of �. For a fixed �, varying � > 1 determines the “tapering”

of the plot of I 〈�,�〉
BZ towards the point (1, 0) as Fig. 4(a)–(c) illustrate below. Note that the same process can also be

applied to other special implications. Fig. 4(d) gives the plot of the Gödel implication IGD “cut” at the value 0.5.

9. Generating special implications from special implications

Let us consider the set of all fuzzy implications denoted byFI. Since these are basically functions, many operations
performed on functions to obtain newer functions with similar properties can also be applied to a fuzzy implication.
For example, three of the most popular and general ways of obtaining newer fuzzy implications from existing or given
fuzzy implications are as follows:

• From a pair of fuzzy implications I, J we can consider the lattice meet and join operations, viz., I ∨ J, I ∧ J .
• One can also obtain their convex combinations.
• Yet another typical way of generating newer fuzzy implications from a given fuzzy implication is by means of
automorphisms of [0, 1].

Interestingly, all the above operations turn out to be fuzzy implications. In this section, we investigate whether these
operations preserve (SP), i.e., if the original fuzzy implications satisfy (SP), will the new fuzzy implications obtained
as above also satisfy (SP).
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Fig. 4. Plots of the generalization of Baczyński implication, viz., I 〈�,�〉BZ , for different values of �,�: (a)–(c); (d) the Gödel implication IGD “cut” at

the value 0.5 (see Section 8.3 for more details). (a) IBZ = I 〈0.5,2〉BZ , (b) I 〈0.2,2〉BZ , (c) I 〈0.2,4〉BZ , (d) IGD “cut” at 0.5.

9.1. Convex combinations and (SP)

Definition 9.1 (Baczynski and Jayaram [4]). Let I, J ∈ FI and � ∈ [0, 1]. The convex combination of I, J is the
function

K = � · I + (1 − �) · J,
which is again a fuzzy implication, i.e., K ∈ FI.

Proposition 9.2. Let I, J ∈ FI both satisfy (SP). Then their convex combination also satisfies (SP).

Proof. Let I, J ∈ FI both satisfy (SP). Let the convex combination of I, J be the function K = � · I + (1 − �) · J ,
which, as we already know, is again a fuzzy implication. Hence it only remains to show that K satisfies (SP). Let � > 0
be arbitrary and let x, y ∈ [0, 1] be such that x + �, y + � ∈ [0, 1]. The result is now immediate from the following
inequalities:

K (x, y) = � · I (x, y) + (1 − �) · J (x, y)
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� � · I (x + �, y + �) + (1 − �) · J (x + �, y + �)

= K (x + �, y + �).

Thus, we see that convex combinations of special implications is again a special implication.

9.2. Lattice operations and (SP)

In the family FI of all fuzzy implications we can consider the partial order induced from the unit interval [0, 1]. It
is interesting and important to note that incomparable pairs of fuzzy implications generate new fuzzy implications by
using the standard min (inf) and max (sup) operations. This is another method of generating new fuzzy implications
from the given ones.

Definition 9.3 (Baczynski and Jayaram [4]). Let I, J ∈ FI. The meet and join of I, J , defined as below:

(I ∨ J )(x, y) := max(I (x, y), J (x, y)), x, y ∈ [0, 1], (22)

(I ∧ J )(x, y) := min(I (x, y), J (x, y)), x, y ∈ [0, 1], (23)

again become fuzzy implications, i.e., both I ∨ J, I ∧ J ∈ FI.

Similar to Proposition 9.2 we have the following result, which again can be proven in a straight-forward way.

Proposition 9.4. Let I, J ∈ FI both satisfy (SP). Then both I ∨ J, I ∧ J satisfy (SP).

Thus, we see that the meet and join of a pair of special implications is again a special implication.

9.3. Conjugacy and (SP)

Definition 9.5 (Baczynski and Jayaram [4]). Let I ∈ FI and � be any increasing bijection on [0, 1]. Then the �-
conjugate of I is given by

I�(x, y) = �−1(I (�(x), �(y))), x, y ∈ [0, 1]

and I� ∈ FI.

Once again, the interesting question is whether conjugacy preserves (SP), i.e., if I satisfies (SP) then is it true that
I� also satisfies (SP)? Unfortunately, in general this need not be the case.
To see this, let I = ILK, the Łukasiewicz implication which does satisfy (SP). If we consider the set of increasing

bijections �p(x) = x p for any p ∈ N; p > 1, then (ILK)�p
are exactly the R-implications given in Sainio et al. [25]

after Corollary 1, which, as has been shown therein, do not satisfy (SP).
In the following, we give a necessary and sufficient condition on the bijection � so that the �-conjugate preserves

(SP).

Theorem 9.6. Let � be any increasing bijection on [0, 1]. Then the following are equivalent:

(i) For each special fuzzy implication I, I� is a special fuzzy implication.
(ii) � is concave.

Proof. (i)�⇒ (ii): Let� be any increasing bijection on [0, 1] and I� be a special fuzzy implication for any special fuzzy
implication I. Then, this is also true when I = ILK, Łukasiewicz implication, which is a special fuzzy implication.
Hence, for this �, (ILK)� is also a special fuzzy implication. However, (ILK)� is a residual implication obtained from
a nilpotent t-norm with an additive generator t : [0, 1] → [0, 1] such that t = 1 − �. From Theorem 4.6(iv) we know
that t is convex and thus � is concave.
(ii) �⇒ (i): Conversely, let � be any increasing bijection that is concave and let I be a special fuzzy implication.

Clearly, I� is a fuzzy implication which satisfies (IP). Hence, it suffices to consider the case when x > y, i.e., we
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only need to show that I�(x, y)� I�(x + �, y + �) for each x > y and � > 0. Since I satisfies (SP), we know that
I (�(x), �(y))� I (�(x)+�, �(y)+�) for any � > 0 such that �(x)+�, �(y)+� ∈ [0, 1]. Fixing � = �(x + �)−�(x)
we have

I (�(x), �(y))� I (�(x + �), �(y) + �(x + �) − �(x)).

Now, by the concavity of � and the monotonicity (I2) of I, we have

I (�(x), �(y)) � I (�(x + �), �(y) + �(x + �) − �(x))

� I (�(x + �), �(y + �)),

i.e., I� is a special fuzzy implication. �

9.4. Yet another transformation of special implications

Finally, in this section, we propose yet another transformation of a special fuzzy implication which preserves (SP).
As the final result in this section shows, we can characterize all special fuzzy implications that obey the equality in
(SP) based on this transformation.

Definition 9.7. Let � be any real function on [0, 1] and I ∈ FI. Let us define the following transformation:

�(I )(x, y) = �(I (x, y)), x, y ∈ [0, 1]. (24)

The following result is immediate from the properties of an I ∈ FI:

Proposition 9.8. Let � be any real function on [0, 1]. The following are equivalent:

(i) For any special fuzzy implication I, the transformation �(I ), as defined in (24), is also a special fuzzy implication.
(ii) � is non-decreasing and �(0) = 0; �(1) = 1.

Remark 9.9. The following observations can be made about the transformation �(I ):

(i) �(I ) preserves (NP) only for � = id.
(ii) �(I ) preserves (OP) only if � is such that �(x) = 1 ⇐⇒ x = 1.
(iii) Consider the function f as given in Section 8.2. Then I ( f ) = �(ILK), where �(u) = f (1 − u) for u ∈ [0, 1].

Proposition 9.10. For an I ∈ FI the following are equivalent:

(i) I (x, y) = I (x + �, y + �) for all admissible x, y, � ∈ [0, 1].
(ii) There exists a non-decreasing function h: [0, 1] → [0, 1] such that h(0) = 0; h(1) = 1 and I = h(ILK), the

transformation defined in (24).

Proof. Firstly, note that for any non-decreasing function f we have f (min(x, y)) = min( f (x), f (y)).
(i) �⇒ (ii): Let a fuzzy implication I be such that I (x, y) = I (x + �, y + �) for all admissible x, y, � ∈ [0, 1]. Then

by (2), we have that I (x, y) = I (1, 1− x + y) for all x, y ∈ [0, 1]. Let us define h(x) = I (1, x) for all x ∈ [0, 1]. It is
immediate that h: [0, 1] → [0, 1] is such that h(0) = 0; h(1) = 1.

Now, the result follows from the following equalities:

h(ILK(x, y))= h(min(1, 1 − x + y))

= I (1,min(1, 1 − x + y))

=min(I (1, 1), I (1, 1 − x + y))

= I (1, 1 − x + y)

= I (x, y), x, y ∈ [0, 1].

(ii) �⇒ (i): This follows directly from the fact that the Łukasiewicz implication ILK obeys the equality in (SP).
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10. Concluding remarks

In this work, we have investigated in-depth fuzzy implications and the special property (SP). We have shown that
1-Lipschitzianity in the first variable characterizes general monotonic binary operations whose residuals satisfy (SP).
Following this, we have shown that not all special implications are residuals of t-norms, but that there are special
implications which are residuals of more general conjunctions. We have investigated the minimal assumptions required
on a binary operation on [0, 1] so as to obtain a one-to-one bijection between them and their residuals which are
special fuzzy implications. We have investigated the well-known families of fuzzy implications, viz., (S,N)-, f- and
g-implications, and shown that they do not seem to give rise to any hitherto unknown special implications. Finally, some
constructive procedures to obtain special fuzzy implications are proposed andmethods of obtaining special implications
from existing ones are given, showing that there are infinitely many fuzzy implications that are special but cannot be
obtained as residuals of t-norms.
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