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Abstract

In this paper, we attempt a systematic study of QL-implications. Towards this end, firstly, we investigate the conditions under which
a QL-operation becomes a fuzzy implication without imposing any conditions on the underlying operations. Following this, we
discuss the conditions underwhich this family satisfies some desirable algebraic properties. Based on the obtained results and existing
characterization results, the intersections between QL-implications and the two most established families of fuzzy implications, viz.,
(S,N)- and R-implications are determined. It is shown that QL-implications contain the set of all R-implications obtained from
left-continuous t-norms that are also (S,N)-implications. Finally, the overlaps between QL-implications and the recently proposed
f- and g-implications are also studied.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy implications were introduced and studied in the literature as a generalization of the classical implication
operation that obeys the truth table provided in Table 1. Following are the two main ways of defining an implication in
the Boolean lattice (L , ∧, ∨, ¬):

p → q ≡ ¬p ∨ q, (1)

p → q ≡max{t ∈ L | p ∧ t�q}, (2)

where p, q ∈ L and the relation � is defined in the usual way, i.e., p�q iff p∨q = q, for every p, q ∈ L . Implication
(1) is usually called the material implication, while (2) is from the intuitionistic logic framework, where the implication
is obtained as the residuum of the conjunction, and is often called as the pseudo-complement of p relative to q (see [6]).
It is important to note that, despite their different formulas, expressions (1) and (2) are equivalent in the Boolean lattice
(L , ∧, ∨, ¬). Interestingly, in the fuzzy logic framework, where the truth values can vary in the unit interval [0, 1], the
natural generalizations of the above definitions, viz., (S,N)- and R-implications, are not equivalent. This variety has
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Table 1
Truth table for the classical implication

p q p → q

0 0 1
0 1 1
1 0 0
1 1 1

led to some intensive research on fuzzy implications for close to three decades. Quite understandably then, the most
established and well-studied classes of fuzzy implications are the above (S,N)- and R-implications (cf. [9,10,12,17]).
For a broader analysis of fuzzy implications and their applications we refer the readers to Mas et al. [22] and the latest
monograph [5].
Yet another popular way of obtaining fuzzy implications is as a generalization of the following implication defined

in quantum logic:

p → q ≡ ¬p ∨ (p ∧ q).

Needless to state, when the truth values are restricted to {0, 1} its truth table coincides with that of the material and
intuitionistic-logic implications.
However, QL-implications have not received as much attention as (S,N)- and R-implications within fuzzy logic. Per-

haps, one of the reasons can be attributed to the fact that not all members of this family satisfy one of the main properties
expected of a fuzzy implication, viz., left antitonicity (I1) (see Definition 3.1 and Remark 4.3). Moreover, in the earlier
works, some conditions imposed on the fuzzy logic operations employed in the definition of QL-implications restricted
both the class of operations from which QL-implications could be obtained and the properties these implications
satisfied (see Remark 4.22 for details).
Interest on QL-implications has seen some rise in the recent past and some works have appeared on them. These can

be broadly classified as follows:

(i) Studies that focus on QL-implications and their basic algebraic properties as in Trillas et al. [29], Mas et al. [21],
Shi et al. [26], and Jayaram and Baczyński [14].

(ii) Works that investigate QL-implications as part of determining which families of implications satisfy a property
under consideration, viz., Fodor [11], Trillas and Alsina [27], Trillas et al. [28], Shi et al. [25], and Jayaram [13].

Once again, most of these studies have been done after restricting the underlying T, S, N operations to certain families
and hence are less general in their obtained results. For example, in Trillas et al. [28] their investigations have been
done only in the context of continuous T and S and strong N, while Mas et al. [21] consider QL-implications where the
underlying N is strong, but they do consider the non-continuous t-conorm SnM. However, recently Shi et al. [26] have
investigated QL-implications, where T and S are not always assumed to be continuous, though N is always a strong
fuzzy negation and their subsequent analysis is predominantly for the class of continuous operations.
In this work, we study the family of QL-implications in fuzzy logic, without any restrictions on the underlying oper-

ations. We propose necessary and/or sufficient conditions on the underlying operations under which QL-implications
satisfy some of themost desirable algebraic properties. Following this, a partial characterization of the intersections that
exist between the family of QL-implications and the families of (S,N)- and R-implications is given. Most importantly,
it is shown that QL-implications contain the set of all R-implications obtained from left-continuous t-norms that are
also (S,N)-implications. Finally, we also investigate the overlaps that exist between QL-implications and the recently
proposed f- and g-implications (see [32]).

2. Preliminaries

We assume that the reader is familiar with the classical results concerning basic fuzzy logic connectives, but to
make this work more self-contained, we introduce basic notations used in the text and we briefly mention some
of the concepts and results employed in the rest of the work. By � we denote the family of all increasing bijections
�: [0, 1] → [0, 1].We say that functions f, g: [0, 1]n → [0, 1], where n ∈ N, are�-conjugate (cf. [18, p. 156]), if there



160 M. Baczyński, B. Jayaram / Fuzzy Sets and Systems 161 (2010) 158–188

exists � ∈ � such that g = f�, where

f�(x1, . . . , xn) := �−1( f (�(x1), . . . , �(xn))), x1, . . . , xn ∈ [0, 1].

Equivalently, g is said to be the �-conjugate of f.

2.1. Fuzzy negations, t-norms and t-conorms

Definition 2.1 (see Fodor and Roubens [10, p. 3], Klement et al. [16, Definition 11.3]). A decreasing function
N : [0, 1] → [0, 1] is called a fuzzy negation, if N (0) = 1, N (1) = 0. A fuzzy negation N is called

(i) strict, if it is strictly decreasing and continuous;
(ii) strong, if it is an involution, i.e., N (N (x)) = x for all x ∈ [0, 1];
(iii) non-vanishing, if N (x) = 0 ⇐⇒ x = 1.

Example 2.2. The classical negation NC(x) = 1− x is a strong negation, while NK(x) = 1− x2 is only strict, whereas
the Gödel negations, ND1 and ND2—which are the least and greatest fuzzy negations—are non-strong negations:

ND1(x) =
{
1 if x = 0,
0 if x > 0,

ND2(x) =
{
1 if x < 1,
0 if x = 1.

For more examples of fuzzy negations see [10,17].

Definition 2.3 (Schweizer and Sklar [24], Klement et al. [16]).

(i) An associative, commutative and increasing operation T : [0, 1]2 → [0, 1] is called a triangular norm (t-norm, for
short), if it has the neutral element equal to 1.

(ii) An associative, commutative and increasing operation S: [0, 1]2 → [0, 1] is called a triangular conorm (t-conorm,
for short), if it has the neutral element equal to 0.

If F is an associative binary operation on [a, b] with the neutral element e, then the power notation x [n]F , where
n ∈ N0, is defined by

x [n]F :=
⎧⎨
⎩
e if n = 0,
x if n = 1,
F(x, x [n−1]

F ) if n > 1.

Definition 2.4 (Klement et al. [16, Definitions 1.23, 2.9 and 2.13]). A t-norm T (t-conorm S, respectively) is said to
be

(i) continuous, if it is continuous in both the arguments;
(ii) left-continuous, if it is left-continuous in each component;
(iii) right-continuous, if it is right-continuous in each component;
(iv) idempotent, if T (x, x) = x (S(x, x) = x , respectively) for all x ∈ [0, 1];
(v) Archimedean, if for every x, y ∈ (0, 1) there is n ∈ N such that x [n]T < y (x [n]S > y, respectively);
(vi) strict, if T (S, respectively) is continuous and strictly monotone, i.e., T (x, y) < T (x, z) whenever

x > 0 (S(x, y) < S(x, z) whenever x < 1, respectively) and y < z;
(vii) nilpotent, if T (S, respectively) is continuous and if each x ∈ (0, 1) is a nilpotent element, i.e., if for each x ∈ (0, 1)

there exists n ∈ N such that x [n]T = 0 (x [n]S = 1, respectively);
(viii) positive, if T (x, y) = 0 (S(x, y) = 1, respectively) implies that either x = 0 or y = 0 (x = 1 or y = 1,

respectively).
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Remark 2.5.

(i) For a continuous t-norm T the Archimedean property is given by the simpler condition, that T (x, x) < x , for all
x ∈ (0, 1) (see [12, Proposition 5.1.2]).

(ii) If a t-norm T is continuous and Archimedean, then T is nilpotent if and only if there exists some nilpotent element
of T, which is equivalent to the existence of some zero divisor of T, i.e., there exist x, y ∈ (0, 1) such that
T (x, y) = 0 (see [16, Theorem 2.18]).

(iii) If a t-norm T is strict or nilpotent, then it is Archimedean. Conversely, every continuous and Archimedean t-norm
is either strict or nilpotent (see [16, p. 33]).

(iv) By the duality between t-norms and t-conorms, similar properties as above hold for t-conorms with the appropriate
changes in either the inequality or the neutral element (cf. [16, Remark 2.20, 10, Chapter 1]).

Definition 2.6 (cf. Klement et al. [16, Definition 1.25]). A t-norm T is said to satisfy 1-Lipschitz condition or
1-Lipschitzianity, if

|T (x1, y1) − T (x2, y2)|� |x1 − x2| + |y1 − y2|, x1, x2, y1, y2 ∈ [0, 1]. (3)

Remark 2.7.

(i) Any 1-Lipschitz t-norm is also continuous but the converse, in general, is not true (see [16, Example 1.26]).
(ii) One well-known family of t-norms that satisfies Lipschitzianity is the family of Frank t-norms T �

F , where
� ∈ [0, ∞], defined as follows:

T �
F (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TM(x, y) if � = 0,
TP(x, y) if � = 1,
TLK(x, y) if � = ∞,

log�

(
1 + (�x − 1) · (�y − 1)

� − 1

)
otherwise,

x, y ∈ [0, 1].

In fact, this family was obtained while characterizing the following so-called Frank functional equation
T (x, y) + S(x, y) = x + y, for all x, y ∈ [0, 1]. We will refer to the above family in the sequel.

Example 2.8 (see Klement et al. [16]). Tables 2 and 3 list the basic t-norms and t-conorms with the properties they
satisfy. Note that TM, TP are positive t-norms, while TLK, TD and TnM are not. Similarly, SM, SP are positive t-conorms,
while SLK, SD and SnM are not.

2.2. Negations from t-conorms and t-norms

One can associate a fuzzy negation to any t-norm or t-conorm as given in the definition below.

Definition 2.9 (see Nguyen and Walker [23, Definition 5.5.2], Klement et al. [16, p. 232] or Baczyński and
Jayaram [4]).

(i) Let T be a t-norm. A function NT : [0, 1] → [0, 1] defined as

NT (x) := sup{t ∈ [0, 1] | T (x, t) = 0}, x ∈ [0, 1], (4)

is called the natural negation of T.
(ii) Let S be a t-conorm. A function NS : [0, 1] → [0, 1] defined as

NS(x) := inf{t ∈ [0, 1] | S(x, t) = 1}, x ∈ [0, 1], (5)

is called the natural negation of S.
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Table 2
Examples of basic t-norms and their properties

Name Formula Properties

Minimum TM(x, y) = min(x, y) Continuous, idempotent
Product TP(x, y) = xy Strict
Łukasiewicz TLK(x, y) = max(x + y − 1, 0) Nilpotent

Drastic product TD(x, y) =
{
0 if x, y ∈ [0, 1)
min(x, y) otherwise

Archimedean, non-continuous

Nilpotent minimum TnM(x, y) =
{
0 if x + y�1
min(x, y) otherwise

Non-Archimedean, left-continuous

Table 3
Examples of basic t-conorms and their properties

Name Formula Properties

Maximum SM(x, y) = max(x, y) Continuous, idempotent
Probabilistic sum SP(x, y) = x + y − xy Strict
Łukasiewicz SLK(x, y) = min(x + y, 1) Nilpotent

Drastic sum SD(x, y) =
{
1 if x, y ∈ (0, 1]
max(x, y) otherwise

Archimedean, non-continuous

Nilpotent maximum SnM(x, y) =
{
1 if x + y�1
max(x, y) otherwise

Non-Archimedean, right-continuous

Table 4
Examples of natural negations from basic t-norms and t-conorms

t-norm T NT t-conorm S NS

Positive ND1 Positive ND2

TLK NC SLK NC

TD ND2 SD ND1

TnM NC SnM NC

Remark 2.10.

(i) It is easy to prove that both NT and NS are fuzzy negations. In the literature NT is also called the contour line C0
of T, while NS is called the contour line D1 of S (see [19,20]).

(ii) Since for any t-norm T and any t-conorm Swe have T (x, 0) = 0 and S(x, 1) = 1 for all x ∈ [0, 1], the appropriate
sets in (4) and (5) are non-empty.

(iii) Notice that if S(x, y) = 1 for some x, y ∈ [0, 1], then y�NS(x) and if T (x, y) = 0 for some x, y ∈ [0, 1], then
y�NT (x). Moreover, if any z < NT (x), then T (x, z) = 0 and if any z > NS(x), then S(x, z) = 1.

Example 2.11. Table 4 gives the natural negations of the basic t-norms and t-conorms.

The next result will be useful in the sequel.

Proposition 2.12 (Baczyński and Jayaram [4, Proposition 2.11], cf. Maes and De Baets [19]). If a t-conorm S is
right-continuous, then

(i) for every x, y ∈ [0, 1] the following equivalence holds:

S(x, y) = 1 ⇐⇒ NS(x)� y;
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(ii) the infimum in (5) is the minimum, i.e.,

NS(x) = min{t ∈ [0, 1] | S(x, t) = 1}, x ∈ [0, 1],

where the right side exists for all x ∈ [0, 1];
(iii) NS is right-continuous.

It is well-known that if an NT obtained from a left-continuous t-norm T is continuous, then it is strong. In the proof
of this result, the equality NT ◦ NT ◦ NT = NT plays an important role (see [10, p. 28]). However, the above equality
is not true for all t-norms, as shown in the following example.

Example 2.13. Consider the non-left-continuous t-norm given in [16, Example 1.24(i)] as follows:

TB(x, y) =
{
0 if (x, y) ∈ (0, 0.5)2,
min(x, y) otherwise,

x, y ∈ [0, 1],

whose natural negation is the following:

NTB(x) =
⎧⎨
⎩
1 x = 0,
0.5 x ∈ (0, 0.5),
0 x ∈ [0.5, 1].

It can be quite easily verified that NTB ◦ NTB ◦ NTB � NTB. However, as we show below, the result still remains valid
for any t-norm T.

Theorem 2.14. Let T be any t-norm.

(i) If NT is continuous, then it is strong.
(ii) If NT is discontinuous, then it is not strictly decreasing.

Proof.

(i) Firstly, we show that NT is strict. Assume to the contrary that NT is not strict, i.e., it is constant on some interval
[x, y], where without loss of the generality, we assume that 0 < x < y < 1. Therefore there exists p ∈ [0, 1] such
that

NT (x) = NT (y) = p.

If p = 0, then NT (x) = 0, which implies that T (�, x) = T (x, �) > 0 for an arbitrary small � > 0. Therefore,
NT (�) < x . Since NT is continuous, as � → 0, we have that NT (0)�x . However, NT (0) = 1, a contradiction.
If p = 1, then T (1 − �, x) = T (x, 1 − �) = 0 for an arbitrary small � > 0. Thus, NT (1 − �)�x . Since NT is
continuous, as � → 0, we have that NT (1)�x . However, NT (1) = 0, a contradiction.
Hence, we consider now the situation, when p ∈ (0, 1). Since NT (z) = p for any z ∈ (x, y), by the definition of
NT we have

T (z, p − �)= T (p − �, z) = 0,

T (z, p + �)= T (p + �, z) > 0,

for any arbitrary small � > 0. Thus

NT (p + �) < z�NT (p − �).

Since NT is continuous, as � → 0, we have that NT (p) = z. Now this happens for every z ∈ (x, y), which once
again contradicts the fact that NT is a function itself, or the fact that NT is continuous. Hence NT is strict.
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To show that NT is strong, we show that NT (NT (NT (x))) = NT (x) for all x ∈ [0, 1]. The above is clear for any
x ∈ {0, 1}. Since NT is strict, for any x ∈ (0, 1) and an arbitrary small � > 0, we have the following inequalities:

x − � < x < x + �

�⇒ NT (x − �) > NT (x) > NT (x + �)

�⇒ NT (NT (x − �)) < NT (NT (x)) < NT (NT (x + �)).

By the definition of NT , we have

T (x, NT (x + �)) = T (NT (x + �), x) = 0,

thus x�NT (NT (x + �)), which implies that NT (x)�NT (NT (NT (x + �))). Once again, by the continuity of NT , as
� → 0, we have

NT (x)�NT (NT (NT (x))).

Recall, from Remark 2.10(iii), that if z < NT (x), then T (z, x) = 0. Now, since NT (NT (x − �)) < NT (NT (x)), we also
have, T (NT (NT (x − �)), NT (x)) = 0. Once again, by the definition of NT , we have NT (x)�NT (NT (NT (x − �))), and
as � → 0, we get

NT (x)�NT (NT (NT (x))).

From the above inequalities, we have NT (x) = NT (NT (NT (x))) for any x ∈ [0, 1]. Now, by the continuity of NT , one
can easily see that NT is involutive.

(ii) Let NT be discontinuous at some p ∈ [0, 1]. By the monotonicity of NT there exist constants x, y ∈ [0, 1] such
that

x =
{

lim
t→p+

NT (t) if p < 1,

0 if p = 1,
y =

{
lim

t→p−
NT (t) if p > 0,

1 if p = 0.

From the discontinuity of decreasing negation NT at p we have x < y. Now, we consider the following two cases:

(a) Let NT (p) = x . In particular this implies that p > 0. Let us fix arbitrarily z ∈ (x, y). It is obvious that NT (p) < z,
so by the definition of NT we get T (p, z) > 0, which implies NT (z)� p. On the other side, NT (p − �)� y for an
arbitrary small � > 0, thus T (p − �, z) = 0, therefore NT (z)� p − �. Taking the limit � → 0 we get NT (z)� p.
Since z was arbitrarily fixed, the above implies that NT (z) = p for every z ∈ (x, y) and hence NT is constant on
this interval (x, y).

(b) Let NT (p) = z′, where x < z′ � y. In particular this implies that p < 1. We now claim that NT is a constant on the
interval (x, z′). Let us fix arbitrarily z ∈ (x, z′). In this case we have that T (p, z) = 0, so NT (z)� p. Once again,
we claim that NT (z) = p. Instead, if NT (z) > p, then T (p + �, z) = 0 for some � > 0. Thus, by the definition of
NT , we have that NT (p + �)� z, and from the decreasing nature of NT and the definition of x we obtain

x�NT (p + �)� z,

a contradiction to the fact that x < z. Therefore NT (z) = p for every z ∈ (x, z′) and hence NT is a constant on
this interval (x, z′). �

Corollary 2.15. For a t-norm T the following statements are equivalent:

(i) NT is strictly decreasing.
(ii) NT is continuous.
(iii) NT is strict.
(iv) NT is strong.

Similarly, one can prove the following results.
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Theorem 2.16. Let S be any t-conorm.

(i) If NS is continuous, then it is strong.
(ii) If NS is discontinuous, then it is not strictly decreasing.

Corollary 2.17. For a t-conorm S the following statements are equivalent:

(i) NS is strictly decreasing.
(ii) NS is continuous.
(iii) NS is strict.
(iv) NS is strong.

2.3. The law of excluded middle

Now we analyze the law of excluded middle, which in the classical case has the following form: p ∨ ¬p = �.

Definition 2.18. Let S be a t-conorm and N a fuzzy negation. We say that the pair (S, N ) satisfies the law of excluded
middle, if

S(N (x), x) = 1, x ∈ [0, 1]. (LEM)

Now the following result is easy to see.

Lemma 2.19. Let S be a t-conorm and N a fuzzy negation. If the pair (S,N) satisfies (LEM), then

(i) N �NS ;
(ii) NS ◦ N (x)�x , for all x ∈ [0, 1].

Example 2.20.
(i) Any t-conorm satisfies (LEM) with the greatest fuzzy negation ND2. Indeed, for any t-conorm S and x ∈ [0, 1] we

have

S(ND2(x), x) =
{
S(1, x) if x < 1
S(0, x) if x = 1

=
{
1 if x < 1
x if x = 1

= 1.

From the previous result and Table 4 it follows that if S is a positive t-conorm, then it satisfies (LEM) only with
the greatest fuzzy negation ND2.

(ii) However, no t-conorm satisfies (LEM)with the least fuzzy negation ND1. Indeed, for any t-conorm S and x ∈ (0, 1)
we have S(ND1(x), x) = S(0, x) = x � 1.

Example 2.21. The fact that the conditions in Lemma 2.19 are only necessary and not sufficient follow from the
following example. Consider the non-right-continuous nilpotent maximum t-conorm

SnM∗(x, y) =
{
1 if x + y > 1,
max(x, y) otherwise,

x, y ∈ [0, 1].

Then its natural negation is the classical negation, i.e., NSnM∗ (x) = NC(x) = 1 − x and NC ◦ NC(x) = x for all
x ∈ [0, 1]. However, the pair (SnM∗ , NC) does not satisfy (LEM). Indeed, for x = 0.5 we get

SnM∗(NC(0.5), 0.5) = SnM∗(0.5, 0.5) = 0.5.

Interestingly, for the right-continuous t-conorms the condition (i) from Lemma 2.19 is both necessary and
sufficient.
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Proposition 2.22 (Baczyński and Jayaram [4, Proposition 2.16]). For a right-continuous t-conormSand a fuzzy nega-
tion N the following statements are equivalent:

(i) The pair (S, N ) satisfies (LEM).
(ii) N �NS .

In the class of continuous functions we get the following important fact.

Proposition 2.23 (Baczyński and Jayaram [4, Proposition 2.17]). For a continuous t-conorm S and a continuous fuzzy
negation N the following statements are equivalent:

(i) The pair (S, N ) satisfies (LEM).
(ii) S is a nilpotent t-conorm, i.e., S is �-conjugate with the Łukasiewicz t-conorm SLK, i.e., there exists � ∈ �, which

is uniquely determined, such that S has the representation

S(x, y) = �−1(min(�(x) + �(y), 1)), x, y ∈ [0, 1],

and

N (x)�NS(x) = �−1(1 − �(x)), x ∈ [0, 1].

2.4. De Morgan triples

Finally, in this subsection we present some results regarding De Morgan triples.

Definition 2.24 (Klement et al. [16, p. 232]). A triple (T, S, N ), where T is a t-norm, S is a t-conorm and N is a strict
negation, is called a De Morgan triple, if

T (x, y) = N−1(S(N (x), N (y))), S(x, y) = N−1(T (N (x), N (y))),

for all x, y ∈ [0, 1].

Theorem 2.25 (Klement et al. [16, p. 232]). For a t-norm T, t-conorm S and a strict fuzzy negation N the following
statements are equivalent:

(i) (T, S, N ) is a De Morgan triple.
(ii) N is a strong negation and S is the N-dual of T, i.e., S(x, y) = N (T (N (x), N (y))), for all x, y ∈ [0, 1].

Using the above theorem it can be shown that the following relation exists between NT and NS .

Theorem 2.26 (Baczyński and Jayaram [4, Proposition 2.21]). Let T be a left-continuous t-norm and S be a t-conorm.
If (T, NT , S) is a De Morgan triple, then

(i) NS = NT is a strong negation,
(ii) S is right-continuous.

3. Fuzzy implications

In the literature, especially at the beginnings, we can find several different definitions of fuzzy implications. In
this article we will use the following one, which is equivalent to the definition introduced by Fodor and Roubens
[10, Definition 1.15] (see also [15, p. 50]).

Definition 3.1. A function I : [0, 1]2 → [0, 1] is called a fuzzy implication, if it satisfies, for all x, y, z ∈ [0, 1], the
following conditions:

if x� y then I (x, z)� I (y, z), (I1)
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Table 5
Examples of basic fuzzy implications

Name Formula

Łukasiewicz ILK(x, y) = min(1, 1 − x + y)

Gödel IGD(x, y) =
{
1 if x� y
y if x > y

Reichenbach IRC(x, y) = 1 − x + xy
Kleene–Dienes IKD(x, y) = max(1 − x, y)

Goguen IGG(x, y) =
{
1 if x� y
y

x
if x > y

Weber IWB(x, y) =
{
1 if x < 1
y if x = 1

Dubois–Prade IDP(x, y) =
⎧⎨
⎩

y if x = 1
1 − x if y = 0
1 if x < 1 and y > 0

Fodor IFD(x, y) =
{
1 if x� y
max(1 − x, y) if x > y

if y� z then I (x, y)� I (x, z), (I2)

I (0, 0) = 1, (I3)

I (1, 1) = 1, (I4)

I (1, 0) = 0. (I5)

The set of all fuzzy implications will be denoted by FI.

Remark 3.2. Directly from Definition 3.1 we see that each fuzzy implication I satisfies the following left and right
boundary conditions, respectively:

I (0, y) = 1, y ∈ [0, 1], (LB)

I (x, 1) = 1, x ∈ [0, 1]. (RB)

Therefore, I satisfies also the normality condition:

I (0, 1) = 1. (NC)

Example 3.3. Table 5 lists a few basic fuzzy implications.

Additional properties of fuzzy implications were postulated in many works (see, for example [31,10,12]). The most
important of them are presented below.

Definition 3.4. A fuzzy implication I is said to satisfy

(i) the left neutrality property, if

I (1, y) = y, y ∈ [0, 1]. (NP)

(ii) the exchange principle, if

I (x, I (y, z)) = I (y, I (x, z)), x, y, z ∈ [0, 1]. (EP)

(iii) the identity principle, if

I (x, x) = 1, x ∈ [0, 1]. (IP)
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(iv) the ordering property, if

I (x, y) = 1 ⇐⇒ x� y, x, y ∈ [0, 1]. (OP)

(v) the law of contraposition with respect to a fuzzy negation N, CP(N ), if

I (x, y) = I (N (y), N (x)), x, y ∈ [0, 1]. (CP)

Just as in the case of t-norms or t-conorms, a fuzzy negation can be obtained from fuzzy implications too as follows.

Definition 3.5. Let I : [0, 1]2 → [0, 1] be any function. If the function NI : [0, 1] → [0, 1] given by

NI (x) := I (x, 0), x ∈ [0, 1],

is a fuzzy negation, then it is called the natural negation of I.

It should be noted that for any I ∈ FI we have (I3) and (I5), so NI is a fuzzy negation in this case. In the following
results we discuss some relationships that exist between the above properties of fuzzy implications. They will be useful
in the sequel.

Proposition 3.6 (cf. Fodor and Roubens [10, Corollary 1.1]). If a function I : [0, 1]2 → [0, 1] satisfies (EP) and (OP),
then NI is either a strong negation or a discontinuous negation.

Lemma 3.7 (Baczyński and Jayaram [3, Lemma 2.2], cf. Bustince et al. [7, Lemma 1]). Let I be any [0, 1]2 → [0, 1]
function and N be a fuzzy negation. If I satisfies (NP) and CP (N), then N = NI is a strong negation.

Lemma 3.8 (Baczyński and Jayaram [3, Corollary 2.3]). Let I ∈ FI satisfy (NP). If NI is not a strong negation, then
I does not satisfy the contrapositive symmetry (CP) with any fuzzy negation.

Lemma 3.9 (Baczyński and Jayaram [3, Lemma 2.4], cf. Bustince et al. [7, Lemma 1]). Let I be any [0, 1]2 → [0, 1]
function and NI be a strong negation.

(i) If I satisfies CP(NI ), then I satisfies (NP).
(ii) If I satisfies (EP), then I satisfies (I3), (NP) and CP(NI ).

Corollary 3.10 (Baczyński and Jayaram [3, Corollary 2.5]). Let I ∈ FI satisfy (NP) and (EP).Then I satisfiesCP(N )
with some fuzzy negation N if and only if N = NI is a strong negation.

4. QL-operations and QL-implications

In this section, we define a QL-operation as a generalization of the quantum logic implication. However, it should
be noted that not every such operation defined is a fuzzy implication and hence we find some suitable necessary or
sufficient conditions for this to happen. Then we give many examples of QL-operations that are fuzzy implications.
Following this, we investigate this family of fuzzy implications with respect to the desirable properties as proposed in
Definition 3.4.

4.1. Definitions, examples and basic properties

Definition 4.1. A function I : [0, 1]2 → [0, 1] is called a QL-operation, if there exist a t-norm T, a t-conorm S and a
fuzzy negation N such that

I (x, y) = S(N (x), T (x, y)), x, y ∈ [0, 1].

If I is a QL-operation generated from the triple (T, S, N ), then we will often denote it by IT,S,N .



M. Baczyński, B. Jayaram / Fuzzy Sets and Systems 161 (2010) 158–188 169

Table 6
Examples of basic QL-operations

T S N QL-operation IT,S,N IT,S,N ∈ FI

TM SM NC IZD ×
TM SP NC I (x, y) =

{
1 − x + x2 if x � y
1 − x + xy otherwise

×
TM SLK NC ILK C
TM SD NC IDP C
TM SnM NC IFD C
TP SM NC I (x, y) = max(1 − x, xy) ×
TP SP NC I (x, y) = 1 − x + x2y ×
TP SLK NC IRC C
TP SD NC IDP C

TP SnM NC I (x, y) =
{
1 if y = 1
max(1 − x, xy) otherwise

×
TLK SM NC I (x, y) = max(1 − x, x + y − 1) ×
TLK SP NC I (x, y) =

{
1 − x if y�1 − x
1 + x2 + xy − 2x otherwise

×
TLK SLK NC IKD C

TLK SD NC I (x, y) =
⎧⎨
⎩

y if x = 1
1 − x if y�1 − x
1 otherwise

×

TLK SnM NC I (x, y) =
⎧⎨
⎩

1 if x = 0 or y = 1
1 − x if y�2 − 2x
y otherwise

×

TD Any S NC I (x, y) =
⎧⎨
⎩

S(N (x), x) if y = 1
y if x = 1
1 − x otherwise

×

TnM SnM NC I (x, y) =
⎧⎨
⎩

1 if x� y and y > 1 − x
y if x > y and y > 1 − x
1 − x otherwise

×

Any T Any S ND1 I (x, y) =
{
T (x, y) if x > 0
1 if x = 0

×
Any T Any S ND2 IWB C

Firstly, we investigate some properties ofQL-operations.Wewill see that not all QL-operations are fuzzy implications
in the sense of Definition 3.1. The following fact can be proven by an easy verification.

Proposition 4.2 (cf. Shi et al. [26, Proposition 3.1]). If IT,S,N is a QL-operation, then

(i) IT,S,N satisfies (I2)–(I5), (NC), (LB) and (NP);
(ii) NIT,S,N = N .

From the above proposition, it follows that a QL-operation is generated by a unique negation.

Remark 4.3. A QL-operation does not always satisfy (I1). For example, consider the following function:

IZD(x, y) = max(1 − x,min(x, y)), x, y, ∈ [0, 1],

also called in the literature as the Zadeh implication. As can be seen in Table 6, it is the QL-operation obtained from the
triple (TM, SM, NC), but it does not satisfy (I1). However, the QL-operation obtained from the triple (TLK, SLK, NC)
satisfies (I1). In fact, it is the Kleene–Dienes implication IKD, which is a fuzzy implication.

Example 4.4. Table 6 lists QL-operations obtained from the basic t-norms, t-conorms and negations. In the last column
we indicate whether the QL-operation is also a fuzzy implication.
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Therefore the first main problem is the characterization of those QL-operations which satisfy (I1). Unfortunately,
only partial results are known in the literature (cf. [26,29]). Following the terminology used by Trillas et al. [29] and
Mas et al. [21], only if the QL-operation is a fuzzy implication we use the term QL-implication, and often use the
equivalent expression IT,S,N ∈ FI.

Lemma 4.5. If a QL-operation IT,S,N ∈ FI, then the pair (S, N ) satisfies (LEM).

Proof. If IT,S,N is a fuzzy implication, then by Remark 3.2 it satisfies (RB). Thus IT,S,N (x, 1) = 1 if and only if
S(N (x), T (x, 1)) = 1, i.e., S(N (x), x) = 1, for every x ∈ [0, 1]. �

Remark 4.6.

(i) From Example 2.20(ii) we know that there does not exist any t-conorm S such that the pair (S, ND1) satisfies
(LEM). Therefore, byLemma4.5,we see that noQL-operation obtained from the triple (T, S, N ), where N = ND1
is the least fuzzy negation, can be a fuzzy implication.

(ii) The fact that the condition in Lemma 4.5 is only necessary and not sufficient can be seen from
the QL-operation I obtained from the triple (TP, SnM, NC), which is given in Table 6. Although the
pair (SnM, NC) satisfies (LEM), it can be verified, by letting x1 = 0.8, x2 = 0.9 and y = 0.3, that x1 < x2 but
I (0.8, 0.3) = 0.24 < 0.27 = I (0.9, 0.3), so this I does not satisfy (I1).

(iii) From Lemma 2.19, it is easy to see that if a negation N in the triple (T, S, N ) is less than the natural negation of S,
i.e., if N (x) < NS(x) for some x ∈ [0, 1], then the pair (S, N ) does not satisfy (LEM) and hence the QL-operation
IT,S,N is not a fuzzy implication.

(iv) Let S be any t-conorm and N = ND2, the greatest fuzzy negation. From Example 2.20(i) we see that the pair
(S, ND2) satisfies (LEM).Now, for any t-normTwehave that theQL-operation obtained from the triple (T, S, ND2)
is a fuzzy implication and is, in fact, the Weber implication IWB.

In fact, we have the following result.

Proposition 4.7. A QL-operation IT,S,N , where S is a positive t-conorm, is a fuzzy implication if and only if N = ND2.
Moreover, IT,S,N = IWB in this case.

Before considering special examples of QL-implications, we show some relationship between the �-conjugates of
QL-implications.

Theorem 4.8. If IT,S,N is a QL-implication (QL-operation, respectively), then the �-conjugate of IT,S,N is also a
QL-implication (QL-operation, respectively) generated from the �-conjugate t-norm of T, the �-conjugate t-conorm
of S and the �-conjugate fuzzy negation of N, i.e., if � ∈ �, then

(IT,S,N )� = IT�,S�,N� .

Proof. Let� ∈ � and let IT,S,N be a QL-implication based on the suitable operations.We now know that the operations
T�, S� and N� are a t-norm, t-conormand a fuzzy negation, respectively. It is obvious that if IT,S,N is a fuzzy implication,
then (IT,S,N )� is also a fuzzy implication. Now, we have

(IT,S,N )�(x, y)= �−1(IT,S,N (�(x), �(y)))

= �−1(S(N (�(x)), T (�(x), �(y))))

= �−1(S(� ◦ �−1(N (�(x))),� ◦ �−1(T (�(x), �(y)))))

= �−1(S(�(N�(x)), �(T�(x, y)))) = S�(N�(x), T�(x, y))

= IT�,S�,N� (x, y),

for every x, y ∈ [0, 1]. �



M. Baczyński, B. Jayaram / Fuzzy Sets and Systems 161 (2010) 158–188 171

Example 4.9. Let S be a t-conorm and N a fuzzy negation such that the pair (S, N ) satisfies (LEM).

(i) If T is the minimum t-norm TM, then it can be easily seen that the QL-operation obtained from the triple (TM, S, N )
is always a fuzzy implication given by

ITM,S,N (x, y) =
{
1 if x� y,
S(N (x), y) if x > y,

x, y ∈ [0, 1]. (6)

(ii) If T is the drastic t-norm TD, then the QL-operation obtained from the triple (TD, S, N ) is given by

ITD,S,N (x, y) =
⎧⎨
⎩
1 if y = 1,
y if x = 1,
N (x) otherwise,

x, y ∈ [0, 1].

This function is not always a fuzzy implication, even if S andN satisfy (LEM). Observe that it is a fuzzy implication
if and only if N (x)� y for all x, y ∈ [0, 1), which means that N = ND2. In this case, of course, the QL-operation
reduces, once again, to the Weber implication IWB.

Now, let us consider QL-implications obtained from triples (T, S, N ), where S is some continuous t-conorm. Firstly,
if S is a continuous but positive t-conorm from Proposition 4.7 we know that for the QL-operation obtained from the
triple (T, S, N ) to be a fuzzy implication N has to be the greatest negation ND2 and that IT,S,N = IWB in this situation.
Hence we consider now only non-positive continuous t-conorms.
Let S be a continuous t-conorm and N a continuous fuzzy negation such that the pair (S, N ) satisfies (LEM). Then,

from Proposition 2.23, there exists a unique � ∈ � such that

S(x, y) = (SLK)�(x, y) = �−1(min(�(x) + �(y), 1)),

N (x) � (NC)�(x) = �−1(1 − �(x)),

for all x, y ∈ [0, 1]. Note that in this case S is a nilpotent t-conorm, i.e., it is non-positive and continuous. Let us consider
the extreme case when N (x) = (NC)�(x) = �−1(1 − �(x)) (with the same increasing bijection �), in which case we
have that N is a strong negation. Now, if we consider the QL-operation obtained from the triple (T, (SLK)�, (NC)�),
then since T (x, y)�x for any t-norm T and x ∈ [0, 1], we obtain the following function, denoted by I�,T for ease of
notation (see also [29,21]):

I�,T (x, y) = (SLK)�((NC)�(x), T (x, y)) = �−1(1 − �(x) + �(T (x, y))), x, y ∈ [0, 1]. (7)

The following result has been obtained by Mas et al. [21].

Theorem 4.10. For a QL-operation I�,T given by (7), where T is any t-norm and � ∈ �, the following statements are
equivalent:

(i) I�,T ∈ FI.
(ii) T�−1 satisfies the 1-Lipschitz condition (3).

Remark 4.11. Since the class of t-norms satisfying the Lipschitz condition is contained in the class of continuous
t-norms, we have that T�−1 , and hence T itself, is a continuous t-norm.

The case when T is an Archimedean or an idempotent t-norm has been investigated by Fodor [11]. In fact, it is shown
there that an equivalence relation exists between the t-norms T employed below and the resulting QL-implications.

Example 4.12. All QL-operations I�,T obtained using the following t-norms satisfy (I1) and hence are fuzzy
implications (cf. Table 6).

(i) If the t-norm T in (7) is �-conjugate with the Łukasiewicz t-norm TLK with the same � ∈ �, then I�,(TLK)� is
�-conjugate with the Kleene–Dienes implication IKD, i.e.,

I�,(TLK)� (x, y) = (IKD)�(x, y) = max(N�(x), y), x, y ∈ [0, 1].
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Fig. 1. Plots of the QL-implications IPC and IPR from Example 4.13: (a) IPC from the triple (TP, S2SS, NC); (b)IPR from the triple (TP, S2SS, NR).

(ii) If the t-norm T in (7) is�-conjugate with the product t-norm TP with the same � ∈ �, then I�,(TP)� is�-conjugate
with the Reichenbach implication IRC, i.e.,

I�,(TP)� (x, y) = (IRC)�(x, y) = �−1(1 − �(x) + �(x)�(y)), x, y ∈ [0, 1].

(iii) Firstly, note that (TM)� = TM for any � ∈ � (see [16, Proposition 2.31]). Now, if the t-norm T in (7) is the
minimum t-norm TM, then I�,TM is �-conjugate with the Łukasiewicz implication ILK, i.e.,

I�,TM (x, y) = (ILK)�(x, y) = min(�−1(1 − �(x) + �(y), 1)), x, y ∈ [0, 1].

In the following we show yet other examples of QL-implications generated from continuous functions.

Example 4.13. Let S be the Schweizer–Sklar t-conorm S�
SS for � = 2 given by

S2SS(x, y) = 1 − (max((1 − x)2 + (1 − y)2 − 1, 0))1/2, x, y ∈ [0, 1],

and T be the product t-norm TP. It can be easily verified that the pairs (S2SS, NC) and (S2SS, NR), where NR(x) = 1−√
x ,

satisfy (LEM).

(i) The QL-operation obtained from the triple (TP, S2SS, NC) is given by

IPC(x, y) = 1 − (max(x(x + xy2 − 2y), 0))1/2, x, y ∈ [0, 1].

(ii) The QL-operation obtained from the triple (TP, S2SS, NR) is given by

IPR(x, y) = 1 − (max(x(1 + xy2 − 2y), 0))1/2, x, y ∈ [0, 1].

It can be easily checked that both IPC and IPR satisfy (I1) and hence are QL-implications, whose plots are given in
Fig. 1.

In the rest of this section we give examples of QL-implications obtained from triples (T, S, N ), where S is a
non-continuous t-conorm.
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Example 4.14. Let S be the drastic t-conorm SD and N any non-vanishing negation. Then the pair (SD, N ) satisfies
(LEM). If the t-norm T is positive, then, as can be verified, the QL-operation obtained from the triple (T, SD, N ) is a
fuzzy implication given by

IT,SD,N (x, y) =
⎧⎨
⎩

y if x = 1,
N (x) if y = 0,
1 otherwise,

x, y ∈ [0, 1].

Fig. 2(a) gives the plot of the QL-implication obtained from the triple (T, SD, NC), where T is any positive t-norm,
which is in fact the Dubois–Prade implication IDP (see [8]).

Example 4.15. Let N be a strong negation. Consider the following t-conorm:

SNnM(x, y) =
{
1 if x�N (y),
max(x, y) if x < N (y),

x, y ∈ [0, 1], (8)

which is only right-continuous. If N∗ is any negation such that N∗ �N , then SNnM(N∗(x), x) = 1.

(i) The QL-operation from the triple (TM, SNnM, N∗) is

ITM,SNnM,N∗ (x, y) =
{
1 if x� y,
max(N∗(x), y) if x > y,

x, y ∈ [0, 1]. (9)

In the case N = N∗ = NC the QL-operation in (9) is a QL-implication, indeed, it is the Fodor implication IFD.
Fig. 2(b) gives the plot of the QL-implication obtained from the triple (TM, SNC

nM, NK), where NK(x) = 1 − x2.
(ii) Let us consider the following N-dual t-norm of SNnM given by

T N
nM(x, y) =

{
0 if x�N (y),
min(x, y) if x > N (y),

x, y ∈ [0, 1].

The QL-operation obtained from the triple (T N
nM, SNnM, N∗) is given by

IT N
nM,SNnM,N∗ (x, y) =

⎧⎨
⎩

N∗(x) if x�N (y),
1 if N∗(x)�N (y),
max(N∗(x), y) if N∗(x) < N (y),

x, y ∈ [0, 1].

Figs. 2(c) and (d) give plots of the QL-implications obtained from the triple (T N
nM, SNnM, N∗), when

N = N∗ = NC and N = NC, N∗ = NK, respectively.

In fact, the following result was proven by Mas et al. [21, Corollary 2].

Proposition 4.16. Let N be a strong negation with the fixed point e ∈ (0, 1), T a continuous t-norm and SNnM the
t-conorm obtained from N as given in (8). Let IT,SNnM,N be the QL-operation obtained from the triple (T, SNnM, N ). Then
the following statements are equivalent:

(i) IT,SNnM,N ∈ FI.
(ii) T (x, x) = x f or all x ∈ [e, 1].

Moreover, the corresponding QL-implication is then given by

IT,SNnM,N (x, y) =
⎧⎨
⎩
1 if x, e� y or (x� y < e and T (x, y) = x),
y if N (x)� y < x,
N (x) otherwise,

x, y ∈ [0, 1].
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Fig. 2. Plots of QL-implications from non-continuous t-conorms. (a) The QL-implication IDP from Example 4.14 with N = NC. (b) The QL-
implication ITM,SNnM,N∗ from Example 4.15(i) with N∗ = NK . (c) The QL-implication IT N

nM,SNnM,N∗ from Example 4.15(ii) with N = N∗ = NC.

(d) The QL-implication IT N
nM,SNnM,N∗ from Example 4.15(ii) with N = NC and N∗ = NK .

4.2. QL-implications and the exchange principle

Not allQL-implications satisfy (EP).However, in Theorem6.2we show that if aQL-operation IT,S,N is obtained from
a triple (T, S, N ), whereN is a continuous negation, then IT,S,N satisfies (EP) if and only IT,S,N is an (S,N)-implication
(see Section 5.1). We deal with this topic in more detail in Section 6.

4.3. QL-implications and the identity principle

The following proposition is immediate from Remark 4.6(iv), Examples 4.9 and 4.14.

Proposition 4.17. A QL-implication IT,S,N satisfies (IP) if

(i) N = ND2, S is any t-conorm and T any t-norm, or
(ii) T = TM, S is any t-conorm and N any negation such that the pair (S, N ) satisfies (LEM), or
(iii) S = SD, N is any non-vanishing negation and T is a positive t-norm.
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Remark 4.18.

(i) If S is a positive t-conorm, then we know, from Proposition 4.7, that the obtained QL-implication is the Weber
implication IWB, which satisfies (IP).

(ii) However, from Example 4.12 and Proposition 4.17(iii), we see that in the case when S is not positive, we can obtain
QL-implications that satisfy the identity principle (IP) for many fuzzy negations N. In fact, we have the following
easy to obtain result.

Proposition 4.19. If a QL-implication IT,S,N satisfies (IP), then T (x, x)�NS ◦ N (x) for all x ∈ [0, 1].

Proof. If IT,S,N satisfies (IP), then for any x ∈ [0, 1] we have IT,S,N (x, x) = S(N (x), T (x, x)) = 1. From
Remark 2.10(iii), we have that T (x, x)�NS ◦ N (x), for all x ∈ [0, 1]. �

In the case, when the t-conorm considered in Proposition 4.19 is right-continuous, then the above condition is also
sufficient.

Theorem 4.20. For a QL-implication IT,S,N with a right-continuous t-conorm S the following statements are equiva-
lent:

(i) IT,S,N satisfies (IP).
(ii) T (x, x)�NS ◦ N (x) for all x ∈ [0, 1].

Proof. (i) �⇒ (ii) It is obvious from Proposition 4.19.
(ii)�⇒ (i) By the right-continuity of S, from Proposition 2.12(i) we have that, S(N (x), NS ◦N (x)) = 1 for all x ∈ [0, 1].
Now by the monotonicity of the t-conorm S we have that

IT,S,N (x, x) = S(N (x), T (x, x))� S(N (x), NS ◦ N (x)) = 1, x ∈ [0, 1],

i.e., IT,S,N satisfies (IP). �

Example 4.21. Let us consider the Łukasiewicz t-conorm SLK and the strict negation NK(x) = 1 − x2. The pair
(SLK, NK) satisfies (LEM) and also SLK is continuous, and hence is right-continuous. Let T = TP be the product
t-norm. Then the QL-operation obtained from the triple (TP, SLK, NK) is

IKP(x, y) = min(1, 1 − x2 + xy), x, y ∈ [0, 1].

Firstly, note that IKP satisfies (I1) and hence is a fuzzy implication. Since NSLK (x) = 1 − x , note also that, NSLK ◦
NK(x) = 1− NK(x) = 1− (1− x2) = x2 and hence TP(x, x) = NSLK ◦ NK(x) for all x ∈ [0, 1]. It is easy to observe
that IKP satisfies (IP).

Remark 4.22. In one of the earliest works on QL-implications, Trillas and Valverde [30] (see also their recent work
[28]) required the negation N in Definition 4.1 to be strong. Moreover, the t-norm T and t-conorm S are continuous,
and are expected to form a De Morgan triple with the negation N. In fact, in Theorem 3.2 of the same work, under
these restrictions, condition (ii) of Theorem 4.20 has been obtained. From their proof, it is clear that the considered T
and S are both continuous and Archimedean and hence either they are strict or nilpotent, in which case they show that
the aforementioned condition is not satisfied and hence the claim that “QL-implications never satisfy (IP)”. Whereas,
from the QL-implications IWB and IKP (see Example 4.21) we see that IT,S,N can satisfy (IP).

4.4. QL-implications and the ordering property

From Proposition 4.7 and Remark 4.18(i) it is clear that if S is a positive t-conorm, then the QL-implication obtained
from the triple (T, S, N ) does not satisfy (OP). The following result gives a necessary condition for a QL-implication
to satisfy (OP).

Proposition 4.23. If a QL-implication IT,S,N obtained from a non-positive t-conorm S satisfies (OP), then the negation
N is strictly decreasing.
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Proof. To see this, if possible, let there exist x, y ∈ [0, 1] such that x < y but N (x) = N (y). By (OP) we have

IT,S,N (x, y) = 1�⇒ S(N (x), T (x, y)) = 1

�⇒ S(N (y), T (y, x)) = 1

�⇒ IT,S,N (y, x) = 1

�⇒ y�x,

a contradiction. �

Note that, from Remark 4.6(iii), we require that N �NS , which implies that the natural negation NS of the t-conorm
S should be non-filling, i.e., N (x) = 1 ⇐⇒ x = 0. From Definition 2.2, we see that this can happen only if every
x ∈ (0, 1) has y ∈ (0, 1) such that S(x, y) = 1. Noting that a fuzzy implication that satisfies (OP) also satisfies (IP),
using also Theorem 4.20, we summarize the above discussion in the following result.

Theorem 4.24. If a QL-implication IT,S,N satisfies (OP), then

(i) T (x, x)�NS ◦ N (x) for all x ∈ [0, 1];
(ii) N is a strictly decreasing negation;
(iii) S is a non-positive t-conorm such that for every x ∈ (0, 1) there exists y ∈ (0, 1) such that S(x, y) = 1.

Remark 4.25.

(i) In fact, the QL-implication IKP obtained from the triple (TP, SLK, NK) (see Example 4.21) not only satisfies (IP),
but also—as it can be easily verified—(OP).

(ii) The fact that the above conditions are not sufficient can be seen from Example 4.14 where the drastic sum t-conorm
SD satisfies condition (iii) of Theorem 4.24. Since NSD = ND1, if N is any strictly decreasing negation we have
that N is non-vanishing and N > ND1 for all x ∈ (0, 1). Notice also that any t-norm T satisfies condition (i) since
ND1 ◦ N (x) = 0 for all x ∈ (0, 1). However, as can be seen from Example 4.14, the QL-implication IT,SD,N

obtained from such a triple (T, SD, N ) does not satisfy (OP).
(iii) We only emphasize that point (iii) of Theorem 4.24 is different from the pair (S, N ) satisfying (LEM), in that, for

some x ∈ (0, 1) the N may be such that N (x) = 1, but the y in Theorem 4.24(iii) has to be in (0, 1).

In the case, when the t-norm T = TM, we have the following stronger result.

Theorem 4.26. Let S be a t-conorm and N a fuzzy negation such that the pair (S, N ) satisfies conditions in Theorem
4.24. Further, for a t-norm T, let IT,S,N be a QL-implication which satisfies (OP). Then the following statements are
equivalent:

(i) T is the minimum t-norm TM.
(ii) NS ◦ N = id[0,1].

Proof. Let the pair (S, N ) satisfy conditions in Theorem 4.24 and, for a t-norm T, let IT,S,N ∈ FI satisfy (OP).
(i) �⇒ (ii) If T = TM, then the QL-implication obtained from the triple (TM, S, N ) is the ITM,S,N given in

Example 4.9. From (6) we see that x� y �⇒ IT,S,N (x, y) = 1. The reverse implication is violated only if there
exists y < x such that S(N (x), y) = 1. From Remark 2.10(iii), we know that for this to happen y�NS ◦ N (x).
However, from Lemma 2.19(ii), we see that y ∈ [NS ◦ N (x), x). Now it is obvious that the reverse implication holds
only if x = NS ◦ N (x).

(ii) �⇒ (i) Now, let NS ◦ N (x) = x for all x ∈ [0, 1]. Since IT,S,N satisfies (OP), from Theorem 4.24(i), we have
x = NS ◦ N (x)�T (x, x)�x which implies that T (x, x) = x for all x ∈ [0, 1], i.e., T is idempotent, or equivalently,
T = TM. �

Remark 4.27.

(i) From Example 4.14, we see that with the positive t-norm T = TM, if N is both non-vanishing and NS ◦ N � id[0,1],
then IT,S,N does not satisfy (OP).
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(ii) Let S be a nilpotent t-conorm, i.e., �-conjugate with the Łukasiewicz t-conorm SLK. We know that the QL-
implication obtained from the triple (T, (SLK)�, (NC)�), where T is any t-norm, is I�,T given by (7). Since
NS = N = (NC)� is a strong negation, from Theorems 4.26 and 4.20, we obtain the following result (cf. [21]).

Corollary 4.28. For a QL-operation I�,T given by (7), where T is any t-norm and � ∈ �, the following statements are
equivalent:

(i) I�,T satisfies (IP).
(ii) I�,T satisfies (OP).
(iii) T = TM.

Remark 4.29. The QL-implication IKP in Example 4.21 shows that in the case N � (NC)� in Corollary 4.28, there do
exist t-norms T other than TM such that the QL-implication obtained from the triple (T, (SLK)�, N ) satisfies (OP).

4.5. QL-implications and the law of contraposition

Since every QL-operation satisfies (NP) (see Proposition 4.2), it is immediate from Lemma 3.7, that if IT,S,N satisfies
CP(N ), then N = NI is strong. If S is a positive t-conorm, from Proposition 4.7 we see that a QL-operation IT,S,N is
a fuzzy implication if and only if N = ND2, which is a non-strong negation. In fact, the QL-implication in this case
is the Weber implication IWB, which does not satisfy (CP) with any negation N. Once again, if the QL-implication is
obtained from the triple (T, S, N ) where N is not strong, then by Lemma 3.8 we see that it does not satisfy (CP) with
any fuzzy negation N. Of course, if N is strong and IT,S,N satisfies (EP), then by Lemma 3.9(ii), we have that IT,S,N

satisfies CP(N ).
Let S be a nilpotent t-conorm. Then it is non-positive, continuous and is �-conjugate with the Łukasiewicz t-conorm

SLK. Consider, once again, the QL-implication I�,T given by (7) and obtained from the triple (T, (SLK)�, (NC)�).
Since (NC)� is strong, we know that I�,T satisfies (CP) only with (NC)�. Now we have the following result firstly
obtained by Fodor [11].

Theorem 4.30. For a QL-operation I�,T given by (7), where T is any t-norm and � ∈ �, the following statements are
equivalent:

(i) I�,T satisfies CP((NC)�).
(ii) T belongs to the family of Frank t-norms T �

F .

We also have the following result which is stronger than the original result of Fodor [11, Theorem 5].

Theorem 4.31. For the QL-implication IT,SNnM,N the following statements are equivalent:

(i) IT,SNnM,N satisfies (CP) with some fuzzy negation N∗.
(ii) N∗ = N is strong and T = TM.

Proof. (i)�⇒ (ii) Let IT,SNnM,N satisfy (CP) with some fuzzy negation N∗. Since any QL-implication satisfies (NP),

from Lemma 3.7 we see that N∗ = N and is a strong negation. The rest of the proof is very much along the lines given
in [11, Theorem 5].
(ii) �⇒ (i) In the case T = TM we have that the QL-implication obtained from the triple (TM, SNnM, N ) is as given

in (9) with N∗ = N . By a straightforward verification we see that ITM,SNnM,N indeed satisfies CP(N ). �

5. (S,N)-implications and R-implications

In this section we introduce the two most established families of fuzzy implications, viz., (S,N)- and R-implications
by giving their definitions, some examples, the conditions underwhich they satisfy the desirable algebraic properties and
the relevant characterization/representation results. Following this, we give some results pertaining to the intersections
that exist between these families.
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Table 7
Examples of basic (S,N)-implications

S N (S,N)-implication IS,N

SM NC IKD

SP NC IRC
SLK NC ILK
SD NC IDP
SnM NC IFD

Any S ND1 ID(x, y) =
{
1 if x = 0
y if x > 0

Any S ND2 IWB

5.1. (S,N)-implications

Definition 5.1 (cf. Trillas and Valverde [31], Fodor and Roubens [10], Alsina and Trillas [1], Baczyński and Jayaram
[3]). A function I : [0, 1]2 → [0, 1] is called an (S,N)-implication if there exist a t-conorm S and a fuzzy negation N
such that

I (x, y) = S(N (x), y), x, y ∈ [0, 1].

If N is a strong negation, then I is called a strong implication or S-implication. Moreover, if I is an (S,N)-implication
generated from S and N, then we will often denote it by IS,N .

Example 5.2. Table 7 lists a few well-known (S,N)-implications along with their t-conorms and negations from which
they have been obtained.

Remark 5.3 (see Trillas and Valverde [31], Baczyński and Jayaram [3]).

(i) All (S,N)-implications are fuzzy implications which satisfy (NP) and (EP).
(ii) If I is an (S,N)-implication obtained from a fuzzy negation N, then N = NI .
(iii) Because of Corollary 3.10 we get that an (S,N)-implication I satisfies CP(N ) with some fuzzy negation N if and

only if N = NI is a strong negation, i.e., I is an S-implication.

Not all (S,N)-implications satisfy the identity principle (IP) or the ordering property (OP), see, for example IRC and
IKD. An equivalence condition under which (S,N)-implications satisfy them are given by the following results.

Lemma 5.4 (Baczyński and Jayaram [4, Lemma 4.5]). For a t-conorm S and a fuzzy negation N the following state-
ments are equivalent:

(i) The (S,N)-implication IS,N satisfies (IP).
(ii) The pair (S, N ) satisfies (LEM).

Theorem 5.5 (Baczyński and Jayaram [4, Theorem 4.7]). For a t-conorm S and a fuzzy negation N the following state-
ments are equivalent:

(i) The (S,N)-implication IS,N satisfies (OP).
(ii) N = NS is a strong negation and the pair (S, NS) satisfies (LEM).

The following characterization of (S,N)-implications is from [2], which is an extension of a result in [30].
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Table 8
Examples of basic R-implications

t-norm T R-implication IT

TM IGD

TP IGG

TLK ILK
TD IWB

TnM IFD

Theorem 5.6. For a function I : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) I is an (S,N)-implication generated from some t-conorm S and some continuous (strict, strong) fuzzy negation N.
(ii) I satisfies (I2), (EP) and the function NI is a continuous (strict, strong) fuzzy negation.

Remark 5.7.

(i) The representations of (S,N)-implications in the above theorem is unique.
(ii) In Theorem 5.6 we can substitute the axiom (I2) by (I1).

5.2. R-implications

Definition 5.8 (cf. Trillas and Valverde [31], Fodor and Roubens [10], Gottwald [12]). A function I : [0, 1]2 → [0, 1]
is called an R-implication, if there exists a t-norm T such that

I (x, y) = sup{t ∈ [0, 1] | T (x, t)� y}, x, y ∈ [0, 1].

If I is an R-implication generated from a t-norm T, then we will often denote it by IT .

Example 5.9. Table 8 lists a few well-known R-implications along with their t-norms from which they have been
obtained.

Theorem 5.10 (cf. Fodor and Roubens [10], Gottwald [12]). If T is any t-norm (not necessarily left-continuous), then
IT ∈ FI. Moreover, IT satisfies (NP) and (IP).

Theorem 5.11 (Fodor and Roubens [10, Theorem 1.14]). For a function I : [0, 1]2 → [0, 1] the following statements
are equivalent:

(i) I is an R-implication based on some left-continuous t-norm T.
(ii) I satisfies (I2), (OP), (EP) and I (x, ·) is right-continuous for any fixed x ∈ [0, 1].

Remark 5.12. It can be immediately noted that NT (·) = IT (·, 0), where IT is obtained from a t-norm T. From
Theorem 5.11 and Corollary 3.6, we see that for a left-continuous t-norm T, the fuzzy negation NT is either strong or
discontinuous.

5.3. Intersections between (S,N)- and R-implications

The following results are from Baczyński and Jayaram [4].

Theorem 5.13 (Baczyński and Jayaram [4, Theorem 6.2]). For a left-continuous t-norm T, a t-conorm S and a fuzzy
negation N the following statements are equivalent:

(i) The R-implication IT is also an (S,N)-implication IS,N , i.e., IT = IS,N .
(ii) N = NT is a strong negation and (T, N , S) form a De Morgan triple.
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Theorem 5.14 (Baczyński and Jayaram [4, Theorem 6.5]). For a right-continuous t-conorm S and a t-norm T the
following statements are equivalent:

(i) The (S,N)-implication IS,NS is also the R-implication IT .
(ii) (S, NS, T ) form a De Morgan triple.

Let us denote by

• IS,N—the family of all (S,N)-implications;
• IS—the family of all S-implications, i.e., (S,N)-implications where N is a strong negation;
• IS∗,N∗

S
—the family of all (S,N)-implications obtained from right-continuous t-conorms and their natural negations

which are strong;
• IT—the family of all R-implications;
• ITLC

—the family of all R-implications obtained from left-continuous t-norms;
• IT∗—the family of all R-implications obtained from left-continuous t-norms having strong induced negations;
• INT(T),NT

—the family of all (S,N)-implications obtained from the NT -dual of the left-continuous t-norm T whose
natural negation NT is strong.

As a consequence of the presented facts, the following equalities hold:

IS ∩ ITLC
= IS,N ∩ ITLC

= INT(T),NT
= IT∗ = IS∗,N∗

S
.

Note, that as yet, it is only known that IWB ∈ IS,N ∩ IT. A complete characterization of the intersection of these classes
is still an open problem.

6. Intersections between (S,N)- and QL-implications

Let us denote by

• IQL—the family of all QL-implications.

Firstly, note that if the t-conorm S is positive, the following result is obvious from Proposition 4.7.

Theorem 6.1. The QL-implication IT,S,N , where S is a positive t-conorm, is an (S,N)-implication. In fact,
IT,S,N = IWB.

Hence

IS,N ∩ IQL � ∅.

The following result shows that if a QL-operation IT,S,N is obtained from a triple (T, S, N ), where N is a continuous
negation, then it being an (S,N)-implication is equivalent to IT,S,N satisfies (EP). We give a slightly more general result
than was shown by Mas et al. [21].

Theorem 6.2 (cf. Mas et al. [21, Proposition 8]). For a QL-implication IT,S,N , with a continuous negation N, the
following statements are equivalent:

(i) IT,S,N satisfies (EP).
(ii) IT,S,N is an (S,N)-implication generated from N.

Proof. (i) �⇒(ii) Let IT,S,N be a QL-implication with N a continuous negation. Firstly, observe that IT,S,N

satisfies (I2) and NIT,S,N = N is a continuous negation. If IT,S,N satisfies (EP), then by virtue of Theorem 5.6
and Remark 5.7(ii), the function IT,S,N is an (S,N)-implication generated from N.
(ii)�⇒ (i) The reverse implication is obvious and follows from Remark 5.3(i). �
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Remark 6.3.

(i) When N is a strict negation in Theorem 6.2, then IT,S,N is an (S,N)-implication generated from N and a t-conorm
S∗ given by S∗(x, y) = S(x, T (N−1(x), y)).

(ii) Theorem 6.2 also gives a sufficient condition for a QL-operation obtained from the triple (T, S, N ) with a
continuous negation N to be a fuzzy implication.

(iii) However, the QL-implications IWB and IT,SD,N (see Example 4.14), with any N that is discontinuous but non-
vanishing, show that the continuity of N is not necessary for QL-operation to satisfy (EP).

(iv) It is interesting to note that both IWB and IT,SD,N , under the conditions of Example 4.14, are also (S,N)-
implications. While IWB is an (S,N)-implication obtained from any t-conorm S and N = ND2, i.e., IWB = IS,ND2 ,
the QL-implication IT,SD,N is the (S,N)-implication ISD,N .

In the case, when T is the minimum t-norm TM, we have the following stronger results.

Proposition 6.4. Let S be a t-conorm and N a fuzzy negation such that the pair (S, N ) satisfies (LEM). Then the QL-
operation ITM,S,N is also an (S,N)-implication obtained from the same t-conorm S and negation N, i.e., ITM,S,N = IS,N .
In other words, IS,N can be represented as a QL-implication obtained from the triple (TM, S, N ).

Proof. Consider the QL-operation generated from the minimum t-norm TM, a t-conorm S and a fuzzy negation N such
that the pair (S, N ) satisfies (LEM). Then ITM,S,N is a fuzzy implication given by (6). On the one hand, if x� y, then

IT,S,N (x, y) = S(N (x), TM(x, y)) = S(N (x), x) = 1

and

IS,N (x, y) = S(N (x), y)� S(N (x), x) = 1.

On the other hand, if x > y, then IT,S,N (x, y) = S(N (x), y) = IS,N (x, y). �

Remark 6.5. In the above Proposition 6.4 the condition that the pair (S, N ) satisfies (LEM) is essential. Otherwise,
the QL-operation may not be a fuzzy implication, as can be seen for IZD in Remark 4.3.

From [16, Proposition 2.31] we know that (TM)� = TM for all � ∈ �, from whence we have the following result.

Corollary 6.6. The �-conjugate of the QL-implication ITM,S,N is also the (S,N)-implication generated from the
�-conjugate t-conorm of S and the �-conjugate fuzzy negation of N, i.e., if � ∈ �, then

(ITM,S,N )�(x, y) = IS�,N� (x, y), x, y ∈ [0, 1].

As an interesting consequence of the above fact we obtain the following characterizations of some special classes
of QL-implications.

Theorem 6.7. For a function I : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) I is a QL-implication obtained from the triple (TM, S, N ) with a continuous negation N.
(ii) I satisfies (I2), (IP), (EP) and NI is a continuous negation.

Proof. (i) �⇒ (ii) From Proposition 6.4 we see that I is an (S,N)-implication obtained from the t-conorm S and the
continuous negation N. Hence it satisfies (I2) and (EP) too. Since I is a QL-implication we know that the pair (S, N )
satisfies (LEM) and hence, by Lemma 5.4 I satisfies (IP).
(ii)�⇒ (i) Since I satisfies (I2), (EP) and NI is a continuous negation, I is an (S,N)-implication obtained from some

t-conorm S and N = NI . Consider the QL-operation J obtained from the triple (TM, S, N ) with N = NI and the above
S. Since I satisfies (IP), once again by Lemma 5.4, we know that the pair (S, N ) satisfies (LEM). Now with T = TM
we know from Proposition 6.4, that J is the (S,N)-implication obtained from the above t-conorm S and N = NI , i.e.,
J = I . �



182 M. Baczyński, B. Jayaram / Fuzzy Sets and Systems 161 (2010) 158–188

Theorem 6.8. For a function I : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) I is a QL-implication obtained from the triple (TM, S, NS) where NS is a strong negation and the pair (S, NS)
satisfies (LEM).

(ii) I satisfies (I2), (OP), (EP) and NI is a strong negation.

Proof. (i)�⇒ (ii) From Proposition 6.4 we see that I = IS,NS , the (S,N)-implication obtained from the t-conorm S and
the strong negation NS . Hence it satisfies (I2) and (EP). Moreover, NI = NIS,NS

= NS is a strong negation. Finally,
from Theorem 5.5 we see that I satisfies (OP).
(ii)�⇒ (i) Since I satisfies (I2), (EP) and NI is a strong negation it is an S-implication obtained from the t-conorm

S(x, y) = I (NI (x), y) and N = NI . Once again, from Theorem 5.5 we see that N = NI = NS and the pair (S, NS)
satisfies (LEM). Consider the QL-operation J obtained from the triple (TM, S, NS). From Proposition 6.4, we get that
J is the (S,N)-implication obtained from the above t-conorm S and N = NS , i.e., J = I . �

Corollary 6.9. For a function I : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) I is a QL-implication obtained from the triple (TM, S, NS) where S is a right-continuous t-conorm and NS is a
strong negation.

(ii) I satisfies (I2), (OP), (EP), I is right-continuous in the second variable and NI is a strong negation.

Proof. (i) �⇒ (ii) Since S is right-continuous from Proposition 2.12(iv) we have that the pair (S, NS) satisfies (LEM).
Then, from Theorem 6.8, we see that I satisfies (I2), (OP), (EP) and NI is a strong negation. Obviously, I is right-
continuous in the second variable.
(ii)�⇒ (i) Since I is right-continuous in the second variable and S(x, y) = I (NI (x), y) we have that S is also right-

continuous in the second variable. But S is also a t-conorm in this case, so S is right-continuous. Once again, from
Theorem 6.8 the rest of the proof is obvious. �

Theorem 6.10. Let IT,S,N be a QL-implication, where S is a non-positive t-conorm with strong induced negation NS .
Consider the following statements:

(i) IT,S,N is an (S,N)-implication obtained from the same S and N, i.e., IT,S,N = IS,N .
(ii) N = NS .
(iii) T = TM.

Then the following relationships exist among the above statements: (i) and (ii) �⇒ (iii); (ii) and (iii) �⇒ (i).

Proof. Firstly, note that if IT,S,N ∈ FI, then by virtue of Lemma 4.5 the pair (S, N ) satisfies (LEM).
(i) and (ii)�⇒ (iii) We know that for any t-norm T (x, x)�x for all x ∈ [0, 1]. Moreover, for any x ∈ (0, 1), we have

NS(x) � 1. Let us assume that IT,S,NS = IS,NS for some non-positive t-conorm S with strong natural negation NS and
some t-norm T. Then S(NS(x), T (x, x)) = S(NS(x), x) = 1, for all x ∈ [0, 1], since the pair (S, NS) satisfies (LEM).
From Remark 2.10(iii), we obtain T (x, x)�NS ◦ NS(x) = x , from whence we obtain T (x, x) = x , for all x ∈ [0, 1],
i.e., T = TM.

(ii) and (iii) �⇒ (i) Since the pair (S, N ) satisfies (LEM), this follows from Proposition 6.4. �

Remark 6.11. Let us consider a t-conorm S whose natural negation NS is discontinuous. Note that, in this remark, by
points (i)–(iii) we refer to the items described in Theorem 6.10.

From Proposition 6.4, we always have that (iii) �⇒ (i). Let us define a lenient version of (i) as follows:

(i′) IT,S,N is an (S,N)-implication obtained from a (possibly different) t-conorm S′ and a negation N ′, i.e.,
IT,S,N = IS′,N ′ .

Then, from Table 9, the following observations can be made:

(a) From the first entry, we notice that N = NS is not strong and IT,S,N = IS,N , but T � TM, i.e., (i) and (ii) /�⇒ (iii),
when N is not strong. Note that the t-conorm SP can be replaced by any positive t-conorm.
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Table 9
Some QL-implications that are also (S,N)-implications

S T N NS IT,S,N

SP Any T ND2 ND2 IWB

SB TM ND2 NSB IWB

SD TM NC ND1 IDP
SLK TLK NC NC IKD

SLK TP NC NC IRC

(b) From the second and third entries, it is clear that even if IT,S,N = IS,N and T = TM we can have NS � N , i.e., (i)
and (iii) /�⇒ (ii), when N is not strong. Note that the t-conorm SB and its natural negation NSB are given as follows:

SB(x, y) =
{
1 if (x, y) ∈ (0.5, 1)2,
max(x, y) otherwise,

x, y ∈ [0, 1],

NSB (x) =
⎧⎨
⎩
1 if x ∈ [0, 0.5),
0.5 if x ∈ [0.5, 1),
0 if x = 1,

x ∈ [0, 1].

(c) From the fourth and fifth entries, we see that IT,S,N = IS′,N ′ and N = N ′ = NC, a strong negation, but T � TM,
i.e., (i′) and (ii) /�⇒ (iii).

Let us denote by

• IS,NS
—the family of all (S,N)-implications obtained from t-conorms and their natural negations;

• I
S,N̂

—the family of all (S,N)-implications, where N is greater than or equal to the natural negation obtained from S,
i.e., N �NS .

Summarizing the above discussion, we get

IS∗,N∗
S
�IS,NS

�I
S,N̂

�IQL.

The following examples illustrate the above chain of inclusions.

• ILK, IFD ∈ IS∗,N∗
S
�IQL.

• IWB ∈ IS,NS
\ IS∗,N∗

S
�IQL.

• IDP ∈ I
S,N̂

\ IS,NS
�IQL.

• IKD, IRC ∈ IQL \ I
S,N̂

.
• The QL-implications IPC, IPR from Example 4.13 and IKP from Example 4.21 do not satisfy the exchange principle
(EP) and hence are not (S,N)-implications, i.e.,

IPC, IPR, IKP ∈ IQL \ IS,N.

• Similarly, the fuzzy implication ID (see Table 7) is an (S,N)-implication obtained from the least negation ND1 and
hence, by Remark 4.6(i), it is not a QL-implication, i.e.,

ID ∈ IS,N \ IQL.

7. Intersections between R- and QL-implications

Firstly, if S is a positive t-conorm or if N = ND2, then the QL-implication IT,S,N is the R-implication IWB obtained
from the non-left-continuous t-norm TD. Hence

IQL ∩ IT � ∅.
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A complete characterization of the above intersection is as yet unknown. However, as we show below, the exact
intersection of the family of QL-implications IQL with the family of R-implications obtained from left-continuous
t-norms ITLC

can be precisely determined.

Proposition 7.1. If a QL-implication IT,S,N is an R-implication obtained from a left-continuous t-norm T ∗, then

(i) N = NT ∗ is strong;
(ii) IT,S,N is also an S-implication obtained from a t-conorm S∗, such that S∗ is the N-dual of T ∗, and N = NS∗ , i.e.,

IT,S,N = IS∗,NS∗ .

Proof. Let aQL-implication obtained from the triple (T, S, N ) also be anR-implication obtained from a left-continuous
t-norm T ∗, i.e., let IT,S,N = IT ∗ .

(i) From Theorem 5.11, we see that IT ∗ satisfies both (EP) and (OP). Now, from Propositions 4.23 and 3.6, we get
that

N = NIT,S,N = NIT∗ = NT ∗ ,

is either strong or discontinuous but strictly decreasing. However, we know from Corollary 2.15, that the natural
negation NT ∗ of a (left-continuous) t-norm T ∗, if discontinuous, is not strictly decreasing. Hence N = NT ∗ is
strong.

(ii) Since IT,S,N satisfies (EP), Theorem 6.2 implies that IT,S,N is also an S-implication IS∗,N for some t-conorm S∗,
i.e., IT,S,N = IS∗,N = IT ∗ . Now, from Theorem 5.13, we see that (T ∗, S∗, N ) forms a De Morgan triple, i.e., S∗
is the N-dual of T ∗ and that N = NS∗ . �

Theorem 7.2. For a function I : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) I is both a QL-implication obtained from the triple (T, S, N ) and an R-implication obtained from some left-
continuous t-norm T ∗.

(ii) I can be represented as a QL-implication obtained from (TM, S∗, NS∗), where S∗ is a right-continuous t-conorm
with a strong natural negation NS∗ .

(iii) I is both an (S,N)- and an R-implication obtained from a left-continuous t-norm.

Proof. (i) �⇒ (ii) Let I = IT,S,N = IT ∗ . From Proposition 7.1, we have that N = NIT∗ = NT ∗ is strong and
I = IS∗,N , where S∗ is the right-continuous t-conorm that is the N-dual of T ∗. Moreover, N = NT ∗ = NS∗ . Now,
since S∗ is right-continuous, by Proposition 2.22, we see that the pair (S∗, NS∗ ) indeed satisfies (LEM). Further, by
Proposition 6.4, we see that IS∗,NS∗ can also be represented as a QL-implication obtained from the triple (TM, S∗, NS∗ ),
i.e., I = IT ∗ = IS∗,NS∗ = ITM,S∗,NS∗ .
(ii) �⇒ (iii) Firstly, from Proposition 6.4, we see that such a QL-implication is also an (S,N)-implication. In fact,

we have ITM,S∗,NS∗ = IS∗,NS∗ . Since S∗ is a right-continuous t-conorm with a strong natural negation NS∗ , we see that
(S∗, NS∗ , T ∗) form a De Morgan triple, where T ∗ is the left-continuous t-norm which is NS∗-dual of S∗. Now, from
Theorem 5.14, we see that IS∗,NS∗ is also the R-implication obtained from T ∗, i.e., IS∗,NS∗ = IT ∗ .

(iii) �⇒ (i) If I is both an (S,N)- and an R-implication obtained from a left-continuous t-norm, then we know,
from Theorem 5.13, that (T, S, NT = NS) form a De Morgan triple and I = IS,NS = IT . Once again, invoking
Proposition 6.4, we see that IS,NS can also be represented as a QL-implication obtained from the triple (TM, S, NS),
i.e., I = IT = IS,NS = ITM,S,NS . �

From Theorem 7.2, we see that

IQL ∩ ITLC
= ITLC

∩ IS,N

= IQL ∩ ITLC
∩ IS,N

= IS∗,N∗
S

= IT∗ .
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Fig. 3. Intersections between families of (S,N)-, R- and QL-implications.

Example 7.3.

(i) Consider the R-implication obtained from the t-norm TB given in Example 2.13, which is given as follows:

ITB(x, y) =
⎧⎨
⎩
1 if x� y,
0.5 if x > y and x ∈ [0, 0.5),
y otherwise,

x, y ∈ [0, 1].

It is clear that ITB satisfies (OP) but its natural negation NITB = NTB given in Example 2.13 is not strictly
decreasing and hence, by Proposition 4.23, we have that ITB is not a QL-implication. For the same reason the
Goguen implication IGG cannot be obtained as a QL-implication for any triple (T, S, N ).

(ii) Consider the QL-implications IPC, IPR from Example 4.13. Since they do not satisfy (IP), from Theorem 5.10 we
see that they cannot be represented as R-implications of any t-norm. Let us now consider the QL-implication IKP
in Example 4.21. Since a QL-operation is generated by a unique negation (see Proposition 4.2(ii)), if IKP is also an
R-implication IT obtained from some t-norm T, then NIKP = NK = NIT = NT . However, NK is a strict negation
that is not involutive, hence by Corollary 2.15, we see that IKP cannot be an R-implication.

To summarize, we have the following facts:
• IPC, IPR, IKP ∈ IQL \ IT,
• IWB ∈ IQL \ ITLC

,
• ITB ∈ IT \ IQL,
• IGG ∈ ITLC

\ IQL.

The results presented in this section are also diagrammatically represented in Fig. 3.

8. Intersections between Yager’s and QL-implications

Recently, Yager [32] introduced two new classes of fuzzy implications from the additive generators of t-norms and
t-conorms called f- and g-implications, respectively. We only give the relevant results here. For more details, we refer
the readers to Yager [32] and Baczyński and Jayaram [2].



186 M. Baczyński, B. Jayaram / Fuzzy Sets and Systems 161 (2010) 158–188

Definition 8.1 (Yager [32, p. 197]). Let f : [0, 1] → [0, ∞] be a strictly decreasing and continuous function with
f (1) = 0. The function I : [0, 1]2 → [0, 1] defined by

I (x, y) = f −1(x · f (y)), x, y ∈ [0, 1], (10)

with the understanding 0 · ∞ = 0, is called an f-generated implication. The function f itself is called an f-generator of
the I generated as in (10). In such a case, to emphasize the apparent relation we will write I f instead of I.

Definition 8.2 (Yager [32, p. 202]). Let g: [0, 1] → [0, ∞] be a strictly increasing and continuous function with
g(0) = 0. The function I : [0, 1]2 → [0, 1] defined by

I (x, y) = g(−1)
(
1

x
· g(y)

)
, x, y ∈ [0, 1], (11)

with the understanding 1/0 = ∞ and ∞ · 0 = ∞, is called a g-generated implication, where the function g(−1) in (11)
is the pseudo-inverse of g given by

g(−1)(x) =
{
g−1(x) if x ∈ [0, g(1)],
1 if x ∈ [g(1),∞].

The function g itself is called a g-generator of the I generated as in (11). Once again, we will write Ig instead
of I.

Proposition 8.3 (Baczyński and Jayaram [2, Propositions 2 and 4]).

(i) If an f-generator is such that f (0) = ∞, then the natural negation of I f is the Gödel negation ND1, which is
non-continuous.

(ii) If g is a g-generator, then the natural negation of Ig is the Gödel negation ND1, which is not continuous.

Let us denote by

• IF,∞—the family of all f-generated implications such that f (0) = ∞;
• IG—the family of all g-generated implications.

Unfortunately, there does not exist any complete characterization of the family of QL-implications. Interestingly, some
results can still be proven regarding the intersections between QL-implications and IF,∞, IG. From Remark 4.6(i), we
see that if the natural negation NI of a fuzzy implication I is the Gödel negation ND1, then I is not a QL-implication.
Now, from Proposition 8.3(i) and (ii), we have the following result.

Theorem 8.4. If I is either

(i) a g-implication obtained from a g-generator, or
(ii) an f-implication obtained from an f-generator with f (0) = ∞,

then I is not a QL-implication.

Summarizing the above results we have

IF,∞ ∩ IQL = ∅,

IG ∩ IQL = ∅.

9. Concluding remarks

In this paper, we have systematically studied the class of QL-implications without imposing any conditions
on the underlying operations. Firstly, we have shown that not all QL-operations are fuzzy implications and have
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given some necessary/sufficient conditions to this end. However, the following question, as yet, remains
unsolved:

Problem 9.1. Characterize triples (T, S, N ) such that IT,S,N satisfies (I1).

Following this, we have discussed the conditions underwhich this family satisfies some desirable algebraic properties.
However, only some necessary conditions are known for a QL-implication to satisfy (OP) and hence we have the
following:

Problem 9.2. What extra sufficient condition(s) should we impose, other than the ones in Theorem 4.24, so that the
QL-implication obtained from the triple (T, S, N ) satisfies (OP)?

Although Theorem 6.2 gives an equivalence condition for a QL-implication IT,S,N , with a continuous negation N,
to satisfy (EP), it is obvious that its utility is quite limited. Nevertheless, all the examples, so far, seem to point that a
QL-implication that satisfies (EP) also turns out to be an (S,N)-implication. The answers to the following posers will
be of immense help in resolving the exact intersection between families of (S,N)- and QL-implications.

Problem 9.3.

(i) Is Theorem 6.2 true even when N is not continuous, i.e., is any QL-implication IT,S,N that satisfies (EP) also an
(S,N)-implication?

(ii) If not, give a counter-example and hence obtain an alternate necessary and sufficient condition for a QL-implication
IT,S,N to satisfy (EP).

Based on the obtained results and existing characterization results, the intersections between QL-implications and
the two most established families of fuzzy implications, viz., (S,N)- and R-implications have been determined. It is
shown that QL-implications contain the set of all R-implications obtained from left-continuous t-norms that are also
(S,N)-implications. However, it is not yet clear if there is a QL-implicationwhich can be represented as an R-implication
of some non-left-continuous t-norm, but which is not an (S,N)-implication. Note that Theorem 7.2 assumes the left-
continuity of the t-norm T ∗ (see Fig. 3). The overlaps between QL-implications and the recently proposed f- and
g-implications have also been studied.
In this context, denoting the family of all f-generated implications with f (0) < ∞ by IF,ℵ, the following questions

remain to be solved.

Problem 9.4.

(i) Characterize the non-empty intersection IS,N ∩ IQL.
(ii) Is the Weber implication IWB the only QL-implication that is also an R-implication obtained from a non-left

continuous t-norm? If not, give other examples from the above intersection and hence, characterize the non-empty
intersection IQL ∩ IT.

(iii) Prove or disprove by giving an example: (IQL ∩ IT) \ IS,N = ∅.
(iv) Is the intersection IF,ℵ ∩ IQL non-empty? If yes, then characterize the intersection IF,ℵ ∩ IQL.
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