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Abstract

Contrapositive symmetry (CPS) is a tautology in classical logic. In fuzzy logic, not all fuzzy implications have CPS with respect
to a given strong negation. Given a fuzzy implication J , towards imparting contrapositive symmetry to J with respect to a strong
negation N two techniques, viz., upper and lower contrapositivisation, have been proposed by Bandler and Kohout [Semantics of
implication operators and fuzzy relational products, Internat. J. Man Machine Stud. 12 (1980) 89–116]. In this work we investigate
the N-compatibility of these contrapositivisation techniques, i.e., conditions under which the natural negation of the contrapositivised
implication is equal to the strong negation employed. This property is equivalent to the neutrality of the contrapositivised implication.
We have shown that while upper contrapositivisation has N-compatibility when the natural negation of the fuzzy implication J (given
by NJ (x) = J (x, 0)) is less than the strong negation N considered, the lower contrapositivisation is N-compatible in the other case.
Also we have proposed a new contrapositivisation technique, viz., M-contrapositivisation, which is N-compatible independent of
the ordering on the negations. Some interesting properties of M-contrapositivisation are also discussed. Since all S-implications
have contrapositive symmetry, we investigate whether these contrapositivisations can be written as S-implications for suitable fuzzy
disjunctions. Also some sufficient conditions for these fuzzy disjunctions to become t-conorms are given. In line with Fodor’s
[Contrapositive symmetry of fuzzy implications, Fuzzy Sets and Systems 69 (1995) 141–156] investigation, it is shown that the
lower contrapositivisation of an R-implication JT can also be seen as the residuation of a suitable binary operator.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the framework of classical two-valued logic, contrapositivity of a binary implication operator is a tautology, i.e.,
� ⇒ � ≡ ¬� ⇒ ¬�. In fuzzy logic, contrapositive symmetry of a fuzzy implication J with respect to strong negation
N—CPS(N )—plays an important role in the applications of fuzzy implications, viz., approximate reasoning, deductive
systems, decision support systems, formal methods of proof, etc. (see also [7,10]). Usually, the contrapositive symmetry
of a fuzzy implication J is studied with respect to its natural negation, denoted by NJ and defined as NJ (x) = J (x, 0)

for all x ∈ [0, 1], i.e., CPS(NJ ). However, not all fuzzy implications have CPS(NJ ), either because the natural negation
NJ is not strong or NJ is strong but still J does not have CPS(NJ ).

For example, consider the fuzzy implication JGG(x, y) = min{1, (1 − x)/(1 − y)}. The natural negation of JGG is
NJGG(x) = 1 − x which is a strong negation but JGG does not have CPS(1 − x). Similarly the natural negation of the
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fuzzy implication J (x, y) = [1 − x + x · y2]1/2 is NJ (x) = J (x, 0) = [1 − x]1/2 which is not a strong negation and
hence J does not have CPS(NJ ).

Towards imparting contrapositive symmetry to such fuzzy implications J with respect to a strong negation N the
following two contrapositivisation techniques—upper and lower contrapositivisation—have been proposed in [2]:

x
U :N�⇒ y = max{J (x, y), J (N(y), N(x))},

x
L:N�⇒ y = min{J (x, y), J (N(y), N(x))},

for any x, y ∈ [0, 1]. These techniques transform a fuzzy implication J that does not have CPS(NJ ) into a contraposi-

tivised implication J ∗ ≡∗:N�⇒ that has CPS(N ) with respect to a strong negation N . Of particular interest is when N is
taken as NJ , provided NJ is strong.

In this work we investigate the conditions under which J ∗ has contrapositive symmetry with respect to its natural
negation NJ ∗ , i.e., when will J ∗ have CPS(NJ ∗ )? In other words, we investigate the conditions under which NJ ∗ ≡ N .

1.1. Motivation for this work

In [7] Fodor has discussed the contrapositive symmetry of fuzzy implications for the three main families, viz.,
S-, R- and QL-implications. Fodor has considered the upper contrapositivisation of the R-implication JT , with T a
strict t-norm, and cites the lack of neutrality of the lower contrapositivisation of JT as one of the reasons for not
considering it.

In this work we investigate the conditions under which both the upper and lower contrapositivised fuzzy implications
have the neutrality property when applied to a general fuzzy implication, by showing that it is equivalent to investigating

the conditions under which the natural negations obtained from these, i.e., x
U :N�⇒ 0, x

L:N�⇒ 0, are equal to the strong

negation N employed therein. When a contrapositivisation
∗:N�⇒ has the property that its natural negation is equal to the

strong negation N employed therein, we say
∗:N�⇒ is N-compatible.

1.2. Outline of the paper

After detailing the necessary preliminaries in Section 2, in Section 3 we investigate the conditions under which these

two techniques, viz.,
U :N�⇒,

L:N�⇒, are N-compatible.
We show that an ordering between N and the natural negation NJ of the original implication J considered is necessary

for
U :N�⇒,

L:N�⇒ to be N-compatible. Also, in Section 4, we propose a new contrapositivisation technique
M:N�⇒ such that the

transformed implication not only has contrapositive symmetry with respect to N , but also is N-compatible independent
of any ordering between N and NJ .

It is well-known that S-implications have contrapositive symmetry with respect to the strong negation used in its

definition. Since all the three contrapositivisation techniques, viz,
U :N�⇒,

L:N�⇒,
M:N�⇒, in general, can be applied to any fuzzy

implication, we investigate, in Section 5, whether they can be written as S-implications for suitable fuzzy disjunctions
◦, �,$, respectively. Subsequently, we propose some sufficient conditions for these fuzzy disjunctions to become
t-conorms.

In [7] Fodor has shown the upper contrapositivisation of an R-implication JT obtained from a (strict) t-norm T as the
residuation of an appropriate conjunction, ∗T , and discussed conditions under which it becomes a t-norm. In Section 6,
an analogous study is done in the case of lower contrapositivisation. Finally, some concluding remarks are given.

2. Preliminaries

To make this work self-contained, we briefly mention some of the concepts and results employed in the rest of the
work.
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2.1. Negations

Definition 1 (Fodor and Roubens [8, Definition 1.1, p. 3]). A negation N is a function from [0, 1] to [0, 1] such that

• N(0) = 1; N(1) = 0;
• N is non-increasing.

Definition 2. A negation N is said to be

• non-vanishing if N(x) �= 0 for any x ∈ [0, 1), i.e., N(x) = 0 iff x = 1;
• non-filling if N(x) �= 1 for any x ∈ (0, 1], i.e., N(x) = 1 iff x = 0.

A negation N that is not non-filling (non-vanishing) will be called filling (vanishing).

Definition 3 (Fodor and Roubens [8, Definition 1.2, p. 3]). A negation N is called strict if in addition N is strictly
decreasing and continuous.

Note that if a negation N is strict it is both non-vanishing and non-filling, but the converse is not true as shown in
Fig. 1, which gives the graphs of some continuous filling and vanishing negations.

Definition 4 (Fodor and Roubens [8, Definition 1.2, p. 3]). A strong negation N is a strict negation N that is also
involutive, i.e., N(N(x)) = x, ∀x ∈ [0, 1].

2.2. t-norms and t-conorms

Definition 5 (Klement et al. [11, Definition 1.1, p. 4]). A t-norm T is a function from [0, 1]2 to [0, 1] such that for all
x, y, z ∈ [0, 1],

T (x, y) = T (y, x), (T1)

T (x, T (y, z)) = T (T (x, y), z), (T2)

T (x, y)�T (x, z) whenever y�z, (T3)

T (x, 1) = x. (T4)

Definition 6 (Klement et al. [11, Definition 1.13 p. 11]). A t-conorm S is a function from [0, 1]2 to [0, 1] such that for
all x, y, z ∈ [0, 1],

S(x, y) = S(y, x), (S1)

S(x, S(y, z)) = S(S(x, y), z), (S2)

S(x, y)�S(x, z) whenever y�z, (S3)

S(x, 0) = x. (S4)

Definition 7 (Klement et al. [11, Definition 2.9, p. 26, Definition 2.13, p. 28]). A t-norm T is said to be

• continuous if it is continuous in both the arguments;
• Archimedean if for each (x, y) ∈ (0, 1)2 there is an n ∈ N with x

(n)
T < y, where x

(n)
T = T (x, . . . , x︸ ︷︷ ︸

n times

);

• Strict if T is continuous and strictly monotone, i.e., T (x, y) < T (x, z) whenever x > 0 and y < z;
• Nilpotent if T is continuous and if each x ∈ (0, 1) is such that x

(n)
T = 0 for some n ∈ N.
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Fig. 1. Graphs of some continuous filling and vanishing negations.

2.3. Fuzzy implications

Definition 8 (Fodor and Roubens [8, Definition 1.15, p. 22]). A function J : [0, 1]2 → [0, 1] is called a fuzzy impli-
cation if it has the following properties, for all x, y, z ∈ [0, 1],

J (x, z)�J (y, z) if x�y, (J1)

J (x, y)�J (x, z) if y�z, (J2)

J (0, z) = 1, (J3)

J (x, 1) = 1, (J4)

J (1, 0) = 0. (J5)

Definition 9 (cf. Trillas and Valverde [14]). A fuzzy implication J is said to have

• contrapositive symmetry with respect to a strong negation N , CPS(N ), if

J (x, y) = J (N(y), N(x)), ∀x, y ∈ [0, 1]; (CP)
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Table 1
Some fuzzy implications with the properties they satisfy

Name Fuzzy implication J Properties satisfied

Lukasiewicz JL(x, y) = min(1, 1 − x + y) (OP), (NP), (EP), CPS(1 − x)

Goguen JG(x, y) =
{

1 if x �y
y

x
if x > y

(OP), (NP) and (EP)

Kleene–Dienes JKD(x, y) = max(1 − x, y) (NP), (EP), CPS(1 − x)

Reciprocal Goguen JGG(x, y) = min

{
1,

1 − x

1 − y

}
Only (OP)

Baczynski JB(x, y) from Example 1 (OP), CPS(1 − x)

• the ordering property if for all x, y ∈ [0, 1],
x�y ⇔ J (x, y) = 1; (OP)

• the neutrality property or is said to be neutral if

J (1, y) = y, ∀y ∈ [0, 1]; (NP)

• the exchange property if

J (x, J (y, z)) ≡ J (y, J (x, z)), ∀x, y, z ∈ [0, 1]. (EP)

Table 1 lists a few fuzzy implications along with the properties they satisfy among (CP)–(EP) (see [12]).

Definition 10. Let J be any fuzzy implication. By the natural negation of J , denoted by NJ , we mean NJ (x) = J (x, 0),
∀x ∈ [0, 1].

Clearly, NJ (0) = 1 and NJ (1) = 0. Also by the non-increasingness of J in its first place NJ is a non-increasing
function.

Example 1. Let us consider the fuzzy implication JB given in [1, Example 17, p. 274]:

JB(x, y) = min

{
max

[
1

2
, min(1 − x + y, 1)

]
, 2 − 2x + 2y

}
. (1)

The following are easy to see:

• x�y ⇔ JB(x, y) = 1 and thus JB has the ordering property (OP).
• The natural negation of JB is given by

JB(x, 0) = NJB(x) =
⎧⎨
⎩

1 − x if 1
2 �x�0,

1
2 if 3

4 �x� 1
2 ,

2(1 − x) if 1�x� 3
4 .

• NJB though continuous is not strict (hence not strong) and thus JB does not have CPS(NJB ) as per Definition 9. Note
that NJB is both a non-filling and a non-vanishing negation.

• JB does not have the neutrality property (NP). For example, JB
(
1, 1

4

) = 1
2 .

Lemma 1 (cf. Bustince et al. [3, Lemma 1, p. 214]). Let J be a fuzzy implication and N a strong negation. Then

(i) if J has CPS(N ) and is neutral (NP) then NJ (x) = N(x);
(ii) if N(x) = NJ (x) and J has the exchange property (EP) then J has CPS(N ) and is neutral (NP);

(iii) if J has CPS(N ), the exchange (EP) and ordering (OP) properties then NJ (x) = N(x).
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Proof.
(i) Let J have CPS(N ) and be Neutral. Then

NJ (x) = J (x, 0)

= J (N(0), N(x)) [∵ J has CPS(N)]
= J (1, N(x)) = N(x) [∵ J is neutral].

(ii) Let N(x) = NJ (x) and J have the exchange property. Then

J (N(y), N(x)) = J (N(y), J (x, 0)) [by definition of NJ ]
= J (x, J (N(y), 0)) [J has (EP)]
= J (x, N(N(y))) = J (x, y) [N is strong]

and J (1, y) = J (N(y), 0) = N(N(y)) = y.

(iii) By Lemma 1.3 in [8], if J satisfies (OP) and (EP) then J satisfies (NP). Now using (i) we have the result. �

Example 2. Consider the reciprocal Goguen implication JGG. Then, as can be seen from Table 1, NJGG(x) =
JGG(x, 0) = 1 − x, a strong negation, but JGG does not have either CPS(1 − x) or (NP). Thus the reverse impli-
cation of (i) in Lemma 1 does not always hold.

Example 3. To see that the reverse implication of (ii) in Lemma 1 does not always hold, consider the upper contra-
positivisation J ∗

G of Goguen’s implication JG(see [7]):

JG(x, y) = min
{

1,
y

x

}
, J ∗

G(x, y) = min

{
1, max

[
y

x
,

1 − x

1 − y

]}
.

J ∗
G has CPS(1 − x), (NP) (see Proposition 17 below) and NJG∗ (x) = J ∗

G(x, 0) = 1 − x, but not (EP).

Example 4. Again from Example 2 and Table 1, we see that NJGG(x) = JGG(x, 0) = 1 − x, a strong negation, but
JGG does not have either (OP) or (EP). Thus the reverse implication of (iii) in Lemma 1 is not always true.

From parts (i) and (ii) of Lemma 1 we have the following corollary:

Corollary 11. Let J be a fuzzy implication that has CPS(N ), where N is a strong negation. J is neutral if and only if
NJ ≡ N .

Lemma 2. Let J be a fuzzy implication and N a strong negation. Let us define a binary operation SJ on [0, 1] as
follows:

SJ (x, y) = J (N(x), y), for all x, y ∈ [0, 1]. (2)

Then for all x, y ∈ [0, 1], we have

(i) SJ (x, 1) = SJ (1, x) = 1;
(ii) SJ is non-decreasing in both the variables.

In addition, if J has CPS(N ), then

(iii) SJ is commutative;
(iv) SJ (x, 0) = SJ (0, x) = x if and only if J is neutral (NP);
(v) SJ is associative if and only if J has the exchange property (EP).

Proof.
(i) SJ (x, 1) = J (N(x), 1) = 1, by the boundary condition on J . Also, SJ (1, x) = J (N(1), x) = J (0, x) = 1 again

by the boundary condition of J .
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(ii) That SJ is non-decreasing in both the variables is a direct consequence of the non-increasingness (non-
decreasingness) of J in the first (second) variable.

Let J have CPS(N ).

(iii) Then SJ (x, y) = J (N(x), y) = J (N(y), N(N(x))) = J (N(y), x) = SJ (y, x).
(iv) If J is neutral, then SJ (x, 0) = SJ (0, x) = J (N(0), x) = J (1, x) = x. On the other hand, J (1, x) =

SJ (N(1), x) = SJ (0, x) = x, for all x ∈ [0, 1].
(v) Let J have the exchange principle. Then

SJ (x, SJ (y, z)) = J (N(x), J (N(y), z))

= J (N(x), J (N(z), y)) [∵J has CPS(N) ]
= J (N(z), J (N(x), y)) [∵J has exchange principle ]
= J (N [J (N(x), y)], z)
= J (N [SJ (x, y)], z)
= SJ (SJ (x, y), z).

On the other hand, if SJ is associative, then

J (x, J (y, z)) = SJ (N(x), SJ (N(y), z)) [by definition ]
= SJ (SJ (N(x), N(y)), z)) [∵SJ is associative ]
= SJ (SJ (N(y), N(x)), z)) [∵SJ is commutative ]
= SJ (N(y), SJ (N(x), z))

= J (y, J (x, z)). �

The following are the two important classes of fuzzy implications well-established in the literature:

Definition 12 ([8, Definition 1.16, p. 24]). An S-implication JS,N is obtained from a t-conorm S and a strong negation
N as follows:

JS,N (a, b) = S(N(a), b), ∀a, b ∈ [0, 1]. (3)

Definition 13 (Fodor and Roubens [8, Definition 1.16, p. 24]). An R-implication JT is obtained from a t-norm T as
its residuation as follows:

JT (a, b) = Sup{x ∈ [0, 1] : T (a, x)�b}, ∀a, b ∈ [0, 1]. (4)

Remark 14.

• Though an S-implication can be defined for any negation N , not necessarily strong, herein we employ the above
restricted definition from [8]. Likewise, though an R-implication can be defined for any t-norm T it has some important
properties, like the residuation principle, only if T is a left-continuous t-norm. JT is also called the residuum of T .

• All S-implications JS,N possess CPS(NJ ), with respect to their natural negation NJ which is also the strong negation
N used in its definition (see Corollary 11 above), (NP) and (EP).

• All R-implications JT possess properties (NP) and (EP)(see [14]).
• If the R-implication JT is obtained from a nilpotent t-norm T , its natural negation NJT

(x) = JT (x, 0) is a strong
negation (see [7, Corollary 2, p. 145]). Also, from [10, Corollary 2, p. 162], and by the characterisation of nilpotent
t-norms [11, Corollary 5.7, p. 125–126], we have that an R-implication JT obtained from a nilpotent t-norm T has
CPS(JT (x, 0)).

• On the other hand, if the R-implication JT is obtained from a strict t-norm T then, by definition, NJT
(x) = 0, ∀x ∈

(0, 1] and NJT
(x) = 1 if x = 0, which is neither strict nor continuous and hence is not strong. Thus, JT does not

have contrapositive symmetry with respect to its natural negation, in the sense of Definition 9.
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The following theorems characterise S- and R-implications:

Theorem 1 (Fodor and Roubens [8, Theorem 1.13, p. 24]). A fuzzy implication J is an S-implication for an
appropriate t-conorm S and a strong negation N if and only if J has CPS(N ), the exchange property (EP) and is
neutral (NP).

Theorem 2 (Fodor and Roubens [8, Theorem 1.14, p. 25]). A function J from [0, 1]2 to [0, 1] is an R-implication based
on a left-continuous t-norm T if and only if J is non-decreasing in the second variable (J2), has the ordering property
(OP), exchange property (EP) and J (x, .) is right-continuous for any x ∈ [0, 1].

3. Upper and lower contrapositivisations

Bandler and Kohout, in [2], have proposed two techniques, viz., upper and lower contrapositivisation, towards
imparting contrapositive symmetry to a fuzzy implication J with respect to a strong negation N , whose definitions we
give below.

Definition 15. Let J be any fuzzy implication and N a strong negation. The upper and lower contrapositivisations of

J with respect to N , denoted herein as
U :N�⇒ and

L:N�⇒, respectively, are defined as follows:

x
U :N�⇒ y = max{J (x, y), J (N(y), N(x))}, (5)

x
L:N�⇒ y = min{J (x, y), J (N(y), N(x))} (6)

for any x, y ∈ [0, 1].

As can be seen,
U :N�⇒ and

L:N�⇒ are both fuzzy implications, as per Definition 8, and always have the contrapositive
symmetry with respect to the strong negation N employed in their definitions.

In [7], Fodor has dealt with the contrapositive symmetry of residuated implications JT obtained from strict t-norms
T . When N is a strong negation, Fodor in [7] discusses the upper contrapositivisation of JT , denoted by →T , as given
in (5) and cites the lack of neutrality of the lower contrapositivisation of JT as one of the reasons for not considering it.
We show in Example 5 below that upper contrapositivisation also suffers from the same malady. Also from Corollary 11

we have that the natural negation of
U :N�⇒ is not equal to the strong N employed.

Example 5. Consider the fuzzy implication J (x, y) = [1 − x + x · y2]1/2 with natural negation NJ (x) = J (x, 0) =
[1 − x]1/2 which is not a strong negation. To see this let x = 0.75. Then NJ (0.75) = √

1 − x = √
0.25 = 0.5,

NJ (NJ (0.75)) = √
NJ (0.75 = √

0.5 = 0.707 �= 0.75 = x. Thus J does not have CPS(
√

1 − x). Note also that J is
neutral, i.e., J (1, y) = [y2]1/2 = y, for all y ∈ [0, 1].

Let us consider the strong negation N(x) = 1 − x. The upper contrapositivisation of J with respect to N is given by

J ∗(x, y) = x
U :N�⇒ y = max{J (x, y), J (N(y), N(x))} = J ∗(N(y), N(x)).

Let y = 0.5, then J ∗(1, 0.5) = max{J (1, 0.5), J (0.5, 0)} = max{0.5, NJ (0.5)} = √
1 − 0.5 = 0.707 �= 0.5 = y.

Thus the upper contrapositivised J is not neutral and hence from Corollary 11 its natural negation too is not equal to
1 − x.

Definition 16. Let J be a fuzzy implication and N a strong negation. A contrapositivisation technique
∗:N�⇒ is said to

be N-compatible if the contrapositivisation of J with respect to N , denoted as J ∗(x, y) ≡ x
∗:N�⇒ y, is such that the

natural negation of J ∗, J ∗(., 0) = NJ ∗(.) = N(.), the strong negation employed. Or, equivalently J ∗ is neutral.

In Sections 3.1 and 3.2, we investigate the conditions under which
U :N�⇒,

L:N�⇒ applied to any general fuzzy implication
are N-compatible, and show that an ordering on N and the natural negation NJ of the original implication J considered

is both necessary and sufficient for
U :N�⇒,

L:N�⇒ to be N-compatible.
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3.1. The upper contrapositivisation and N-compatibility

Proposition 17. Let J be a neutral fuzzy implication with natural negation J (x, 0) = NJ (x) and N a strong negation.
The upper contrapositivisation of J with respect to N is N-compatible if and only if N(x)�NJ (x), for all x ∈ [0, 1].

Proof. Let x ∈ [0, 1]. By definition of
U :N�⇒ we have

U :N�⇒ is N-compatible iff N(x) = x
U :N�⇒ 0,

iff N(x) = max{J (x, 0), J (1, N(x))},
iff N(x) = max(NJ (x), N(x)),

iff N(x)�NJ (x), for all x ∈ [0, 1]. �

Proposition 18. If J is a neutral fuzzy implication and N is a strong negation such that the natural negation J (x, 0) =
NJ (x)�N(x), ∀x ∈ [0, 1], then the upper contrapositivisation of J with respect to N is such that

(i) x
U :N�⇒ 0 = NJ (x), ∀x ∈ [0, 1];

(ii) 1
U :N�⇒ y = NJ (N(y)), ∀y ∈ [0, 1].

3.2. The lower contrapositivisation and N-compatibility

We present below the counterparts of Propositions 17 and 18 for lower contrapositivisation.

Proposition 19. Let J be a neutral fuzzy implication with natural negation J (x, 0) = NJ (x) and N a strong negation.
The lower contrapositivisation of J with respect to N is N-compatible if and only if N(x)�NJ (x), for all x ∈ [0, 1].

Proof. Let x ∈ [0, 1]. By definition of
L:N�⇒ we have

L:N�⇒ is N-compatible iff N(x) = x
L:N�⇒ 0,

iff N(x) = min{J (x, 0), J (1, N(x))},
iff N(x) = min(NJ (x), N(x)),

iff N(x)�NJ (x), for all x ∈ [0, 1]. �

Proposition 20. If J is a neutral fuzzy implication and N a strong negation such that the natural negation J (x, 0) =
NJ (x)�N(x), ∀x ∈ [0, 1], then the lower contrapositivisation of J with respect to N is such that

(i) x
L:N�⇒ 0 = NJ (x), ∀x ∈ [0, 1];

(ii) 1
L:N�⇒ y = NJ (N(y)), ∀y ∈ [0, 1].

Corollary 21. Let J be a neutral fuzzy implication such that NJ is strong. Then both the upper and lower contrapositivi-

sation of J with respect to NJ ,
U :NJ�⇒ ,

L:NJ�⇒ , are NJ -compatible. If J has CPS(NJ ), then J (x, y) = x
U :NJ�⇒ y = x

L:NJ�⇒ y,
for all x, y ∈ [0, 1].

3.3. Some new classes of fuzzy implications and contrapositivisation

Let the upper contrapositivisation of J with respect to a strong N be N-compatible. Then from Proposition 17 we
know N �NJ . Since N is strong N(x) = 1 ⇔ x = 0 and we have that for all x ∈ (0, 1], 1 > N(x)�NJ (x) and
NJ is a non-filling negation. In other words, if the natural negation of the fuzzy implication J is a filling negation
we cannot find any strong N with which the upper contrapositivisation of J becomes N-compatible. Similarly, if the
natural negation of the fuzzy implication J is a vanishing negation we cannot find any strong N with which the lower
contrapositivisation of J becomes N-compatible.
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As noted in Remark 14, when T is strict, the natural negation, NJT
(x), of an R-implication JT obtained from

T is such that NJT
(x) = 0 for all x in (0, 1] and NJT

(0) = 1 and hence NJT
is a non-filling but a vanish-

ing negation. Since any strong negation N �NJT
only the upper contrapositivisation is N-compatible, as cited by

Fodor [7].
In Section 3.3.1, we present the recently proposed classes of fuzzy implications by Yager in [15] and another new

class of fuzzy implications inspired by it and discuss their contrapositive symmetry. These classes of implications,
denoted herein as Jf and Jh, do not fall under the established categorisations of R-, S- or QL-implications and thus are
of interest in their own right. An application of the contrapositivisation techniques discussed above with respect to Jf

and Jh highlights the general nature of these techniques and also motivates an alternate contrapositivisation technique
as presented in Section 4.

3.3.1. Jf and Jh fuzzy implications and contrapositivisation
Definition 22 (Yager [15, p. 196]). An f -generator is a function f : [0, 1] → [0, ∞] that is a strictly decreasing and
continuous function with f (1) = 0. Also we denote its pseudo-inverse by f (−1), given by

f (−1)(x) =
{

f −1(x) if x ∈ [0, f (0)],
0 if x ∈ [f (0), ∞]. (7)

Definition 23 (Yager [15, p. 197]). A function from [0, 1]2 to [0, 1] defined by an f -generator as Jf (a, b) =
f (−1)(a · f (b)), with the understanding that 0 × ∞ = 0, is called an f -generated implication.

It can easily be shown, as in [15, p. 197], that Jf is a fuzzy implication.
Table 2 gives a few examples from the above class Jf (see [15, p. 198–200]).

Definition 24. An h-generator is a function h : [0, 1] → [0, 1], that is strictly decreasing and continuous, such that
h(0) = 1. Let h(−1) be its pseudo-inverse given by

h(−1)(x) =
{

h−1(x) if x ∈ [h(1), 1],
1 if x ∈ [0, h(1)]. (8)

Lemma 3. Let Jh from [0, 1]2 to [0, 1] be defined as

Jh(x, y) =def h(−1)(x · h(y)), ∀x, y ∈ [0, 1]. (9)

Jh is a fuzzy implication and called the h-generated implication.

Proof. That Jh is a fuzzy implication can be seen from the following:

• Jh(1, 0) = h(−1)(1 · h(0)) = h(−1)(1 · 1) = 0.
• Jh(0, 1) = h(−1)(0 · h(1)) = h(−1)(0) = 1 = Jh(0, 0).
• Jh(1, 1) = h(−1)(1 · h(1)) = h(−1)(h(1)) = 1, since h(−1) ◦ h is the identity on the range of h.
• a�a′ ⇒ a · h(b)�a′ · h(b) ⇒ h(−1)(a · h(b))�h(−1)(a′ · h(b)) ⇒ Jh(a, b)�Jh(a

′, b). Thus Jh is non-increasing
in the first variable.

• b�b′ ⇒ a ·h(b)�a ·h(b′) ⇒ h(−1)(a ·h(b))�h(−1)(a ·h(b′)) ⇒ Jh(a, b)�Jh(a, b′). Thus Jh is non-decreasing
in the second variable.

• Since 0�a · h(1)�h(1), ∀a ∈ [0, 1], we have Jh(a, 1) = h(−1)(a · h(1)) = 1, by definition of h(−1).
• Jh(0, b) = h(−1)(0 · h(b)) = h(−1)(0) = 1, ∀b ∈ [0, 1]. �

Remark 25. If f is an f -generator such that f (0) = ∞, then h(x) = exp{−f (1 − x)} is a decreasing bijec-
tion on the unit interval [0, 1] and thus can act as an h-generator. Table 3 gives a few examples from the above
class Jh.
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Table 2
Examples of some Jf implications with their f -generators

Name f (x) f (0) Jf (a, b)

Yager − log x ∞ ba

Frank − ln

{
sx − 1

s − 1

}
; s > 0, s �= 1 ∞ logs {1 + (s − 1)1−a(sb − 1)a}

Trigonometric cos
(�

2
x
)

1 cos−1 [
a cos

( �
2 b

)]
Yager’s class (1 − x)�; � > 0 1 1 − a1/�(1 − b)

Table 3
Examples of some Jh implications with their h-generators

Name h(x) h(1) Jh(a, b)

Schweizer–Sklar 1 − xp; p �= 0 0 [1 − a + abp]1/p

Yager’s (1 − x)�; � > 0 0 1 − a1/�(1 − b)

– 1 − xn

n
; n�1 1 − 1

n
min{[n − na + abn]1/n, 1}

3.3.2. Jf and Jh implications, CPS(NJ ) and contrapositivisation
In the following, we consider the natural negations of the Jf and Jh implications and discuss their contrapositive

symmetry with respect to their natural negations.

3.3.2.1. Jf and its natural negation The natural negation of Jf , given by NJ (x) = Jf (x, 0) = f (−1)(x · f (0)), is a
negation by the decreasing nature of f . To discuss the properties of NJ , we consider the following two cases:

Case I: f (0) < ∞.
If f (0) < ∞ then NJ (x) = Jf (x, 0) = f (−1)(x · f (0)), ∀x ∈ (0, 1). Since f and thus f (−1)(≡ f −1) are strictly

decreasing continuous functions, we have that NJ is a strict negation. NJ is not strong always (see Example 6 below).

Example 6. Consider the f -generated implication JfY(x, y) = 1 − x1/�(1 − y) obtained from Yager’s class of
f -generators f (x) = (1 − x)� with f (0) = 1 < ∞ (see Table 2). Now, if � = 0.5, i.e. 1/� = 2, then NJfY

(x) =
JfY(x, 0) = 1−x2 is a strict negation. That it is not strong can be seen by letting x = 0.5 in which case NJfY

(NJfY
(x)) =

1−[1−x2]2 = 1− (1−0.25)2 = 0.4375 �= 0.5 = x. On the other hand, if � = 1, then NJfY
(x) = JfY(x, 0) = 1−x,

which is a strong negation.

Case II: f (0) = ∞.
In the case when f (0) = ∞ it is easy to see that NJ is not even strict, since ∀x ∈ (0, 1], we have Jf (x, 0) =

NJf
(x) = f −1(x · f (0)) = f −1(x · ∞) = f −1(∞) = 0, i.e.,

NJf
(x) =

{
0 if x ∈ (0, 1],
1 if x = 0.

Quite obviously, it is not strong either.
Thus, as per Definition 9, Jf does not have contrapositive symmetry with respect to its natural negation.
Now, in the case f (0) < ∞, we have that the natural negation of Jf is at least strict and so both upper and lower

contrapositivisation techniques are N-compatible, with respect to strong negations N , depending on whether N �NJf

or N �NJf
, respectively. On the other hand, when f (0) = ∞, NJf

is a non-filling but a vanishing negation and thus
only the upper contrapositivisation technique is N-compatible with respect to strong negations N �NJf

.
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Table 4
Examples of classes of implications J whose natural negations NJ are either non-vanishing (NV) or non-filling (NF) or both

Jf /Jh : J (a, b) f (0)/h(1) NJ Type

logs {1 + (s − 1)1−a(sb − 1)a} f (0) = ∞
{

0 if x ∈ (0, 1]
1 if x = 0

Only NF

1 − a1/�(1 − b) f (0) = 1 1 − a1/� NF and NV

[1 − a + abp]1/p h(1) = 0 1 − a1/p NF and NV

min{[n − na + abn]1/n, 1} h(1) = 1 − 1
n min{[n − na]1n, 1} Only NV

3.3.2.2. Jh and its natural negation The natural negation of Jh, NJh
(x) = Jh(x, 0) = h(−1)(x · h(0)) = h(−1)(x), for

all x ∈ [0, 1] is, in general, only a negation. But,

• NJh
is a strict negation if h(1) = 0;

• NJh
is a strong negation iff h = h−1, in which case NJh

= h(−1) = h.

Let h �≡ h−1. Then, if h(1) = 0 we have that the natural negation NJh
is strict and so both upper and lower

contrapositivisation techniques are N-compatible, with respect to any strong negation N , depending on whether N �NJh

or N �NJh
, respectively. On the other hand, if h(1) > 0 then NJh

is a non-vanishing but a filling negation and only the
lower contrapositivisation technique is N-compatible with respect to strong negations N �NJh

.
Table 4 gives a few example classes of Jf and Jh implications whose natural negations are non-vanishing and/or

non-filling.
Thus whenever the natural negation NJ of an implication is either a non-filling or a non-vanishing negation (or both)

one of the above contrapositivisation techniques is N-compatible with respect to some strong negations N .
Now, let us consider a fuzzy implication J whose natural negation NJ is neither non-filling nor non-vanishing as

given below.
Consider the negation

N∗(x) =
⎧⎨
⎩

1 if x ∈ [0, �],
f (x) if x ∈ [�, �],
0 if x ∈ [�, 1],

where f (x) is any non-increasing function (possibly discontinuous), �, � ∈ (0, 1).
For a t-conorm S, let us define J ∗(x, y) = S(N∗(x), y) for x, y ∈ [0, 1]. J ∗ can easily be seen to be a fuzzy

implication. Also the natural negation of J ∗ is N∗. Since N∗ is neither non-filling nor non-vanishing, one cannot find
any strong negation N such that either N �N∗ or N �N∗ and thus both the upper and lower contrapositivisation
techniques are not N-compatible. This motivates the search for a contrapositivisation technique that is independent of
the ordering between N and NJ and be N-compatible. The following section explores this idea.

4. An alternate contrapositivisation technique

As can be seen from Propositions 17–20, an ordering between the natural negation NJ = J (x, 0) and the strong

negation N is essential for the resulting contrapositivised implication to be N-compatible, when we employ either
L:N�⇒

or
U :N�⇒. In this section, we introduce a new contrapositivisation technique, denoted by

M:N�⇒, whose N-compatibility is

independent of the ordering between N and NJ . For notational simplicity, we denote
M:N�⇒ by

M�⇒ in this section.

4.1. The M-contrapositivisation

Definition 26. Let J be any fuzzy implication and N a strict negation. The M-contrapositivisation of J with respect

to N , denoted herein as
M�⇒, is defined as follows:

x
M�⇒ y = min{J (x, y) ∨ N(x), J (N(y), N(x)) ∨ y} (10)

for any x, y ∈ [0, 1].
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Proposition 27. Let J be any fuzzy implication, N a strict negation and
M�⇒ the M-contrapositivisation of J with respect

to N. Then

(i)
M�⇒ is a fuzzy implication.

(ii) If in addition, N is involutive, i.e., N is strong, then
M�⇒ has CPS(N ).

Proof.
(i) Since J is a fuzzy implication and N a strict negation we have the following:

• 1
M�⇒ 0 = min{J (1, 0) ∨ N(1), J (N(0), N(1)) ∨ 0} = min{J (1, 0), J (1, 0)} = J (1, 0) = 0.

• 0
M�⇒ 1 = min{J (0, 1) ∨ N(0), J (N(1), N(0)) ∨ 1} = min{1, 1} = 1. Similarly, 0

M�⇒ 0 = 1
M�⇒ 1 = 1.

• x
M�⇒ 1 = min{J (x, 1) ∨ N(x), J (N(1), N(x)) ∨ 1} = min{1, 1} = 1.

• 0
M�⇒ y = min{J (0, y) ∨ N(0), J (N(y), N(0)) ∨ y} = min{1, 1} = 1.

• Let x�z. Then J (x, y)�J (z, y) and since N(x)�N(z) we have J [N(y), N(x)]�J [N(y), N(z)], from which
we obtain that

x
M�⇒ y = min{J (x, y) ∨ N(x), J (N(y), N(x)) ∨ y}

� min{J (z, y) ∨ N(z), J (N(y), N(z)) ∨ y}
= z

M�⇒ y.

• Similarly, it can be shown that x
M�⇒ y�x

M�⇒ z whenever y�z. Thus
M�⇒ is a fuzzy implication.

(ii) Let N be strong. That
M�⇒ has CPS(N ) can be seen from the following equalities:

N(y)
M�⇒ N(x) = min{J (N(y), N(x)) ∨ N(N(y)), J (x, y) ∨ N(x)}

= min{J (N(y), N(x)) ∨ y, J (x, y) ∨ N(x)}
= min{J (x, y) ∨ N(x), J (N(y), N(x)) ∨ y}
= x

M�⇒ y. �

Fig. 2 gives the plot of (a) the Baczynski Implication JB and (b) the plots of the different contrapositivisations applied
on JB.

Proposition 28. If J is a neutral fuzzy implication and N a strict negation then the M-contrapositivisation of J with
respect to N is such that

(i) x
M�⇒ 0 = N(x), ∀x ∈ [0, 1];

(ii) 1
M�⇒ y = y, ∀y ∈ [0, 1].

Proof. (i) By definition of
M�⇒, for all x ∈ [0, 1], we have

x
M�⇒ 0 = min{J (x, 0) ∨ N(x), J (1, N(x)) ∨ 0} [ by definition ]

= min{NJ (x) ∨ N(x), N(x)} [ ∵J is neutral ]
= min{NJ (x) ∨ N(x), N(x)}
= [NJ (x) ∨ N(x)] ∧ N(x) = N(x).

(ii) Again by definition, for any y ∈ [0, 1], we have

1
M�⇒ y = min{J (1, y) ∨ N(1), J (N(y), 0) ∨ y}

= min{y ∨ 0, NJ (N(y)) ∨ y}
= y ∧ [NJ (N(y)) ∨ y] = y. �
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Fig. 2. (a) The Baczynski implication JB (see Example 1) with (b) its upper, lower and M-contrapositivisations where N1(x) = (1 − √
x)2 and

N2(x) = √
1 − x2.

Corollary 29. If J is a neutral fuzzy implication and N a strong negation then the M-contrapositivisation of J with
respect to N is N-compatible.

Proposition 30. If J has the ordering property (OP) then so does the M-contrapositivisation of J with respect to a strict
negation N.
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Proof. If x�y then by (OP) J (x, y) = 1. Also N(y)�N(x) and J (N(y), N(x)) = 1. Now,

x
M�⇒ y = min{J (x, y) ∨ N(x), J (N(y), N(x)) ∨ y} [ by definition ]

= min{1 ∨ N(x), 1 ∨ y} [ ∵J has (OP)]
= min{1, 1} = 1.

On the other hand, if x
M�⇒ y = 1 then

x
M�⇒ y = 1 ⇒ min{J (x, y) ∨ N(x), J (N(y), N(x)) ∨ y} = 1

⇒ J (x, y) ∨ N(x) = 1 and J (N(y), N(x)) ∨ y = 1.

Now, if J (x, y) ∨ N(x) = 1 then either J (x, y) = 1 or N(x) = 1. Since J satisfies (OP), J (x, y) = 1 ⇔ x�y.
Also J (x, y) = 1 implies that J (N(y), N(x)) = 1. On the other hand, if N(x) = 1, since N is strict we have x = 0

in which case x�y for all y ∈ [0, 1]. Similarly, if y = 1 then obviously x�y for all x ∈ [0, 1]. Thus x
M�⇒ y = 1

implies x�y, i.e,
M�⇒ has the ordering property (OP) if J does. �

Remark 31. (i) If J (x, y)�y then it can be shown that x
M�⇒ y�y.

(ii) If J is continuous, by the continuity of min and max we have that
M�⇒ is also continuous.

(iii) With regard to upper and lower contrapositivisation, when J has CPS(N ) with respect to the strong N , we have that

x
L:N�⇒ y ≡ x

U :N�⇒ y ≡ J (x, y), i.e., J ∗ ≡ J (see also Corollary 21). Whereas, in the case of M- contrapositivisation
we have that

x
M�⇒ y = min{J (x, y) ∨ N(x), J (N(y), N(x)) ∨ y}

= min{J (x, y) ∨ N(x), J (x, y) ∨ y} �since J has CPS(N )]
= J (x, y) ∨ [N(x) ∧ y] �≡ J (x, y).

Thus even when J has CPS(N ) the M-contrapositivisation of J with respect to N is a different implication and allows
us to construct newer fuzzy implications that have CPS(N ).

Also the above process does not continue indefinitely. In fact, in the case when J has CPS(N ) let J ∗ be the M-

contrapositivisation of J with respect to N , i.e, J ∗(x, y) = x
MJ :N�⇒ y. Then the M-contrapositivisation of J ∗ with

respect to the same N is

(J ∗)∗(x, y) = (x
MJ :N�⇒ y) ∨ (N(x) ∧ y)

= [J (x, y) ∨ (N(x) ∧ y)] ∨ (N(x) ∧ y)

= [J (x, y) ∨ (N(x) ∧ y)] ≡ J ∗(x, y) i.e., (J ∗)∗ = J ∗.

5. Contrapositivisations as S-implications

Since all S-implications JS,N possess CPS(NJ ), with respect to their natural negation NJ —which is also the strong
negation N used in its definition—and also since all the above contrapositivisation techniques can be applied to any

general fuzzy implication, it is only appropriate that we study
U :N�⇒,

L:N�⇒ and
M�⇒ as S-implications for some fuzzy

disjunctions ◦, � and �, respectively. An investigation into this forms the rest of this section.

5.1. Upper contrapositivisation as an S-implication of a binary operator

Taking cue from Lemma 2, given a fuzzy implication J and a negation N , we define a binary operator ◦ on [0, 1] as
follows:

x ◦ y = max{J (N(x), y), J (N(y), x)}. (11)

Theorem 3. Let J be a neutral fuzzy implication and N a strong negation such that the natural negation J (x, 0) =
NJ (x)�N(x), ∀x ∈ [0, 1]. Then the upper contrapositivisation of J with respect to N,

U :N�⇒, is such that

(i) x
U :N�⇒ y = N(x) ◦ y, ∀x ∈ [0, 1];
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(ii) x ◦ 0 = x, ∀x ∈ [0, 1];
(iii) x ◦ y = y ◦ x, ∀x ∈ [0, 1];
(iv) ◦ is non-decreasing in both the variables.

If, in addition,
U :N�⇒, has the exchange property (EP), then ◦ is a t-conorm.

Proof. Since NJ (x)�N(x), ∀x ∈ [0, 1], and J is neutral, from Proposition 17 we know that
U :N�⇒ is N-compatible.

Thus
U :N�⇒ has CPS(N) and from Corollary 11 it has (NP) and by Lemma 2 it follows that ◦ has the above four properties.

If, in addition,
U :N�⇒ has the exchange property (EP) then again by Lemma 2(v) it follows that ◦ is a t-conorm. �

Theorem 4. Let J be any fuzzy implication with natural negation NJ being involutive. If J (1, y)�y, for all y ∈ [0, 1],
and the upper contrapositivisation of J with respect to NJ ,

U :NJ�⇒ , has the exchange property (EP), then ◦ is a t-conorm.

Proof. Let us consider the upper contrapositivisation of J with N ≡ NJ . Then obviously
U :NJ�⇒ has CPS(N) and

we also have that

1
U :NJ�⇒ y = max{J (1, y), J (NJ (y), 0)}

= max{J (1, y), NJ (NJ (y)}
= max{J (1, y), y} [∵NJ is involutive ]
= y [∵J (1, y)�y ].

Thus
U :NJ�⇒ has CPS(N), (EP) and (NP) and by Lemma 2 it follows that ◦ is a t-conorm. �

Example 7. Consider the reciprocal Goguen’s implication JGG (see Example 2 ). JGG(1, y) = 0, for all y ∈ [0, 1)

and the natural negation of NJGG(x) = 1 − x, a strong negation, but JGG does not have either CPS(1 − x) or (EP).
Also the upper contrapositivisation of JGG with N(x) = 1 − x, as can be verified, does not have the exchange
property (EP).

From Theorems 3 and 4 we see the importance of satisfaction of (EP) by
U :N�⇒ for ◦ to be a t-conorm.

5.2. Lower contrapositivisation as an S-implication of a binary operator

Similarly, given a fuzzy implication J and a negation N , defining a binary operator � on [0, 1] as follows:

x � y = min{J (N(x), y), J (N(y), x)}. (12)

we have the following counterparts of Theorems 3 and 4, which can be proven along similar lines.

Theorem 5. Let J be a neutral fuzzy implication and N a strong negation such that the natural negation J (x, 0) =
NJ (x)�N(x), ∀x ∈ [0, 1]. Then the lower contrapositivisation of J with respect to N is such that

(i) x
L:N�⇒ y = N(x) � y, ∀x ∈ [0, 1];

(ii) x � 0 = x, ∀x ∈ [0, 1];
(iii) x � y = y � x, ∀x ∈ [0, 1];
(iv) � is non-decreasing in both the variables.

If, in addition,
L:N�⇒, has the exchange property (EP), then � is a t-conorm.

Theorem 6. Let J be any fuzzy implication with natural negation NJ being involutive. If J (1, y)�y, for all y ∈ [0, 1]
and the lower contrapositivisation of J with respect to NJ ,

L:NJ�⇒ , has the exchange property (EP), then � is a t-conorm.

Example 8. Consider the J (x, y) = 1 − x(1 −√
y)2. J (1, y) = 1 − (1 −√

y)2 = 2 ·√y − y, for all y ∈ [0, 1]. Since
y ∈ [0, 1] we have that

√
y�y ⇒ 2 · √

y�2 · y ⇒ 2 · √
y − y�y and hence J (1, y)�y. Also the natural negation

NJ (x) = 1 − x is involutive, but J does not have either CPS(1 − x) or (EP).



Aut
ho

r's
   

pe
rs

on
al

   
co

py

J. Balasubramaniam / Fuzzy Sets and Systems 157 (2006) 2291 – 2310 2307

5.3. M-contrapositivisation as an S-implication of a binary operator

Finally, given a fuzzy implication J and a negation N , defining a binary operator � on [0, 1] as follows:

x�y = min{J (N(x), y) ∨ x, J (N(y), x) ∨ y}. (13)

We now have the following:

Theorem 7. Let J be any neutral fuzzy implication such that the contrapositivisation of J with respect to a strong N,
M:N�⇒, has the exchange property (EP). Then � is a t-conorm.

6. Contrapositivisation and the residuation principle

A t-norm T and JT the R-implication obtained from T are said to have the residuation principle if they satisfy the
following:

T (x, y)�z iff JT (x, z)�y, x, y ∈ [0, 1]. (RP)

It is important to note that (RP) is a characterising condition for a left-continuous t-norm T (see [8, p. 25],
[9, Proposition 5.4.2]).

6.1. Upper contrapositivisation as a residuation of a binary operator

Let T be a strict t-norm and JT the corresponding R-implication obtained from T such that they satisfy the residuation
principle (RP). Fodor in [7] has defined a binary operation ∗T on [0, 1] by

x ∗T y = min{T (x, y), N(JT (y, N(x))}. (14)

Fodor has shown that the upper contrapositivisation
U :N�⇒=→T is the fuzzy implication generated by the residuation of

∗T (see [7, Theorem 2(d), p. 146]), i.e., →T and ∗T satisfy the residuation principle (RP). The ∗T operator is not a
t-norm in general, and in [7] the following sufficient condition on T for ∗T to be a t-norm is given.

Theorem 8 (Fodor [7, Theorem 3, p. 147]). For a t-norm T and a strong negation N, if T (x, y)�N [JT (y, N(x))]
for y > N(x) then ∗T is a t-norm and is given by

x ∗T y =
{

T (x, y) if y > N(x)

0 if y�N(x).
(15)

∗T in addition to having very attractive properties has also opened up avenues for many subsequent research works.
Also the nilpotent minimum proposed therein has led to some interesting research—transformations of t-norms called
N-annihilation in [10], characterisation of R0-implications in [5], study of generalisation of nilpotent minimum t-norms
in [4].

It is only natural to ask whether the lower contrapositivisation of an R-implication JT can also be obtained as
a residuation of a binary operator. Along the same lines of Fodor [7], in Section 6.2, we propose a suitable binary
operation ∗t such that the lower contrapositivisation of the R-implication JT has the residuation principle with respect
to ∗t .

6.2. Lower contrapositivisation as a residuation of a binary operator

Taking cue from ∗T of Fodor we define a binary operator ∗t on [0, 1] as follows:

x ∗t y = max{T (x, y), N(JT (y, N(x)))}. (16)

where JT is the corresponding R-implication obtained from the t-norm T . Now the following can be easily shown,
along the lines of Theorem 2 in [7]:
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Theorem 9. Let T be a left continuous t-norm, JT its corresponding R-implication, N is a strong negation such that

N(x)�NJT
(x), for all x ∈ [0, 1], and operations

L:N�⇒ and ∗t are as defined in (6) and (16). Then the following
conditions are satisfied:

(i) 1 ∗t y = y ∗t 1 = y;
(ii) x ∗t 0 = 0 ∗t x = 0;

(iii) ∗t is non-decreasing in both the variables;

(iv) x ∗t z�y ⇔ x
L:N�⇒ y�z.

Proof. (i) Since N(y)�NJT
(y), for all y ∈ [0, 1], we have N(N(y))�N(NJT

(y)) and from which we obtain the
following:

1 ∗t y = max{T (1, y), N(JT [y, 0])}
= max{y, N(NJT

(y))}
= max{N(N(y)), N(NJT

(y))} = N(N(y)) = y.

Similarly,

y ∗t 1 = max{T (y, 1), N(JT [1, N(y)])}
= max{y, N(N(y))}
= max{y, y} = y.

(ii) As shown in (i) one can also show that x ∗t 0 = 0 ∗t x = 0.
(iii) Obvious by noting that N is strictly decreasing and JT is non-increasing in the first variable and non-decreasing

in the second variable.
(iv) Since T is left-continuous (T , JT ) satisfies (RP). Consider first the case when x

L:N�⇒ y�z which leads to the
following two cases:

Case 1: JT (x, y)�JT (N(y), N(x)).

Then x
L:N�⇒ y = JT (N(y), N(x)) and we have

x
L:N�⇒ y�z iff JT (N(y), N(x))�z,

iff T (N(y), z)�N(x) [ by (RP)],
iff JT (z, N(x))�N(y),

iff N [JT (z, N(x))]�y. (17)

Case 2: JT (x, y)�JT (N(y), N(x)).

Then x
L:N�⇒ y = JT (x, y) and

x
L:N�⇒ y�z iff JT (x, y)�z ⇔ T (x, z)�y. (18)

From (17) and (18) we see that

x ∗t z = max{T (x, z), N(JT (z, N(x)))}�y.

On the other hand, let x ∗t z�y. This implies by (16) that T (x, z)�y and N [JT (z, N(x))]�y. By (RP)

T (x, z)�y iff JT (x, y)�z, (19)

and we also have that

N [JT (z, N(x))]�y iff JT (z, N(x))�N(y),

iff T (z, N(y))�N(x) [∵(T , JT ) satisfy (RP)],
iff T (N(y), z)�N(x) [∵T is commutative],
iff JT (N(y), N(x))�z. (20)
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Again, we have from (19) and (20) that x
L:N�⇒ y�z. Thus

x ∗t z�y iff x
L:N�⇒ y�z. �

Given a left-continuous t-norm ∗ and a non-involutive negation n, in [4] the authors have studied the following binary
operation on [0, 1]:

x ∗n y =
{

x ∗ y if y > n(x),

0 if y�n(x).
(21)

Evidently, (21) is a generalisation of (15). The authors have proven that ∗n has all the properties of a t-norm, except
for associativity (see [4, Lemma 1, p. 287]). Moreover, left-continuity of ∗ implies that of ∗n. If → is the residuum of
∗, the residuum ⇒n of ∗n is given as follows:

x ⇒n y =
{

1 if x�y,

n(x) ∨ (x → y) if x > y.
(22)

For a characterisation, some examples and graphs of such negations see [4, pp. 285–286].
The authors have characterised continuous t-norms ∗ such that, given a (non-involutive) negation n, ∗n defined by

(21) is a t-norm and the natural negation of the corresponding residuum ⇒n of ∗n, defined by (22), coincides with n,
i.e., n(x) = x ⇒n 0.

Let � denote the above class of (left-)continuous t-norms ∗n. Now, for any T ∈ �, the natural negation NJT
of the

corresponding R-implication JT is not a strong negation and thus JT does not have CPS(NJT
) as per Definition 9. If

NJT
is also a non-vanishing negation then given a strong negation N �NJT

, the lower contrapositivisation of JT is not
only N-compatible but also has the residuation principle with respect to a binary operation ∗t as defined in (16).

Again, ∗t is not a t-norm in general. In the following we give a sufficient condition for ∗t to be a t-norm:

Theorem 10. For a t-norm T and a strong negation N, if whenever y > N(x), T (x, y)�N [JT (y, N(x))], then ∗t is
a t-norm. In fact ∗t ≡ T .

Proof. By the definition of an R-implication JT obtained from a t-norm T we have that x�y ⇒ JT (x, y) = 1.

• If y�N(x) then JT (y, N(x)) = 1 and N [JT (y, N(x))] = 0. Now, x ∗t y = max{T (x, y), N(JT (y, N(x)))} =
T (x, y).

• If y > N(x) then by the hypothesis T (x, y)�N [JT (y, N(x))] and hence x ∗t y = T (x, y).

Thus both when y�N(x) and y > N(x), ∗t ≡ T , a t-norm. �

Remark 32. Theorem 10 is not satisfactory as ∗t ≡ T implies
L:N�⇒= JT , which in turn means that JT has CPS(N )

and thus by the neutrality of JT we have that N ≡ NJT
. An alternate sufficient condition for ∗t to be a t-norm is worth

exploring in the light of the importance ∗T received in the literature.

7. Concluding remarks

In this work we have investigated the N-compatibility of two contrapositivisation techniques proposed by Ban-
dler and Kohout [2] towards imparting contrapositive symmetry to a given fuzzy implication, viz., upper and lower
contrapositivisations. A contrapositivisation technique is said to be N-compatible if the natural negation of the contra-
positivised fuzzy implication is equal to the strong negation N employed therein. This is equivalent to the neutrality of
the contrapositivised implication.

We have shown that given a strong negation N and a fuzzy implication J , the upper contrapositivisation of J with

respect to N ,
U :N�⇒, is N-compatible if and only if N �NJ , where NJ is the natural negation of J . Such a strong N exists

only if NJ is non-filling. Similarly, the lower contrapositivisation of J with respect to N ,
L:N�⇒, is N-compatible if and

only if N �NJ . Such a strong N exists only if NJ is non-vanishing.
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Also we have proposed a new contrapositivisation technique, called M- contrapositivisation,
M�⇒, whose

N-compatibility is independent of the ordering between N and NJ and thus is applicable for any implication J and
strong negation N . Some interesting properties of this new contrapositivisation technique are also discussed.

Fodor [7] has shown that for a special case of J the upper contrapositivisation is a residuation of a binary operator.
We have shown that the lower contrapositivisation can be seen as the residuation of a suitable binary operator.

We have also proposed binary operators (fuzzy disjunctions) such that the lower, upper and M-contrapositivisation
can be seen as S-implications obtained from them. Also some sufficient conditions for these fuzzy disjunctions to
become t-conorms are given. It is interesting to note that the exchange principle of the contrapositivisations seems very
much necessary for the disjunctions �, ◦ and � to become t-conorms. Thus it would be worthwhile to investigate when

does
U/L/M�⇒ have the exchange property (EP).
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