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Abstract

In this work we investigate t-subnorms M that have strong associated negation. Firstly, we show that such
t-subnorms are necessarily t-norms. Following this, we investigate the inter-relationships between different
algebraic and analytic properties of such t-subnorms, viz., Archimedeanness, conditional cancellativity, left-
continuity, nilpotent elements, etc. In particular, we show that under this setting many of these properties
are equivalent. Our investigations lead us to two open problems which are also presented.

Keywords: T-norms, t-subnorms, Archimedeanness, conditional cancellativity, left-continuity,
R-implications, residual implications.

1. Introduction

The theory of triangular norms and triangular subnorms have been well studied and their applications
well-established. Many algebraic and analytical properties of these operations, viz., Archimedeanness, con-
ditional cancellativity, left-continuity, etc., have been studied and their inter-relationships shown (see for
instance, [6]).

Yet another way of categorizing t-subnorms is as follows: Given a t-subnorm M, one can obtain its
associated negation my; (see Definitions 2.2 and 2.4 below). Note that njs is usually not a fuzzy negation,
i.e.,, npr(1) > 0. However, we can broadly consider two sub-classes of t-subnorms based on whether their
associated negation n,; is strong or not.

In this work, we study the class of t-subnorms whose associated negation n,; is strong. Firstly, we show
that such t-subnorms are necessarily t-norms. Following this, we investigate some particular classes of these
and study the inter-relationships between different algebraic and analytic properties of such t-subnorms,
viz., Archimedeanness, conditional cancellativity, left-continuity, etc. In particular, we show that under this
setting many of these properties are equivalent. Our investigations have led us to two open problems, which
are also presented.

2. Preliminaries

To make this short note self-contained, we present some important definitions and properties, which can
be found in [6, 1].

Definition 2.1. A fuzzy negation is a function N: [0,1] — [0,1] that is non-increasing and such that
N(1) =0 and N(0) = 1. Further, it is said to be strong or involutive, if N o N = idjg 1;.

Definition 2.2. A t-subnorm is a function M: [0,1]> — [0,1] such that it is monotonic non-decreasing,
associative, commutative and M (z,y) < min(z,y) for all z,y € [0, 1], i.e., 1 need not be the neutral element.
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Definition 2.3. Let M be a t-subnorm.

(i) If 1 is the neutral element of M, then it becomes a t-norm. We denote a t-norm by T in the sequel.
(ii) M is said to satisfy the Conditional Cancellation Law if, for any z,y, z € (0, 1],

M(z,y) = M(z,z) > 0 implies y = z . (CCL)

Alternately, (CCL) implies that on the positive domain of M, i.e.. on the set {(z,y) € (0.1]> | M (x.y) >
0}, M is strictly increasing.

(iii) M is said to be Archimedean, if for all z,y € (0,1) there exists an n € N such that :UE\'}] <y.

(iv) An clement z € (0,1) is a nilpotent clement of M if there cxists an n € N such that mg\rj] =0.

(v) A t-norm T is said to be nilpotent, if it is continuous and if each x € (0,1) is a nilpotent element of T

Definition 2.4. Let M be any t-subnorm and z,y € [0, 1].
e The R-implication Ip; of M is given by
In(x,y) =sup{t €10,1] | M(z,t) <y}. (1)
e The associated negation ny; of M is given by

na(z) = sup{t € [0,1] | M (zx,t) = 0}. (2)

A brief note on nomenclature is perhaps warranted here. Firstly, the R-implication I5; will be termed a
residual implication only if the underlying t-subnorm M is left-continous.

Sccondly, whilc ny, is clearly a non-increasing function and nas(0) = 1, note that it nced not be a fuzzy
negation, since n), (1) can be greater than 0. Hence, only in the case n,; is a fuzzy negation we call ny; the
natural negation of M in this work. However, many results hold even if ny;(1) > 0, see for instance [3, 9],
and hence to preserve this generality in such situations we term n,; as the associated negation.

For instance. the following result is true even when nas(1) > 0.

Proposition 2.5 (cf. [1], Proposition 2.3.4). Let M be any t-subnorm and ny; its associated negation.
Then we have the following:

(i) M(z,y) =0=y < np(x) .
(ii) y < ny(x) = M(z.y) =0.
(iil) If M is left-continuous then y = ny(x) = M(x,y) = 0, i.e., the reverse implication of (i) also holds.

Proposition 2.6. Let M be any t-subnorm with nys being a natural negation with e as its fixed point, i.e..
nas(e) =e. Then

i) Every x € (0,e) is a nilpotent element; in fact, g for all x € [0,¢€).
M

(ii) In addition, if M is either conditionally cancellative or left-continuous, then e is also a nilpotent
element.
Proof. (i) By definition.
nu(e) = sup{t € [0,1] | M(e,t) = 0} =,
implies that M(e.e”) = 0, from whence we get M(z.2) < M(e,e”) = 0 for all z € [0,e). In other
words, 2 = 0 for all z € [0,€)
) N I .

(ii) Let M be conditionally cancellative. If eE\Q} = () then clearly e is a nilpotent element. If not, then we
have M(e,e) =z < M(1,e) < e and from (ii) above we have M (z,z) = 0. Now,

el — M(M(e,e), M(e,e)) = M(z.z) = 0.

If M is left-continuous, then nps(e) = max{t € [0,1] | M(e,t) =0} =e, ie., e {t €[0,1] | M(e,t) =
0} and hence M(e,e) =0, i.e., e is also a nilpotent element.

a
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Remark 2.7. (i) In the case njys is a strong natural negation we can show that if M is conditionally
canccllative then cvery « € (0,1) is also a nilpotent clement, sce Remark 5.9(ii).
(ii) Notec that without any further assumptions, the set of nilpotent elements need not be the whole of
(0,1). For instance, for the nilpotent minimum t-norm

0, ifz+y<l1,

z.y € [0,1].
min(z,y), otherwise, yel01]

ﬂlM (xv y) = {

which is left-continuous but not conditionally canccllative, its sct of nilpotent clements is (0, .5]. while
its set of zero divisors is (0, 1).

However, Theorem 6.1 gives an equivalence condition for the whole of (0,1) to be the set of nilpotent
elements under a suitable condition on n,;.

3. T-subnorms with strong associated negation = T-norms

There arc works showing that some classes of t-subnorms M whosc associated negations nyy arc involutive
do become t-norms. Jenci [4], also sce [5]. showed it for the class of left-continuous M, while Jayaram [2]
did the same for conditionally cancellative M. The main result of this section shows that the above results
are true in general, i.e., any t-subnorm with a strong natural negation is a t-norm.

The following result was firstly proven by Jenei in [4]. However, we give a very simple proof of this result
without rcsorting to the rotation-invariance property.

Theorem 3.1 (Jenci, [4], Theorem 3). If M is a lefi-continuous t-subnorm with nas being strong, then M
is a t-norm.

Proof. Firstly. notc that if M is a left-continuous t-subnorm, then its residual implication satisfics the
exchange principle. i.e.,
T (@, Ine(y. 2)) = Lu(y. T (@, 2)).

It follows from the fact that the neutral element of M does not play any role in the proof, see. for instance
the proof given for Theorem 2.5.7 in [1].
If nys is strong. then for every y € [0, 1] there exists 3’ € [0, 1] such that ny;(y) = y'. Now,

Inr(1,9') = T (1. Iar(y,0)) = Tar(y, Ins(1,0)) = Inr(y,0) = ¢
Thus, for all ¢’ € [0, 1],
In(1,y') = max{t [M(1,¢) <y} =y —= M(1,y') = ¢ .
O

Theorem 3.2 (Jayaram [2], Thcorem 4.4). Let M be any conditionally cancellative t-subnorm. If nar is a
strong natural negation then M is a t-norm.

Now, we prove the main result of this section which shows that the above results are true in general.
Theorem 3.3. Let M be any t-subnorm with ny; being a strong natural negation. M is a t-norm.

Proof. Note, firstly, that since np;(x) = sup{t € [0,1] | M(z,t) = 0}, is a strong negation, we have that
na(z) =1 <= z=0and np(z) =0 < z = 1. Equivalently, M(1,z) =0 <= 2z =0.

On the contrary, let us assume that M(1,z) = 2’ < x for some x € (0,1]. Since ny; is strong, the
following are true:

(i) TLA,{(:E’) > ‘TI/A[(J})
(ii) if p > np(x) then M(x,p) > 0,
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(iil) there exists a y € (0,1) such that ny(2') >y > np(x) and M (y.z) = ¢ > 0 while M(y,z") = 0.

Now, by associativity wc have

MEy 12[(3"3718 E 1)) =0 } —= M(q,1) =0,

a contradiction. Thus M (1. z) =« for all & € [0,1] and hence we have the result. O

In the following scctions, we deal with t-subnorms whose associated negations arc strong, or cquivalently
t-norms whosc associated ncgations arc strong. We discuss the inter-relationships between the different
algebraic and analytical properties for this subclass of t-norms; in particular, Archimedeanness, Conditional
Cancellativity, (Left-)continuity and Nilpotence that are relevant to our context. We begin with listing out
some established results and go on to present some new ones.

4. Continuity and Nilpotence

Let T be a t-norm and nr a strong negation. The following result. whose proof is straight-forward, shows
the equivalence between continuity and nilpotence:

Theorem 4.1 ( Klement et al. [6]). Let T be a t-norm with ny being strong. Then the following are
equivalent:

(1) T is continuous.
(ii) T is a nilpotent t-norm.

Further, we know that cvery nilpotent t-norm is both Archimedcan and Conditionally cancellative, since
every nilpotent t-norm is isomorphic to the Lukasiewicz t-norm and the Archimedeanness and Conditionally
cancellativity of T are preserved under isomorphism, see [6], Examples 2.14(iv) and 2.15(v). Trivially, every
nilpotent t-norm is also left-continuous.

5. Conditional Cancellativity, Left Continuity and Nilpotence

Recenty, in Jayaram [2], the following problem of U.Héhle, given in KLEMENT ct al. [7] has been solved.
Further it was shown that it characterizes the sct of all conditionally cancellative t-subnorms.

Problem 5.1. (U.Hé&hle, [7], Problem 11) Charactcrizc all left-continuous t-norms 7" which satisfy
Ir(z,T(z,y)) = max(nr(z),y), z,y€l0.1], (3)
where I7,np are as given in (1) and (2) with M =T.

Theorem 5.2 (cf. Jayaram [2|, Theorem 3.1). Let M be any t-subnorm, not necessarily left-continuous.
Then the following are equivalent:

(i) The pair (Ing. M) satisfies (3).

(ii) M is a Conditionally Cancellative t-subnorm.

Remark 5.3. The following statements follow from Theorem 5.2 with M =T, a t-norm:

(i) If a (right) continuous T satisfies (3) along with its R-implication then T is necessarily Archimedean,
see [6], Proposition 2.15(ii).
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(ii) However, if a left-continuous T satisfies (3) along with its residual implication then T need not be
Archimedcan and hence not continuous. An example is Hajék’s t-norm or the following t-norm Toy
of Ouyang ct al [11], Example 3.4, which is a (CCL) t-norm (and hence a t-subnorm too) that is
left-continuous but not continuous at (0.5,0.5) and hence is not Archimedean (see Figure 1(a)):

2(z — 0.5)(y — 0.5) + 0.5, if (x,y) € (0.5,1]?

Toy(z,y) — 4 V@05, if (z,y) € (0.5,1] x [0,0.5]
oYY = 9y — 0.5), if (z,y) € [0,0.5] x (0.5,1]
0, otherwisc

Theorem 5.4 (Jenei. [4], Theorem 2). Let T be a left-continous t-norm with ny being strong. Then the
following are equivalent:

(i) T is a conditionally cancellative t-norm.
(ii) T is a nilpotent t-norm.

In fact, for a conditionally cancellative t-subnorm M we can give an equivalent condition for it to be
left-continuous.

Theorem 5.5. Let M be a (CCL) t-subnorm. Then the following are equivalent:
(1) M(z,np(x))=0, xe][0,1].

(if) M is left-continuous.

Proof. (i) = (ii): Let M(z,nps(x)) =0, for all z € [0,1]. On the contrary. let us assume that M is not
left-continuous. Then there cxist g € (0,1], yo € (0,1] and an increcasing scquence (2, )nen, Where
Zn €[0,1), such that lim =z, = zo, but
n—r0oC

lim M (2, y0) = M(xg ,y0) = 2’ < z0 = M (z0,0)-

n—oo

Observe that
Ing(yo,2") =sup{t € [0,1] | M(yo,t) < 2’} = o, (4)

since from the monotonicity of M we have M (yg,z,) < 2z’ for every n € N and M (yo,20) = 20 > 2.
Since M is (CCL), wc have from (3)

Ing (Yo, 2") = It (yo, M (yo, 2 ) = max(n(yo), zy )-

Now, we have two cases. On the one hand, if I/ (yo,2’) = zg < o, then it is a contradiction to (4).
On the other hand, if Ip/(yo, 2’) = n(yo). then this implies that n(yo) = zo from (4) and hence

M(xo,y0) = M(n(yo), yo) = 20 = 0,

by the hypothesis and hence there does not exist any 2z’ < zg and hence M is left-continuous.
(i) = (i): Follows from Proposition 2.5(iii).

O

In other words, Theorem 5.5 states that for a (CCL) t-subnorm M, the only points at which M may not
be left-continuous is the boundary of the zero region Zy = {(x,y) € [0,1]2|M(z,y) = 0} which does not
contain the origin.
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Figure 1: A t-norm and a t-subnorm that are conditionally cancellative

Remark 5.6. In Theorem 5.5 we do not need npy to be a negation, i.c., np(1) > 0. Consider the following
t-subnorm Mp, (cf. Example 3.15 of [6]. see Figure 1(b)),
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which is a left-continuous (CCL) t-subnorm but nys,, is not a negation since nar, (1) = 0.2.

Theorem 5.7. Let M be a (CCL) t-subnorm whose nyy is strong. Then M is left-continuous.

Proof. If possible, let M (x,n(x¢)) = p > 0 for some z¢ € (0,1). Since M is (CCL), we have M (17, x¢) < o

and hence by associativity we h

M1, M(zg.n(z0))) = M1, p)

M(M(17,z0),n(zo)) =0

from whence it follows M(17,p) = 0, i.e., n(p) = 1. a contradiction to the fact that nys is strong. Thus
p = 0 and the result follows from Theorem 5.5.

ave

Theorem 5.8. Let M be a t-subnorm such that nay 18 strong. Then the following are equivalent:

(i) M is conditionally cancellative.

(ii) M is a nilpotent t-norm.

Proof. If M satisfies (CCL) then M is left-continuous. from Theorem 5.7 and now, using Theorem 5.4 we

have the result.

Remark 5.9. (i) The nilpotent minimum t-norm Ty is an example of a t-subnorm M whose ny; is
involutive and M satisfies (LEM) with nys but is not conditionally cancellative and hence is not a

nilpotent t-norm.

(ii) In the case nys is a strong natural negation. from Theorem 5.7 we see that conditionally cancellativity

implies left-continuity and from Theorem 5.8 that every x € (0.1) is a nilpotent element.
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6. Archimedeanness , Left Continuity and Nilpotence

We begin with a result that shows that if nj; is strong, then the Archimedeanness is equivalent to every
element x € (0, 1) being nilpotent. However, unless M is also left-continuous, M is not a nilpotent t-norm.

Theorem 6.1. Let M be any t-subnorm such that nps is not completely vanishing, i.e., there exists z € (0,1)
such that npr(z) > 0. The following are equivalent:

(i) Every x € (0,1) is a nilpotent element.
(ii) M is Archimedean.

Proof. (i) = (ii): Follows from Proposition 2.15 (iv) in [6].
(i) = (i): Let M be any Archimedean t-subnorm such that s is not completely vanishing, i.e., there
cxists z € (0,1) such that mps(z) > 0. By Proposition 2.5(ii) we sce that for any 0 < 2/ < njs(z) we
have M (2, z) = 0.

[n] /

For any « € [0,1), by the Archimedeanness of A/, there exists an n.p € N such that z;; < 2’ and
xE{’) < z from whence we have that
x[n+p] - M <$[n] x[lﬂ) < ]\'.[(”I ,’) -0
M= MsTyr ) = Mz, 2) =V
|

Corollary 6.2. Let M be any t-subnorm such that nys is a strong negation. Then the following are equiv-
alent:

(i) Fvery x € (0,1) 4s a nilpotent element.
(ii) M s Archimedean.

The following result is due to Kolesérova [8]:

Theorem 6.3. Let T be any Archimedean t-norm. Then the following are equivalent:

(i) T 1s left-continuous.
(ii) T is continuous.

Corollary 6.4. A left-continuous Archimedean t-subnorm M whose ny; is involutive is a nilpotent t-norm.

Proof. From Theorem 3.1 we see that M is a left-continuous t-norm. From Theorem 6.3, since M is
Archimedean it is continuous. Also by Theorem 6.1, we have that every € (0,1) is a nilpotent element.
Thus T is nilpotent, i.e., isomorphic to Tk (2, y) = max (0,2 +y — 1). a

Remark 6.5. (i) Note that there exist left-continuous Archimedean t-subnorms M that are not contin-
uous and hence their nj; is not involutive. For instance. consider the t-subnorm

z+y—1, ifx—&—y>%7

z,y € [0,1].
0. otherwise , ye 0]

M(z.y) = {

(ii) The nilpotent minimum t-norm T, is an example of a left-continuous t-subnorm M whose nas is
involutive but is not Archimedean and hence is not a nilpotent t-norm.

(iii) However, it is not clear whether there exists any non-nilpotent Archimedean t-subnorm M whose ny,
is involutive. Clearly such t-(sub)norms are not left-continuous.

Problem 1. Does there exist any non-nilpotent Archimedean t-subnorm M whose 1), is involutive. In
other words, is an Archimedean t-subnorm M whose nj, is involutive necessarily left-continuous?

7
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Every x € (0,1)
is nilpotent
¢

left continuity \

------- -» | Existing results o 4p | Not True —_—>

Figure 2: A Summary of the results available so far when nr is strong

7. Archimedeanness and Conditional Cancellativity

In general, there does not exist any inter-relationships between Archimedeanness and conditional can-
cellativity, as the following examples show.

Example 7.1. (i) The Ouyang t-norm Toy is an example of a t-(sub)norm which is not Archimedean
but is both left-continuous and conditionally cancellative.
(ii) The following t-norm is neither Archimedean nor left-continuous but is conditionally cancellative:

0, if vy < L& max(z.y) < 1
T(x,y) = zy, if oy > 1
min(z,y), otherwise

(iif) The following t-subnorm is Archimedean and continuous. but not conditionally cancellative:
M(z,y) = max(0.min(z +y— 1,2 — a,y — a,1 — 2a)),

where a € (0,0.5). For instance, with a = 0.25 we have 1/(0.75,0.75) = M(0.75,0.8) = 0.5.

(iv) The nilpotent minimum T,,n, whose npy is strong, is neither Archimedean nor conditionally cancella-
tive, but is left-continuous.

(v) The Lukasiewicz t-norm Tpk(x,y) = max(0,2 + y — 1) is both Archimedean and conditionally can-
cellative. Further, nz, is strong.

In fact, in the casc when ny, is strong we have the following partial implication.

Lemma 7.2. Let M be any t-subnorm whose ny; is strong. If M is conditionally cancellative then M is
Archimedean.

Proof. From Theorem 5.8, we have that if M is conditionally cancellative then M is a nilpotent t-norm from
whence it follows that M is Archimedean. O

Problem 2. Docs there exist any Archimedcan t-subnorm M whose ny,; is involutive but is not condi-
tionally cancellative? In other words, is an Archimedean t-subnorm M whose n,; is involutive necessarily
conditionally cancellative?

In fact, from Theorem 3.3, it can be easily seen that the above two problems are an alternate formulation
of Problem 2.1 in [10].
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8. Concluding Remarks

In this work, we have shown that t-subnorms whose associated negations are strong are necessarily t-
norms. Further. we have studied the inter-relationships between some algebraic and analytical properties of
such t-(sub)norms. Figurc 2 gives a pictorial summary of the results that cxist so far. Our study has also
opcned up two intcresting open problems.
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