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Abstract

It is well-known that the residual of a left-continuous t-norm satisfies the exchange principle (EP). However, the left-continuity of
a t-norm is only sufficient and not necessary, as many examples in the literature illustrate. In this work we study the necessary and
sufficient conditions on a t-norm for its residual to satisfy (EP). We present a complete characterization of two classes of t-norms
whose residuals satisfy (EP), viz., t-norms that are border-continuous and those that have an ordinal sum representation. Based on
the obtained results we characterize t-norms, whose residuals satisfy both the exchange principle and the ordering property.
© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

The family of R-implications is one of the most established classes of fuzzy implications. In fact, one of the earliest
methods for obtaining implications was from conjunctions as their residuals, when no additional logical connectives are
given. In this way Gödel extended the three-valued implication of Heyting, while discussing the possible relationships
between many-valued logic on the one hand, and intuitionistic logic on the other. Residuals of conjunctions on a lattice
L, be it from t-norms, uninorms, t-subnorms, copulas, etc., have attracted the most attention from researchers, since
they can transform the underlying lattice L into a residuated lattice. In this paper we will consider only R-implications
generated from t-norms.

Definition 1.1 (see Klement et al. [7]). (i) A function M : [0, 1]2 → [0, 1] is called a t-subnorm, if it is non-decreasing
in both variables, commutative, associative and M(x, y)≤ min(x, y) for all x, y ∈ [0, 1].

(ii) A t-norm T is a t-subnorm that has 1 as the neutral element.
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Definition 1.2 (see Baczyński and Jayaram [2], Gottwald [4]). A function I : [0, 1]2 → [0, 1] is called an R-
implication, if there exists a t-norm T such that

I (x, y) = sup{t ∈ [0, 1]|T (x, t)≤y}, x, y ∈ [0, 1].

If an R-implication is generated from a t-norm T, then we will often denote it by IT . Obviously, due to the monotonicity
of any t-norm T, if T (x, y)≤z then necessarily x≤IT (y, z). Observe that, for a given t-norm T, the pair (T, IT )
satisfies the adjointness property (RP) (see Definition 2.3) if and only if T is left-continuous, see, for instance the
monographs [4,1].

R-implications also have a parallel origin other than its logical foundations. They were also obtained from the study
of solutions of systems of fuzzy relational equations and have been known under different names, for example, as a
�-operator in Pedrycz [12], as T-relative pseudocomplement and �T -operator in [11].

1.1. A first characterization of R-implications generated from left-continuous t-norms

Sanchez [13] showed that the greatest solution of sup − min composition of fuzzy relations is the relation obtained
from the residual of min. In fact, Miyakoshi and Shimbo [11] generalized this result to any left-continuous t-norm.
They also showed that their �T -operator is equivalent to the �-operator of Pedrycz. Most importantly, they gave the first
characterization of R-implications obtained from left-continuous t-norms (for the proof see also [1, Theorem 2.5.17]).

Theorem 1.3. For a function I : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) I is an R-implication generated from a left-continuous t-norm.
(ii) I is non-decreasing with respect to the second variable, it satisfies the exchange principle, i.e.,

I (x, I (y, z)) = I (y, I (x, z)), x, y, z ∈ [0, 1], (EP)

it satisfies the ordering property, i.e.,

x≤y ⇐⇒ I (x, y) = 1, x, y ∈ [0, 1] (OP)

and I is right continuous with respect to the second variable.

As we see, there are two important axioms of multivalued implications above: (EP) and (OP). The characterization
of t-norms, whose residuals satisfy the ordering property (OP) has been obtained by Baczyński and Jayaram [2].

Definition 1.4 (Klement et al. [7]). A function F : [0, 1]2 → [0, 1] is said to be border-continuous, if it is continuous
on the boundary of the unit square [0, 1]2, i.e., on the set [0, 1]2\]0, 1[2.

Proposition 1.5 (Baczyński and Jayaram [2, Proposition 5.8], Baczyński and Jayaram [1, Proposition 2.5.9]). For a
t-norm T the following statements are equivalent:

(i) T is border-continuous.
(ii) IT satisfies the ordering property (OP).

Our main goal in this paper is to obtain a similar characterization but for the exchange principle, i.e., we want to
characterize those t-norms whose residuals satisfy (EP). To see that this condition is independent from (OP), let us
analyze the following examples.

Example 1.6.
(i) Consider the least t-norm, also called the drastic product, given as follows:

TD(x, y) =
{

0 if x, y ∈ [0, 1[,
min(x, y) otherwise.
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Observe that it is a non-left-continuous t-norm. The R-implication generated from TD is given by

ITD(x, y) =
{

1 if x < 1,

y if x = 1.

ITD (see Fig. 1(a)) satisfies (EP), but does not satisfy (OP).
(ii) Consider the non-left-continuous t-norm given in [7, Example 1.24 (i)] as follows:

TB∗ (x, y) =
{

0 if x, y ∈]0, 0.5[,
min(x, y) otherwise.

Then the R-implication generated from TB∗ is

ITB∗ (x, y) =
⎧⎨
⎩

1 if x≤y,

0.5 if x > y and x ∈ [0, 0.5[,
y otherwise.

Obviously, ITB∗ (see Fig. 1(b)) satisfies (OP) but not (EP), since

ITB∗ (0.4, ITB∗ (0.5, 0.3)) = 0.5,

while

ITB∗ (0.5, ITB∗ (0.4, 0.3)) = 1.

(iii) Consider now the non-left-continuous t-norm given in [7, Example 1.24 (ii)] as follows:

TB(x, y) =
{

0 if (x, y) ∈]0, 1[2\[0.5, 1[2,

min(x, y) otherwise.

Then the R-implication generated from TB is

ITB(x, y) =
⎧⎨
⎩

1 if x≤y or x, y ∈ [0, 0.5[,
0.5 if x ∈ [0.5, 1[ and y ∈ [0, 0.5[,
y otherwise.

It is obvious that ITB (see Fig. 1(c)) does not satisfy (OP). ITB also does not satisfy (EP) since

ITB(0.8, ITB(0.5, 0.3)) = ITB(0.8, 0.5) = 0.5,

while

ITB(0.5, ITB(0.8, 0.3)) = ITB(0.5, 0.5) = 1.

(iv) Finally, consider the largest t-norm, TM(x, y) = min(x, y) whose residual is the Gödel implication
(see Fig. 1(d))

IGD(x, y) =
{

1 if x≤y,

y if x > y,

which satisfies both (EP) and (OP).

1.2. Left-continuity of T for (EP) of IT : sufficient but necessary?

Left-continuity of a t-norm T is sufficient for IT to satisfy (EP), but is not necessary, see Example 1.6(i). As
another counterexample consider the non-left-continuous nilpotent minimum t-norm, which is border-continuous
(see [9, p. 851]):

TnM∗ (x, y) =
{

0 if x + y < 1,

min(x, y) otherwise.
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Fig. 1. R-implications from t-norms: border-continuity, left-continuity and the exchange principle (see Example 1.6): (a) ITD; (b) ITB∗ ; (c) ITB;
(d) IGD; (e) IFD.

Then the R-implication generated from TnM∗ is the following Fodor implication (see Fig. 1(e)):

IFD(x, y) =
{

1 if x≤y,

max(1 − x, y) if x > y,

which satisfies both (EP) and (OP). This leads us to the following natural question:
What is(are) the most general condition(s) on t-norm T to ensure that IT has (EP)?

In this work, we take up this study and present a complete characterization of the class of t-norms whose residuals
satisfy (EP). Towards this end, we firstly partition the class of t-norms into those that are border-continuous and those
that are not and deal with each of them separately.

2. Preliminaries

We assume that the reader is familiar with the classical results concerning basic fuzzy logic connectives, but to
make this work more self-contained, we introduce some notations used in the text and we briefly mention some of the
concepts and results employed in the rest of the work.

Definition 2.1 (see Baczyński and Jayaram [1]). A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it
satisfies the following conditions:

I is non-increasing in the first variable, (I1)

I is non-decreasing in the second variable, (I2)

I (0, 0) = 1, I (1, 1) = 1, I (1, 0) = 0. (I3)

The set of all fuzzy implications will be denoted by FI.
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Proposition 2.2 (see Jayaram and Mesiar [5, Theorem 7.6]). If a function F : [0, 1]2 → [0, 1] is border-continuous,
commutative, monotonic non-decreasing with neutral element 1, then the residual IF ∈ FI, it satisfies (OP) and it is
right-continuous with respect to the second variable.

Proof. By [5, Theorem 7.6] it is enough to show that IF is right-continuous with respect to the second variable. On
the contrary, let us assume that F is not right-continuous with respect to the second variable for some point (x0, y0) ∈
[0, 1] × [0, 1[. We know that IF ∈ FI, so F is non-decreasing with respect to the second variable. Therefore there
exist � > 0 and decreasing sequence (yn)n∈N in ]y0, 1] such that limn→∞ yn = y0 and

IF (x0, yn) > IF (x0, y0) + � for all n ∈ N.

By the definition of IF we get

sup{t ∈ [0, 1]|F(x0, t)≤yn} > IF (x0, y0) + � for all n ∈ N,

thus

F(x0, IF (x0, y0) + �)≤yn for all n ∈ N.

In the limit n → ∞ we get

F(x0, IF (x0, y0) + �)≤y0,

hence

F(x0, y0)≥IF (x0, y0) + �,

which is a contradiction. �

Definition 2.3 (Gottwald [4]). Two functions F, G: [0, 1]2 → [0, 1] form an adjoint pair if they satisfy the residuation
property, i.e.,

F(x, z)≤y ⇐⇒ G(x, y)≥z, x, y, z ∈ [0, 1]. (RP)

Theorem 2.4 (cf. Baczyński and Jayaram [1, Proposition 2.5.2,Theorem 2.5.7], Król [8, Theorems 2, 5]). If M is a
left-continuous t-subnorm, then

(i) IM (x, y) = max{t ∈ [0, 1]|M(x, t)≤y}, for all x, y ∈ [0, 1],
(ii) M and IM form an adjoint pair,

(iii) IM satisfies (EP).

Theorem 2.5 (Baczyński and Jayaram [1, Theorem 2.5.14]). If a function I : [0, 1]2 → [0, 1] satisfies (EP), (OP) and
is both monotonic non-decreasing and right-continuous with respect to the second variable, then TI defined as below:

TI (x, y) = min{t ∈ [0, 1]|I (x, t)≥y}, x, y ∈ [0, 1],

is a left-continuous t-norm, where the right side exists for all x, y ∈ [0, 1].

Definition 2.6. Let F : [0, 1]2 → [0, 1] be monotonic non-decreasing and commutative. Then the function F∗: [0, 1]2

→ [0, 1] defined as below:

F∗(x, y) =
{

sup{F(u, v)|u < x, v < y} if x, y ∈]0, 1[,
F(x, y) otherwise,

(1)

is called the conditionally left-continuous completion of F.

Lemma 2.7. If F : [0, 1]2 → [0, 1] is monotonic non-decreasing and commutative, then the function F∗ as defined in
(1) is monotonic non-decreasing and commutative.
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Proof. By the monotonicity of F we have

F∗(x, y) =
{

F(x−, y−) if x, y ∈]0, 1[,
F(x, y) otherwise,

for any x, y ∈ [0, 1], where the value F(x−, y−) denotes the left-hand limit. Clearly, F∗(x, y) = F∗(y, x) and F∗ is
monotonic non-decreasing. �

Remark 2.8. Let T be a t-norm.

(i) T ∗ is monotonic non-decreasing, commutative, it has 1 as its neutral element and T ∗(0, 0) = 0, so it is a fuzzy
conjunction in the sense of Fodor and Keresztfalvi [3] (see also [8]).

(ii) If T is border-continuous, then T ∗ is left-continuous (in particular it is also border-continuous).
(iii) One can easily check that IT ∗ is a fuzzy implication.
(iv) By the monotonicity of T we have T ∗≤T and hence IT ∗≥IT .
(v) If x≤y, then IT ∗ (x, y) = IT (x, y) = 1.

(vi) Also, if x = 1, then by the neutrality of T we have IT ∗ (1, y) = IT (1, y) = y.
(vii) In general T ∗ may not be left-continuous. For example when T = TD, the drastic t-norm, then T ∗ = T , but TD

is not left-continuous. This explains why T ∗ is called the conditionally left-continuous completion of T. Further,
T ∗ may not satisfy the associativity (see Example 2.9).

Example 2.9.
(i) Consider the following non-left continuous but border-continuous Viceník t-norm (see [14,15]) given by the formula

TVC(x, y) =
{

0.5 if min(x, y)≥0.5 and x + y≤1.5,

max(x + y − 1, 0) otherwise.

Then the conditionally left-continuous completion of TVC is given by

T ∗
VC(x, y) =

{
0.5 if min(x, y) > 0.5 and x + y < 1.5,

max(x + y − 1, 0) otherwise.

One can easily check that T ∗
VC is not a t-norm since it is not associative. Indeed, we have

T ∗
VC(0.55, T ∗

VC(0.95, 0.95)) = 0.5,

while

T ∗
VC(T ∗

VC(0.55, 0.95), 0.95) = 0.45.

For the plots of both the functions see Fig. 2.
(ii) Consider the non-left-continuous nilpotent minimum t-norm TnM∗ , which is border-continuous. Then the con-

ditionally left-continuous completion of TnM∗ is the left-continuous nilpotent minimum t-norm (see [7, Remark
1.21]), given by

TnM(x, y) =
{

0 if x + y≤1,

min(x, y) otherwise.

Definition 2.10 (cf. Jenei [6, Definition 5.7.2]). A monotonic non-decreasing, commutative and associative function
F : [0, 1]2 → [0, 1] is said to satisfy the (CLCC-A)-property, if its conditionally left-continuous completion F∗, as
defined by (1), is associative.

3. Border-continuous t-norms

This section contains the main contribution of this work. We consider the class of border-continuous t-norms and
determine its sub-class whose residuals satisfy (EP). Note that the t-norm TB∗ in Example 1.6(ii) is a border-continuous
but non-left-continuous t-norm whose residual does not satisfy (EP).
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Fig. 2. The Viceník t-norm TVC and its conditionally left-continuous completion T ∗
VC (see Example 2.9): (a) TVC; (b) T ∗

VC.

Lemma 3.1. Let T be a border-continuous t-norm such that IT satisfy (EP). Then IT = IT ∗ .

Proof. From formula for T ∗ and Remark 2.8 we know that IT (x, y) = IT ∗ (x, y) when x≤y or (x, y) ∈ [0, 1]2\]0, 1[2.
Therefore assume that there exist x0, y0 ∈]0, 1[ such that x0 > y0 and

� = IT ∗ (x0, y0) > IT (x0, y0) = �.

Since T ∗ is left-continuous we have that � = IT ∗ (x0, y0) 
⇒ T ∗(x0, �)≤y0. Thus, � < 1 and for every � ∈ (�, �) we
have

y0≥T ∗(x0, �) = T (x−
0 , �−)≥T (x−

0 , �)≥T (x−
0 , �). (2)

Fix arbitrarily � ∈ (�, �). Now, we have two cases:

1. � ∈ {t | T (x0, t)≤y0}, in which case

T (x0, �)≤y0 < T (x0, �).

2. � /∈ {t |T (x0, t)≤y0}, in which case

T (x0, �
−)≤y0 < T (x0, �)≤T (x0, �).

From (2) and any of the above two cases we have

(T (x−
0 , �)≤y0 < T (x0, �)) 
⇒ (IT (�, y0) = sup{t |T (�, t)≤y0} = x0).

Now, since IT satisfies (EP) and (OP) we get

IT (x0, IT (�, y0)) = IT (x0, x0) = 1 = IT (�, IT (x0, y0)) = IT (�, �),

thus �≤�, by (OP); a contradiction. Hence � = IT ∗ (x0, y0) = IT (x0, y0) = �. �

Lemma 3.2. Let T be a border-continuous t-norm such that IT satisfy (EP). Then T satisfies the (CLCC-A)-property,
i.e., its conditionally left-continuous completion T ∗ is associative.
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Proof. To prove the associativity of T ∗ it is enough to show that T ∗ is equal to the t-norm TIT ∗ obtained from its
residual IT ∗ . Let us define

TIT ∗ (x, y) = inf{t |IT ∗ (x, t)≥y}, x, y ∈ [0, 1]. (3)

Since T ∗ is border-continuous, by Proposition 2.2 we see that IT ∗ satisfies (OP) and it is right-continuous with respect
to the second variable. By Lemma 3.1, we obtain that IT = IT ∗ and hence IT ∗ satisfies (EP). Thus, by Theorem 2.5,
we get the fact that TIT ∗ is a left-continuous t-norm. Finally, observe that by Remark 2.8 T ∗ fulfills assumptions on a
conjunction in [8, Theorem 13], so T ∗ = TIT ∗ , which ends the proof. �

Theorem 3.3. For a border-continuous t-norm T the following statements are equivalent:

(i) IT satisfies (EP).
(ii) T satisfies the (CLCC-A)-property (i.e., T ∗ is a associative), and IT = IT ∗ .

Proof. (i) 
⇒ (ii): Follows from Lemmas 3.2 and 3.1.
(ii) 
⇒ (i): If T satisfies the (CLCC-A)-property, then T ∗ is a left-continuous t-norm. Therefore IT ∗ satisfies (EP).

But IT = IT ∗ , so IT also satisfies (EP). �

Based on the obtained results we are able to present the characterization of t-norms, whose residuals satisfy both the
exchange principle and the ordering property.

Corollary 3.4. For a t-norm T the following statements are equivalent:

(i) IT satisfies (EP) and (OP).
(ii) T is border-continuous, satisfies the (CLCC-A)-property and IT = IT ∗ .

4. Ordinal sums of t-norms

In this section, we study the above problem, that of determining the necessary and sufficient conditions for a T such
that its residual satisfies (EP), but for t-norms T that have an ordinal sum representation. Towards this end, we firstly,
determine the formula for the residual generated from the t-norm T whose ordinal summands are also t-norms.

Just as there exists a complete representation of continuous t-norms in terms of an ordinal sum representation (see [7,
Theorem 5.11]), the following representation of left-continuous t-norms as the ordinal sum of t-subnorms can be given.

Theorem 4.1 (Mesiar and Mesiarová [10, Theorem 1]). A function T : [0, 1]2 → [0, 1] is a left-continuous t-norm if
and only if there exist a family of pairwise disjoint open sub-intervals {]�k, �k[}k∈K of [0,1] and a family of left-
continuous t-subnorms (Mk)k∈K such that if either �k = 1 for some k ∈ K or �k = �k∗ for some k, k∗ ∈ K and Mk∗
has zero-divisors, then Mk is a t-norm, so that

T (x, y) =
⎧⎨
⎩

�k + (�k − �k) · Mk

(
x − �k

�k − �k
,

y − �k

�k − �k

)
i f x, y ∈]�k, �k],

min(x, y) otherwise.

Theorem 4.2 (Mesiar and Mesiarová [10, Theorem 5]). If T is a left-continuous t-norm with the ordinal sum structure
as given in Theorem 4.1, then

IT (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1 i f x≤y,

�k + (�k − �k) · IMk

(
x − �k

�k − �k
,

y − �k

�k − �k

)
i f �k < y < x≤�k,

y otherwise,

=
⎧⎨
⎩

�k + (�k − �k) · IMk

(
x − �k

�k − �k
,

y − �k

�k − �k

)
i f �k < y < x≤�k,

IGD(x, y) otherwise,

where IGD is the Gödel implication (see Example 1.6(iv)).
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Obviously, IT given in Theorem 4.2 satisfies (EP) and thus the formula in Theorem 4.1 can be used as a con-
struction method for t-norms yielding residual implications possessing (EP). This method of construction (based on
left-continuous triangular subnorms) of t-norms for which the residual implication satisfies (EP) can be further general-
ized, not requiring the left-continuity of single summands in the ordinal sum. We show such a generalization considering
t-norms summands only (i.e., we will deal with ordinal sums of t-norms only).

Theorem 4.3 (Klement et al. [7, Theorem 3.43]). Let (Tk)k∈K be a family of t-norms and {]�k, �k[}k∈K be a family of
non-empty, pairwise disjoint open subintervals of [0,1]. Then the following function is a t-norm:

T (x, y) =
⎧⎨
⎩

�k + (�k − �k) · Tk

(
x − �k

�k − �k
,

y − �k

�k − �k

)
i f x, y ∈]�k, �k],

min(x, y) otherwise,
x, y ∈ [0, 1]. (4)

The t-norm T defined as above is called the ordinal sum of the summands {]�k, �k[}k∈K and we shall write T =
(〈�k, �k, Tk〉)k∈K.

Proposition 4.4. Let (Tk)k∈K be a family of t-norms and let T = (〈�k, �k, Tk〉)k∈K be an ordinal sum t-norm as given
in Theorem 4.3. Then

IT (x, y) =
⎧⎨
⎩

�k + (�k − �k) · ITk

(
x − �k

�k − �k
,

y − �k

�k − �k

)
i f �k≤y < x≤�k,

IGD(x, y) otherwise,
x, y ∈ [0, 1].

Proof. Let us fix arbitrarily x, y ∈ [0, 1]. It is obvious that if x≤y, then IT (x, y) = 1 = IGD(x, y). Therefore let us
assume that x > y and we consider several cases now.

• If �k≤y < x≤�k , for some k ∈ K, then from the representation (4) of a t-norm T, for any t ∈ [0, 1] we have the
following subcases.
1. If t > �k , then T (x, t) = min(x, t) = x > y.
2. If t < �k , then T (x, t) = min(x, t) = t < �k≤y, thus

sup{t ∈ [0, �k)|T (x, t)≤y} = sup{t ∈ [0, �k)|t≤y} = �k .

3. If �k≤t≤�k, then

sup{t ∈ [�k, �k]|T (x, t)≤y} = sup

{
t ∈ [�k, �k]|�k + (�k − �k) · Tk

(
x − �k

�k − �k
,

t − �k

�k − �k

)
≤y

}

= sup

{
t ∈ [�k, �k]|Tk

(
x − �k

�k − �k
,

t − �k

�k − �k

)
≤ y − �k

�k − �k

}

= �k + (�k − �k) · ITk

(
x − �k

�k − �k
,

y − �k

�k − �k

)
≥�k .

Hence

IT (x, y) = �k + (�k − �k) · ITk

(
x − �k

�k − �k
,

y − �k

�k − �k

)

in this case.
• If �k≤x≤�k , for some k ∈ K and y < �k , then again from the representation 4 of a t-norm T, for any t ∈ [0, 1] we

have the following subcases.
1. If t > �k , then T (x, t) = min(x, t) = x > y.
2. If t < �k , then T (x, t) = min(x, t) = t , thus

sup{t ∈ [0, �k)|T (x, t)≤y} = sup{t ∈ [0, �k)|t≤y} = y.
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3. If �k≤t≤�k, then

T (x, t) = �k + (�k − �k) · Tk

(
x − �k

�k − �k
,

t − �k

�k − �k

)
≥�k > y

so in this case does not exist any t such that T (x, t)≤y.
From the above discussion we get

IT (x, y) = y = IGD(x, y)

in this case.
• If x does not belong to any closed interval [�k, �k] for k ∈ K, then T (x, t) = min(x, t) for any t ∈ [0, 1]. Since

y < x , in this case we also obtain

IT (x, y) = sup{t ∈ [0, 1]|T (x, t)≤y} = sup{t ∈ [0, 1]| min(x, t)≤y} = y = IGD(x, y). �

Firstly, we consider t-norms obtained as an ordinal sum with a single summand.

Theorem 4.5. Let T be a t-norm and let V = (〈a, b, T 〉). Then the following statements are equivalent:

(i) IV satisfies (EP).
(ii) IT satisfies (EP) and if b < 1 then T is border-continuous.

Proof. Let V = (〈a, b, T 〉) be an ordinal sum t-norm with a unique summand t-norm T.
(i) 
⇒ (ii): We consider two cases: b = 1 and b < 1.

• Suppose that b = 1. Then by Proposition 4.4 we have

IV (x, y) =
⎧⎨
⎩

a + (1 − a) · IT

(
x − a

1 − a
,

y − a

1 − a

)
if a≤y < x≤1,

IGD(x, y) otherwise,
x, y ∈ [0, 1]. (5)

Let us fix arbitrarily x, y, z ∈ [0, 1]. We will show that IT satisfies (EP) by considering the following cases:
◦ if x≤z, then clearly, IT (x, z) = 1 and since IT (p, q)≥q for any p, q ∈ [0, 1] and any t-norm T, from the

monotonicity of IT with respect to the second variable we have

1≥IT (x, IT (y, z))≥IT (x, z) = 1 = IT (y, 1) = IT (y, IT (x, z)),

so IT satisfies (EP) in this case.
◦ if y≤z, then the proof is similar to above.
◦ if x > z and y > z, then let us define x0 = a + (1 − a)x , y0 = a + (1 − a)y and z0 = a + (1 − a)z. Observe

that x0, y0, z0 ∈ [a, 1] and x0 > z0 and y0 > z0. Now observe that

IV (y0, z0) < x0 ⇐⇒ IV (x0, z0) < y0.

To see the above, let us assume that IV (x0, z0) < y0 but IV (y0, z0)≥x0. From (5) we get IV (x0, IV (y0, z0)) =
1 = IV (y0, IV (x0, z0)), since IV satisfies (EP). However, once again the definition of IV in (5) now implies that
y0≤IV (x0, z0), a contradiction. The reverse implication can be shown similarly.
Thus, on the one hand, if x0≤IV (y0, z0), then from (5) we see that also x≤IT (y, z) and similarly, y0≤IV (x0, z0)
implies that y≤IT (x, z). From these two inequalities, we get

IT (x, IT (y, z)) = 1 = IT (y, IT (x, z)),

thus IT satisfies (EP) in this subcase.
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On the other hand, if x0 > IV (y0, z0)≥z0≥a, then from (5) we get

IV (x0, IV (y0, z0)) = a + (1 − a) · IT

(
x0 − a

1 − a
,

IV (y0, z0) − a

1 − a

)

= a + (1 − a) · IT

⎛
⎜⎜⎝ x0 − a

1 − a
,

a + (1 − a)IT

(
y0 − a

1 − a
,

z0 − a

1 − a

)
− a

1 − a

⎞
⎟⎟⎠

= a + (1 − a) · IT

(
x0 − a

1 − a
, IT

(
y0 − a

1 − a
,

z0 − a

1 − a

))

= a + (1 − a) · IT (x, IT (y, z)).

Similarly, we have

IV (y0, IV (x0, z0)) = a + (1 − a) · IT (y, IT (x, z)).

Since IV satisfies (EP), we easily get that IT also satisfies (EP) in this subcase.
• Suppose now that b < 1. Then

IV (x, y) =
⎧⎨
⎩

a + (b − a) · IT

(
x − a

b − a
,

y − a

b − a

)
if a≤y < x≤b,

IGD(x, y) otherwise,
x, y ∈ [0, 1].

◦ If T is not border continuous, then from Proposition 1.5 we get that IT does not satisfy (OP). Therefore there exist
0≤u < v≤1 such that IT (v, u) = 1. Let us take x = a + (b − a)v and z = a + (b − a)u. Then a≤z < x≤b and

IV (x, z) = a + (b − a) · IT

(
x − a

b − a
,

y − a

b − a

)

= a + (b − a) · IT (v, u)

= b.

Thus, on the one hand we get

IV (b, IV (x, z)) = IV (b, b) = 1.

On the other hand IT satisfies the neutral property (see Theorem 2.5.4 in [1]), so

IV (b, z) = a + (b − a) · IT

(
b − a

b − a
,

z − a

b − a

)

= a + (b − a) · IT

(
1,

z − a

b − a

)

= a + (b − a)
z − a

b − a
= z,

and thus

IV (x, IV (b, z)) = IV (x, z) = b < 1,

and hence IV does not satisfy (EP); a contradiction.
◦ If T is border continuous but IT does not satisfy (EP), then there exist x0, y0, z0 ∈ [0, 1] such that

IT (x0, IT (y0, z0)) � IT (y0, IT (x0, z0)). (6)

By the properties of R-implications (see [1, Theorem 2.5.4]), one can easily check that these numbers must satisfy
the following inequalities:

0≤z0 < x0 < 1 and 0≤z0 < y0 < 1.

Indeed, due to the neutrality principle, see Remark 2.8(vi), if max(x0, y0) = 1, then LHS(6) = RHS(6) =
IT (min(x0, y0), z). Moreover, if min(x0, y0) = 0 or z0 = 1, then evidently LHS(6) = RHS(6) = 1. Now it is
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enough to choose x = a + (b − a)x0, y = a + (b − a)y0 and z = a + (b − a)z0 to violate (EP), leading to a
contradiction. Of course z < x and z < y and x, y ∈]a, b[, so by the definition of IV we see that

a≤IV (y, z) = a + (b − a)IT

(
y − a

b − a
,

z − a

b − a

)
< b,

and similarly, a≤IV (x, z) < b. Now observe that

x≤IV (y, z) ⇐⇒ y≤IV (x, z).

Indeed, let x≤IV (y, z). Then, by the definition of IV and since IV satisfies (EP), we have IV (x, IV (y, z)) = 1 =
IV (y, IV (x, z)). Note that V is border continuous as it is ordinal sum without summand boundary b = 1, and thus
we have (OP) of IV . Hence y≤IV (x, z).
Thus, on the one hand if x≤IV (y, z), then, from the definition of IV , we obtain

x = a + (b − a)x0≤a + (b − a)IT

(
y − a

b − a
,

z − a

b − a

)


⇒ x0≤IT (y0, z0)


⇒ IT (x0, IT (y0, z0)) = 1.

Similarly, from y≤IV (x, z) we get IT (y0, IT (x0, z0)) = 1 = IT (x0, IT (y0, z0)), contradicting (6) in this subcase.
On the other hand, if x > IV (y, z), then from the definition of IV , we obtain

IV (x, IV (y, z)) = a + (b − a)IT

⎛
⎜⎜⎝ x − a

b − a
,

a + (b − a)IT

(
y − a

b − a
,

z − a

b − a

)
− a

b − a

⎞
⎟⎟⎠

= a + (b − a)IT (x0, IT (y0, z0)).

Similarly

IV (y, IV (x, z)) = a + (b − a)IT (y0, IT (x0, z0)).

Once again, by (EP) of IV , we get IT (x0, IT (y0, z0)) = IT (y0, IT (x0, z0)), contradicting (6).
(ii) 
⇒ (i): Let us fix arbitrarily x, y, z ∈ [0, 1]. We will show that IV satisfies (EP) by considering the following

cases:

• if x≤z or y≤z, then it is obvious that IV satisfies (EP).
• if x > z and y > z and z < a or z > b, then (EP) holds because it is valid for the Gödel implication IGD. Indeed,

we get

IV (x, IV (y, z)) = IV (x, z) = z = IV (y, z) = IV (y, IV (x, z)).

• if x > b and y > b and a≤z≤b, then similarly as above we get

IV (x, IV (y, z)) = IV (x, z) = z = IV (y, z) = IV (y, IV (x, z)).

• if x > b and a≤z < y≤b, then IV (y, z) ∈ [a, b] and hence

IV (x, IV (y, z)) = IGD(x, IV (y, z)) = IV (y, z) = IV (y, IV (x, z)).

• if y > b and a≤z < x≤b, then IV (x, z) ∈ [a, b] and similarly as above

IV (y, IV (x, z)) = IGD(y, IV (x, z)) = IV (x, z) = IV (x, IV (y, z)).

• if a≤z < x≤b and a≤z < y≤b, then (EP) is valid because of (EP) of IT . �

A generalization of the above result to t-norms with countable ordinal summands is straight-forward.
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Corollary 4.6. Let T = (〈�k, �k, Tk〉)k∈K be an ordinal sum t-norm. Then the following statements are equivalent:

(i) IT satisfies (EP).
(ii) For every k ∈ K, ITk satisfies (EP) and either Tk is border-continuous or �k = 1.

Proof. (i) 
⇒ (ii): As per the above notation, the necessity goes similarly as in Theorem 4.5—if �k = 1 and ITk does
not satisfy (EP), then we show that also IT does not satisfy (EP). In all other cases, if Tk is not border continuous, we
show that (EP) does not hold for IT , and if Tk is border continuous but IT does not satisfy (EP), then again we show
the violation of (EP) for IT .

(ii) 
⇒ (i): The sufficiency will be shown based on z ∈ [0, 1].

• If z is not in any of [�k, �k], then (EP) holds because IT holds for IGD.
• If �k≤z≤�k for some k ∈ K, then it is necessary to check the case z < x and z < y only; we repeat the arguments

above, namely:
◦ If x > �k and y > �k , then (EP) turns into z = z.
◦ If x > �k and y≤�k , then IT (y, z) ∈ [�k, �k] and (EP) turns into IT (y, z) = IT (y, z).
◦ If y > �k and x≤�k , then similarly as above (EP) turns into IT (x, z) = IT (x, z).
◦ If x≤�k and y≤�k , then (EP) is valid for IT , because of (EP) of ITk . �

5. Concluding remarks

In this work we have studied the problem of characterizing t-norms whose residuals satisfy the exchange principle.
We have presented a complete characterization of two classes of t-norms whose residuals satisfy the exchange principle,
viz., the border-continuous t-norms and those t-norms that have an ordinal sum representation. The study reveals that
the concept of conditionally left-continuous completion of a t-norm plays an important role. In fact, it can be seen that
unless a t-norm can be embedded into a left-continuous t-norm, in some rather precise manner as presented in the work,
its residual does not satisfy the exchange principle.
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