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Abstract. Empirical evaluations and experience seem to provide evidence that fuzzy
clustering is less sensitive w.r.t. to the initialisation than crisp clustering, i.e. fuzzy
clustering often tends to converge to the same clustering result independent of the
initialisation whereas the result for crisp clustering is highly dependent on the ini-
tialisation. This leads to the conjecture that the objective function used for fuzzy
clustering has less undesired local minima than the one for hard clustering. In this
paper, we demonstrate that fuzzy clustering does suffer from unwanted local min-
ima based on concrete examples and show how these undesired local minima of the
objective function in fuzzy clustering can vanish by using a suitable value for the
fuzzifier.

1 Introduction

The aim of cluster analysis is to construct a partition of a given data set into ho-
mogenous groups, called clusters. Data objects within a cluster should be similar,
whereas data objects assigned to different clusters should differ significantly. The
main motivation for the introduction of fuzzy clustering as a generalisation of crisp
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or partitioning clustering was to better represent partly overlapping clusters. Data
points at the boundary between two clusters should belong partly to both clusters.

Apart from this obvious motivation for fuzzy clustering, it seems that fuzzy clus-
tering is more robust in the sense that the results seem to be less dependent on the
initialisation that is required for many clustering algorithms. Since fuzzy clustering
is usually based on minimising an objective function by a gradient descent method,
this empirical observation suggests the conclusion that the fuzzy versions of crisp
clustering algorithms have less local minima in which the clustering algorithm can
get stuck.

First investigations in this direction have been described in [14], but without fi-
nal proofs that local minima of the objective function can really vanish in fuzzy
clustering. After a brief review of fuzzy cluster analysis, we provide concrete exam-
ples where it can be clearly observed that undesired local minima of the objective
function can be ruled out by fuzzy clustering. Although this is a positive result, new
problems are introduced by fuzzy clustering when applied to high-dimensional data.

2 From Crisp to Fuzzy Clustering

A simple and common popular approach is the so-called c-means clustering (HCM)1

[8]. For the HCM algorithm it is assumed that the number of clusters is known or at
least fixed, i.e., the algorithm will partition a given data set X = {x1, . . . ,xn} ⊂ R

m

into c clusters. Since the assumption of a known or a priori fixed number of clusters
is not realistic for many data analysis problems, there are techniques based on cluster
validity considerations that allow to determine the number of clusters for the HCM
algorithm as well. A comparison of methods for determining the number of clusters
can be found in [6]. In recent years, resampling or cross-validation techniques [5] are
often used to determine the number of clusters. However, the underlying algorithm
remains more or less the same, only the number of clusters is varied and the resulting
clusters or the overall partition is evaluated. Therefore, it is sufficient to assume for
the rest of the paper that the number of clusters is always fixed.

From the purely algorithmic point of view, the c-means clustering can be de-
scribed as follows. Each of the c clusters is represented by a prototype vi ∈ R

m.
These prototypes are chosen randomly in the beginning. Then each data vector is
assigned to the nearest prototype (w.r.t. the Euclidean distance). Then each proto-
type is replaced by the centre of gravity of those data assigned to it. The alternating
assignment of data to the nearest prototype and the update of the prototypes as clus-
ter centres is repeated until the algorithm converges, i.e., no more changes happen.

This algorithm can also be seen as a strategy for minimising the following objec-
tive function:

f =
c

∑
i=1

n

∑
j=1

ui jdi j (1)

1 Usually, the algorithm is called k-means. But in fuzzy clustering it is common to use the
letter c instead of k for the number of clusters. HCM stand for Hard C-Means clustering in
order to distinguish it from Fuzzy C-Means clustering (FCM).
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under the constraints

c

∑
i=1

ui j = 1 for all j = 1, . . . ,n (2)

where ui j ∈ {0,1} indicates whether data vector x j is assigned to cluster i (ui j = 1)
or not (ui j = 0). di j =‖ x j − vi ‖2 is the squared Euclidean distance between data
vector x j and cluster prototype vi.

It would be a straight forward generalisation of HCM to simply relax the con-
straints ui j ∈ {0,1} to ui j ∈ [0,1] in order to obtain a fuzzy version of HCM. How-
ever, it turned out that the minimum of the objective function (1) under the con-
straints (2) is still obtained, when ui j is chosen in the same way as in HCM, i.e.
ui j ∈ {0,1}, even if we allow ui j ∈ [0,1]. Therefore, an additional parameter w, the
so-called fuzzifier, was introduced – first only for the choice w = 2 [9] and later on
for any w > 1 [2] – and the objective function (1) is replaced by

f =
c

∑
i=1

n

∑
j=1

uw
i jdi j. (3)

Note that the fuzzifier w does not have any effects, when we use hard clustering.
The fuzzifier w > 1 is not subject of the optimisation process and has to be chosen
in advance. A typical choice is w = 2.

The minimisation of the objective function (3) under the constraints (2) is usually
carried out by an alternating optimisation scheme where the membership degrees are
updated by

ui j =

⎛
⎜⎜⎝

1

∑c
k=1

(
di j
dk j

) 1
w−1

⎞
⎟⎟⎠

w

, (4)

and – in case of the Euclidean distance – the cluster prototypes by

vi =
∑n

j=1 uw
i jx j

∑n
j=1 uw

i j
. (5)

This is the standard fuzzy c-means algorithm (FCM). The update equations (4) and
(5) represent the global minimum of the objective function when the corresponding
other set of parameters is considered as fixed.

Fig. 1 shows a simple data set with three well-separated clusters. However,
in 2,589 out of 10,000 runs with random initialisation, HCM gets stuck in a lo-
cal minimum of the objective function leading to the undesired clustering result
shown in Fig. 1(b) whereas FCM terminates in the correct partition (a) in all 10,000
runs2. The reason for the failure of HCM lies in the fact that once a prototype has

2 The clustering was carried out with the package cluster of the statistics software R
[19].
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(a) HCM works as expected
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(b) HCM fails!

Fig. 1 A simple two-dimensional data set and an HCM clustering result as it is expected (a).
But in about 25% of the runs, HCM gets stuck in a local mininum leading to the partition (b).

‘conquered’ the two clusters in left-hand side, the other two prototypes will not take
any notice of these points anymore.

It is out of the scope of this paper to provide a detailed review on fuzzy clustering
as for instance in [3, 12]. It should be noted that there are two parts of the objective
function (3) that can be modified or generalised. One the one hand, there is the way
how fuzzy membership degrees are incorporated in the objective function. Possibilis-
tic clustering [17] relaxes the constraints (2), leading to an actually undesired global
minimum. An improved version of possibilistic clustering, avoiding the problem, has
been proposed in [20] for the price of significantly higher computational costs. In
[16, 15], the fuzzifier is replaced by more general functions than just a simple power
of the membership degrees to overcome certain problems that are introduced by the
fuzzifier. One of these problems is discussed at the end of Section 3.

On the other hand, the distance measure can be modified to cover more general
cluster shapes. Various approaches have been proposed, for instance to adapt to
linear [4, 2] or ellipsoidal [10] clusters, to clusters of different volume [13] or to
non-compact shell clusters [18]. Although all these approaches have been published
as fuzzy clustering techniques, they have actually nothing specific to do with fuzzy
clustering. In principle, one could also use crisp membership degrees for them. The
reason why these approaches are exclusively based on fuzzy clustering is probably
that the more complex cluster shapes with additional parameters introduce more
local minima into the objective function, so that there is a much higher risk to get
stuck in an undesired local minimum when hard clustering is applied.

Noise clustering [7] is another example of an approach that is also applicable in
the context of hard clustering. An additional noise cluster is introduced to which all
data have a fixed (large) distance. In this way, data points that are far away from all
clusters will be assigned to the noise cluster and have no longer any influence on
other clusters.
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3 Vanishing of Local Minima

As shown above HCM can get stuck in local minima if the initialisation is not
’proper’. While FCM certainly overcomes many of the lacunae in HCM, a simi-
lar problem can also plague FCM. For instance, is it true that FCM does not have
any local minima? If it does, what is it that makes FCM come out of this? In this
section, we firstly demonstrate that FCM does have undesired local minima and then
argue that a proper fuzzifier can reduce the number of local minima in the objective
function of FCM and thus help in the proper and faster convergence of FCM.

3.1 Local Minima of FCM

The objective function (3) of FCM is often difficult to visualise – there are too
many dimensions (parameters, i.e., prototypes and membership degrees). Hence,
let us reduce the dimensions by making the objective function independent of the
membership degrees by choosing the optimal values for the membership degrees as
in [11] by replacing ui j in (3) by (4).

Taking a similar approach as in [14], let us consider a one-dimensional data set
with one cluster at x = 0 with k points and one outlier at x = u. Clearly, we have
just one cluster and let us add a noise cluster [7] to take care of the outlier. Now, the
objective function in (3) becomes

f (v) =
k · v2

(
1+

(
v2

δ

) 1
w−1

)w +
(v− u)2

(
1+

(
(v−u)2

δ

) 1
w−1

)w

+
k ·δ(

1+
(

δ
v2

) 1
w−1

)w +
δ(

1+
(

δ
(v−u)2

) 1
w−1

)w (6)

where v is the location of the cluster centre and δ is the distance of every point to
the noise cluster.

Let us consider Fig. 2, where the location of the cluster centre v is represented
on the x-axis w on the y-axis. From Fig. 2(a), where u = 2,k = 2, i.e., the lone data
point is at x = 2 and there are k = 2 points at x = 0, we see that when w = 1 there
is a clear local minima at v = 2 while for the conventionally used value of w = 2 we
see that the local minima is almost non-existent. Here the noise distance is δ = 1.
However, it does not mean that FCM is not plagued by this problem. To see this
let us shift the lone data point from v = 2 to v = 10. As Fig. 2(b) shows, still with
δ = 1, we see a clear local minima at v = 10. Note that increasing the number of
points at x = 0 does have an effect in the first case, as is expected, it does not have
any effect in the second case, since the lone point is far enough not to be influenced
by it. Moreover, note that the local density of data is not in our control in realistic
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(a) u = 2,k = 2 (b) u = 10,k = 2

(c) u = 2,k = 5 (d) u = 10,k = 5

Fig. 2 Plots of the objective function of FCM for w = 1,1.5,2

situations and hence it is hard to ensure the vanishing of unwanted local minima.
In fact, the distribution of the local density of data gives rise to an entirely different
problem as is analysed and solved in [16, 14] (see below for more details).

3.2 The Role of the Fuzzifier w

While the generalisation of the membership values ui j from just {0,1} to the whole
interval [0,1] is usually the highlighted aspect of FCM – perhaps even the nomen-
clature of FCM is also attributable to it – a major role is also played by the so called
fuzzifier value ’w’ in (3) above.

Firstly, note that even if ui j ∈ [0,1] when w = 1 we still have hard clustering
and FCM is equal to HCM. Secondly, as shown in [16] the value of the fuzzifier
w actually controls the amount of overlap among the clusters. Looking at the term
uw

i j in (3) as only a particular transformation of ui j, viz., g(u) = uw, it was shown in
[14] that suitable transformations g exist that also redeem FCM from the problem
of letting their cluster centers be dictated by the local density of the data.
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(a) u = 2,k = 2 (b) u = 10,k = 2

(c) u = 2,k = 5 (d) u = 10,k = 5

Fig. 3 Plots of the Objective Function of the FCM for w = 2,3,4,5,6

In this work, we show yet another aspect of the fuzzifier, viz., we show that
choosing the w value appropriately can make many, if not all, of the local minima
vanish and thus help FCM deliver correct results more often than not.

3.3 Suitable w for Vanishing Local Minima

Let us once again consider the scenarios presented in Sec. 3.1. As the Figs. 3(a)–(d)
show, by increasing the value of w we see that the unwanted local minima at v = 2
and v = 10 vanish leading to a correct and, clearly, also a faster convergence. Note
also that the local density of the data does not seem to alter the slope of the curve,
equivalently the rate of convergence significantly. Thus it is very much applicable
to real life data. While it can be seen from Fig. 3 that a value of around w = 5
or w = 6 seems sufficient to eliminate the unwanted local minima at v = 2,10, it
should be emphasised that the scenario considered here is very elementary. In higher
dimensions, the value of w required could be much smaller or higher. For instance,
see the scenario considerd in Section 3.4 below. As we understand the happenings
while w → 1, it is interesting to study the limiting case of w → ∞.
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To this end, it is sufficient to consider the following expression that occurs in the

denominator of the objective function in (6):

(
1+

(
d′
d′′
) 1

w−1
)w

, where d′,d′′ are

positive distances of the points from the cluster centres. Since, when either d′ = 0 or
d′′ = 0 the expression does not come into play, we consider the following equivalent

form: g(w) =
(

1+(ε)
1

w−1

)w
for ε > 0. Now, it is obvious that lim

w→∞
g(w) = ∞ and

hence lim
w→∞

f (v) = 0 for every position v of the cluster centre. In other words, every

point on the x-axis could be a cluster centre.

3.4 A Slightly More Complex Scenario

Let us consider the following scenario, where we have 2 clusters at u = 2 and at
w = 5. There are 10 points each at u = 2 and w = 5 and 3 ’noise’ points at x = 0.
Using a noise cluster distance δ = 1, we expect the global minima to be at v1 =(2,5)
and symmetrically at v2 =(5,2). Now the objective function becomes a two-variable
function F(v) = F(r,s), the formula of which is quite complex to be given here.
However, we do plot F in Figs. 4 and 5 for different values of w. In every case there
are clear global minima at v1,v2 as expected.

When w = 1 (HCM), we see from Fig. 4(a) that, apart from the desired minima at
v1,v2, there are also clear local minima around (0,2),(2,0),(0,5),(5,0) as indicated
by the dark blue contour circles. When w = 2, as is usual for FCM, we see that two
of the local minima have vanished and only the local minima around v′ = (0,2)
and v′′ = (2,0) remain. Thus if a cluster centre gets initialised closer to these local
minima, it is difficult for these cluster centres to escape from there.

Now let us consider the case when w= 2.3. It is already clear to see (see Fig. 5(a))
that most of the local minima have vanished and even if cluster centres fall close to
the above v′,v′′, they can eventually reach one of the global minima. This becomes
even more apparent for the case when w = 2.9 – see Fig. 5(b).

It is also interesting to note that for larger values of w, in fact, for w = 4 or w = 5
we see that all the local minima vanish and just one global minimum appears around
the centroid of the whole data set, as is expected – see Figs. 6(a) & (b).

3.5 FCM Problems with High-Dimensional Data

The above examples seem to suggest that the fuzzifier will always lead to less local
minima. However, for high-dimensional data, fuzzy clustering suffers from the so-
called curse of dimensionality [1]. In higher dimensions, standard distances like the
Euclidean distance seem to lose their power to distinguish between points. Fig. 7
is adopted from [21] where the following example is considered. Clusters are uni-
formly distributed on the surface of a hypersphere. Then the objective function of
FCM is drawn along one axis only by moving the prototypes from the centre of
the sphere along the radii to the cluster centres. Surprisingly, there is a local min-
imum of the objective function when all prototypes are positioned in the centre of
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(a) w = 1, Local minima around (0,2),(2,0),(0,5),(5,0)

(b) w = 2, Local minima around (0,2),(2,0)

Fig. 4 Plots of the objective function F(v) of FCM for w = 1,2
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(a) w = 2.3

(b) w = 2.9, All the local minima have vanished

Fig. 5 Plots of the objective function F(v) of FCM for w = 2.3,2.9
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(a) w = 4

(b) w = 5

Fig. 6 Plots of the objective function F(v) of FCM for w= 4,5 - one global minimum appears
around the centroid of the whole data set
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Fig. 7 An undesired local minimum at the centre 0 for high-dimensional data (the bottom
curve is for dimension m = 10 and the top curve is for m = 500)

the sphere and the danger of getting stuck in this local minimum increases with
number of dimensions. HCM does not have this specific problem although it has its
own problems with high-dimensional data, see for instance [21] and the references
therein.

One can escape from this problem of FCM with high-dimensional data by either
choosing a fuzzifier very close to 1 or by using a generalised fuzzifier function as
proposed in [16].

4 Conclusions

The answer to the initial question whether fuzzy clustering can avoid local minima
is partly positive. For low-dimensional data, local minima can vanish by a suitable
choice of the fuzzifier. For high-dimensional data, additional local minima can be
introduced. The choice of the fuzzifier can be crucial for the avoidance of local
minima. How to choose an appropriate value for the fuzzifier will be investigated in
a future work.

Acknowledgements. This work was done during the visit of the first author to the Depart-
ment of Computer Science, Ostfalia University of Applied Sciences under the fellowship
provided by the Alexander von Humboldt Foundation. Part of this work was supported by
DIeTY grant on Cyber Physical Systems–13(6)/2010-CC&BT.



Can Fuzzy Clustering Avoid Local Minima and Undesired Partitions? 43

References

[1] Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the Surprising Behavior of Distance
Metrics in High Dimensional Space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT
2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2000)

[2] Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum
Press, New York (1981)

[3] Bezdek, J., Keller, J., Krishnapuram, R., Pal, N.: Fuzzy Models and Algorithms for
Pattern Recognition and Image Processing. Kluwer, Boston (1999)

[4] Bock, H.: Clusteranalyse mit unscharfen partitionen. In: Bock, H. (ed.) Klassifikation
und Erkenntnis. Numerische Klassifikation, vol. III, pp. 137–163. INDEKS, Frankfurt
(1979)

[5] Borgelt, C.: Resampling for fuzzy clustering. Int. Journal of Uncertainty, Fuzziness and
Knowledge-based Systems 15(5), 595–614 (2007)

[6] Chiang, M.M.-T., Mirkin, B.: Experiments for the Number of Clusters in K-Means. In:
Neves, J., Santos, M.F., Machado, J.M. (eds.) EPIA 2007. LNCS (LNAI), vol. 4874,
pp. 395–405. Springer, Heidelberg (2007)
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