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Abstract: Following the wide spread usage of Fuzzy Systems, Rule Reduction has emerged as
one of the most important areas of research in the field of Fuzzy Control. Many rule reduction
methods have been proposed in the literature and can be broadly classified into Losslessor
Lossywith respect to the inference, based on whether the outputs of the original and the
reduced rule bases are identical or not. In a typical Multi-Input-Single-Output fuzzy system
the number of rules far exceeds the number of fuzzy sets defined on the output domain. This
suggests that the rule base can be partitioned into sets of rules, each set being mapped to
a single consequent fuzzy set. In this paper, we investigate the conditions on the inference
operators employed in a fuzzy system that enable “lossless” merging of rules with identical
consequents.
After briefly surveying the many techniques that have been proposed towards reducing the
number of rules, we propose a general framework for Inference in Fuzzy Systems and then
propose some sufficiency conditions on this general framework that give us a class of Fuzzy
Systems that allow lossless rule reduction of the type mentioned above. We then explore
these conditions in the setting of Fuzzy Logic. We find that R- and S-implications play a very
critical role. We give examples from the above class of Fuzzy Systems. Inthis study we apply
the above technique only on rules whose antecedents and consequents are fuzzy sets.

Keywords: Fuzzy Systems, Rule Reduction, Residuated Implications, Strong Implications,
Fuzzy Inference.

1 Introduction

Following the wide spread usage of Fuzzy Systems, Rule Reduction has emerged as
one of the most important areas of research in the field of Fuzzy Control. It is well
known that an increase in the number of input variables and/or the number of mem-
bership functions in the input domains quickly lead to a combinatorial explosion in
the number of rules. On the other hand the number of output/ consequent fuzzy sets
remains a constant and is usually far less than the number of rules. This suggests
that the rule base can be partitioned into sets of rules, eachset being mapped to a
single consequent fuzzy set. Thus the rules, though with different antecedents, but
with identical consequents can be merged into a single rule.But such merger of
rules, though reduces the number of rules may not belossless, i.e., the inference
obtained from the original rule base and the reduced rule base for a given input
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may not be identical. In this paper, we investigate the conditions on the inference
operators employed in a fuzzy system that enable ”lossless”merging of rules with
identical consequents. This provides us with a class of Fuzzy Systems in which the
antecedents of the rules with identical consequent can be combined to reduce the
number of rules in an inference invariant manner.

In section 2 we give a brief survey of the various rule reduction techniques pro-
posed in the literature. In section 3 we propose a general framework for Inference
in Fuzzy Systems and in section 4 we give sufficiency conditions on the inference
framework that ensure lossless rule reduction of the type mentioned above. In sec-
tion 5 we explore each of these conditions in the setting of Fuzzy Logic. In section
6 we give a few examples from the above class of SISO Fuzzy Systems that satisfy
the above sufficiency conditions.

2 Rule Reduction as an Issue

2.1 Rule Reduction Techniques in the Literature

For ann-input Multi-Input Single-Output (MISO) fuzzy system, with ni member-
ship functions defined on each of the input domainsXi(i = 1,2, . . . ,n), we have
m = n1 × n2 × . . . × nn =

∏n
i=1 ni rules. Thus an increase in the number of input

variables and/or the number of membership functions in the input domains quickly
lead to a combinatorial explosion in the number of rules.

The several approaches taken towards Rule Reduction in Fuzzy Systems can be
classified into the following categories:

• Selection of important rules that contribute significantlyto the inference.

• Elimination of redundant rules based on some criteria.

• Merger of rules that share some common property.

2.1.1 Rule Reduction while Building a Fuzzy Rule Base

While trying to build a minimal fuzzy system, the authors in [52, 63] have em-
ployed Genetic Algorithm (GA) or GA-type optimisation to eliminate redundant
rules and/or identify important or significant rules.

In [44] the authors have converted a linear fuzzy system in which the growth of
the parameters with respect to inputs is exponential to an equivalent non linear fuzzy
system in which their growth is linear. Works have also appeared that reduce the
number of rules by reducing the number of input variables through Mathematical
Fusion or through Symbolic Fusion, which involves the use ofmulti-dimensional
fuzzy sets. In [70] a fuzzy binary box tree data structure hasbeen proposed. In
[43] the authors have designed a Fuzzy Logic Controller (FLC) based on Variable
Structures techniques to be assured of Stability. They havereduced the number of
rules frommn to mn, where there aren input domains andm fuzzy sets on each
domain.
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2.1.2 Rule Reduction in an existing Fuzzy Rule Base

Towards reducing the number of rules in an existing fuzzy rule base, L.T. Koczy and
Hirota [51] reduced a dense rule base to sparse rule base, containing the essential
information in the original rule base, and all other rules were replaced by the In-
terpolation Algorithm that can recover them to a certain accuracy prescribed before
reduction.

Following the Selection of significant rules or eliminationof redundant rules,
Rule Reduction has been addressed in [46,48,52] using GA andEvolutionary Al-
gorithms, in [61,79,82] using Orthogonal Transformations, in [13] using Singular
Value Decomposition, in [72] using Linear Matrix Inversion. [66] employs a Simi-
larity Measure to prune the rules.

In [67] the authors use a similarity measure to merge rules with fuzzy an-
tecedents and/or consequents that are similar to each other above a specified thresh-
old. Their main stated intention is the reduction in number of fuzzy sets used in the
model.

In cases where coupling effects between different inputs are small, the design of
an MISO fuzzy system has been reduced to that of designing a set of SISO fuzzy
systems, in a decentralised fashion, each SISO fuzzy systembeing designed for a
pair of input-output variables. Many approaches based on the approximation or de-
composition of multi-dimensional fuzzy relations into two-dimensional ones have
been studied [19,47]. In [41] the conditions for reducing multi-dimensional fuzzy
relations into two-dimensional ones are studied for systems using max-min compo-
sition operator. However, such approximation may lead to unsatisfactory results if
some peculiarities of the process are neglected.

In hierarchical fuzzy controllers introduced in [62] the number of rules increase
linearly with the number of system inputs, but the decision of where the different
variables are to be put in the hierarchy is often a difficult process.

2.2 Need for Lossless Rule Reduction Techniques

Many of the rule reduction methods in the literature give rise to an approximation
error, i.e., the inference obtained from the original rule base and that obtained from
the reduced rule base may not be the same.

In [14] Baranyi et al, discuss the trade off between Approximation Accuracy
and Complexity. See also [50] for a discussion on the trade off between computa-
tion time and precision. Thus the approximation accuracy achieved should not be
sacrificed in the process of complexity reduction. All thesenecessitate a study on
rule reduction techniques that are lossless with respect toinference.

2.2.1 Lossless Rule Reduction Techniques in the literature

A few of the rule reduction techniques that are lossless are listed below. We define
”lossless” in the sense that, the inference obtained from the original rule base and
that obtained from the reduced rule base is identical.
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In [64] an enhanced two-level Boolean Synthesis methodology is employed,
where in, a given fuzzy rule with fuzzy connectives is mappedto a corresponding
expression with boolean connectives, with each input fuzzyset being given a label.
The method seeks to reduce the number of connectives employed in the antecedents
of the rule. In [45] the authors in order to apply Karnaugh maps for rule reduction
represent the linguistic values on a domain as 0 or 1. Though the reduced rule base
can infer ”sensibly” even if the original rule base were incomplete, if the output is
identical in rules where one or more antecedents are different the method does not
merge these rules and thus the rule reduction is incomplete.

In [22] the authors represent a Fuzzy System as a Fuzzy Inference Graph and
try to minimise the number of nodes - rules - by a two step process. Again the rule
reduction is incomplete since non-interacting antecedents are not combined even
though their outputs are identical and also it is lossless only for the min implication
operator.

In [23] the authors have proposed a novel, though much debated [24, 25, 30,
59], rule configuration called the Union Rule Configuration,wherein the growth
in number of rules is only linear instead of exponential, butthe proposed method
is applicable only if there is monotonicity or ordering among inputs and member-
ship functions and a one-one correspondence between input and output membership
functions.

In [49] the author follows a similar approach as ours, that ofmerging rules with
identical consequents by proposing new fuzzy operations where certain properties
of regular fuzzy operations have been either relaxed or not imposed.

In [16] Baranyi et al., discuss both exact and non-exact reduction methods using
Singular Value Decomposition methods, where by removing only the zero-Singular
values one obtains lossless rule reduction and in the case when all Singular values
below a threshold are discarded, the error bounds for some special types of fuzzy
systems are also given in [11, 12, 80, 81]. Also [14, 15, 17, 18] discuss complexity
reduction in Fuzzy Rule Bases using SVD. [13, 69, 82] give an excellent review of
rule reduction techniques based on Orthogonal Transformations and discuss their
goodness.

2.3 Our Approach towards Lossless Rule Reduction

The approach we take towards Lossless Rule Reduction is to merge rules with iden-
tical consequents even with different antecedents. We do not propose any new fuzzy
operations to this end, but obtain some conditions that the different operators em-
ployed in a fuzzy inference system should satisfy. Also the final reduced rule base,
obtained by employing our method, will contain only as many rules in the rule base,
as there are output membership functions that featured in the original rule base. If
there aren input domains andm input fuzzy sets in each domain the total number of
rules that give a complete rule base ismn . The best theoretical limit, so far, of a re-
duced rule base ismn[43]. With our method it reduces tok , wherek is the number
of output fuzzy sets that featured in the original rule base,and typicallyk≪ m.
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3 A General Framework for Inferencing in Fuzzy Sys-
tems

First we give some preliminaries on Fuzzy Logic Operators that will be required in
the rest of this work. As usual we will denote byI the unit interval [0,1].

3.1 Fuzzy Logic Operators

Definition 1 ([37], Definition 1.1, Pg 3). A Negation N is a function from I to I such
that:

• N(0) = 1; N(1) = 0;

• N is non-increasing.

A negationN is called strict if in additionN is strictly decreasing and con-
tinuous. A strong negationN is a strict negationN that is also involutive, i.e.,
N(N(x)) = x, ∀x ∈ I .

Definition 2 ([34] Definition 2.1 Pg 6). A t-norm T is a function from I2 to I such
that∀a, b, c ∈ I,

• T(a,1) = a,

• T(a,b) = T(b,a),

• T(a,T(b, c)) = T(T(a,b), c),

• T(a,b) ≤ T(a, c) whenever b≤ c.

Definition 3 ([34] Definition 3.1 Pg 10). A t-conorm S is a function from I2 to I
such that∀a, b, c ∈ I,

• S(a,0) = a,

• S(a,b) = S(b,a),

• S(a,S(b, c)) = S(S(a,b), c),

• S(a,b) ≤ S(a, c) whenever b≤ c.

Definition 4 ([34] Definitions 6.1 Pg 17 & 6.11 Pg 18). A t-norm T is said to be

• Continuous if it is continuous in both the arguments;

• Archimedean if for each(x, y) ∈ (0,1]2 there is an n∈ N with x(n)
T < y, where

x(n)
T = T(x, · · · , x︸   ︷︷   ︸

n times

);

• Strict if T is continuous and stricly monotone, i.e., T(x, y) < T(x, z) whenever
x > 0 and y< z;

- 117-



J. Balasubramanian
Conditions for Inference Invariant Rule Reduction in FRBS by combining rules with

identical consequents

X 

0 

1 1 

0 

X 

0.4 B 

0.4 ∧  B 

Figure 1: Fuzzy SetB (left) and the fuzzy set 0.4∧ B (right)

• Nilpotent if T is continuous and if each x∈ (0,1) is such that x(n)
T = 0 for

some n∈ N.

Definition 5. If B : X → I , a ∈ I, and R is any binary operator on I, i.e., R:
I × I → I, then R(a, B) is a fuzzy set on X, i.e., R(a, B) : X → I, defined as
R(a, B)(x) = R(a, B(x)),∀x ∈ X.

Remark 1. Thus R can also be seen as R: I × F̃(X) → F̃(X)- whereF̃(X) denotes
the set of all fuzzy sets on X. For example if R(a,b) = min(a,b) then in Figure 1 we
have B∈ F̃(X) and R(0.4, B) = min(0.4, B) = 0.4 ∧ B ∈ F̃(X), i.e.R(0.4, B)(x) =
min(0.4, B(x)) = 0.4∧ B(x), for all x ∈ X.

Definition 6. If A, B : X→ I, and R is any binary operator on I, i.e., R: I × I → I,
then R(A, B) is a fuzzy set on X, i.e., R(A, B) : X → I, defined as R(A, B)(x) =
R(A(x), B(x)),∀x ∈ X.

Remark 2. Thus R can also be seen as R: F̃(X) × F̃(X) → F̃(X)- whereF̃(X)
denotes the set of all fuzzy sets on X.
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(a) Fuzzy SetsA andB
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(b) Fuzzy SetA∨ B

Figure 2: Fuzzy SetsA andB

For example ifR(a,b) = max(a,b) then in Figure 2(a) we haveA, B ∈ F̃(X) are
fuzzy sets onX and Figure 2(b) givesA∗ = R(A, B) = max(A, B) = A∨ B ∈ F̃(X).
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Definition 7 ([37] Definition 1.15, Pg 22). A function J: I2 → I is called a fuzzy
implication if it has the following properties:

J(p, r) ≥ J(q, r) i f q ≥ p, (J1)

J(p, r) ≥ J(p, s) i f r ≥ s, (J2)

J(0, r) = 1, ∀r ∈ I , (J3)

J(p,1) = 1, ∀p ∈ I , (J4)

J(1,0) = 0. (J5)

The following are the two important classes of fuzzy implications well-estab-
lished in the literature:

Definition 8 ([37] Definition 1.16, Pg 24). An S-implication JS,N is obtained from
a t-conorm S and a strong negation N as follows:

JS,N(a,b) = S(N(a),b),∀a,b ∈ I . (1)

Definition 9 ([37] Definition 1.16, Pg 24). An R -implication JT is obtained from a
t-norm T as its residuation as follows:

JT(a,b) = S up{x ∈ I : T(a, x) ≤ b} ,∀a,b ∈ I . (2)

R- and S-implications satisfy (J1) - (J5). Tables 1 and 2 listfew of the well-
known S-implications and R-implications, respectively.

Name S(a,b) N(a,b) JS,N(a,b)
Dienes max(a,b) 1− a max(1− a,b)
Reichenbach a+ b− ab 1− a 1− a+ ab
Lukasiawicz min(1,a+ b) 1− a min(1,1− a+ b)

Table 1: Some of the well known S-implications with their corresponding t-conorms

t-norm T(a,b) Implication JT(a,b)
Lukasiawicz max(0,a+ b− 1) Lukasiawicz min(1,1− a+ b)

Mamdani min(a,b) Godel

{
1, if a ≤ b
b, otherwise

Larsen min(1,a+ b) Goguen

{
1, if a ≤ b
b/a, otherwise

Table 2: Some of the well-known R-implications and their corresponding t-norms
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3.2 Fuzzy If-Then Rules

A linguistic statement ”x is A” is interpreted as the variablex taking the linguistic
valueA. For example, ifx denotes ”Temperature” (on a suitable domain), then it
can assume the following linguistic valuesA, viz., high, more or less high, medium,
cool, very cold, etc. Each of the linguistic values (say cool) is represented by a fuzzy
set on the domainX of the linguistic variablex, i.e., A : X → I . The shape of the
graph of the function represents the concept (say high temperature). The concept
of high temperature is again context-dependent. For example, high temperature
(fever) for a human being is different from the high temperature in a blast furnace,
and accordingly the domain of the linguistic variable is selected.

A Fuzzy If-Then rule is of the form

If x is A Theny is B, (3)

wherex, y are variables andA, B are linguistic expressions/ values assumed by the
linguistic variables. For example,

”If x (temperature) isA (High)
Theny (Pressure) isB (Low)”

The above is an example of a SISO rule. A Two-Input Single-Output rule is of
the form

R1 : If x is A andy is B Thenz is C,

where againA, B,C are linguistic values taken by the linguistic variablesx, y, zover
their respective domains.

3.3 Different Stages in the inferencing of a Fuzzy System

Let us consider the following system ofm fuzzy if-then rules:

R1 : I f x1 is A1
1, . . . , xn is A1

n Then y is B1
...

Rj : I f x1 is Aj
1, . . . , xn is Aj

n Then y is Bj (4)

...

Rm : I f x1 is Am
1 , . . . , xn is Am

n Then y is Bm

whereA j
i ∈ F̃(Xi) for i = 1,2, . . . ,n are the antecedent fuzzy sets over then non-

empty domainsX1,X2, . . . ,Xn. For j = 1,2, . . . ,m, Bj can be a fuzzy set on the
non-empty output domainY, i.e., Bj ∈ F̃(Y), as in the case of a Mamdani Fuzzy
System, orBj ∈ Y as in the case of a constant-output Takagi-Sugeno-Kang Fuzzy
Systems.
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In the following we propose a general framework for Inference in Fuzzy Rule
Based Systems that captures the working of both the established models of Fuzzy
Systems - TSK and Mamdani models of Inference. Towards this end, a Fuzzy Sys-
tem can be seen to consist of the following 5 stages:

3.3.1 Fuzzifier

If the given input is a crisp numberx ∈ X, it is fuzzified to get a fuzzy set̃X on the
corresponding input spaceX, i.e.,C : X → F̃(X), whereC(x) = X̃. Thus given a
vector of crisp pointsx = [x1, x2, . . . , xn], wherexi ∈ Xi , for every input spaceXi ,
we get a vector of Fuzzy setsX = [X̃1, X̃2, . . . , X̃n]. The often used [40,79]Singleton
Fuzzifierof a crisp numberx is given as

X̃(y) =

{
1 if y = x (S F∗)
0 otherwise

Remark 3. It can be readily seen that the above stage of ”Fuzzifier” is the reverse
of ”Defuzzification” - wherein we obtain a crisp number from afuzzy set (See 3.3.6
below). Though in many actual implementations of Fuzzy Systems a crisp value is
directly given as input, the above stage has been added for generality. Also many
times the input given to a fuzzy system is not precise owing tomany types of obser-
vation errors. For example, a reading from a sensor that becomes an input for the
controlling fuzzy system may be inherently imprecise due toinstrument errors. In
such cases a fuzzy set about the reading may be a more realistic input. In this paper,
crisp inputs are identified with their fuzzified version as given by(S F∗).

3.3.2 Matching

The input fuzzy sets (̃X1, X̃2, . . . , X̃n) are matched against their corresponding if-part
fuzzy sets in each of the rule antecedents in the Fuzzy System, i.e.

M : F̃(Xi) × F̃(Xi)→ I (5)

whereM(A j
i , X̃i) = a j

i for A j
i andX̃i ∈ F̃(Xi), j = 1, . . . ,m.

A few matching functions used in the literature are given later in section 5.4.1.

3.3.3 Combining

In a multi-antecedent fuzzy system, the various matching degreesa j
i of then input

fuzzy sets to the antecedent of thejth fuzzy if-then rule are combined to give the”fit
values”µ j ,

µ : In→ I (6)

whereµ(a j
1, . . . ,a

j
n) = µ j , j = 1,2, . . . ,m. µ can be any t- or t-conorms (see Section

3.1).
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3.3.4 Rule Firing

The combined valueµ j fires the rule consequent or the output fuzzy setBj of the jth

rule. ThisBj can be a fuzzy set onY,i.e.,Bj ∈ F̃(Y), or a value inY, i.e.,Bj ∈ Y.
Thus we have

f : I × Z→ Z (7)

• WhenZ = F̃(Y) - the set of all fuzzy sets on the output domainY, i.e.,Bj ∈

F̃(Y), f (µ j , Bj) = f j ∈ F̃(Y) and is defined asf (µ j , Bj(y)) = f j(y),∀y ∈ Y

• WhenZ = Y, the output domain itself, i.e.,Bj ∈ Y, then f j ∈ Y and is defined
as f (µ j , Bj) = f j .

Usually, f = π, the product, is commonly employed whenBj ∈ Y ⊆ R, while
a t-norm or any Fuzzy Implication Operator (Section 3.1) is the prefered choice if
Bj ∈ F̃(Y).

3.3.5 Aggregation of Individual Inferences:

The fired output fuzzy sets (or crisp real numbers)f j , j = 1,2, . . . ,m are then
aggregated to obtain the final inferred fuzzy set (or crisp real number)

g : Zm→ Z (8)

where again

• If Z = F̃(Y), the infered output setg( f1, . . . , fm) = B ∈ F̃(Y). One can use any
of the fuzzy logic operators, t- or t-conorms, to obtainB ∈ F̃(Y).

• If Z = Y ⊆ R then the Weighted Average or the Weighted Sum are the com-
monly used aggregation operators forg.

3.3.6 Defuzzification

WhenZ = F̃(Y), g( f1, . . . , fm) = B ∈ F̃(Y) and we need to defuzzifyB - a fuzzy
set onY - to a single valueb ∈ Y, using an appropriate defuzzification methodh as
follows:

h : F̃(Y)→ Y (9)

The Centre of Area or the Mean of Maxima methods [42, pp. 336 - 338] are the
most widely used Defuzzification methods.

The different stages and the corresponding mappings capturing their actions are
given in Table 3.

3.4 Different Models of Fuzzy System in the literature

Following are the two most established models of Fuzzy Systems:
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Fuzzifier: X̃ = C(x) C : X→ F̃(X)
Matching: a j

i = M(A j
i , X̃i) M : F̃(Xi) × F̃(Xi)→ I

Combining: µ j = µ(a
j
1, . . . ,a

j
n) µ : In→ I

Firing: f j = f (µ j , Bj) f : I × Z→ Z,Z = F̃(Y) or Y
Aggregation: B = g( f1, . . . , fm) g : Zm→ Z
Defuzzification: b = h(B) h : F̃(Y)→ Y

Table 3: Different stages of a Fuzzy System

3.4.1 Mamdani Fuzzy System

E.H. Mamdani and S. Assilian [57] proposed the first type of Fuzzy Rule Based
Systems. The rules in a Mamdani Fuzzy System are specified linguistically both
for antecedents and consequents. Given a vector of crisp inputsx′ = [x′1, x

′
2 . . . , x

′
n],

wherex′i ∈ Xi , the final output fuzzy setB on Y for the fuzzy rule base in (4) is
obtained as follows:

B(y) =
∨m

j=1{[
∧n

i=1 a j
i ] ∧ Bj(y)},∀ y ∈ Y (10)

wherea j
i = A j

i (x
′
i ).

Though the Mamdani model is usually used with crisp inputs, it can handle both
crisp and fuzzy inputs. In the case of a fuzzy inputs, sayx1 is A1, . . . , xn is An,
whereAi is a fuzzy set on the domainXi , the final output fuzzy setB on Y for the
fuzzy rule base in (4) is given by (10), but witha j

i given by (11)

a j
i = maxx∈Xi {min(A j

i (x),Ai(x))} (11)

Also in the case of a crisp input, the crisp input can be singleton fuzzified by
(SF*) (Section 3.3.1) into a fuzzy set and can be given as an input tothe fuzzy
system. Thus given a vector of crisp inputsx′ = [x′1, x

′
2, . . . , x

′
n], wherex′i ∈ Xi ,

for every input spaceXi , we get a vector of fuzzy inputsX = [X̃1, X̃2, . . . , X̃n].
It can be easily seen that if instead of the crisp inputsx′i , if their correspond-
ing singleton fuzzified inputs are given, i.e.,Ai = X̃i are inputs,a j

i = A j
i (x
′
i ) =

maxx∈Xi {min(A j
i (x),Ai(x)} = maxx∈Xi {min(A j

i (x), X̃i(x)}. Thus we can always con-
sider an input for the Mamdani model of fuzzy system to be fuzzy, with the under-
standing that any crisp input is singleton fuzzified according to (SF*) and (10) can
be employed with (11).

Let the Matching Functionmaxx∈X{min(A(x), B(x))} of two fuzzy setsA, B :
X → I be denoted byM1(A, B). Now, comparing the inference in (10) to the dif-
ferent stages in Section 3.3, it can be seen thatM = M1, µ = ∧, f = ∧,g = ∨ and
Z = F̃(Y).
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3.4.2 Takagi - Sugeno - Kang Fuzzy System

Instead of working with the linguistic rules of the kind employed in Mamdani Fuzzy
Systems, Takagi and Sugeno [71] proposed a new model based onrules whose an-
tecedent is composed of linguistic variables and the consequent is represented by a
real function of the input variables. TSK model differs from the Mamdani model
both in the form of their rules and the inference operators used. If in the case of
Mamdani model of a SISO fuzzy system a fuzzy rule has the form (3)

I f x is A Then y is B

whereA andB are fuzzy sets onX andY, respectively, then in the case of the TSK
model the rules have the form (12)

I f x is A Then y= b(x) (12)

and the input is a crisp value forx. Their conclusion contains the real valued func-
tion b(x) and not a fuzzy set. This function can be non-linear, although usually
linear functions are applied. Then the TSK rules have the form:

I f x is A Then y= px+ q (13)

where the input is a crisp value forx and p,q are constants. In general the rules
of a SISO and MISO TSK fuzzy systems are of the form given by (14) and (15),
respectively.

Rj : I f x is Aj Then y = b j(x) (14)

Rj : I f x1 is Aj
1, . . . , xn is Aj

n Then y = b j(x) (15)

for j = 1, . . . ,mand the input vectorx′ = [x′1, x
′
2, . . . , x

′
n] and eachx′i is a crisp value

in Xi for i = 1, . . . ,n.
Let us again consider a fuzzy rule base ofm rules of the form (15) and a vector

of crisp inputsx′ = [x′1, x
′
2, . . . , x

′
n], wherex′i ∈ Xi , be given. In the TSK model of

fuzzy systems, the final crisp output is obtained as the Weighted Sum of”fit values”
and the rule consequents as given in (16).

F(x′) =
m∑

j=1

µ j(x′) · b j(x′) (16)

whereµ j(x′) = Πn
i=1a j

i = Π
n
i=1A j

i (x
′
i ) = A j

1(x′1) · A j
2(x′2) · . . . · A j

n(x′n).
As in Section 3.4.1, by taking the singleton fuzzified crisp input vectorx′,

as given by(SF*), it can be seen that, ifAi = X̃i are inputs,a j
i = A j

i (x
′
i ) =

maxx∈Xi {min(A j
i (x),Ai(x)} = maxx∈Xi {min(A j

i (x), X̃i(x)}. Thus again one can always
consider the singleton fuzzified fuzzy setX̃i of a crisp inputx′i as being the input for
a TSK model of fuzzy system. Also product is the antecedent combiner, i.e.,µ =

∏
.

Though the product between the ”fit value” of the given input to the antecedents of
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rule j, µ j(x′) and its consequentb j(x′) is an effect of the Weighted Sum aggregation
employed and is not a rule connective, per se, one can perhapsconsider it such so
that f = π for the TSK model in the above framework, i.e.,f : I × Z → Z is such
that f (µ j(x′),b j(x′)) = µ j(x′) · b j(x′), whereZ = Y ⊆ ℜ, the actual domain of the
output fuzzy sets.

Now, comparing the inference in (16) to the different stages in Section 3.3, it
can be seen thatM = M1, µ = π, f = π,g = Σ andZ = Y ⊆ ℜ.

From the above two sections, it is clear that the different stages in the inference
of an output, given an input, in a fuzzy system can be mapped todifferent functions
capturing the actions performed at every stage.

Definition 10. A model of Inference in a fuzzy system is given by the quintuple
Q = {M, µ, f ,g,Z} where M, µ, f ,g are the corresponding operators of the above
framework and Z is the domain of consequents of the rule.

Thus Mamdani Model of inference in a fuzzy system is defined asthe quintuple
QM = {M1,∧,∧,∨, F̃(Y)} while the TSK model of inference in a fuzzy system is
given byQTS K = {M1,

∏
,
∏
,
∑
,Y ⊆ ℜ}. We do not consider the fuzzifier stage

since a crisp input to the fuzzy system can be thought of as a singleton fuzzified
input fuzzy set using (S F∗). Table 4 summarises the above discussion, where

∏
=

Product,
∑
= Sum,∨ = max,∧ = min.

Name/ Type M µ f g Fuzzifier Z
TSK M1

∏ ∏
Σ S F∗ Y ⊆ ℜ

Mamdani M1 ∧ ∧ ∨ S F∗ F̃(Y)

Table 4:M, µ, f ,g andZ for the different models of fuzzy systems in Section 3.4

3.5 A Rule Reduction Technique for a Class of Fuzzy Systems

More often than not, the number of fuzzy sets,k, defined on the single output domain
Y, is typically much less than the number of rulesm, i.e.,k≪ m . This suggests that
the antecedents of more than one rule lead to the same consequent. To eliminate this
redundancy, we propose a new type of off-line rule reduction where the rules with
the same consequent but different antecedents are merged into a single rule. Then
we will have only as many rules as there are output membershipfunctions, in fact
only those that are part of the original fuzzy system.

The issue involved here is that despite the merging of the above rules, there
should be no loss of inference, i.e., the inference obtainedfrom the original rule base
and that obtained from the reduced rule base should be identical. This necessitates
the functionsM, µ, f andg to possess some properties. These are explored in the
next section.

Remark 4. Also in the rest of the paper, we will only consider fuzzy rules (SISO or
MISO, as the case may be) of the type where both the antecedents and consequents
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are fuzzy sets on their respective domains. The inputs may becrisp or fuzzy. In the
case of crisp inputs, we will consider their fuzzified version as obtained using(S F∗)
on the input.

4 Conditions on the General Framework for Lossless
Rule Reduction

The rule reduction procedure we propose is an offline procedure, i.e., from the given
original rule base we club the rules with same consequent, but different antecedents,
to produce new rules to replace old rules. In this, section wedetermine the structure
of the antecedents of the newly formed rules. The following theorem gives sufficient
conditions that the operators of the above proposed framework should satisfy to
obtain losslessor inference invariantrule reduction by combining antecedents of
rules that have identical consequents.

4.1 The Restrictions ong, f , µ and M :

Theorem 1. Let a model of inference in a fuzzy system be defined by Q=
{M, µ, f ,g,Z = F̃(Y)}, where Y is the output domain. The following conditions
on the operators M, µ, f and g are sufficient to ensure inference invariant rule re-
duction, by combining antecedents of rules that have identical consequents, in any
MISO fuzzy system:

There exist operators g,og,oµ which are commutative and associative binary
operators on I and for any a,b,a1,a2,b1,b2 ∈ I, A1,A2,A which are fuzzy sets
defined on an input domain X and C∈ F̃(Y),

g[ f (a,C), f (b,C)] = f (a og b,C) (17)

µ(a1,b1) og µ(a2,b2) = µ(a1 oµ a2,b1 oµ b2) (18)

M(A1,A) oµ M(A2,A) = M(A1 oµ A2,A) (19)

Remark 5. In the LHS of (19) oµ is a binary operator on I while in the RHS of (19)
oµ is the extension of oµ to fuzzy sets on X (See Definition 6 and Remark 2 in Section
3.1).

Proof. Without loss of generality, let us take a 2-input 1-output fuzzy system con-
sisting of three rules, whereX1 and X2 are the input domains andY the output
domain. Consider the fuzzy system given by the following rules, written in a sim-
plified form:

R1 : A1, B1→ C

R2 : A2, B2→ C (20)

R3 : A3, B3→ D
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whereA1,A2,A3 are fuzzy sets onX1; B1, B2, B3 are fuzzy sets onX2 andC,D are
fuzzy sets onY.

Let us consider the inference in the above MISO - fuzzy systemin the presence
of an input, say ”x1 is A and x2 is B”, which is represented asX = (A, B), where
A ∈ F̃(X1) andB ∈ F̃(X2). The MISO inference from the original rule base (20) is
given as:

g{ f [µ(M(A1,A),M(B1, B)),C],

f [µ(M(A2,A),M(B2, B)),C],

f [µ(M(A3,A),M(B3, B)),D]} (21)

Letting µ(M(A1,A),M(B1, B)) asa andµ(M(A2,A),M(B2, B)) asb we have from
(17), withg being associative,

(21) = g{g{ f [µ(M(A1,A),M(B1, B)),C],

f [µ(M(A2,A),M(B2, B)),C]},

f [µ(M(A3,A),M(B3, B)),D]}

= g{ f [µ(M(A1,A),M(B1, B))

og µ(M(A2,A),M(B2, B)),C],

f [µ(M(A3,A),M(B3, B)),D]} (22)

Again lettingM(Ai ,A) = ai ∈ I ,M(Bi , B) = bi ∈ I , i = 1,2, we have using (18) and
(19)

(22) = g{ f [µ(M(A1,A) oµ M(A2,A),

M(B1, B) oµ M(B2, B)),C],

f [µ(M(A3,A),M(B3, B)),D]} (23)

= g{ f [µ(M(A1 oµ A2,A),M(B1 oµ B2, B)),C],

f [µ(M(A3,A),M(B3, B)),D]} (24)

Thus the rule base in (20) can be reduced to the following rulebase containing just
two rules:

R∗1 : A1 oµ A2, B1 oµ B2→ C (25)

R3 : A3, B3→ D

It can be easily seen that for a given inputX = (A, B), the inference obtained from
the reduced rule base (25) under the given model of inferenceQ is identical to
(24). �

The above requirements on the general framework give us a class of Fuzzy Sys-
tems that allow lossless rule reduction by combining rules with same consequent.
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5 Analysis of the Requirements for Lossless Rule Re-
duction

In this section, we explore each of the above conditions for Lossless Rule Reduction
in the setting of Fuzzy Logic operators.

5.1 Conditions ong,og and oµ

In this study we consider only continuous t-norms and t-conorms forg,og andoµ,
which are by definition both commutative and associative. This enables us to extend
them to functions fromIn to I in the case ofn-input domains.

5.2 On the Equation (17)

Typically in a Fuzzy Systemf (the rule firing operation) is interpreted either as a
t-norm, for example Mamdani’smin, or a Fuzzy Implication operator. In this work
we investigate the solution of (17) both withf as a Fuzzy Implication Operator and
as a t-norm. We explore equation (17) in the following way:

• Fix f to be in a specific class of Fuzzy Implications or any t-norm and varyg
and henceog over conitnuous t-norms and t-conorms.

In this study, we consider the two most established and well studied families of
Fuzzy Implication Operators, viz., R- and S-Implications.(See Definitions 8 and 9
in Section 3.1).

When f is fixed in (17),g andog are taken to be any S/T-norms, we have the
following 4 possibilities:

f (T(p,q), r) = S( f (p, r), f (q, r)) (26)

f (S(p,q), r) = T( f (p, r), f (q, r)) (27)

f (T1(p,q), r) = T2( f (p, r), f (q, r)) (28)

f (S1(p,q), r) = S2( f (p, r), f (q, r)) (29)

5.2.1 f = J a Fuzzy Implication

Fixing f to be any Fuzzy ImplicationJ, we get the following four equations from
the above:

J(T(p,q), r) = S(J(p, r), J(q, r)) (30)

J(S(p,q), r) = T(J(p, r), J(q, r)) (31)

J(T1(p,q), r) = T2(J(p, r), J(q, r)) (32)

J(S1(p,q), r) = S2(J(p, r), J(q, r)) (33)

Recently with f = J interpreted as an R- or an S-implication andg = S, an
t-conorm andog = T , a t-norm, Trillas and Alsina [76] have investigated (30) and
proven the following:
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Theorem 2. An S- or an R-implication J satisfies (30) iff S = max and T= min.

In [7] the authors have proven the following Theorem 3 concerning equation
(31) obtained by lettingf = J to be an R- or an S-implication andog = S, an
t-conorm andg = T , a t-norm,

Theorem 3. An S- or an R-implication J satisfies (31) iff S = max and T= min.

Also we have the following result:

Lemma 1. For no Fuzzy Implication J, t-norm T (t-conorm S , respectively) do
equations (32) ((33), respectively) hold.

Proof. Let p = 1,q = r = 0. Then using the property of t-norms,T(1,0) = 0 and
(J3), we have that,

LHS o f (32) = J(T1(1,0),0) = J(0,0) = 1

RHS o f(32) = T2(J(1,0), J(0,0)) = T2(0,1) = 0

LHS= RHSimplies that 1= 0, which is absurd. Similarly, that (33) does not have a
solution can be seen by again fixingp = 1,q = r = 0. �

5.2.2 f = T a t-norm

In [76] it is also shown that (30) does not hold for the Mamdani’s Minimum f =
J = ∧ and the Larsen’s Productf = J =

∏
operators. That (26) and (27) do not

hold when f is any t-normT can be easily seen by takingp = r = 1 andq = 0.
Thus fixing f = T to be a t-norm,we need to consider only the equations (28) and
(29) which become:

T(T1(p,q), r) = T2(T(p, r),T(q, r)) (34)

T(S1(p,q), r) = S2(T(p, r),T(q, r)) (35)

We have the following theorems:

Theorem 4. (34) is valid iff when T1 ≡ T2 = min.

Proof. Claim: T1 ≡ T2 on I × I .
Let r = 1. Then∀p,q ∈ I , we have

LHS of (34)= T(T1(p,q),1) = T1(p,q)
RHS of (34)= T2(T(p,1),T(q,1)) = T2(p,q) = LHS of (34)∀p,q ∈ I iff T1 ≡ T2.

Now, let p = q = 1, r ∈ I . Then
LHS of (34)= T(T1(1,1), r) = T(1, r) = r.
RHS of (34)= T1(T(1, r),T(1, r)) = T1(r, r) = r, ∀r ∈ I iff T1 = min, the only
idempotent t-norm. �

Theorem 5. (35) is valid iff when S1 ≡ S2 = S and T distributes over S .
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Proof. Claim: S1 ≡ S2 on I × I .
Let r = 1. Then∀p,q ∈ I , we have

LHS of (35)= T(S1(p,q),1) = S1(p,q)
RHS of (35)= S2(T(p,1),T(q,1)) = S2(p,q) = LHS of (35)∀p,q ∈ I iff S1 ≡ S2.
Thus the equation (35) becomes

T(S(p,q), r) = S(T(p, r),T(q, r)) (36)

which is true iff T distribuites overS. �

Corollary 1. (36) is true if S= max.

5.3 On the Equation (18)

Continuing along the same vein, we have investigated the generalised bisymmetry
equation (18)

µ(a1,b1) og µ(a2,b2) = µ(a1 oµ a2,b1 oµ b2)

involving og, µ andoµ, with a1,a2,b1,b2 ∈ I .

Definition 11. A function B: [a,b]2→ [a,b] is said to be bisymmetric if

B(B(x, y), B(u, v)) = B(B(x,u), B(y, v)), ∀x, y,u, v ∈ [a,b].

For a comprehensive coverage on Bisymmetry Equations refer[1 - 4, 74]. Also
[38,39] list many results on bisymmetry equations on the unit interval. Allowing
og, µ andoµ to be t- and t-conorms, we get the following 8 possible cases in all,
which for convenience we have grouped into two sets:

Group 1

T1(T2(a1,b1),T2(a2,b2)) = T2(T3(a1,a2),T3(b1,b2)) (37)

S1(S2(a1,b1),S2(a2,b2)) = S2(S3(a1,a2),S3(b1,b2)) (38)

Group 2

T1(S(a1,b1),S(a2,b2)) = S(T3(a1,a2),T3(b1,b2)) (39)

T1(T2(a1,b1),T2(a2,b2)) = T2(S(a1,a2),S(b1,b2)) (40)

T1(S1(a1,b1),S1(a2,b2)) = S1(S2(a1,a2),S2(b1,b2)) (41)

S1(T(a1,b1),T(a2,b2)) = T(S2(a1,a2),S2(b1,b2)) (42)

S1(S2(a1,b1),S2(a2,b2)) = S2(T(a1,a2),T(b1,b2)) (43)

S1(T1(a1,b1),T1(a2,b2)) = T1(T2(a1,a2),T2(b1,b2)) (44)
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We show that only 2 of the above 8 equations, the ones belonging to Group 1
have solutions, while the rest of the equations belonging toGroup 2do not have
solutions as given by the following theorems, the proofs of which can be found in
the Appendix.

Theorem 6. If T1,T2 and T3 are any t-norms then the equation (37) obtained by
letting og = T1, µ = T2 and oµ = T3 in (18) is valid iff T1 ≡ T2 ≡ T3 on I2 .

Theorem 7. If S1,S2 and S3 are any t-conorms then the equation (38) obtained by
letting og = S1, µ = S2 and oµ = S3 in (18) is valid iff S1 ≡ S2 ≡ S3 on I2 .

Theorem 8. The equations belonging toGroup 2do not have solutions.

5.4 On the Equation (19)

In this section, we investigate equation (19), namely,

M(A1,A) oµ M(A2,A) = M(A1 oµ A2,A)

whereM is a matching function that compares two fuzzy sets on the same domain,
i.e., M : F̃(X) × F̃(X) → I , with oµ a t- or t-conorm, in which case we get the
following equations (45) and (46):

T[M(A1,A),M(A2,A)] = M(T(A1,A2),A) (45)

S[M(A1,A),M(A2,A)] = M(S(A1,A2),A) (46)

5.4.1 A few Matching functions existing in the literature

Below we list a few of the matching functions commonly employed in the literature.

• Zadeh’s Sup-min :M1(A,A′) = maxx min(A(x),A′(x))

• Magrez - Smets’ Measure [56]:M2(A,A′) = maxx min(A(x),A′(x)) , where
A(x) is the negation ofA(x).

• Sup-T :M3(A,A′) = maxx T(A(x),A′(x)) , whereT is any t-norm.

• Sup-T-N:M4(A,A′) = maxx T(A(x),A′(x)).

• Inf- max :M5(A,A′) = minx max(A(x),A′(x)).

• Inf - max- N: M6(A,A′) = minx max(A(x),A′(x)).

• Inf-S : M7(A,A′) = minx S(A(x),A′(x)) , whereS is any t-conorm.

• Inf - S - N: M8(A,A′) = minx S(A(x),A′(x)).

Note: M3 andM4 (M7 andM8) are generalisations ofM1 andM2 (M5 andM6),
respectively, whileM5,M6,M7 andM8 are duals ofM1,M2,M3 andM4.

The proofs of the following results can be found in the Appendix.
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Theorem 9. M1,M2,M3 and M4 satisfy equation (46) iff S = max.

Theorem 10. M5,M6,M7 and M8 satisfy equation (45) iff T = min.

Remark 6. M1,M2,M3 and M4 (M5,M6,M7 and M8) do not satisfy (45) (resp.
(46)) since there does not exist any t-conorm S (resp. t-normT) such that
S(minxax,minxbx) = minxS(ax,bx) (such that T(maxxax,maxxbx) =

maxxT(ax,bx)). We refer the readers to [20, 21] for the corresponding proofs.

Combining the results of section 5.1 - 5.4, we get the following table - Table 5 -
of operators available for equations (17),(18) and (19), whereJS, JR denote S- and
R-implication, whileT andS denote a t-norm and t-conorm, respectively.

f g og µ oµ Conditions Examples ofM
JS or JR ∨ ∧ ∧ ∧ - M5,M6,M7,M8

JS or JR ∧ ∨ ∨ ∨ - M1,M2,M3,M4

T ∧ ∧ ∧ ∧ - M5,M6,M7,M8

T S S S S T dist over S M1,M2,M3,M4; S = ∨

Table 5: Table of operators for (17),(18) and (19) to be satisfied

6 Examples of a few Fuzzy Systems from the above
class

In this section we show how the results from Section 5 can be applied to particular
models of inferencing in Fuzzy Systems. For throughout thissection, we consider
the following SISO fuzzy system with 3 rules as given in (47).

R1 : A1→ B

R2 : A2→ B (47)

R3 : A3→ C

whereA1,A2,A3 are fuzzy sets onX; B,C are fuzzy sets onY and→ is any rule
firing operation relating the antecedent to the consequent.

6.1 Mamdani Model of Inference in Fuzzy Systems

Consider the following set ofm Single-Input Single-Output (SISO) fuzzy if-then
rules of Mamdani type:

I f x is Aj Then y is Bj , j = 1,2, · · · ,m

- 132-



Acta Polytechnica Hungarica Vol. 3, No. 4, 2006

whereAi , Bi are fuzzy sets on the input and output domainsX,Y, respectively. From
Section 3.4.1, we know a Single-Input Single-Output (SISO)Mamdani type Fuzzy
System has the final output fuzzy setB given by

B(y) =
∨m

j=1{[A j(x) ∧ Bj(y)},∀ y ∈ Y (48)

which corresponds toQM = {M1,na,∧,∨, F̃(Y)}.

Remark 7. Since in the case of SISO rule base, the antecedent combinerµ does not
play a role we have indicated it as Not Applicable - na - in QM.

6.1.1 Lossless Rule Reduction in Mamdani Model of Inference inSISO Fuzzy
Systems

Theorem 11. Inference Invariant Rule Reduction is possible in Mamdani Model of
Inference, in the case of SISO fuzzy rules, by combining the antecedents of rules that
have identical consequent.

Proof. We know thatf - the rule firing operator - is the t-normmin in (48). In the
presence of an input, sayx is A, denoted asX = A, we have from (48), the final
output fuzzy setB′ is given by

B′(y) = [M1(A1,A) ∧ B]

∨[M1(A2,A) ∧ B]

∨[M1(A3,A) ∧C] (49)

¿From (49) by the distributivity of∧ over∨ we have (50),

B′(y) = {[M1(A1,A) ∨ (M1(A2,A)] ∧ B}

∨ [M1(A3,A) ∧C] (50)

= [M1(A1 ∨ A2,A) ∧ B]

∨ [(M1(A3,A) ∧C] (51)

= [M1(A∗1,A) ∧ B] ∨ [(M1(A3,A) ∧C] (52)

We know from Theorem 9 thatM1(A1,A) ∨ M1(A2,A) = M1(A1 ∨ A2,A), using
which we obtain (51) from (50). In (52)A∗1 = A1∨A2, which is again a fuzzy set on
X, by Definition (6) and Remark 2.

Thus instead of the SISO fuzzy rule base of 3 rules (47), the following reduced
rule base with two rules can be used, without any loss of inference for a given input,
while employing the Mamdani Model of Inference.

R1 : A∗1→ B

R3 : A3→ C (53)

�
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6.2 General Mamdani Model of Inference in Fuzzy Systems

A slight generalisation of the Mamdani model of inference can be seen as follows:
Let QT

M = {M,na,T∗,S∗, F̃(Y)} denote a General Mamdani Model of Inference
whereT∗ is any t-norm that distributes over the t-conormS∗. Then the following
can be easily shown as above:

Theorem 12. Inference Invariant Rule Reduction is possible in Mamdani Model of
Inference, in the case of SISO fuzzy rules, by combining the antecedents of rules that
have identical consequent, if the Matching function M is such that

S∗[M(A1,A),M(A2,A)] = M(S∗[A1,A2],A). (54)

In the caseS∗ = max, the matching functionM, among others, can be one of
M1,M2,M3,M4.

6.3 Modified Mamdani Model of Inference in Fuzzy Systems

By a Modified Mamdani Model of Inference we refer to the following quintuple
QJ

M = {M,na, J,∧, F̃(Y)}, whereM is any Matching function andJ is either an
R- or an S-implication. In this model of inference an Implication OperatorJ is
employed to relate the antecedent and the consequent of the fuzzy rules. The final
output fuzzy setB in QJ

M for a SISO rule base is given by

B(y) =
∧m

j=1{[A j(x)→ Bj(y)},∀ y ∈ Y (55)

where→ is either an R- or an S-implication.
Recently Li et al [54,55] have shown that the above Modified Mamdani Model

of Inference in Fuzzy Systems with R- or S-implications for the rule firing operation
and with Trapezoidal or Triangular membership functions are Universal Approxi-
mators both in the case of SISO and MISO fuzzy systems. (In thecase of MISO
systems the antecedent combinerµ = ∧). These considerations make Modified
Mamdani Model of Inference very attractive. In this sectionwe show that lossless
rule reduction is possible in Modified Mamdani Model of Inference in the SISO
case.

6.3.1 Lossless Rule Reduction in Modified Mamdani Model of Inference in
SISO Fuzzy Systems

Theorem 13. Inference Invariant Rule Reduction is possible in Modified Mamdani
Model of Inference, in the case of SISO fuzzy rules, by combining the antecedents of
rules that have identical consequent, if the Matching function M obeys (56).

M(A1,A) ∨ M(A2,A) = M(A1 ∨ A2,A). (56)

Proof. Let us now interpretf - the rule firing operator - as an R- or an S-implication
in (55). Let us again consider the above SISO fuzzy system of 3rules as given in

- 134-



Acta Polytechnica Hungarica Vol. 3, No. 4, 2006

(47), but where the→ is any R- or S-implication. Also let the Matching functionM
obey (56).

In the presence of an input, sayx is A, denoted asX = A, we have from (55),
the final output fuzzy setB′ is given by

B′(y) = [M(A1,A)→ B] ∧ [M(A2,A)→ B]

∧[M(A3,A)→ C] (57)

¿From (57) by using Theorem 3 we obtain (58),

B′(y) = {[M(A1,A) ∨ (M(A2,A)] → B}

∧ [M(A3,A)→ C] (58)

= [M(A1 ∨ A2,A)→ B]

∧ [M(A3,A)→ C] (59)

= [M(A∗1,A)→ B] ∧ [M(A3,A)→ C] (60)

We obtain (59) by using the fact thatM obeys (56). In (60)A∗1 = A1 ∨ A2, which is
again a fuzzy set onX, by Definition (6) and Remark 2. Thus again instead of the
SISO fuzzy rule base of 3 rules (47), we have the reduced rule base (53). �

Examples of Matching functionsM that satisfy (56) areM1,M2,M3,M4.
In general, the number of rules can be reduced tok , wherek is the number

of output fuzzy sets that featured in the original rule base.Most importantly, this
type of rule reduction is lossless w.r.to inference and Table 6 summarises the above
discussion for the SISO case with the following:

Condition (i)T∗ distributes overS∗

Condition (ii) M satisfies (54).

Condition (iii) M satisfies (56).

Name/ Type Q M f g og = oµ Conditions
Original Mamdani QM M1 ∧ ∨ ∨ -
General Mamdani QT

M M T∗ S∗ S∗ (i) and (ii)
Modified Mamdani QJ

M M J ∧ ∨ (iii)

Table 6:M, f ,g,og andoµ for the different models of inference discussed in Sections
6.1 - 6.3

7 Conclusion

In this work we have proposed a simple rule reduction technique that combines rules
with identical consequents, which is lossless with respectto inference. Towards this
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end, we proposed a general framework for Inference in Fuzzy Systems and imposed
certain requirements on the different inference operators employed in a Fuzzy Sys-
tem. Also we have explored these requirements in the settingof Fuzzy Logic Oper-
ators. We have also given a few examples of Models of Inference in Fuzzy Systems
that have the required properties for inference invariant rule reduction. We note a
few observations below:

• Merging of rules, in some cases, may turn out to be computationally inten-
sive, but this is a one time off-line job which even though might reduce in-
terpretability will make computation of inferences much faster. Perhaps the
original rule base can still be preserved for interpretability considerations.

• In some instances, the above method may even increase the number and the
complexity of the fuzzy sets defined on different input domains.

In this work, we have considered only S- and R-implications for the fuzzy im-
plication J and have shown the important role played by their distributivity over
t-norms andt-conorms in the inference scheme in Section 6.3. Recently, there are a
few more families that have been proposed, viz.,U-implications and the residual im-
plications of uninormsJU∗ in [29] and the recently proposed families off -generated
implicationsJf andg-generated implicationsJg by Yager in [85] andh-generated
implicationsJh in [8], [9]. The distributivity of JU∗ andU-implications over uni-
norms - which are generalisations oft-norms andt-conorms (see [84]) - is studied
in [27] and [28] while that ofJf over t-norms andt-conorms is done in [9]. Hence
these families of fuzzy implications can also be employed for the inference scheme
in Section 6.3.

In this work we have considered in detail the proposed rule reduction technique
only in the SISO case explicitly. Recently we have done some work on rule reduc-
tion in the MISO case also, as has been demonstrated within the scope of Similarity
Based Reasoning in [10].
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Proof. Proof of Theorem 6
Claim T1 ≡ T2: Let a1 = b2 = 1. Then∀a2,b1 ∈ I , we have

LHS = T1(T2(1,b1),T2(a2,1)) = T1(b1,a2)

RHS = T2(T3(1,a2),T3(b1,1)) = T2(a2,b1) = T2(b1,a2)

which impliesT1(b1,a2) = T2(b1,a2) ∀a2,b1 ∈ I and thusT1 ≡ T2 = T. Now (37)
becomes

T(T(a1,b1),T(a2,b2)) = T(T3(a1,a2),T3(b1,b2)) (61)

Now, sinceT is a t-norm,

T(T(a1,b1),T(a2,b2)) = T(T(a1,a2),T(b1,b2)) (62)

and we have from (61) and (62) thatT1 ≡ T2 ≡ T3 on I2. �

Proof. Proof of Theorem 8
Let us consider (40) fromGroup 2. Let a1 = b2 = 1 anda2,b1 ∈ (0,1). Then we
have that

LHS = T1(T2(1,b1),T2(a2,1)) = T1(b1,a2)

RHS = T2(S(1,a2),S(b1,1)) = T2(1,1) = 1

which implies thatT1(b1,a2) = 1,with a2,b1 ∈ (0,1), which is absurd. Similarly, all
the other equations, (39), (41) - (44) inGroup 2can be shown to have no solutions.

�

Proof. Proof of Theorem 10
We give the proof forM = M7. The proofs forM = M5,M6 andM8 are similar.

LHS o f (45) = T[ inf
x

S(A1(x),A′(x)),

inf
x

S(A2(x),A′(x))] (63)

= inf
x

T[S(A1(x),A′(x)),

S(A2(x),A′(x))] (64)

= inf
x

S(T[A1(x),A2(x)],A′(x)) (65)

= M7[T(A1,A2),A′]

= RHS o f(45)

SinceT(inf x ax, inf x bx) ≡ inf x T(ax,bx) iff T = min, we have that (64) is equiv-
alent to (63) iff T = min. Also since any t-conormS is distributive overT = min
[20], we obtain (65) from (64). �
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