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Solution to an open problem: a characterization
of conditionally cancellative t-subnorms

Balasubramaniam Jayaram

Abstract. In this work we solve an open problem of U. Höhle (Klement et al. Fuzzy Sets
Syst 145:471–479, 2004, Problem 11). We show that the solution gives a characterization of
all conditionally cancellative t-subnorms. Further, we give an equivalence condition under
which a conditionally cancellative t-subnorm has 1 as its neutral element and hence show
that conditionally cancellative t-subnorms whose natural negations are strong are, in fact,
t-norms.
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1. Introduction

“Triangular norms are, on the one hand, special semigroups and, on the other
hand, solutions of some functional equations. This mixture quite often requires
new approaches to answer questions about the nature of triangular norms.”
With this observation, Klement et al. [10], present a collection of open prob-
lems posed during the 24th Linz Seminar on fuzzy set theory. They deal with
unsolved problems (as of then) related to fuzzy aggregation operations, espe-
cially t-norms and t-subnorms. For other collections of open problems related
to triangular norms and related operators, see [11,13]

Solutions to these open problems involving triangular norms are of both the-
oretical and applicational interest. Recently solutions to quite a few open prob-
lems in the field of triangular norms have been published [2,4,8,16,19,20,23],
including this journal, see for instance, [7,15,22,21]. Since the publication of
[10], some problems mentioned therein have been solved—for instance, Prob-
lem 1 was solved by Ouyang et al. [18], Problem 5 was solved by Ouyang and
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Li [17] while for some other problems partial solutions have been given, see for
instance, the papers of Viceńık [24–26] relating to Problem 4(i).

One of the open problems listed therein was posed by U. Höhle (Problem
11) which reads as follows:

Problem 1.1 (U. Höhle, [10], Problem 11). Characterize all left-continuous
t-norms T which satisfy

I(x, T (x, y)) = max(n(x), y), x, y ∈ [0, 1], (1.1)

where I is the residual operator linked to T , i.e.,

I(x, y) = sup{t ∈ [0, 1]|T (x, t) ≤ y}, x, y ∈ [0, 1] , (1.2)

n(x) = nT (x) = I(x, 0) for all x ∈ [0, 1]. (1.3)

Further, U. Höhle goes on to remark the following:

Remark 1.2. “In the class of continuous t-norms, only nilpotent t-norms fulfill
the above property.”

In this work we deal with two problems. Firstly, we solve the above open
problem of U. Höhle and show that the solution gives a characterization of all
conditionally cancellative t-subnorms. From the proven result it does follow
that the remark of U. Höhle—Remark 1.2—is not always true and gives an
equivalence condition for it to be true, viz., that the natural negation obtained
from the t-norm is strong.

Secondly, this quite naturally leads us to consider conditionally cancella-
tive t-subnorms whose natural negations are involutive. Once again, by prov-
ing an equivalence condition for a conditionally cancellative t-subnorm to be
a t-norm, we show that conditionally cancellative t-subnorms whose natural
negations are involutive, in fact, become t-norms.

2. Preliminaries

Definition 2.1. A function N : [0, 1] → [0, 1] is called a fuzzy negation if N is
decreasing and N(0) = 1 , N(1) = 0 . N is said to be involutive or strong if
N ◦ N = id[0,1].

Definition 2.2 ([9], Definition 1.7). A t-subnorm is a function M : [0, 1]2 →
[0, 1] such that it is monotonic non-decreasing, associative, commutative and
M(x, y) ≤ min(x, y) for all x, y ∈ [0, 1].

Note that for a t-subnorm 1 need not be the neutral element, unlike in the
case of a t-norm.

Definition 2.3 (cf. [9], Definition 2.9 (iii)). A t-subnorm M satisfies the Con-
ditional Cancellation Law if, for any x, y, z ∈ (0, 1],

M(x, y) = M(x, z) > 0 implies y = z . (CCL)



Solution to an open problem

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

XY
0

0.2
0.4

0.6
0.8

1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

XY

(a) (b)

Figure 1. While MC is a conditionally cancellative t-sub-
norm, MB is not

Alternately, (CCL) implies that on the positive domain of M , i.e., on the
set {(x, y) ∈ (0, 1]2 | M(x, y) > 0},M is strictly increasing. For instance, the
�Lukasiewicz t-norm TLK(x, y) = max(0, x+y−1) is a conditionally cancellative
t-norm, while the nilpotent minimum TnM given below is not:

TnM(x, y) =

{
0, if 1 − x ≤ y,

min(x, y), otherwise.

The following proper t-subnorms, i.e., t-subnorms that are not t-norms, are
examples of a conditionally cancellative t-subnorm (MC, see Fig. 1a) and one
that is not (MB, see Fig. 1b):

MC(x, y) =

{
0, if min(x, y) ≤ 0.2,

0.2 + 3
4 (y − 0.2)(x − 0.2), otherwise,

MB(x, y) =

{
0, if min(x, y) ≤ 0.5,

min(x, y), otherwise.

For more examples, see [14,12].

Definition 2.4 (cf. [1], Definition 2.3.1). Let M be any t-subnorm. Its natural
negation nM is given by

nM (x) = sup{t ∈ [0, 1] | M(x, t) = 0}, x ∈ [0, 1] . (2.1)

Note that though nM (0) = 1, it need not be a fuzzy negation, since nM (1)
can be greater than 0. However, we have the following result.
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Lemma 2.5 (cf. [1], Proposition 2.3.4). Let M be any t-subnorm and nM its
natural negation. Then we have the following:

(i) M(x, y) = 0 =⇒ y ≤ nM (x).
(ii) y < nM (x) =⇒ M(x, y) = 0.

(iii) If M is left-continuous then y = nM (x) =⇒ M(x, y) = 0, i.e., the reverse
implication of (i) also holds.

Proof. Let Ax = {t ∈ [0, 1]|M(x, t) = 0}. Clearly, 0 ∈ Ax since M(x, 0) = 0.
Moreover, by the monotonicity of M we have that if t ∈ Ax then [0, t] ⊆ Ax.
Thus, for every x ∈ (0, 1) we have that Ax = [0, αx) or [0, αx] for some αx ∈
[0, 1]. Now, nM (x) = sup Ax = αx.

(i) Let M(x, y) = 0. Then y ∈ Ax and hence y ≤ sup A = nM (x).
(ii) Conversely, let y < sup Ax = nM (x). Then y ∈ Ax and hence M(x, y)=0.

(iii) If M is left-continuous then y = nM (x) = αx ∈ Ax and M(x, y) = 0.

�

3. Solution to the open problem of U. Höhle

It should be noted that in the case when T is left-continuous—as stated in
Problem 1—the sup in (1.2) actually becomes max. It is worth mentioning
that the residual can be determined for more generalised conjunctions and the
conditions under which this residual becomes a fuzzy implication can be found
in, for instance, [3,5]. Hence we further generalise the statement of Problem 1
by considering a t-subnorm instead of a t-norm and also dropping the condi-
tion of left-continuity. As we show below the solution characterizes the set of
all conditionally cancellative t-subnorms.

Theorem 3.1. Let M be any t-subnorm and I be the residual operation linked
to M by (1.2). Then the following are equivalent:

(i) M satisfies (1.1) with I.
(ii) M is a Conditionally Cancellative t-subnorm.

Proof. Let M be any t-subnorm, not necessarily left-continuous. Note that we
denote nM simply by n.

(i) =⇒ (ii): Let M satisfy (1.1) with I. On the contrary, let us assume that
there exist x, y, z ∈ (0, 1) such that M(x, y) = M(x, z) > 0 but y < z.
Then we have that

LHS (1.1) = I(x,M(x, y)) = sup{t ∈ [0, 1] | M(x, t) ≤ M(x, y)} ≥ z > y .

However, note that, from Lemma 2.5 (i) we have that y ≥ n(x), since
M(x, y) > 0. Thus
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RHS (1.1) = max(n(x), y) = y < LHS (1.1),

a contradiction to the fact that M satisfies (1.1) with I. Hence M satisfies
(CCL).

(ii) =⇒ (i): Now, let M satisfy (CCL). Consider an arbitrary x, y ∈ [0, 1].
Then either n(x) > y or n(x) ≤ y.

If n(x) > y, then by Lemma 2.5 (ii) we see that M(x, y) = 0 and
hence

LHS (1.1) = I(x,M(x, y)) = I(x, 0) = n(x) = max(n(x), y) = RHS (1.1).

If n(x) ≤ y and M(x, y) = 0 then by Lemma 2.5 (i) we have that n(x) ≥ y
and hence n(x) = y and it reduces to the above case. Hence let M(x, y) >
0. Then

RHS (1.1) = max(n(x), y) = y.

We claim now that LHS (1.1) = I(x,M(x, y)) = y. If this were not true,
then there would exist 1 ≥ z > y (z 	< y by the monotonicity of M) such
that

I(x,M(x, y)) = sup{t ∈ [0, 1] | M(x, t) ≤ M(x, y)} = z.

This implies that there exists a w ∈ (0, 1) such that z > w > y and
M(x,w) ≤ M(x, y), which by the monotonicity of t-subnorms implies
that M(x,w) = M(x, y) with w > y, a contradiction to the fact that M
satisfies (CCL). Thus M satisfies (1.1) with I. �

Example. Consider the product t-norm TP(x, y) = xy, which is a strict
t-norm and hence continuous and Archimedean, whose residual is the Gog-
uen implication given by

IGG(x, y) =

{
1, if x ≤ y,
y
x , if x > y.

It can be easily verified that TP does indeed satisfy (1.1) with IGG whereas
the natural negation of TP is the Gödel negation

nTP
(x) = IGG(x, 0) =

{
1, if x = 0,

0, if x > 0.

This example clearly shows that the remark of U. Höhle, Remark 1.2, is not
always true. In the following we give an equivalence condition under which it
is true.

Theorem 3.2. Let T be a continuous t-norm that satisfies (1.1) along with its
residual. Then the following are equivalent:

(i) T is nilpotent.
(ii) nT is strong.
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Proof. (i) =⇒ (ii): If T is nilpotent then it is isomorphic to the �Lukasiewicz
t-norm, i.e., there exists an increasing bijection ϕ : [0, 1] → [0, 1] such
that T (x, y) = ϕ−1(max(ϕ(x) + ϕ(y) − 1, 0)). It can be easily verified
that nT (x) = ϕ−1(1 − ϕ(x)) which is an involutive negation.

(ii) =⇒ (ii): If T is continuous and satisfies (1.1) along with its residual then,
from Theorem 3.1, T is conditionally cancellative and hence necessarily
Archimedean by [9], Proposition 2.15 (ii). Thus T is either nilpotent or
strict. If T is continuous with a strong natural negation, clearly, T has
zero-divisors and hence T is nilpotent. �

4. Conditional cancellativity and unit element

From the above remarks we note that when the natural negation of the under-
lying conjunction (a continuous t-norm, in the above case) is strong the class
of conjunctions that satisfy (1.1) along with its residual gets restricted. Hence
we study the class of t-subnorms M that satisfy (1.1) along with its residual
and whose natural negations are strong. In other words, we seek the char-
acterization of the class of conditionally cancellative t-subnorms with strong
natural negations.

Let us recall from the remark following Definition 2.4 that the natural nega-
tion of a t-subnorm nM need not be a fuzzy negation. If a t-subnorm has 1 as
its neutral element, i.e., if it is a t-norm, then we have

M(1, y) = 0 ⇐⇒ y = 0,

i.e., y = sup{t|M(1, t) = 0} = nM (1) = 0.

Equivalently, by the monotonicity of M we have that nM is a fuzzy negation.
However, this is only a necessary and not a sufficient condition.

It was Jenei [6] who proposed some sufficiency conditions and showed that
left-continuous t-subnorms with strong natural negations are t-norms, i.e., 1
does become a neutral element.

In the following we show that if a conditionally cancellative t-subnorm is
such that M(1, y) = y for some y ∈ (0, 1] and if the associated negation is a
fuzzy negation then 1 is a neutral element of M , i.e., M is a t-norm. Based on
this, we show that in the case when nM is a strong negation then M always is
a t-norm. In other words, there does not exist any conditionally cancellative
proper t-subnorm whose natural negation is involutive.

Lemma 4.1. Let M be a conditionally cancellative t-subnorm. Let M(1, y0) =
y0, for some y0 ∈ (0, 1].

(i) Then M(1, y) = y for all y ∈ [y0, 1].
(ii) Let y∗ = sup{t|M(1, t) = 0} = nM (1). Then M(1, y) = y for all y ∈

(y∗, y0].
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Proof. Let M(1, y0) = y0, for some y0 ∈ (0, 1].
(i) Let y0 < y ≤ 1. Clearly, y0 = M(1, y0) < M(1, y) ≤ y. If M(1, y) = y′ <

y, then by associativity and conditional cancellativity we have

M(M(1, y0), y) = M(y0, y)
M(M(1, y), y0) = M(y′, y0)

}
=⇒ M(y0, y) = M(y0, y

′) =⇒ y = y′,

i.e., M(1, y) = y for all y ≥ y0.
(ii) Let y∗ < y ≤ y0. Clearly, y0 = M(1, y0) > y ≥ M(1, y) = y′. If M(1, y) =

y′ < y, then, once again, by associativity and conditional cancellativity
we have
M(M(1, y0), y) = M(y0, y)
M(M(1, y), y0) = M(y′, y0)

}
=⇒ M(y0, y) = M(y0, y

′) =⇒ y = y′,

i.e., M(1, y) = y for all y ∈ (y∗, y0]. �

Based on the above result, we now have the following equivalence condition
for a conditionally cancellative t-subnorm to be a t-norm:

Theorem 4.2. Let M be any conditionally cancellative t-subnorm. Then the
following are equivalent:

(i) M is a t-norm.
(ii) nM is a negation and M(1, y0) = y0, for some y0 ∈ (0, 1].

Proof. Sufficiency is obvious. Necessity follows from the fact that if nM is a
negation then y∗ = 0 in Lemma 4.1 above. �

Remark 4.3. Note that both conditions in Theorem 4.2(ii) are mutually exclu-
sive.

(i) Consider the conditionally cancellative (proper) t-subnorm (see Fig. 2a)

MP(x, y) =
xy

2
whose associated negation is a negation but M(1, y) 	= y for any y ∈ (0, 1].

(ii) Consider the conditionally cancellative (proper) t-subnorm (see Fig. 2b)

MD(x, y) =

⎧⎪⎨
⎪⎩

x, if y = 1 and x ∈ (0.5, 1]
y, if x = 1 and y ∈ (0.5, 1]
0, otherwise

,

whose associated negation

NM (x) =

{
1, if x ∈ [0, 1)
0.5, if x = 1

is not a fuzzy negation, since NM (1) 	= 0. Note however that M(1, y) =
M(y, 1) = y for any y ∈ (0.5, 1].
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Figure 2. The conditionally cancellative (proper) t-subnor-
ms MP and MD from Remark 4.3

The final result of this work shows that in the case when nM is a strong
negation then M is always a t-norm.

Theorem 4.4. Let M be any conditionally cancellative t-subnorm. If nM is a
strong natural negation then M is a t-norm.

Proof. Our approach will be to show that M(1, 1) = 1 and then the result
follows easily from Theorem 4.2. Note also that since nM is a strong negation,
we have that nM (x) = 1 ⇐⇒ x = 0 and nM (x) = 0 ⇐⇒ x = 1. Equivalently,
M(1, x) = 0 ⇐⇒ x = 0.

On the contrary, let us assume that M(1, y) < y for all y ∈ (0, 1]. In par-
ticular, M(1, 1) = z such that 0 < z < 1. Since nM is strong, there exists
z′ ∈ (0, 1) such that z = nM (z′). We claim that z′ = 0 and hence z = 1.

If not, then there exists 0 < z′′ < z′ and by the definition of nM we have
that M(z, z′′) = 0. Also, by our assumption 0 < M(1, z′′) = z∗ < z′′. Now, by
associativity and conditional cancellativity we have

M(M(1, 1), z′′) = M(z, z′′)
M(M(1, z′′), 1) = M(z∗, 1)

}
=⇒ M(z, z′′) = 0 = M(z∗, 1)

=⇒ z∗ = 0 ,

a contradiction. Thus z = 1 and hence we have the result. �
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5. Concluding remarks

In this work we have solved a more generalised version of an open problem of
U. Höhle and have shown that the solution gives a characterization of all condi-
tionally cancellative t-subnorms. Further, by proving an equivalence condition
for a conditionally cancellative t-subnorm to be a t-norm, we have shown that
conditionally cancellative t-subnorms with involutive natural negations are
t-norms.
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