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Measuring Concentration of Distances—An
Effective and Efficient Empirical Index

Sushma Kumari and Balasubramaniam Jayaram,Member, IEEE

Abstract—High dimensional data analysis gives rise to many challenges. One such that has come to gain a lot of attention recently is

the concentration of distances (CoD) phenomenon, which is the inability of distance functions to distinguish points well in high

dimensions. CoD affects almost every machine learning and data analysis algorithm in high dimensions. In this work, we present a

novel efficient and effective empirical index that not only illustrates whether a distance function tends to concentrate for a given data

set, but also enables us to measure the rate of concentration and allows us to compare different distance functions vis-�a-vis their rate of

concentration. As opposed to existing empirical indices, the proposed empirical measure uses only the internal characteristics of a

given data set and hence is applicable on real data sets, which was hitherto not possible.

Index Terms—Dimensionality curse, concentration of distances, concentration function, dispersion function

Ç

1 INTRODUCTION

THE term ‘Big Data’ has come to be related to any data
whose characterics can be classified among one of the fol-

lowing five V’s: Volume, Variety, Velocity, Veracity and
Value. While the first of the five V’s, namely, Volume is
largely taken to refer to the amount or size of data, yet
another aspect related to volume is that ofDimensionality [39].

Data sets grow in their complexity not only due to their
size but also due to the addition of more features or dimen-
sions to the data. Given a data set X , while Volume refers to
the cardinality ]X of the data set X , dimensionality refers to
the space in which X itself is embedded.

Evolution of new data types such as images, videos,
audio, gene expression data, etc., lead us to work with data
in high dimension, thus forcing us to deal with the so called
Dimensionality Curse (DC), a term that has come to refer to
some non-intuitive phenomena that occur while dealing
with data in high dimensions.

1.1 The Dimensionality Curse

The term curse of dimensionality, was first introduced by
Bellman [5] while discussing optimisation problems involv-
ing high dimensions. However, recently, this term has come
to denote or refer to many, often counterintuitive, chal-
lenges faced in high dimensions.

There are many aspects of the DC and their effects are
still only being explored and is currently a hot topic of
research. This is also clear from the many papers that con-
tinue to appear, see for instance, [2], [8], [23], [31]. Two of
the well-known aspects of the DC are:

(i) Combinatorial explosion in Search Space, where the
search space grows exponentially due to the increase
in the number of variables [5].

(ii) Hughes Phenomenon—which refers to the need for at
least a sub-exponential growth in the number of data
points as dimension increases for many of the data
analysis algorithms to be consistent, see for instance,
[19], [27].

However, recently, many other aspects of the DC have
also been discovered and are being investigated. For
instance, the Hubness Phenomenon, which was first reported
by [4] and later on investigated by Radovanovic et al. [28],
[29], [36], which refers to the formation of hubs, i.e., a subset
of data points which are more popular as nearest neighbors
than other data points.

Yet another major aspect of the DC that has recently
come to the fore is the Concentration of Distances phenome-
non, which will form the main focus of this work.

1.2 Concentration of Distances

Concentration of Distances (CoD), also referred to as Concen-
tration of Norms in the literature, refers to the inability of dis-
tance functions to distinguish points well in high dimensions.
Tomeasure the closeness between any two objects/points we
need the concept of a distance or its dual concept of similarity.
However, as the dimension increases all the points appear to
be approximately at the same distance and the distance func-
tion seems to lose its discriminative power. This phenomenon
is called the concentration of distances.

Let X ¼ fx1; x2; . . . ; xNg � Rm be a set of N data points
from the m-dimensional Euclidean space. Let q 2 Rm be an
arbitrary but fixed query point and consider a distance func-
tion r to calculate the distances between points in X—for
instance, r could be the Euclidean distance (see (2) in
Section 2). Let x� and xþ be the nearest and farthest points
to q, i.e., x� ¼ argminxi2X rðxi; qÞ; xþ ¼ argmaxxi2X rðxi; qÞ:
As the dimensionm ! 1, one finds that rðq; x�Þ � rðq; xþÞ,
which means that the distance of a query to the farthest
point approaches the distance of the query to its nearest
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ofpoint. Since rðq; x�Þ � rðq; xiÞ � rðq; xþÞ for 1 � i � N , all

distances to q begin to concentrate and are confined to a
small domain. In other words, we can say that all the points
in X are almost at the same distance to q. Thus the distances
become less discriminative as the dimension grows and the
distances between any two points begin to converge.

1.3 An Empiricial Illustration

Let us compare the Nearest Neighbour (NN) distances of an
arbitrary query point with the average of pairwise distances
of a given data set. Let X ¼ fxigNi¼1 be N data points. Let
Ymax; Ymin; Yavg denote the maximum, minimum and average

of the Nearest Neighbour Euclidean distances. For instance,
if zi denotes the NN distance of xi for each i ¼ 1; . . . ; N ,
then Ymax ¼ maxfzi : 1 � i � Ng. We calculate Ymin; Yavg,

similarly. Let YX denote the average of all pairwise distan-
ces in X .

Let kM ¼ Ymax
YX denote the normalised maximum NN dis-

tance w.r.t. the average of all pairwise distances. Similarly,
let km and kA denote the normalised minimum and average
NN distances w.r.t. the average of all pairwise distances.

In Figs. 1a , 1b, and 1c, we plot the above three indices for
N ¼ 1;000 data points generated from Uniform distribution,
viz., X � U ½�1; 1�mð Þ, for varying dimensions, m ¼ 1; . . . ;
1;000. The plots allow us tomake the following observations:

� In low dimensions, we see that km 	 1 and there is
enough separation between km and kM , i.e., there is
sufficient contrast present and hence points are well
separated, see Fig. 1a.

� In medium dimensions, i.e., up to 100 dimensions,
0 	 km < kA < kM , which means that the mini-
mum NN distances are beginning to increase and
one can already see the presence of CoD, see Fig. 1b.

� However, as dimension increases, km ! 1, kM � kA
and km � kA, i.e., the normalised maximum NN dis-
tances and the normalised minimum NN distances
both converge to the normalised average NN distan-
ces. There is not much contrast present between the
distances, i.e., all the distances seem to concentrate
around the average value of the pairwise distances.
Thus all points become almost equidistant to each
other, see Fig. 1c.

� 3D surface plots of these indices for different values
of m and N , see Fig. 2, shows that increasing N does
not change the observed trend.

1.4 Why is CoD Important?

The concept of distance, or its dual notion of similarity, is all-
pervasive and plays a central role in almost every algorithm
or method in data analysis, from classification to clustering
to similarity searches to pattern recognition. Inmany of these
applications and algorithms, the distance functions which
are useful in low dimensions are no longer effective in high
dimensions, largely due to the affecting role of the CoD phe-
nomenon. There are many domains where data are high
dimensional and, thus, CoD poses an immediate and serious
threat to their applicability to real world scenarios.

Let us consider searching, which is one of the most fun-
damental tasks used in every stream. The basic aim of simi-
larity searching is to find an object or a set of objects similar
to the given query object. For instance, in face recognition,
one needs to search for a picture that is similar to the given
query face in a database of images. A picture is made up of
hundreds of thousands/millions of pixels and hence is a
high dimensional object. Similarity searching methods, typi-
cally employ some kind of a distance function to measure
the closeness between two objects. However, as shown
above, due to the high dimensionality of the data, all pair-
wise distances can converge and hence our search might
return a lot of candidates similar to our query object. This
clearly puts a question mark on the usefulness of distance
functions in high dimensions, see also [1], [18], [21].

Many nearest neighbour searching algorithms become
computationally quite expensive in high dimensions [6], [7],

Fig. 1. Concentration exhibited by the Euclidean distance when moving from low to high dimensions—kM ( ), km ( ), kA ( ).

Fig. 2. Plots of the surfaces of km (bottom most), kA; kM (top most) for
different values ofm andN.
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[10], [16], [20], [32]. However, it is made even more difficult
by CoD. In fact, CoD raises the issue of whether or not the
nearest neighbour is meaningful [9] in high dimension.
Thus, in high dimensions, not only the efficiency of an algo-
rithm is at stake, but also its effectiveness.

1.5 Motivation for This Work

Since the seminal paper of Beyer et al. [9] on the concentra-
tion of distances, studies that deal with this phenomenon
typically employ an index to illustrate their point. There
exist three major indices that are often used in such works,
viz., the relative contrast �, relative variance g and the con-
centration function a. While all these indices are excellent
illustrators of whether a distance function r exhibits concen-
tration or not, they do have their own merits and draw-
backs. On the one hand, while both �; g are empirical
indices, and are hence easy to calculate, the relative contrast
� is not amenable for theoretical analysis, while both �; g are
not conducive to measure the level or rate of concentration.
On the other hand, the concentration function a overcomes
some of these drawbacks, but is extremely computationally
intensive to calculate.

Given a data set X and a set of distance functions ri, there
does not exist any index, so far, that is able to compare them
and suggest or indicate their suitability w.r.t. their level of
concentration on X . Thus there is a need for an efficient
empirical index that orders a given set of distance functions
w.r.t. their suitability, vis-�a-vis their level of concentration.
This forms themainmotivation of this submission.

1.6 Main Contributions of This Work

The main contributions of this work are twofold. First, we
propose a novel efficient and empirical index function, called
the Dispersion Function �r, that not only illustrates whether a
distance function r exhibits concentration or not but also ena-
bles us to measure the rate at which it concentrates. This dif-
fers from the concentration function ar in two aspects, viz.,

(i) �r is far less computationally intensive than ar,
(ii) �r being an empirical measure can be calculated on

any given data set X . Further, �r only makes use of
the internal characteristics of the given data set X
and hence, unlike ar, �r can be calculated even if the
underlying distribution of X is unknown.

Second, based on the dispersion function �r, we have pro-
posed an index tr which enables us to compare distances
and indicate their suitability w.r.t. their level of concentra-
tion on X .

2 INDICES TO ILLUSTRATE AND/OR MEASURE COD

As discussed in Section 1, distances do tend to concentrate in
higher dimensions. The illustration in Section 1.3 was done
for Eucidean distances, i.e., distances calculated based on
what is often referred to as an L2 distance, since it is a mem-
ber of the family of Minkowski’s Lp-distances for p 2 ½1;1Þ,
given as follows for a pair of vectors x ¼ ðx1; x2; . . . ;
xmÞ; y ¼ ðy1; y2; . . . ; ymÞ 2 Rm:

kxkp ¼
Xm
i¼1

jxijp
 !1

p

; (1)

Lp x; yð Þ ¼ kx� ykp ¼
Xm
i¼1

jxi � yijp
 !1

p

: (2)

Note that Lp is a metric [11].
It can be easily shown that the above indices, viz.,

kM; km; kA, behave similarly when we use a different Lp-dis-

tance, i.e., they all still do converge. However, the following
questions arise:

(i) Even if all Lp-distances concentrate, do they all con-
centrate in the same manner? In which case, can one
talk about the rate of concentration?

(ii) Are there indices that allow comparison between dif-
ferent distance functions w.r.t. their concentration?
Are they calculable empirically? Are they also ame-
nable for theoretical studies?

Since the seminal paper on this topic by Beyer et al. [9],
there have been many studies dealing with the above pos-
ers. In this section, we give a brief yet substantive review of
these works and the indices proposed therein, highlight
their advantages and indicate the contexts in which they are
not readily applicable, thus leading up to the motivation
behind this work.

2.1 Fixing the Notation

We introduce some notations and concepts which will be
used in the rest of the paper. For a concise summary of
them, please refer to Table 1.

� The triple ðV; r;mÞ will denote a measurable metric
space, where V is the domain, r is the metric on V
and m is a probability measure on V.

� Further, the measure m we consider will always be
absolutely continuous and hence we can associate a
distribution R which will be used to obtain a finite
sample of N-points X ¼ fx1; x2; . . . ; xNg � V. We
will then write X � R to denote that the data set
X � V has been generated using the distribution R.
Often the quadruple ðV;X ; r;mÞ is termed as a Simi-
larity Workload, see [25], [26].

� We assume that there always exist a 0 2 V desig-
nated as the origin of the domain V. This is almost
always true since usually V 
 R.

� m� will denote the counting measure, i.e., if X is
finite, m�ðXÞ ¼ ]X , the cardinality of X .

TABLE 1
Some Important Notations

V Non-empty Domain
r Distance Function
X � V Data set
�r Relative Contrast w.r.t. r
gr Relative Variance w.r.t. r
ar Concentration Function w.r.t. r
�r Dispersion Function w.r.t. r
Lp pth Minkowski norm p � 1
F p Fractional norm—Lp with p 2 ð0; 1Þ
m� Counting Measure
jXj Cardinality of the dataset X
m�
X Normalised Counting Measure w.r.t. jXj

KUMARI AND JAYARAM: MEASURING CONCENTRATION OF DISTANCES—AN EFFECTIVE AND EFFICIENT EMPIRICAL INDEX 3
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� Note that if V 
 Rm, then we will also use the nota-
tion Vm;Xm for added emphasis. In such cases, the
other quantities like mm; rm;Rm, etc., are appropri-
ately defined.

� By k  k we denote a real valued function on V, i.e,
k  k : V ! R, which is taken to measure the distance
of an x 2 V to the origin 0 2 V, i.e., kxk ¼ rðx; 0Þ. To
remain consistent with earlier works, we term kxk to
be the norm of the vector x, even when k  k does not
satisfy all the properties of a norm, as is common in
the literature.

� Dm
max (D

m
min) denotes the maximum (minimum, resp.)

of the norms in a given data set Xm of N points, i.e.,
the distance of the farthest (nearest, resp.) point in
Xm to the origin w.r.t. the metric r:

Dm
max ¼ maxfkxmi k ¼ rðxm

i ; 0Þ : xm
i 2 Xmg;

Dm
min ¼ minfkxm

i k ¼ rðxm
i ; 0Þ : xmi 2 Xmg:

� E½Z� and var½Z�will denote the expectation and vari-
ance of a random variable Z.

2.2 Existence of CoD: Theoretical Analysis

Towards discussing the questions raised in Section 2 above,
we begin by recalling the seminal result of Beyer et al. [9],
wherein they discussed the existence of meaningful nearest
neighbours in high dimension. Their result showed that
under some reasonable assumptions on the data distribu-
tionR, distance functions do concentrate.

Theorem 2.1 ([9], Theorem 1). Let Vm; rm;mmð Þ be an
m-dimensional measurable metric space, letXm ¼ fxm

1 ; x
m
2 ; . . . ;

xm
Ng be a finite sample of N points such that xm � Rm and

Dm
max;D

m
min are as defined above. Further, let E½kxmk� and

var½jjxmjj� be finite andE½jjxmjj� 6¼ 0: If

lim
m!1

var
kxmk
Ekxmk
� �

¼ 0; (3)

then for all " > 0,

lim
m!1P ½Dm

max � ð1þ "ÞDm
min� ¼ 1: (4)

The above result points out that nearest neighbor search-
ing is not meaningful when the variance of the ratio of the
distance between any two random points, drawn from the
data distribution, and the expected distance between them
converges to zero as dimension goes to infinity. This, in
essence, means that almost all points are equidistant to the
query point.

Theorem 2.1 clearly discusses only a sufficient condition
for concentration, i.e., the distance to the nearest neighbor
and the distance to the farthest neighbor tend to converge,
in a probabilistic sense, as the dimension m increases. In
other words, we get a poor contrast if the spread between
the points tends towards 0. However, the question of
whether this condition is also necessary was not known.
Almost after a decade after the work of Beyer et al., the con-
verse of Theorem 2.1 was proved by Durrant and Kab�an,
see [12], Theorem 2, p. 387.

2.3 Some Indices to Illustrate CoD

Based on the theoretical results of Beyer et al. [9] proving
the existence of CoD in high dimensions, two indices have
been proposed to study the tendency of concentration
among different distances.

2.3.1 Relative Contrast—An Index to Illustrate CoD

The first of them is the Relative Contrast proposed by
Aggarwal et al. [3].

Definition 2.2 ([3], p. 422). Let us consider an m-dimensional
similarity workload, ðVm;Xm; rm;mmÞ. The Relative Contrast
(RC), w.r.t. r, is defined as

�rðmÞ ¼ Dm
max �Dm

min

Dm
min

: (RC)

Defining relative contrast thus, Aggarwal et al. [3]
showed that when r is any of the Minkowski norms Lp for
p 2 ½1;1Þ, �LpðmÞ ! 0 as m ! 1. Interestingly, based on

the bounds obtained for �LpðmÞ they argued that if the expo-

nent p 2 ð0; 1Þ in (1) then such p-norms, which they called
fractional norms and were denoted by F p, were better than
Minkowski distances Lp. It should be mentioned that when
p 2 ð0; 1Þ then the fractional distances F p are not norms, or
even a metric, since they do not satisfy the triangle inequal-
ity. Thus in the sequel, we refer to all such functions with
the more general term distance functions.

2.3.2 Relative Variance—Another Index to Illustrate

CoD

While Aggarwal et al. [3] took their motivation from (4) of
Theorem 2.1 to propose �r, François et al. [15] proposed yet
another index, but this time taking their cue from (3) of
Theorem 2.1, to demonstrate if a distance function suffers
from the concentration phenomenon or not.

Definition 2.3 ([15], p. 877). Given anm-dimensional similar-
ity workload, ðVm;Xm; rm;mmÞ, the relative variance of the
distance function r is defined as

grðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ðkxmkÞp
E kxmkð Þ ;

where, as usual, kxk ¼ rðx; 0Þ .
The relative variance gr illustrates the concentration of

distances by comparing the spread with the expectation of
the distances. If gr has a small value then it indicates that

distances are concentrated and a large value for gr denotes

a good amount of spread between the distances. In some
sense it is similar to relative contrast, as �r also compares
the measure of spread to the measure of location.

In fact, Theorem 2.1 and its converse can be restated as
follows based on the above indices: If the relative variance is
not tending to zero then the relative contrast will also not con-
verge to zero and therefore one does obtain a good separation
between points.

Remark 2.4. Following are some of the merits and demerits
of the indices �r and gr:
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IEE
E P

ro
of� �r does illustrate the concentration of distanceswell.

Fig. 3a plots the relative contrast of the Euclidean
distanceL2 on the setX consisting ofN data points,
where X � U ½�1; 1�mð Þ and N ¼ 100m. It is clear
from the plots that in low dimensions, viz.,
m ¼ 1; . . . ; 10, �L2

is quite high, while even in

medium dimensions, viz., m ¼ 10; . . . ; 100, �L2

starts to fall drastically and in high dimensions, viz.,
m ¼ 100; . . . ; 1;000, �L2

is almost zero. gr, like �r,

does illustrate the concentration of distances well.
Once again, Fig. 3b illustrates that in low dimen-
sions gL2

is far away from zero, but in medium to

large dimensions gL2
starts to approach zero faster.

� Both �r and gr are empirically calculable and
hence are applicable on any distance function.

� �r is not amenable for theoretical analysis, as find-
ing the distributions of minimum and maximum
pairwise distances in a data set with given proba-
bility distribution for most distances is extremely
complicated. Even in the case of Lp and F p norms
only some loose bounds have been obtained and
when N is finite. Where gr overtakes �r is in its

amenability for theoretical analysis, as is clearly
demonstrated by François et al. [15]. Note, how-
ever, that theoretical analysis can become difficult
with arbitrary distance functions.

� Both �r and gr illustrate the concentration of a
particular distance in the asymptotic case as
m ! 1. However, given two distances, say r1; r2,
and a specific data set Xm (thus the dimensional-
ity m is fixed), it is not clear if the values �r1ðmÞ
and �r2ðmÞ allow us to compare the distances

r1; r2 vis-�a-vis their concentration. Note that �r; gr

are not strictly decreasing functions ofm.

2.4 A Theoretical Index to Measure CoD

While �r and gr illustrate the concentration phenomenon
well, they do not give any information on the rate at which
a distance function concentrates. Recent studies, see Pestov
[25], have started considering a more general mathematical
function to measure concentration.

Definition 2.5 (cf. [24], [25], [37]). Let us be given a measur-
able metric space ðV; r;mÞ. The concentration function ar :

R�0 ! 0; 12
� �

is defined as follows:

arð"Þ ¼ 1� inf
�
mðA"Þ : A 
 V & mðAÞ � 1=2

�
; " > 0;

1
2 ; " ¼ 0;

	

where A" ¼ fx 2 V : rðx; aÞ < " for some a 2 Ag:
The value arð"Þ gives an upper bound on the measure of

the complement to the "-neighborhood A" of every subset A

of measure greater than or equal to 1
2. It can be easily seen

that ar is a decreasing function. Thus, the rate of concentra-
tion of a distance function r, in the considered workload, is
measured based on the rate at which ar decreases.

If a distance function r concentrates, the concentration
function ar approaches zero faster. The smaller the value of
" at which arð"Þ ¼ 0, the faster the distance function concen-
trates. In fact, the rate at which ar decreases is illustrative of
the fact that the pairwise distances, as measured by r, con-
centrate near their mean/median value.

In Example 2.6, we consider some simple measurable
metric spaces ðV; r;mÞ and plot their respective concentra-
tion functions in Fig. 3c, which shows that ar does measure
the rate of concentration, i.e., how fast a given distance r

concentrates in a domain of interest V with respect to the
data distribution obtained from the measure m.

Example 2.6.

(i) Let us consider the space ðV1; r;mÞ, where V1 ¼
½0; 1� [ ½2; 3�, r is the usual metric on R, viz., the L1

metric and m is the Lebesgue measure. The corre-

sponding concentration function a
V1
L1

( ) is

plotted in Fig. 3c.
(ii) Let us now consider the domains V2 ¼ ½0; 1� [

½1:1; 2:1� and V3 ¼ ½�0:6;�0:1� [ ½0; 1� [ ½1:1; 1:6�,
while r;m remain the same. The corresponding

concentration functions a
V2
L1

( ) and

a
V3
L1

( ), respectively, are plotted in Fig. 3c.

Following are some of the merits and demerits of the con-
centration function ar:

� Not only does ar illustrate the concentration of dis-
tances, it also allows us to measure it. In Example 2.6,
we saw that the L1 distance behaves differently for
different domains, even though the measure of the
underlying domains mðViÞwas the same.

� The concentration function has been used in the
analysis of many a measurable metric space to obtain

Fig. 3. (a) Relative Contrast and (b) Relative Variance of the Euclidean distances as dimensions increase, see Remark 2.4. (c) Concentration

functions a
V1
L1
( ) ,a

V2
L1

( ), a
V3
L1
( ) of Example 2.6.

KUMARI AND JAYARAM: MEASURING CONCENTRATION OF DISTANCES—AN EFFECTIVE AND EFFICIENT EMPIRICAL INDEX 5
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Ledoux [24].
� Given a measurable space, ðV;mÞ of an arbitrary but

fixed dimension m, one can visually compare differ-
ent distance functions ri based on the rate at which
the corresponding ari tends to zero.

� However, given two distances, say r1; r2, it is not
clear if the functions ar1 and ar2 can be strictly
ordered, based on the usual point-wise ordering of
functions. Thus even if ar1ð"Þ < ar2ð"Þ, there can
exist an "0 6¼ " such that ar1ð"0Þ > ar2ð"0Þ. Thus other
than the visual cues, purely based on ari ’s it is not
apparent how to compare distances w.r.t. their
concentration.

� Further, if we do not know the underlying distribu-
tion of a particular dataset a priori, i.e., if m is
unknown, we cannot determine ar theoretically.

� While it is amenable for certain kind of theoretical
analysis, as an empirical index ar is highly computa-
tionally expensive. For large sets calculating ar is
very cumbersome as we need to find every subset of
V with measure at least half. In fact, using the count-
ing measure m�

X , given a set with cardinality N , the

number of subsets with measure greater than 1
2 is

equal to
PN

k¼N
2

NCk ¼ 2N�1 :

2.5 Motivation for This Work—Need for an Efficient
Empirical Index to Measure CoD

It is clear from the discussions so far that, on the one hand,
�r; gr are best suited in empirical settings and are efficiently

calculable, but ar does not enjoy these properties. On the other
hand, ar can be useful in comparing distances w.r.t. their con-
centration, while neither �r nor gr gives us that information.

Table 2 summarises the properties of the above indices against
these parameters, from whence we see the need for an effi-
cient empirical index, �a la �r; gr, and that which would mea-

sure the concentration and hence allow us to compare
between different distance functions, �a la ar. Our approach
towards defining this index stems from the concept of stability
of queries. In the next sections, we discuss these in detail and
comeupwith an empirical index that upper bounds ar, which
is also comparatively easier to calculate than ar.

3 A NOVEL EFFICIENT EMPIRICAL INDEX TO

MEASURE COD

In this section, we recall the concept of stability of range
queries and discuss the stability of workloads. Based on

these discussions, we present our novel index that not only
illustrates and measures concentration, but with the help of
which we will also be able to compare distances vis-�a-vis
their concentration.

3.1 Stability of a Query

Let ðV;X ; r;mÞ be a given similarity workload. Let a query

q 2 V and an " 2 Rþ ¼ ½0;1Þ be given. By a range-query
problem we refer to the determination of the set of all points
in X that are within " units away from q, i.e., we need to find
the "-neighbourhood of q in X

S ¼ Nðq; "Þ ¼ fx0 2 X : rðx0; qÞ � "g:
In [9], the authors discuss when a range-query is stable by
defining the stability of a range-query as follows:

Definition 3.1 ([25], p. 48, cf. [9], Definition 1). Given a
query point q 2 V and an " 2 Rþ, a range-query is said to be
"-unstable if

m�
X Nðq; ð1þ �Þ � dÞð Þ � m�

X ðXÞ
2

;

where, d ¼ minfrðq; xÞ : x 2 Xg, the NN-distance of q.

In other words, as formulated initially in [9], a range-
query is said to be unstable if most of the data set is covered
within the "-d sphere of the query q. The subsequent quanti-
fication to half (from most) of the data set in Definition 3.1
was done by Pestov [25].

Taking a cue from Definition 3.1, we discuss the stability
of a particular workload and propose an index that will
help us in achieving our goals.

3.2 The g-d-Count

Let NN ¼ f1; 2; . . . ; Ng. Let X be a given data set whose car-
dinality isN , i.e., ]X ¼ N .

Consider an x 2 X and let d denote the NN distance of x.

For a g 2 Rþ, let us define the g-d count of the point x as

Cðx; gdÞ ¼ m�
X Nðx; gdÞð Þ:

Clearly, Cðx; gdÞ gives the fraction of the number of data
points in the g-d neighborhood of x. Note that m�

X is the nor-
malised counting measure, i.e., for an A � X and jXj < 1
we have m�

X ðAÞ ¼ jAj
jXj.

For small values of g, if the Cðx; gdÞ values of most of the
x 2 X are high, then one surmises that more points lie in the
dilated g-d neighborhood of each x 2 X and hence the data
are distributed very close to each other and the relative dis-
tances between the data points will be small. Thus, Cð; gdÞ
does keep track of the concentration of points. Specifically,
given a dataset, even without the information of the distri-
bution of the dataset, Cð; gdÞ is computable and hence fur-
ther analysis is possible.

Now, we define C�, the complement of C as follows:

C�ðx; gdÞ ¼ 1� Cðx; gdÞ:
C�ðx; gdÞ gives the fraction of the data set that the point x is
not able to arrest through its dilated g-d neighborhood.

Clearly, if Cðx; gdÞ is large for a point x then C�ðx; gdÞwill
be small. Thus, when g is relatively small, small values of

TABLE 2
Comparison between the Indices �r; gr and ar :
(EC)—Empirical Calculations, (TA)—Theoretical
Analysis, (MC)—Measuring Concentration, and

(CD)—Comparing Distances

Index
Suitable for

(EC) (TA) (MC) (CD)

�r @ � � �
gr @ @ � �
ar � @ @ �
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ces are concentrating and vice versa. Note, however, that
the above observation is valid only if a large number of
points have small values of C�ð; gdÞ. For instance, if C�ð; gdÞ
values are very large for only a minority of the data points,
it does not mean that the distances are not concentrating. It
may happen that these points are outliers and rest of the
data points that are not captured by these outliers are
closely packed. Therefore, we need to check the overall
behavior of all the data points. Taking cue from this obser-
vation, we propose a novel index that will help us to accom-
plish our objective in the next section.

3.3 The Dispersion Function—�r

Consider the similarity workload V;X ; r;m�
X


 �
. If di is the

NN distance of an xi 2 X , let d0 denote the maximum of the
NN distances in X , i.e.,

d0 ¼ max
xi2X

fdig ¼ max
xi2X

min
xj2X

rðxi; xjÞ
	 �

: (5)

Definition 3.2. Let us consider the similarity workload

V;X ;m�
X ; r


 �
and let d0 be as defined in (5). The dispersion

function �r : ½�1;1Þ ! ½0; 1� is defined as follows:

�rð"Þ ¼ avg
xi2X

fC�ðxi; ð1þ "Þd0Þg; (6)

where avg is the the usual statistical average of the values.

What does the dispersion function �r really indicate? For
a given " > 0, �r returns the average of the fraction of the
data set that is not captured by a data point in its dilated
ð1þ "Þd0 neighborhood. Thus, when N is large, high values
of �r indicate that a large part of the data set are such that
most of the data are lying at a distance greater than
ð1þ "Þd0 to each of them. If we take " to be small, data are at
least d0 distance away and so data will still be well sepa-
rated. Thus, essentially, �r can be considered as a statistical

measure of the dispersion as measured by the distance func-
tion r. As will be shown in the next section, where we dis-
cuss its properties, the dispersion function �r does have

many desirable properties, one of which is that it forms an
upper bound for the concentration function ar when the
distance function under consideration is known to concen-
trate; thus if �r decreases at a faster rate, then so does ar.

From the definition of �r and the discussion above, the
following remarks are readily verifiable:

� �r is an empirical function and illustrates the concen-
tration of distances well.

� �r is calculable for arbitrary distances.
� �r, like ar, is calculable for any data set with fixed

dimensionality.
� Even if we do not know the underlying distribution

of a particular dataset a priori, i.e., even if m is
unknown, we can still determine �r.

However, it is not immediately clear whether �r, like ar,
measures the rate of concentration or allows us to compare
distance functions w.r.t. their concentration. We take this
up in detail in the next section.

4 EMPIRICAL AND THEORETICAL ANALYSIS OF �r

In this section, we discuss the properties and characteristics of
the dispersion function �r. We begin by empirically plotting
�r for different distance functions r, on both synthetic and

some real data sets and make some evidential observations
based on them, some of which are also validated theoretically
later on. Following this,wediscuss thebehaviourof thedisper-
sion function on distance functions and show how �r can help

in distinguishing distance functions based on their concentra-
tion. Finally,wedo a comparative studybetween�r andar.

4.1 Studies on Synthetic and Real Datasets

Let V ¼ ½�1; 1�m be the m-dimensional unit hyper cube. We
consider two data sets X1;X 2 of cardinalityN , where

� X1 is a set of N uniformly distributed points in V,
i.e., X 1 � U ½�1; 1�mð Þ,

� X2 is a set of N points generated using a normal dis-
tribution with mean 0 and variance 0.09, on each of
the m dimensions, so as to ensure that X2 � V, i.e.,
X2 � N 0; 0:09ð Þ.

For the distance function r, we consider the Minkowski
distance functions Lp for p ¼ 1; 2; 3;1 and the fractional
distances F p for p ¼ 0:04; 0:25. We consider the following
two sets of synthetic workloads W1 ¼ V;X1; rið Þ and
W2 ¼ V;X 2; rið Þ, where ri is one of the six distance func-
tions listed above. We typically took the number of data
points N ¼ 10 K, restricted largely due to the computational
power available, and plotted the �ri values for m ¼ 10; 100

and 1,000. In Figs. 4a, 4b, and 4c we plot the graph of differ-
ent �ri as " varies from �1 to 3 in steps of 0.1.

One of the main advantages of �r over ar is that it could
be applied to real data sets, where usually there is no a priori

Fig. 4. Plot of �ri for different workloads—see Section 4.1.
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the UCI data sets given in Table 3, i.e., the sets of workloads

X i; rj;m
�
X


 �
, where rj; j ¼ 1; 2; . . . ; 6 are the same set of six

Minkowski distance functions considered above. The super-
imposed plots of �rj for four of the workloads, with

m � 2;000, is given in Figs. 5a, 5b, 5c, and 5d.
From Figs. 4a, 4b, and 4c and Figs. 5a, 5b, 5c, and 5d

we see that �r is a decreasing function of ". The follow-
ing result demonstrates theoretically the above empirical
observation.

Theorem 4.1. Given a similarity workload V;X ; r;mð Þ, �r is a
decreasing function, i.e., "1 � "2 �! �rð"1Þ � �rð"2Þ.

Proof. Let "1 � "2 for "1; "2 2 ½�1;1Þ and d0 > 0 be as
defined in (5). Then,

ð1þ "1Þd0 � ð1þ "2Þd0
¼)Nðxi; ð1þ "1Þd0Þ � Nðxi; ð1þ "2Þd0Þ ð8iÞ
¼)m�

X ðNðxi; ð1þ "1Þd0ÞÞ � m�
X ðNðxi; ð1þ "2Þd0ÞÞ ð8iÞ

¼)Cðxi; ð1þ "1Þd0Þ � Cðxi; ð1þ "2Þd0Þ ð8iÞ
¼) 1� Cðxi; ð1þ "1Þd0Þ � 1� Cðxi; ð1þ "2Þd0Þ ð8iÞ
¼)C�ðxi; ð1þ "1Þd0Þ � C�ðxi; ð1þ "2Þd0Þ ; ð8iÞ

from whence, we obtain �Xð"1Þ � �Xð"2Þ, since avg is a
monotonic operation. tu

4.2 Suitability of Distance Functions Based on �r

Once again, from Figs. 4a, 4b, and 4c, the rate of descent of
�r does indicate the rate of concentration. The faster it falls,
the more is the concentration. For instance, from the above
plots, it does appear that Fractional distances (F :04) concen-
trate at a much slower rate than the other distance functions
considered.

However, before comparing distance functions, perhaps
an even more fundamental question that needs to be
addressed is the following: Given a workload, what is a suitable

TABLE 3
Real Data Sets

Dataset X i Dimensionm ] of datapoints N

Splice 60 1,000
Protein 357 6,621
Colon Cancer 2,000 62
Gisette 5,000 6,000
Duke 7,129 44
Dexter 20,000 300

Fig. 5. Plot of �ri for some UCI data sets listed in Table 3.
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clear that, in the context of this work, a distance function r
is suitable if it does not concentratemuch. In other words, a r
is suitable if all pairwise distances do not converge around a
single value and provide good contrast. Since �r measures
this in terms of nearest neighbour distances, what is expected
of a suitable distance function is that the NN distances of a
large number of data points should be far less compared to
that of the largest NN distance.1 In the following, we attempt
to place this intuitive idea in amore formal setting.

Definition 4.2. Let ðV;X ; r;m�
X Þ be a given similarity workload

and �r be the corresponding dispersion function. We define
"þr ; "

�
r as follows:

"þr ¼ supf" 2 ½�1;1Þ j �rð"Þ ¼ 1g ; (7)

"�r ¼ inff" 2 ½�1;1Þ j �rð"Þ ¼ 0g : (8)

In other words, "þr ; "
�
r are the values at which the disper-

sion function �r begins and completes its descent. As we
show below, both the point of decrease and the interval
length play a role in classifying a distance function as suit-
able or not for a given workload.

Based on "þr ; "
�
r the following observations can be made:

� Clearly, "þr � 0. To see this, let x0 2 X be the data
point that has the maximum NN distance, i.e., its
nearest neighbour is at a distance d0. Hence, for any
" > 0, we haveCðx0; ð1þ "Þd0Þ > 1, since x0 contains
(at least) its nearest neighbour and hence �rð"Þ 6¼ 1.

� If r is a suitable distance function, i.e., r does not con-
centrate much for the given workload, then clearly
d0 � di for a large portion of the data setX . Thiswould
imply that even for " 2 ½�1; 0Þ, ð1þ "Þd0 > di for a
large portion of the data set and hence "þr 	 0.

� Let �r be a slowly decreasing function and hence the
interval ½"þ; "�� is large. This would mean that even
for " � 0 a large number of data points do not cap-
ture much of the rest of the data set in their ð1þ "Þ-d0
neighbourhood. Or equivalently, that their ð1þ "Þ-d0

count is much lesser than N indicating that r is still
able to provide a good contrast for the considered
workload and hence r is a suitable distance function.

� Let us consider a workload in high dimensions with
a distance function that is known to concentrate.
Then d0 � di for almost every data point xi and hence

Cðxi; ð1þ "Þd0Þ ¼ 1

N
� Cðxi; ð1þ "ÞdiÞ; and

C�ðxi; ð1þ "Þd0Þ � C�ðxi; ð1þ "ÞdiÞ ¼ N � 1

N
� 1:

(9)

Thus, �r is almost a constant at 1 for " 2 ½�1; 0Þ, i.e.,
"þr � 0. Further, even for small values of " > 0,

ð1þ "Þd0 > di for a large number of data points xi

and hence the rate of decrease of �r is very steep.
Thus, given a similarity workload, a suitable distance

function r is such that either "þr 	 0 or the interval
½"þr ; "�r � is large, while if both "þr � 0 and the interval

½"þr ; "�r � is small, it shows that the r concentrates for W
and is not so suitable.

Note that both these phenomena are noticeable from
Fig. 4, where at low dimensions �r does begin to decrease
when " 2 ½�1; 0Þ but at a slower rate (see Figs. 4a and 4b),
while at higher dimensions �r is almost a constant at 1 and
dips steeply (see Fig. 4c). Further, from Table 4, the follow-
ing can be observed:

(i) At low dimensions (m ¼ 10), the "þr values are far
lesser than zero, in fact, "þr values are closer to �1.

Also the intervals ½"þr ; "�r � are large, indicating that

all the considered distance functions seem suitable.
(ii) At medium dimensions (m ¼ 100), we see a gradual

shift in the "þr values, which are now closer to zero

than �1. We also see a shrinking in the lengths of the
corresponding ½"þr ; "�r � intervals.

(iii) At high dimensions (m ¼ 1;000), the behaviour of �r

is way different. For all the distance functions, both
the "þr � 0 and the lengths of the corresponding

½"þr ; "�r � intervals are small. Clearly, this indicates

that all the six distance functions seem not so suit-
able for the considered workloads.

Based on Table 4 above, our analysis shows that Frac-
tional distance functions (F :04) concentrate at a much slower
rate than other Minkowski distance functions. This observa-
tion is in tune with what many studies have reported

TABLE 4
Suitability of Distance Functions on the Basis of �r—Synthetic Workloads

Dataset m N Indices F 0:04 F 0:25 L1 L2 L3 L1

Gaussian 10 1,000 "þr � 0.7 � 0.8 � 0.7 � 0.8 � 0.8 � 0.7

"�r 2.9 1.9 1.2 1. 1. 1.3

½"þr ; "�r � 3.6 2.7 1.9 1.8 1.8 2.0

Gaussian 100 10,000 "þr � 0.4 � 0.4 � 0.4 � 0.3 � 0.3 � 0.4

"�r 0.5 0.4 0.3 0.2 0.2 0.7

½"þr ; "�r � 0.9 0.8 0.7 0.5 0.5 1.1

Uniform 1,000 10,000 "þr � 0.1 � 0.1 � 0.1 � 0.1 � 0.1 � 0.1

"�r 0.1 0.1 0.1 0.0 0.0 0.0

½"þr ; "�r � 0.2 0.2 0.2 0.1 0.1 0.1

1. Note that, in the presence of outliers or in noisy data, d0 can domi-
nate other di and make �r less interpretable. However, in such scenar-
ios, in some sense, one could contend that there is no concentration of
distances. Further, taking d0 to be any other internal operation of the
di’s, say for instance avg(di) did not seem to change the trend of the �r

curves, especially in the context of comparing distances based on �r.

KUMARI AND JAYARAM: MEASURING CONCENTRATION OF DISTANCES—AN EFFECTIVE AND EFFICIENT EMPIRICAL INDEX 9
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earlier, see, for instance, [3]: that smaller values of p in the
Minkowski distance functions seem to concentrate less. In
fact, as we show in Section 5.1, the values in Table 6 for
some real workloads also seem to confirm their claim.

4.3 Relation between ar and �r

From the above discussion, it does appear that ar and �r

exhibit some similarities. In fact, comparing �r and ar the
following commonalities can be observed:

(i) Both ar and �r not only illustrate but also can mea-
sure the rate of concentration of distance functions.

(ii) Unlike �r and gr, which indicate the presence of con-
centration as a function of or dependent on increase
in dimensions, both ar and �r make use of the inter-
nal, and hence fixed, characteristics of the workload
to do the same.

(iii) Both ar and �r are non-increasing functions and
hence can offer insightful comparisons on the rate of
concentration of different distance functions for an
arbitrary but fixed workload under consideration.

However, ar and �r are not without their share of differ-
ences as enumerated below:

(i) ar is a purely theoretical index while �r is an empiri-
cal index.

(ii) Unless the underlying distribution is known, calcula-
tion of ar is not possible, whereas �r can still be
determined. Hence �r can be applied on real data
sets to glean some useful information on the distan-
ces that could be considered when applying data
analysis algorithms on them. This was already seen
in Section 4.2. Also see Section 5.

(iii) In fact, the suitability of ar to be employed as an
empirical measure in practice is largely questionable.
For instance, calculating ar even for smaller data sets
is extremely cumbersome. Recall that to find subsets

with measure greater than 1
2 requires

PN
k¼N

2
Ck �

2N�1 computations. However, to evaluate �r one only
needs to work with N singleton subsets. In fact, the
computational complexity of determining ar is of

OðN2N�1Þ, while that of �r is only ofOðN2 logNÞ. See
the Appendix for more details. Thus determination of
�r is computationally far less expensive than ar.

(iv) However, an advantage that ar enjoys that is not
available to �r is the following: ar—being a theoreti-
cal index—is amenable for theoretical analysis, for
instance, to obtain lower and upper bounds for a
given workload when the underlying measurable
metric space V; r;mð Þ is well defined. See [24] for
some interesting existing results.

While the above discussionwas based largely on empirical
observations, the question that naturally arises is the follow-
ing: Is there a relation between �r and ar? The following result
shows that, given a similarity workload where the distance r
is known to concentrate, � remains an upper bound of a.

Recall, from Section 4.2, that if a r concentrates, then both
"þr � 0 and the interval ½"þ; "�� is narrow. Further, since,

d0 � di for most of the data points xi, from (9)

max
xi2X

C�ðxi; ð1þ "Þd0Þ � avg
xi2X

C�ðxi; ð1þ "Þd0Þ : (10)

Theorem 4.3. Let ðV;X ; r;m�
X Þ be a given similarity workload,

where X � V is finite and m�
X is the normalised counting mea-

sure and the distance function r is known to concentrate for
this workload. Let " 2 ½�1;1Þ and d0 be as defined in (5). Let
us denote by r ¼ ð1þ "Þd0. Then,

(i) arðrÞ � �r
r
d0
� 1

 �
:

(ii) arðrÞ ¼ 0, for any r > r�, where r� ¼ ð1þ "�r Þd0.
Proof. First, note that r is a function of " and hence as "

varies from ½�1;1Þ, we have that r varies over

½0;1Þ ¼ Rþ and hence arðrÞ is well-defined.
(i): Let " 2 ½�1;1Þ be arbitrary but fixed and r be as

defined above. Let A be the collection of all the subsets of
X having measure greater than half, i.e.,

A ¼ A � X : m�
X ðAÞ �

1

2

	 �
:

Let Ar ¼ fx 2 X : rðx; aÞ � r for any a 2 Ag, be the
r-neighborhood of A for r � 0. Since ð1þ "Þdi � ð1þ "Þd0
for every " 2 ½�1;1Þ and i ¼ 1; 2; . . . ; n, for any arbitrary
but fixed A 2 A and for every xi 2 A, we have

Nðxi; ð1þ "ÞdiÞ � Nðxi; ð1þ "Þd0Þ � Ar

¼)m�
X ðNðxi; ð1þ "ÞdiÞÞ � m�

X ðNðxi; ð1þ "Þd0ÞÞ � m�
X ðArÞ

¼)Cðxi; ð1þ "ÞdiÞ � Cðxi; ð1þ "Þd0Þ � m�
X ðArÞ ð8iÞ

¼)CA ¼ min
xi2A

Cðxi; ð1þ "Þd0Þ � m�
X ðArÞ :

Now, since

inf
A2A

CA ¼ inf
A2A

minxi2ACðxi; ð1þ "Þd0Þ
� �

¼ min
xi2X

Cðxi; ð1þ "Þd0Þ ;

and from (10), we have the following implications:

min
xi2X

Cðxi; ð1þ "Þd0Þ � avg
xi2X

Cðxi; ð1þ "Þd0Þ � inf
A2A

m�
X ðArÞ

¼) 1� min
xi2X

Cðxi; ð1þ "Þd0Þ
� �

� 1� inf
A2A

fm�
X ðArÞg

¼) max
xi2X

1� Cðxi; ð1þ "Þd0Þð Þ � sup
A2A

fm�
X ðA

c

rÞg

¼) max
xi2X

fC�ðxi; ð1þ "Þd0Þg � sup
A2A

fm�
X ðA

c

rÞg

¼) max
xi2X

fC�ðxi; rÞg � sup
A2A

fm�
X ðA

c

rÞg

¼)�rð"Þ ¼ �r
r
d0
� 1

 �
� arðrÞ.

(ii): Follows from part (i). tu
Remark 4.4.

(i) FromTheorem4.3, clearly�r forms anupper bound
for ar. Hence, for a given workload, if �r itself falls
very steeply to 0, then ar will fall faster, which indi-
cates that the rate of concentration of the distance
function under considerationwill be very high.

(ii) It should also be noted that �r is a tighter tail bound
for ar and is largely a loose bound for smaller val-
ues of ", i.e., as r, equivalently " increases, �r
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trate, then ar falls steeply between rþ ¼ ð1þ "þr Þd0
and r� ¼ ð1þ "�r Þd0.

(iii) Also note that, if �r falls at a slower rate, i.e., the
interval ½"þr ; "�r � is large, no conclusions can be

made on ar and hence on whether the distance
function under consideration concentrates or not.

5 COMPARING DISTANCE FUNCTIONS USING �r

In Section 4.2, we discussed how to recognise the suitability
of a distance function r for a given workload based on its
dispersion function �r. However, let us be given a workload
and two distance functions r1; r2 whose dispersion func-
tions, viz., �r1 ; �r2 , show similar trends, say for instance,

"þr1 � "þr2 and/or the lengths of the intervals ½"þr1 ; "�r1 � and
½"þr2 ; "�r2 � could be the same. It is not yet clear how to com-

pare them based on these parameters.
Further, one may not always be able to give an ordering

(say, the usual point-wise ordering of functions) between
�r1 and �r2 , see for instance, Figs. 5a and 5d. Earlier, from
Figs. 4a, 4b, and 4c, based on the rate of descent of �r we
surmised that it does appear that Fractional distances (F :04)
concentrate at a much slower rate than the other distance
functions considered, which also coincided with many ear-
lier studies that reported that smaller values of p in the
Minkowski distances seem to concentrate less. However,
note that the above observation is purely based on visual
illustrations. Also, we do not yet have a satisfactory result, �a
la if 0 < p < q < 1 then �Lp < �Lq , either empirically or

theoretically. In addition, the rate of decrease of �r can be
different over different intervals.

Nevertheless, our motivation is to propose an empirical
index that would not only visually illustrate and measure
the rate of concentration, but also allow us to compare
between different distance functions on a given workload.

Towards this end, given a workload ðV;X ; r;m�
X Þ, we

propose another empirical index tr that assigns a real value
to every distance function r based on �r, with the help of
the parameters "þr ; "

�
r proposed in Definition 4.2.

Definition 5.1. Given a similarity workload ðV;X ; r;m�
X Þ and

the corresponding dispersion function �r, let us define the index
tr as follows:

tr ¼
Z "�r

"þr
�rð"Þ d": (11)

It is clear that tr calculates the area under �r over the
interval ½"þr ; "�r �. In the discrete case, with uniform step size

for ", tr can be calculated as tr ¼
P"�r

"¼"þr
�rð"Þ :

Table 5 tabulates the tri values for the synthetic work-
loads and distance functions ri considered in Section 4.1. It
is clear from the descending order of values of tri that the

observation/claim made in earlier works that Fractional
distances (F :04) concentrate at a much slower rate still seems
to hold true.

In Fig. 6, we give the calculated tr values (at the i-the
iteration) and its variance (upto the i-the iteration) for
r ¼ L1;L2;L1, based on repeated sampling (100 realisa-
tions) from the same high-dimensional distribution
X � U 0; 1ð Þm with m ¼ 100 and N ¼ 10;000. The relatively
small and almost constant values of the variance of tr shows
that concentration of distances is rather a stable phenome-
non in high dimensions and that tr does present one way of
determining it consistently.

While the index tr does induce an ordering on the con-
sidered distance functions, the question that arises now is
this: Can it provide any more interesting or revealing infor-
mation other than endorsing some general claims? What
role does the ordering based on tr play in the algorithms
applied on these real workloads? In the next section, we try
to address these questions.

5.1 Ordering Based on Class Variable Accuracy

Aggarwal et al. [3], based on their study of the concentration
of Minkowski distances Lp, strongly advocated the use of

TABLE 5
Comparing Distance Functions on the Basis

of tr—Synthetic Workloads

Dataset m N F 0:04 F 0:25 L1 L2 L3 L1

Gaussian 10 1,000 18.04 14.92 11.02 11.20 11.00 10.76
Gaussian 100 10,000 7.12 6.42 5.54 4.38 4.22 7.10
Uniform 1,000 10,000 2.54 2.89 2.02 1.99 1.97 2.00

TABLE 6
Comparing Minkowski Distance Functions on the Basis of tr—Some UCI Data Sets Considered in [3]

Dataset m N F 0:10 F 0:50 L1 L2 L4 L10 L1
Musk 167 476 85.79 41.18 34.38 25.59 19.03 15.13 15.85
Breast Cancer WDBC 30 569 11.62 10.58 6.54 6.54 6.37 6.23 6.20
Ionosphere 34 351 18.79 11.46 8.46 8.09 9.28 11.34 13.84
Segment 19 210 21.94 8.94 4.21 3.55 3.35 3.32 3.31

Fig. 6. tr values and its variance for the following distance functions, viz.,
L1( ), L2 ( ) and L1 ( ).
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these distances where the parameter p 2 ð0; 1Þ instead of the
usual p 2 ½1;1Þ.

Towards empirical validation of their claim, they consid-
ered the following UCI data sets, given in Table 6, i.e., the
sets of workloads X i; rj;m

�
X


 �
, where rj; j ¼ 1; 2; . . . ; 7 are

the following Minkowski distance functions with p ¼ 0:1;
0:5; 1; 2; 4; 10;1. They determine the ‘Class Variable Accu-
racy’ bij for each of the above workloads as follows:

Step 1: Remove the class label information from the data.
Step 2: Fix an xk 2 X i and search for ‘ nearest neighbours

based on rj.

Step 3:Among these ‘ neighbours count those that belong

to the same class as xk, say bkij.

Step 4: Repeat Step 3 for all xk 2 X i and find bij ¼
P

k b
k
ij.

Step 5: Repeat Steps 2-4 for different rj.
Step 6: Repeat Steps 2-5 for different data sets X i.
Based on the decreasing order of bij, they ranked the

above seven distance functions as follows:

F 0:1 � F 0:5 � L1 � L2 � L4 � L10 � L1: (12)

In Table 6 we present the corresponding tr values for
these work loads. Clearly from the tr values we observe
that the ordering given in (12) is exactly the one obtained
for descending values of tr.

5.2 Comparison of Secondary Distance Measures

So far, we have considered only the Minkowski norms.
Recently there have been attempts to employ Secondary Dis-
tance measures, so called since these are themselves derived
from other primary distance measures, typically the Min-
kowski metrics. These have been shown to work well, espe-
cially, in mitigating some aspects of DC in many Machine
Learning problems like clustering and classification, see for
instance, [13], [17], [33], [34].

We consider the following five secondary distance meas-
ures in this work, viz., the Shared Nearest Neighbour
(SNN) [17], Local Scaling (LS) [38], Mutual Proximity (MP)
[30], Non-iterative Contextual Dissimilarity Measure
(NICDM) [22] and Hubness-aware SNN (HSNN) [35].

5.2.1 On Some Synthetic Data Sets

In this section, we consider the 10 synthetic datasets emp-
loyed in [35]. These are high-dimensional Gaussian mixture

data with high class overlap. Each of these data sets is 100-
dimensional with 10-classes consisting of more than a thou-
sand points each.2 According to [35] these data sets exhibit
substantial hubness and hence are very difficult for k-NN
classification.

The tr values were calculated for each of the 10 data sets
and all the above five secondary distance measures, with the
primary distance being the Euclidean distance. The superim-
posed tr values for the above six distance measures is given
in Fig. 7. Larger the tr value greater is the suitability of the
distance function r. It is clear that our studies also validate
the arguments of the authors in [35] that secondary distances
demonstrate great potential in correcting hubness-related problems.

5.2.2 On Real Data Sets

In this section, we consider the six UCI data sets listed in
Table 3, which were chosen not only for their high
dimensionality but also since a few of them, due to their
intrinsic hubness, have been employed in many works, see
for instance [14], and hence provides for meaningful com-
parative analysis. Further, they also provide a good mix of
datasets, where for Datasets 1 & 2 we have N � m, while
for Datasets 3, 5 & 6,m � N and for Dataset 4,m � N .

The tr values for the above secondary distances on these
data sets are presented in Table 7. The largest values are
given in bold.3

In [14], the authors have made a comparative study of
the suitability of three secondary distance functions, viz.,
MP, LS and SNN, on the Datasets 1, 2, 4 & 6 given in
Table 7, w.r.t. their classification accuracy. It is worthy to
note that the ranking of the distance functions based on tr
and classification accuracy remain identical, except in the
case of Dataset 1 where the ranks of MP and LS are inter-
changed.4 We have used the same parameter values for all
the secondary distance measures as employed in [14], i.e.,
r ¼ 10 in SNN, q ¼ 10 in LS and used 1�  to obtain the
distances from the similarities.

6 CONCLUSION

In this work, we began by discussing the concentration of
distances phenomenon. Our examination of the different

Fig. 7. Plot of tri for the 10 Synthetic Datasets considered in [35].

TABLE 7
Comparing Secondary Distance Functions

on the Basis of tr—Real Workloads

Dataset L2 NICDM SNN HSNN MP LS

Splice 6:69 2.42 9.67 0.48 52.73 15.46
Protein 5.43 3.08 6.69 0.0009 10.4 20.85
Cancer 5.77 20.51 34.75 18.05 39.26 25.17
Gisette 1.8 2.77 10.12 1.23 84.117 7.87
Duke 3.34 27.46 31.56 26.8 29.69 43.97
Dexter 11.3 50.1 36.23 0.47 90.37 181.4

2. Available at http://ailab.ijs.si/nenad_tomasev/datasets/
3. It is interesting to note that it does appear that distances that can

handle one aspect of the Dimensionality Curse, say the hubness phe-
nomenon or the CoD, may not necessarily be good at handling other
aspects.

4. Note, however, that the classification accuracies of these two dis-
tances on Dataset 1 are almost the same at 77:2 & 77:9, respectively.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. X, XXXXX 2016

http://ailab.ijs.si/nenad_tomasev/datasets/


IEE
E P

ro
of

indices that either illustrate or measure this phenomenon
revealed the need for an efficient empirical index that would
not only illustrate but also measure the rate of concentration
and enable comparison of distance functions with regards to
their suitability in real workloads. With this as the motiva-
tion for this work, we have proposed a novel yardstick called
the dispersion function �r which is an empirical measure.

Based on the dispersion function, we have also intro-
duced an index tr that allows us to compare distances with
regards to their suitability in real workloads, thus helping
us to achieve our twin objectives. Further exploration of
both �r and tr on some real workloads that have been used
in existing studies seem to validate the usefulness of both
the dispersion function �r and the index tr in judging the
suitability of a distance function for a given workload.

So far the theory of concentration of norms has been well
studied and explored but always in a non-positive way.
From Sections 2.3.1 and 2.3.2, we see that Euclidean norms
and other Minkowski-type distances do not behave well in
high dimension. In fact, we have that all the Minkowski-
type distances concentrate, but only at differing rates. The
current work differs from existing studies in the following
important ways:

(i) To the best of the authors’ knowledge, this is the first
empirical index to measure the rate of concentration
of a distance function, while other empirical indices
only illustrate the effect and that too only as a func-
tion of increasing dimensions.

(ii) This work not only tries to determine whether a dis-
tance function concentrates for a given workload,
but also proposes an index to compare distances and
suggest their suitability.

This work can, and should be, seen as yet another explor-
atory but a positive study on this phenomenon. Clearly, a
more theoretical analysis of the dispersion function is in
order, which we intend to take up in the near future.

APPENDIX

COMPLEXITY CONSIDERATIONS: ar VERSUS �r

In this section we study the time complexity of calculating
ar versus �r for a given data set X and a distance function r.

Let K ¼ A 
 X j ]A � N
2

� �
. Let us fix an � > 0. For an

x 2 X , let ]ð½N�ðxÞ�CÞ denote the number of elements that
are at a distance greater than � from x w.r.t. r and, further,

for an A 2 K, let AC
� denote the complement of the �-dilation

of A.
To calculate arð�Þ ¼ supA2K ] AC

�


 �� �
we proceed as

follows:

Step 1: There are
PN

k¼N
2

NCk ¼ 2N�1 elements in K and
hence finding K is of the order 2N�1.

Step 2: We calculate ]ð½N�ðxÞ�CÞ as follows:

- Sort the pairwise distance matrix, which is of
N2 logN complexity.

- For the fixed � > 0, for each x 2 X—whose sorted
pairwise distances to other data points is a row in the
distance matrix—the complexity of determining

]ð½N�ðxÞ�CÞ isN logN .

Step 3: Let us fix anA 2 K. Now the cardinality of �-dilation

of A is given by ] AC
�


 � ¼ P
x2A ]ð½N�ðxÞ�CÞ. Hence

the complexity of finding ] AC
�


 �
for each A 2 K isPN

k¼N
2

NCk  k � N  2N�1.

Step 4: Finally, the complexity of finding the supA2K] AC
�


 �
is of the order 2N�1.

Thus, on the whole, the complexity of calculating arð�Þ, for a
given � > 0 is the sum of the above, viz., 2N�1þ N2 logN þ
N logN þN2N�1 þ 2N�1 and hence is of the order

Oðn  2N�1Þ.
From Definition 3.2, we have �rð"Þ ¼ avgxi2XfC�ðxi; ð1 þ

"Þd0Þg ¼ avgxi2XfNð1þ"Þd0ðxÞg : Its time complexity can be

calculated as follows:

Step 1: To find d0, we once again sort the pairwise distance
matrix and find the maximum of the column 2
which is of order N2 logN þN .

Step 2: Finding C�ðx; ð1þ "Þd0Þ has the same complexity as
that of finding Nð1þ"Þd0ðxÞ, which is N logN .

Step 3: Now averaging over all x 2 X is of linear order.

Thus the total time complexity of calculating �rð�Þ is of the
order OðN2  logNÞ. Note that the costliest step in this algo-
rithm is that of calculating d0. However, if one were to use
an approximate nearest neighbour search method, then the
complexity can be brought down considerably. For instance,
if one employs the LSH, keeping the width parameter ‘k’ and
the time taken for evaluation ‘t’ are kept fixed, its complexity

isO N1þpð Þ, with p 	 1. Thus the overall complexity of calcu-

lating lambda isO N1þpð Þ, which is near linear complexity.
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