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Abstract—A Fuzzy Relational Inference (FRI) mechanism is
appraised based on the different desirable properties it possesses.
Among these properties, monotonicity of an FRI has not received
much attention. In this work, we investigate the monotonicity
of a single input single output (SISO) FRI with an implicative
form of the rule base. In all the previous works that deal with
monotonicity of an FRI with the implicative form of rule base,
the employed fuzzy implications come from a residuated lattice.
It can be noticed that this rich underlying structure plays a
major role in proving the results. Further, they also modify the
given monotone rule base. This work differs from the previous
works in that (i) the fuzzy implications employed in it do not
come from any known residuated structure on [0, 1] and (ii)
the original rule base is employed without any alteration. We
determine conditions under which monotonicity of an FRI, where
the rule base is modeled by a strict fuzzy implication, can be
ensured without transforming the original rule base. Thus the
results in this work further augment the case for considering
fuzzy implications, other than those from the residuated setting,
to be used in applications.

Index Terms—Fuzzy relational inference, monotone rule base,
monotonicity of inference, strict fuzzy implications, Yager’s
families of fuzzy implications.

I. INTRODUCTION

The term approximate reasoning refers to methods and
methodologies that enable reasoning with imprecise inputs to
obtain meaningful outputs [8]. Fuzzy Inference Systems (FISs)
form one particular type of approximate reasoning scheme
involving fuzzy sets and are one of the best known applications
of fuzzy logic in the wider sense. FISs have many degrees of
freedom, namely, the underlying fuzzy partition of the input
and output spaces, the fuzzy logic operations employed, the
fuzzification and defuzzification procedures used, etc. This
freedom gives rise to a variety of FIS with differing capabili-
ties or properties as espoused below. While there exist many
types of FIS we focus only on Fuzzy Relational Inference
(FRI) systems [19], [33].

A. Monotonicity of a Fuzzy Relational Inference

While dealing with an FRI, the underlying operations can
be chosen from a repertoire of fuzzy logic connectives. This
choice is not arbitrarily exercised and is done keeping in
mind several desirable properties that are expected of an
FRI. Some of the well studied desirable properties are the
following: (i) Interpolativity, (ii) Continuity, (iii) Robustness,
(iv) Approximation Capability and (v) Efficiency, which in the
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case of an FRI with an implicative form of rule base have been
studied in [11], [13], [15], [16], [18], [25], [26], [28], [29].
Yet another desirable property, which has only recently begun
to receive the attention that was due to it, is that of mono-
tonicity. Given a monotone fuzzy rule base (see Definition 5.1)
and two crisp inputs x, x′ such that x ≤ x′, then one expects
the corresponding defuzzified outputs of the FRI y, y′ to also
exhibit the same ordering, i.e., y ≤ y′.
Clearly, monotonicity is one of the essential properties of
an inference mechanism, unavailibility of which leads to an
unreliable inference mechanism, see [22], [23], [24], [17],
[30]. The often quoted example of a fuzzy controlled water
dam serves to highlight the issue [23]. Let the rule base
controlling the dam be monotone, i.e., containing rules which
capture the monotonicity expected in the control, viz., the
amount of water let out is largely and directly proportional
to the inflow into the dam. Now an FRI that controls the dam
is expected to maintain this monotonicity, failing which would
lead to a disastrous situation.

B. Motivation for this work

The study of monotonicity of an FRI forms the main focus
of this submission, the motivation for which stems from
two roots. On the one hand, monotonicity of an FRI, in
fact, of an FIM in general, is a topic that has not received
much attention – only some nascent works exist, while other
desirable properties have been quite well studied. Thus there is
a clear need to study monotonicity of an FRI in its own right.
On the other hand, the monotonicity of an FRI, like other
properties, depends essentially on the operations employed
in the FRI. Typically, the study of the desirable properties
of an FRI using implicative form of rules has largely been
confined to operations that come from a residuated lattice.
Recently, in [16], [18], we had studied the desirable properties
listed above on FRIs that use implicative form of rules but
whose operations do not come from a residuated lattice setting.
In fact, to the best of the authors’ knowledge, this was the
first such work, wherein the Yager’s classes of fuzzy impli-
cations were considered and which demonstrated that these
FRIs also enjoyed similar desirable properties. Further, some
preliminary studies relating to the monotonicity of FRIs that
employ the family of Yager’s f -implications were discussed
in [17]. This work could be seen as yet another logical step
in furtherance of studying FRIs whose underlying operators
come from a non-residuated setting.
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C. Main contributions of the work

In this work, we investigate the monotonicity property of
Single Input Single Output (SISO) FRIs when an implicative
model of the rule base is employed, i.e., where the operation
between the antecedents and consequents is taken as a fuzzy
implication.
As espoused above, so far, in the works dealing with mono-
tonicity of FRIs with implicative or a conditional interpretation
of the rules, not only do the operators come from a residuated
lattice structure, but also the rule base is transformed into an-
other form and then the monotonic behaviour of the inference
mechanism is investigated. However, the inference based on
this transformed rule base may lose some of the desirable
properties, for instance, interpolativity, see [27], [30].
In this work, firstly, we investigate the monotonicity of an
FRI where the underlying operations come from a more
generalised class of fuzzy implications and do not come from a
residuated structure. Further, by taking the help of the concept
of weak-coherence introduced in [18], we find some sufficient
conditions under which the output of the FRI is monotonic,
without having to alter or transform the given rule base.
This also ensures that the additional conditions imposed do
not affect the other desirable properties the FRI may already
possess. Another highlight of this work is that the techniques
and the approach employed in proving the results make no
assumption on the form or representation of the considered
fuzzy implications. Note that in our earlier work [17] we had
considered only the family of Yager’s f -implications.

D. Outline Of the Work

Firstly in Section II, we present some relevant definitions
from both fuzzy set theory and fuzzy logic connectives. In
Section III, we introduce the two main types of fuzzy rule
bases typically employed in fuzzy systems and the corre-
sponding fuzzy relations representing them. Following this,
we discuss fuzzy relational inference mechanisms and their
different forms in Section IV. Section V begins by introducing
monotone rule bases and goes on to discuss the corresponding
monotonicity of the output of the FRI whose underlying rule
bases are monotone. Further, we detail all the previous works
that deal with this nascent topic and articulate the motivation
for our work and clearly specify the main contributions of our
work. In the subsequent Section VI, we detail the scope of
the current work by recalling the concept of weak-coherence
and by specifying the admissible types of fuzzy sets and fuzzy
implications. The Section VII contains the main results of this
paper and illustrative examples corresponding to the results are
presented in Section VIII. Finally, some concluding remarks
are given in Section IX.

II. PRELIMINARIES

In this work we consider X ⊆ R to be a closed and bounded
interval and hence X is also totally ordered and linear.
However, many of the concepts below are applicable to more
general sets and hence the definitions are given accordingly.

A. Fuzzy Sets
Let X 6= ∅. F(X) will denote the fuzzy power set of X , i.e.,
F(X) = {A|A : X → [0, 1]}.
Definition 2.1: A fuzzy set A ∈ F(X) is said to be
• normal if there exists an x ∈ X such that A(x) = 1,
• convex if X is a compact (closed and bounded) subset of

a linear space and for any λ ∈ [0, 1], x, y ∈ X , A(λx+
(1− λ)y) ≥ min{A(x), A(y)}.

Definition 2.2: For an A ∈ F(X), the Support, Height, Kernel,
Ceiling and α-cut for an α ∈ (0, 1] are, respectively, defined
as:
• Supp(A) = {x ∈ X|A(x) > 0} ,
• Hgt(A) = sup{A(x)|x ∈ X} ,
• Ker(A) = {x ∈ X|A(x) = 1} ,
• Ceil(A) = {x ∈ X|A(x) = Hgt(A)} ,
• [A]α = {x ∈ X|A(x) ≥ α} .

A is said to be bounded if Supp(A) is a bounded set. Note that
for a normal fuzzy set Ker(A) = Ceil(A) and Hgt(A) = 1.
Definition 2.3 ( [20], Definition 3): For two convex fuzzy sets
A1 and A2, we say that A1 ≺ A2 if for any α ∈ (0, 1] it holds
that infα[A1]α ≤ infα[A2]α and supα[A1]α ≤ supα[A2]α .
Definition 2.4: Let P be a finite collection of fuzzy sets of
X , i.e, P = {Ak}nk=1 ⊆ F(X). P is said to form a fuzzy
partition on X if X ⊆

⋃n
k=1 Supp(Ak) .

In the literature, a partition P of X as defined above is also
called a complete partition.
Definition 2.5: A fuzzy partition P = {Ak}nk=1 ⊆ F(X) is
said to be consistent and a Ruspini Partition, respectively, if
• whenever for some k, Ak(x) = 1 then Aj(x) = 0 for
j 6= k ,

•

n∑
k=1

Ak(x) = 1 for each x ∈ X . (RP)

B. Defuzzification
Often there is a need to convert a fuzzy set to a crisp value,
a process which is called Defuzzification. This process of
defuzzification can be seen as a mapping d : F(X) −→ X .
Example 2.6: For an A ∈ F(X), with bounded Ceil(A), the
Mean of Maxima (MOM) defuzzifier returns the mean of all
those values in X with the highest membership value, i.e.,

MOM(A) =

∫
Ceil(A)

A(x)dx∫
Ceil(A)

1dx

, if
∫

Ceil(A)

1dx 6= 0 . (1)

The other commonly employed Smallest of Maxima (SOM),
Largest of Maxima (LOM), Center of Gravity (COG) and the
Bisector (BIS) defuzzifiers can be mathematically expressed
as

SOM(A) = min
{
x|x ∈ Ceil(A)

}
, (2)

LOM(A) = max
{
x|x ∈ Ceil(A)

}
, (3)

COG(A) =

∫
Supp(A)

A(x)dx∫
Supp(A)

1dx

, if
∫

Supp(A)

1dx 6= 0 , (4)
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BIS(A) =

x∗∗
∣∣∣∣∣∣∣

x∗∗∫
inf Supp(A)

A(x)dx =

sup Supp(A)∫
x∗∗

A(x)dx

 .

(5)

C. Fuzzy Logic Connectives

Note that in this work, we use the term decreasing and
increasing in a non-strict sense.
Definition 2.7 ( [2]): A function I : [0, 1]2 → [0, 1] is called
a fuzzy implication if it is decreasing in the first variable,
increasing in the second variable and satisfies I(0, 0) =
1, I(1, 1) = 1, I(1, 0) = 0. The set of all fuzzy implications
will be denoted by I.
Definition 2.8 ( [2]): A fuzzy implication I : [0, 1]2 → [0, 1]
is said to
• satisfy the left neutrality property, if

I(1, y) = y , y ∈ [0, 1] , (NP)

• be positive if I(x, y) > 0, when x, y ∈ (0, 1] . (POS)
• be strict if I is strictly monotonic in both the variables.

(ST)
Remark 2.9: If I satisfies (ST), then it satisfies (POS) but the
converse is not true [2].
Definition 2.10 ( [2]): A function N : [0, 1] −→ [0, 1] is called
a fuzzy negation if N(0) = 1, N(1) = 0 and N is decreasing.
Example 2.11: One such fuzzy negation is the Gödel negation

ND1(x) =

{
1, if x = 0 ,

0, if x > 0 ,
x ∈ [0, 1] . (6)

Definition 2.12 ( [2]): Let I ∈ I be any fuzzy implication. The
function NI : [0, 1] −→ [0, 1] defined by NI(x) = I(x, 0) is
a fuzzy negation and is called the natural negation of I .
We denote the class of fuzzy implications that are positive and
whose natural negation NI = ND1, i.e., NI(x) = ND1(x) for
all x ∈ [0, 1], by I+ND1

( I.

III. FUZZY IF-THEN RULE BASE AND FUZZY RELATION

Given two non-empty crisp sets X,Y ⊆ R, a Single-Input
Single-Output (SISO) fuzzy IF-THEN rule base consists of
rules of the form:

IF x̃ is Ai THEN ỹ is Bi , (7)

where x̃,ỹ are the linguistic variables that are assigned the
linguistic values Ai, Bi, i = 1, 2, . . . n which are represented
by fuzzy sets in their corresponding domains, i.e., Ai ∈
F(X), Bi ∈ F(Y ). A fuzzy rule base can be viewed in two
different ways [9], [10]. When each of the rules is viewed as
a constraint, i.e., when the rules are combined together as (7),
we have the conditional form (IF-THEN) of the rules. In fuzzy
relational inference mechanisms (see Section IV below), fuzzy
relations R : X × Y → [0, 1] are employed to represent the
rule base (7). One of the commonly employed fuzzy relations
is the following: For any x ∈ X, y ∈ Y ,

R̂→(x, y) =

n∧
i=1

(Ai(x) −→ Bi(y)) , (8)

where −→ is taken as a fuzzy implication. Note that the fuzzy
relation R̂→ captures the conditional form (7) of the given
rules. For more details, please refer to [9], [10].

IV. FUZZY RELATIONAL INFERENCE MECHANISM

Given a rule base of the form (7) and an input ” x̃ is A′ ”,
the main objective of a fuzzy inference mechanism is to find
a meaningful B′ such that ” ỹ is B′ ”. While many types
of fuzzy inference mechanisms have been proposed in the
literature we restrict this study only to fuzzy relation based
inference mechanisms.
The inference mechanism in a fuzzy relational inference (FRI)
can be expressed as follows:

B′ = f@R (A′) = A′@R , (FRI-R)

where A′ ∈ F(X) is the input, the relation R ∈ F(X × Y )
represents or models the rule base, B′ ∈ F(Y ) is the obtained
output and @ is called the composition operator, which is a
mapping @: F(X)×F(X × Y )→ F(Y ).

A. Two main types of FRIs

One of the two main FRIs is the Compositional Rule of
Inference (CRI) proposed by Zadeh [32], where ? is a t-norm
(for definition of a t-norm, please see [3], [7]):

B′(y) = f◦R(A
′)(y) = (A′ ◦R)(y)

=
∨
x∈X

[A′(x) ? R(x, y)], y ∈ Y . (CRI-R)

Later Pedrycz [19] proposed another FRI mechanism based
on the Bandler-Kohout Subproduct composition given as:

B′(y) = f/R(A
′)(y) = (A′ / R)(y)

=
∧
x∈X

[A′(x) −→ R(x, y)], y ∈ Y , (BKS-R)

with −→ interpreted as a fuzzy implication. The operator /
is also known as the inf −I composition, where I is a fuzzy
implication.

B. Singleton Inputs and FRIs with Reducible Composition and
Its System Function

Often one needs to deal with crisp inputs, viz., an x0 ∈ X . In
such a case, it is suitably fuzzified, i.e., a fuzzy set A′ ∈ F(X)
is suitably constructed from x0. Commonly, the following
singleton fuzzifier µs : X −→ F(X) is employed to obtain a
fuzzy input A′ ∈ F(X). For any x0 ∈ X ,

µs(x0) = A′(x) =

{
1, x = x0 ,

0, x 6= x0 .

With the above input A′, the FRI mechanism (FRI-R) reduces
to

B′(y) = R(x0, y) , y ∈ Y , (FRI-R-Singleton)

for any t-norm ? in case of (CRI-R) and any implication I
satisfying (NP) in case of (BKS-R). Thus, in the case of a
singleton input, the output of both the (CRI-R) and (BKS-R)
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are essentially the same (provided −→ in (BKS-R) satisfies
(NP) ) and is fully dependent on the model of the rule base
R. In other words, f◦R ≡ f/R ≡ fR and hence the composition
◦ or / - when the I in / = inf −I composition satisfies (NP)
- does not play any role.
An FRI whose output, for singleton inputs with singleton
fuzzification µs, does not depend on the underlying composi-
tion is said to be an FRI with reducible composition and hence
f@R ≡ fR.
We denote an FRI with reducible composition as a quadruple
F =

(
PX ,PY , R, d

)
, where PX = {Ai} and PY = {Bi}

correspond to the input and output fuzzy partitions on X and
Y , respectively, R is the fuzzy relation modeling the rule base
and d is the defuzzifier used to obtain a crisp output from the
obtained B′ in (FRI-R-Singleton). Thus given an F the overall
inference can be seen as a function g : X → Y as follows:

g(x′) = d(B′(·)) = d(R(x′, ·)) , x′ ∈ X. (9)

g is also known as the system function of a given F, see for
instance, [14], [15].
In this paper we deal only with the implicative form of the
rule base, i.e., the antecedents of the rules are related to their
consequents using a fuzzy implication and hence fix R = R̂→
in the sequel. Thus this work deals with FRIs of the form
F→ =

(
PX ,PY , R̂→, d

)
⊆ F.

V. MONOTONICITY OF RULE BASES AND INFERENCE

Fuzzy rule bases can be classified along many lines, for
instance, complete, sparse, implicative, conjunctive, etc. In this
work we look at yet another classification, that of monotone
rule bases. We begin this section by introducing monotone rule
bases that are essential to capture the monotonicity present
in the system that an FRI is trying to model. Following
this, we discuss the monotonicity of an FRI with reducible
composition, by showing that not all FRIs are automatically
monotone and depend in an essential way on many factors,
chief among them being the underlying fuzzy logic operations
and the nature of fuzzy sets used in the rule base. This
possible lack of monotonicity has led researchers to study the
conditions under which it could be ensured, from whence we
derive our motivation.

A. Monotone Rule Base

Definition 5.1 ( [23]): A fuzzy rule base (7) is called monotone
if for any two rules

IF x̃ is Ai THEN ỹ is Bi ,
IF x̃ is Aj THEN ỹ is Bj ,

such that Ai ≺ Aj , it also holds that Bi ≺ Bj , where ≺ is as
defined in Definition 2.3.
We denote a monotone rule base of Definition 5.1 in the
following form:

RM (Ai, Bi) : IF x̃ is Ai THEN ỹ is Bi, i = 1, ..., n. (10)

In the following we give an example illustrating a monotone
rule base.

Example 5.2: Let the input and output space be X = [0, 1]
and Y = [0, 1], respectively. Let us consider the fuzzy sets
A1 = 〈0, 0, 0.2, 0.3〉, A2 = 〈0.2, 0.3, 0.5, 0.9〉, A3 =
〈0.5, 0.9, 1, 1〉 and B1 = 〈0, 0, 0.2, 0.6〉, B2 =
〈0.2, 0.6, 0.8, 1〉, B3 = 〈0.8, 1, 1, 1〉, where a quadruple
〈a, b, c, d〉 represents a trapezoidal fuzzy set that increases
and decreases linearly on the intervals [a, b], [c, d] and remains
constant at 1 on the interval [b, c], respectively. Clearly,
A1 ≺ A2 ≺ A3 and B1 ≺ B2 ≺ B3 and hence the rule
base in (11) is monotone:

IF x̃ is Ai THEN ỹ is Bi, i = 1, 2, 3 . (11)

B. Monotonicity of the Output of an FRI

Even if the given rule base is monotone, the defuzzified output
of an FRI need not always be monotone. In the following, we
give some illustrative examples wherein the monotone rule
base employed is the one given in (11) above.
Example 5.3: Let us consider the FRI with reducible compo-
sition F→ =

(
PX ,PY , R̂→, d

)
, where −→= IKD is defined

as, IKD(x, y) = max(1 − x, y), x, y ∈ [0, 1]. Then the
system function g(·) is as shown in Fig. 1 for two different
types of defuzzification methods, viz., (i) COG and (ii) MOM
(see Fig. 1). For the formulae of COG and MOM, please see
equations (4) and (1), respectively. From the Fig. 1, it can

Fig. 1. System function of the FRI F→ given in Example 5.3 with COG and
MOM defuzzifier and −→= IKD, the Kleene-Dienes implication.

be noticed that the system functions in both the cases are
not monotonic, hence the FRIs F→ =

(
PX ,PY , R̂→,COG

)
and F→ =

(
PX ,PY , R̂→,MOM

)
with −→= IKD are not

monotonic.
Example 5.4: Let us once again consider the same rule base as
in Example 5.2 but a different FRI with reducible composition,
viz., F→ =

(
PX ,PY , R̂→, d

)
, where −→= ILK is defined

as, ILK(x, y) = min(1, 1 − x + y), x, y ∈ [0, 1]. Then the
system function g(·) is as shown in Fig. 2 for two different
types of defuzzification methods, viz., (i) COG and (ii) MOM
(see Fig. 2).
From the Fig. 2, it can be noticed that the system function
in one of the cases is monotonic and in another case it is
not. Hence the FRI F→ =

(
PX ,PY , R̂→,MOM

)
with −→=

ILK is monotonic, whereas F→ =
(
PX ,PY , R̂→,COG

)
with

−→= ILK is not.
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Fig. 2. System function of the FRI F→ given in Example 5.4 with COG and
MOM defuzzifier and −→= ILK, the Łukasiewicz implication.

C. Works dealing with Monotonicity of the Output of an FRI

The earliest works to appear on this topic dealt with FRIs
where a Cartesian product interpretation of the fuzzy rules
was employed, see Broekhoven and De Baets [21], [22]. Later
Štěpnička and De Baets in [23] and [24] considered an FRI
with R = R̂→, (see (8)), where −→ is any residuated impli-
cation obtained from a left-continuous t-norm. They transform
the rule base by modifying the antecedent and consequent
fuzzy sets into the at-least (ATL) and at-most (ATM) fuzzy
rules as proposed by Bodenhofer [4], [5], denoted by, R̂↑, R̂↓

and R̂l and have shown that with the modified rule bases, the
FRIs F =

(
PX ,PY , R̂↑,FOM

)
, F =

(
PX ,PY , R̂↓,LOM

)
and F =

(
PX ,PY , R̂l,MOM

)
are monotonic.

Note, however, that due to the above transformation of the
rules, some of the properties that were satisfied by the original
rule base and hence by the FRI itself could be lost. For
instance, the antecedents of the untransformed rule base may
have formed a Ruspini partition on the underlying domain
which is important to ensure interpolativity and continuity of
the FRI, see [16], [25], [28], [29]. Now, due to the above
transformation this property could be lost leading to situations
where the obtained FRI may not be interpolative [27], [30].

D. Contributions and Scope of the Work

In this work, we show that SISO FRIs of the form F→ =(
PX ,PY , R̂→, d

)
can be made monotonic for suitable choice

of operations. Unlike in earlier works dealing with monotonic-
ity of implicative models, we do not modify the antecedent and
consequent fuzzy sets of the rule base and, hence, the partitions
formed by the antecedents Ai ∈ PX and consequents Bi ∈ PY
fuzzy sets are of the Ruspini type, thus still remaining within
the practical setting that is common in applications.
Quite interestingly, there has been no published work, to the
best of the authors’ knowledge, that discussed the monotonic-
ity of the system function of an FRI when an implicative model
of the monotone rule base is employed, without transforming
the rule base. The only works dealing with this topic, both in
the SISO and MISO cases, have discussed the monotonicity
only under the setting of transformed rule bases. In fact, Ex-
amples 5.3 and 5.4 presented above seem to be the first formal
attempt to check if, even with an untransformed monotone rule
base, monotonicity can be obtained.

As already mentioned, we consider a large class of fuzzy
implications outside of the class of residuated implications.
However, this forces us to deal with FRIs that may not have the
very important coherence property. To overcome this, we have
employed the concept of weak-coherence [18], which plays an
important role in enlarging the class of fuzzy implications that
can be considered. The given proofs are sufficiently general
without depending on the form or representation of the fuzzy
implications considered. Thus, we believe that these results are
very much applicable in most of the practical and desirable
contexts [9].

VI. WEAK-COHERENCE AND SOME REQUIREMENTS ON
THE MONOTONE RULE BASE

The purpose of this section is to clearly specify the scope
and reach of the results contained in this work. We begin by
recalling the concepts of coherence and weak-coherence, based
on which we restrict the scope of the work by determining
the subclass of fuzzy implications, for which at least weak-
coherence can be ensured. Following this, we discuss the
type of admissible antecedents and consequents in a given
monotone rule base. However, our results are valid for a large
class of fuzzy implications, that also contains the Yager’s
families of fuzzy implications [31].

A. Coherence and Implicative Models
Dubois et al. [9] defined the concept of coherence for an
implicative model R̂→ ( see (8)) of a rule base as follows,
which is suitably modified to fit into our notation.
Definition 6.1 ( [6], [9]): Given an implicative rule base (7),
a fuzzy relation R̂→(x, y) – as in (8) – modeling this rule
base, is coherent if for any x ∈ X there exist y ∈ Y such that
R̂→(x, y) = 1.
The coherence property states that for any x, the final fuzzy
output B′ should be normal, i.e., Ker(B′) 6= ∅. Coherence of
an implicative model of a rule base is very much dictated by
the semantics involved [9]. Further, this property is essential
when using defuzzification techniques that are dependent on
the kernel to be non-empty. However, there exist reasonable
defuzzification methods that do not depend on the kernel of
the output fuzzy set.

B. A Weaker form of Coherence
Relaxing the coherence property the following weaker form
of coherence has been defined in [18] which will be useful in
the sequel.
Definition 6.2: For a given implicative rule base (7), a fuzzy
relation R̂→(x, y) is said to be weakly coherent if for any
x ∈ X there exist y ∈ Y such that R̂→(x, y) > 0.
From (FRI-R-Singleton) and (8), we have the following:

B′(y) = R̂→(x0, y) =

n∧
i=1

(Ai(x0) −→ Bi(y)) .

Now if the antecedent fuzzy sets are normal and form a
Ruspini partition (See (RP)), then x0 intersects atmost two
fuzzy sets say, Am, Am+1. Then the above reduces to

B′(y) =
(
B′m(y)

)
∧
(
B′m+1(y)

)
,
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where B′m and B′m+1 are the fuzzy sets Bm and Bm+1 mod-
ified by the fuzzy implication −→ with Am(x0), Am+1(x0),
i.e., B′k(y) = Ak(x0) −→ Bk(y), y ∈ Y, k = m,m+ 1.
It is clear that for B′ to be non-empty the supports of B′m and
B′m+1 should intersect, i.e., Supp(B′m)∩ Supp(B′m+1) 6= ∅.
While coherence insists that the kernels of B′m and B′m+1

should intersect, weak-coherence as defined above relaxes this
to a mere intersection of their supports. It should be noted that
while relaxing coherence to weak-coherence does expand the
set of fuzzy implications that can be considered in R̂→, it still
does not encompass the whole set of fuzzy implications I.

C. Class of Admissible Fuzzy Sets in the Rule Base

Let F∗(X) denote the space of fuzzy sets on X which
are normal, convex and strict on both sides of the ceiling.
In the rest of this work, we only consider monotone rule
bases RM (Ai, Bi) where Ai ∈ F∗(X), Bi ∈ F∗(Y ) and
form Ruspini partitions on the underlying domains X,Y ,
respectively.

D. Classes of Admissible Fuzzy Implications

In the following, we discuss the class of fuzzy implications
that can be considered for an FRI with R̂→ to be at least
weakly coherent. This leads to study the effect of using fuzzy
implications to modify fuzzy sets. The study corresponding
to modification of fuzzy sets using fuzzy implications can be
found in [18].
From Section 6.2 of [18], it is clear that for an FRI with
reducible composition (see, Section IV-B), F→ =

(
PX ,PY ,

R̂→, d
)

, to obtain a nonempty output, we at least need to
ensure weak-coherence (as defined in Definition 6.2). While
coherence insists that the kernels of B′m and B′m+1 should
intersect, the weak-coherence defined in Definition 6.2 relaxes
this to a mere intersection of their supports. From Section VI-B
we know that for a fuzzy relation R̂→ to ensure weak-
coherence at the least, the class of fuzzy implications I that
can be considered should be restricted. Since in most practical
settings we deal only with fuzzy sets that are bounded, con-
tinuous, convex and that which often form a Ruspini partition,
to ensure weak-coherence or non emptiness of the output, it
is sufficient to consider fuzzy implications I ∈ I that either
• satisfy the ordering property (OP), (i.e., I(x, y) = 1⇐⇒
x ≤ y , x, y ∈ [0, 1]), in which case often we can ensure
even coherence [25], or

• are positive i.e., I ∈ I+ , in which case we can ensure at
least weak-coherence [18].

It is clear from Proposition 6.6 of [18] (i) that if we use a
non-positive implication, then the support of B′m and B′m+1

may shrink, giving rise to an empty fuzzy set as B′, which
is not at all desirable. Thus, in this work, we limit the study
of monotonicity to FRIs that employ fuzzy implications that
come from the class I+ . Further, among fuzzy implications
I ∈ I+ we only consider those that are strict (ST) (see
Definition 2.8) and denote this class by Ist ( I+.
Towards better clarity and readability of the proofs presented
later, we partition Ist into two subclasses, viz., (i) IstND1

, which

contain fuzzy implications I that are strict (ST) with NI =
ND1 and (ii) IstNc

D1
, which contain fuzzy implications I that

are strict (ST) but with NI 6= ND1.
Remark 6.3: Note that IOP and Ist are mutually exclusive.
Table I lists some fuzzy implications illustrating IOP ∩ Ist =
∅, IOP ∩ IND1

6= ∅ and Ist ∩ IND1
6= ∅ .

E. Some families of Fuzzy Implications that belong to IstND1
∪

IstNc
D1

= Ist

In fact, many established families of fuzzy implications fall
in either of the above two classes. For the definitions and the
properties these families satisfy, please refer to the monograph
[2]. Two such specific families are defined as follows:
Definition 6.4 ( [2], Definition 3.1.1): Let f : [0, 1] → [0,∞]
be a strictly decreasing and continuous function with f(1) = 0.
The function If : [0, 1]2 → [0, 1] defined by

If (x, y) = f−1 (x · f(y)) , x, y ∈ [0, 1] , (12)

with the understanding 0 · ∞ = 0, is a fuzzy implication and
called an f -implication.
Definition 6.5 ( [2], Definition 3.2.1): Let g : [0, 1] → [0,∞]
be a strictly increasing and continuous function with g(0) = 0.
The function Ig : [0, 1]2 → [0, 1] defined by

Ig(x, y) = g(−1)
(
1

x
· g(y)

)
, x, y ∈ [0, 1], (13)

with the understanding 1
0 = ∞ and ∞ · 0 = ∞, is a fuzzy

implication and called a g-implication, where the function
g(−1) in (13) is given by g(−1)(x) = g−1 (min (x, g(1))).
From the above two definitions, the following observations can
be made:
• Let IF denote the set of all f -implications. Further, let us

denote by IF,∞ ( IF the set of f -implications that are
generated from generators such that f(0) = ∞. Every
I ∈ IF,∞ is strict and its natural negation is the Gödel
negation (see [12], [1]), i.e., NI = ND1.

• Let IF,1 ( IF be the set of f -implications that are
generated from generators such that f(0) = 1. Every
I ∈ IF,1 is strict but its natural negation is a strict negation
(see [12], [1]), i.e., NI 6= ND1. Thus IF,1 ( IstNc

D1
, while

IF,∞ ( IstND1
.

• If IG denotes the set of all g-implications, then every
I ∈ IG is positive and NI = ND1 (see [1], Proposition 4).
Thus IG ( IstND1

.

Note that IYG ∈ IF,∞ ∩ IG while IRC ∈ IF,1, see Table I.
In the following sections we will only deal with rules modeled
by fuzzy relations R̂→ where the fuzzy implication −→
satisfies (ST). Clearly, the presented results are valid for the
Yager’s families of f - and g-implications too.

VII. MONOTONICITY OF FRI F→ST

Herein, we discuss the monotonicity of the output of an FRI
with reducible composition

F→ST
=
(
PX ,PY , R̂→ST

,MOM
)
,
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Implication I ∈ I I ∈ IOP I ∈ Ist I ∈ IND1

× X X X
× X X ×

IG(x, y) = min(1, y
x
) X × X

ILK(x, y) = min(1, 1− x+ y) X × ×
IYG(x, y) = min (1, yx) × X X
IRC(x, y) = 1− x+ xy × X ×

I(x, y) =

{
0, if x > 0 and y = 0

1, otherwise
× × X

IKD(x, y) = max(1− x, y) × × ×

TABLE I
ON THE MUTUAL EXCLUSIVITY OF IOP , Ist AND IND1

with R̂→ST
=

n∧
i=1

(Ai −→ST Bi), where −→ST∈ Ist . While

investigating this FRI we partition the set Ist into two parts (i)
IstND1

and (ii) IstNc
D1

as given in Section VI-D and investigate
the following FRIs for monotonicity:

F→D1
=
(
PX ,PY , R̂→D1

,MOM
)
,

F→D1c =
(
PX ,PY , R̂→D1c ,MOM

)
,

with R̂→D1
=

n∧
i=1

(Ai −→D1 Bi) where −→D1∈ IstND1
and

R̂−→D1c =

n∧
i=1

(Ai −→D1c Bi) where −→D1c∈ IstNc
D1

. In the

following two results we propose some sufficient conditions
under which the corresponding system functions of F→D1

and
F→D1c are monotonic.
Theorem 7.1: Let us be given a fuzzy IF-THEN rule base
RM (Ai, Bi) as in (10) which is monotone and Ai ∈ PX , i =
1, 2, . . . , n, form a Ruspini partition on X and Bi ∈ PY , i =
1, 2, . . . n, form a Ruspini partition on Y , respectively. Further,
let every element of PX and PY be normal, convex and strictly
monotone on both sides of the ceiling, i.e., PX ⊆ F∗(X) and
PY ⊆ F∗(Y ). Then the system function g of the FRI with
reducible composition F→D1

=
(
PX ,PY , R̂→D1

,MOM
)

is
monotonic, where −→D1∈ IstND1

.
Proof: While the proof is valid for any fuzzy sets which
are normal, convex and strict on both sides of the ceiling,
for better readability we prove this result only for triangular
fuzzy sets. For an input x′ ∈ X the fuzzy relational inference
mechanism (FRI-R-Singleton) with R = R̂→D1

is of the
form, B′(y) = R̂→D1

(x′, y), y ∈ Y. Since Ai’s and
Bi’s are convex and both form (RP) on their corresponding
domains, clearly, only adjacent Ai’s and Bi’s can overlap.
Hence, w.l.o.g., let the supports of Ai, Bi be such that
Supp(Ai) = [xi−1, xi+1], Supp(Bi) = [yi−1, yi+1], i =
2, 3, . . . , n−1, Supp(A1) = [x1, x2], Supp(An) = [xn−1, xn],
Supp(B1) = [y1, y2], Supp(Bn) = [yn−1, yn]. Further, let
Ai(xi) = 1 and Bi(yi) = 1 for i = 1, 2, . . . , n.
Let x′ ∈ X be any given input. Clearly, x′ ∈ [xm, xm+1] for
some m ∈ {1, 2, . . . , n − 1}. Since {Ai}ni=1 are normal and
form a Ruspini partition, Aj(x′) = 0, for all j 6= m,m+ 1 .
Let Am(x′) = s′m and Am+1(x

′) = s′m+1. Since Ai’s form

an (RP), s′m + s′m+1 = 1 and

B′(y) = [s′m −→D1 Bm(y)] ∧ [s′m+1 −→D1 Bm+1(y)]

= B′m(y) ∧B′m+1(y) . (14)

Clearly, since Bm, Bm+1 are convex and normal, B′m, B
′
m+1

are also convex and normal (see Proposition 6.4 of [18]).
Hence B′ = B′m∩B′m+1 is also convex. Let y′ = MOM(B′).
Claim 1: If x′ ∈ [xm, xm+1], then y′ = MOM(B′) ∈
[ym, ym+1] for m ∈ {1, 2, . . . , n−1} . Further, if Bm = Bm+1

then y′ = g(x′) = ym ∈ [ym, ym+1].
For a better understanding of the proof we refer to Fig. 3
where the implication used is IYG(x, y) = min (1, yx), the
Yager’s implication. Note that IYG ∈ IstND1

.

Fig. 3. The Modified Fuzzy Sets, using IYG(x, y) = min (1, yx)

From Remark 6.7 of [18] we can verify that, since x −→D1

0 = 0 for any x ∈ (0, 1], we have that the supports of both
the modified fuzzy sets B′m = sm −→D1 Bm and B′m+1 =
sm+1 −→D1 Bm+1 are the same as those of Bm, Bm+1.

Hence, Supp(B′) = Supp(B′m) ∩ Supp(B′m+1)

= Supp(Bm ∩Bm+1) = [ym, ym+1] . (15)

Since (15) holds, y′ = MOM(B′) ∈ [ym, ym+1].
Now, let Bm = Bm+1. From (14), we have

B′(y) = [s′m −→D1 Bm(y)] ∧ [s′m+1 −→D1 Bm(y)]

= [(s′m ∨ s′m+1) −→D1 Bm(y)] .

Since Bm(ym) = 1, B′(ym) = (s′m ∨ s′m+1) −→D1 Bm(ym)
= (s′m ∨ s′m+1) −→D1 1 = 1. From the fact that −→D1

is strict, Bm is strictly increasing on [ym−1, ym] and strictly
decreasing on [ym, ym+1], we have (s′m ∨ s′m+1) −→D1 Bm
is strictly increasing on [ym−1, ym] and strictly decreasing on
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[ym, ym+1]. So B′ reaches 1 only at ym. Hence Ker(B′) =
{ym}, consequently, y′ = g(x′) = MOM(B′) = ym .2
Claim 2: The system function g is monotonic, i.e., if x′ ≤ x′′
then g(x′) = y′ ≤ y′′ = g(x′′).
We prove the above claim by discussing different cases.
Case 1: Let x′ ∈ [xm, xm+1] and x′′ ∈ [xm+p, xm+p+1],
where p ≥ 1. By the Claim 1 above, irrespective of the
orderings between Bm, Bm+1 and Bm+p, Bm+p+1, we have
that y′ ∈ [ym, ym+1] and y′′ ∈ [ym+p, ym+p+1] and hence
y′ ≤ y′′.
Case 2: Let x′, x′′ ∈ [xm, xm+1], i.e., p = 0 in the above
Case 1.

Case 2a: If Bm = Bm+1, then by from Claim 1 above we
obtain, y′ = y′′ = ym. Thus, trivially, we have x′ ≤ x′′ =⇒
y′ ≤ y′′.

Case 2b: Let Bm 6= Bm+1. We will prove that y′ =
MOM(B′) ≤ MOM(B′′) = y′′.
Since, x′, x′′ ∈ [xm, xm+1], for some m ∈ {1, 2, . . . , n− 1},
from Claim 1 we obtain, y′, y′′ ∈ [ym, ym+1]. Now, since
Am is strictly decreasing and Am+1 is strictly increasing on
[xm, xm+1], x

′ ≤ x′′ and x′, x′′ ∈ [xm, xm+1] implies

Am(x′) ≥ Am(x′′) and Am+1(x
′) ≤ Am+1(x

′′),

i.e., s′m ≥ s′′m and s′m+1 ≤ s′′m+1, (16)

where s′′m = Am(x′′) and s′′m+1 = Am+1(x
′′). Using (16),

for any y ∈ [ym, ym+1] we obtain the inequalities:

s′m −→D1 Bm(y) ≤ s′′m −→D1 Bm(y),

=⇒ B′m(y) ≤ B′′m(y) , and
s′m+1 −→D1 Bm+1(y) ≥ s′′m+1 −→D1 Bm+1(y),

=⇒ B′m+1(y) ≥ B′′m+1(y) .

Claim 3: y′ = MOM(B′) ∈ Supp(Bm ∩ Bm+1) is the point
of intersection of B′m and B′m+1.
On [ym, ym+1], B

′
m is strictly decreasing and B′m+1 is strictly

increasing. Let B′m and B′m+1 intersect at y0 ∈ [ym, ym+1],
i.e.,

B′(y0) = min{B′m(y0), B′m+1(y
0)}

= B′m(y0) = B′m+1(y
0). (17)

Now, for y ∈ [ym, y
0), it holds that B′m(y) > B′m(y0) =

B′m+1(y
0) > B′m+1(y). Since B′m(y) > B′m+1(y) and B′m+1

is strictly increasing in [ym, ym+1], using (17), we have

B′(y) = min
(
B′m(y), B′m+1(y)

)
= B′m+1(y)

< B′m+1(y
0) = B′m(y0) = B′(y0) . (18)

Again for y ∈ (y0, ym+1], it holds that, B′m(y) < B′m+1(y)
and, as above, we have the following inequality using the fact
that B′m is strictly decreasing in [ym, ym+1]:

B′(y) = min
(
B′m(y), B′m+1(y)

)
= B′m(y)

< B′m(y0) = B′m+1(y
0) = B′(y0) . (19)

From (18) and (19), we have that y′ = MOM(B′) = y0 and,
in fact, is the point of intersection of B′m and B′m+1, thus
proving Claim 3. 2

Since B′m and B′m+1 are monotonic on [ym, ym+1], we have
that y′, y′′ ∈ [ym, ym+1] are also the points which satisfy
B′m(y′) = B′m+1(y

′) and B′′m(y′′) = B′′m+1(y
′′) i.e,

s′m −→D1 Bm(y′) = s′m+1 −→D1 Bm+1(y
′) , (20)

s′′m −→D1 Bm(y′′) = s′′m+1 −→D1 Bm+1(y
′′) . (21)

Now, to prove monotonicity, we need to show that y′ ≤ y′′.
If possible, let y′ > y′′. Since Bm and Bm+1 are, respec-
tively, strictly decreasing and strictly increasing on [ym, ym+1],
y′, y′′ ∈ [ym, ym+1] implies

Bm(y′) < Bm(y′′) and Bm+1(y
′) > Bm+1(y

′′) . (22)

Use of strictness of −→D1, (22), s′m+1 ≤ s′′m+1 from (16),
(21), (22) and s′m ≥ s′′m from (16) lead to the following thread
of inequalities: s′m+1 −→D1 Bm+1(y

′) > s′m+1 −→D1

Bm+1(y
′′) ≥ s′′m+1 −→D1 Bm+1(y

′′) = s′′m −→D1

Bm(y′′) > s′′m −→D1 Bm(y′) ≥ s′m −→D1 Bm(y′) which
results in s′m+1 −→D1 Bm+1(y

′) > s′m −→D1 Bm(y′) , a
contradiction to (20). Thus, x′ ≤ x′′ =⇒ y′ ≤ y′′ and the
system function g is monotonic.
Remark 7.2: For better readability the proof of Theorem 7.1
has been presented only for triangular fuzzy sets, whereas the
proof is valid for any fuzzy sets which are normal, convex and
strict on both sides of the ceiling. It should be noted that, the
result remains unaffected, when we consider trapezoidal fuzzy
sets instead of triangular fuzzy sets, since the only extra case
that needs to be considered is when the input x′ falls in the
kernel of an antecedent fuzzy set Am. However, in this case,
due to the Ruspini partition of the antecedent fuzzy sets PX ,
it can be easily shown that the output g(x′) will fall within
the kernel of the corresponding consequent fuzzy set Bm.
Theorem 7.3: Let us be given a fuzzy IF-THEN rule base
RM (Ai, Bi) as in (10) which is monotone and Ai ∈ PX ,
i = 1, 2, . . . , n, form a Ruspini partition on X and Bi ∈
PY , i = 1, 2, . . . , n, form a Ruspini partition on Y , re-
spectively. Further, let every element of PX and PY be
normal, convex and strictly monotone on both sides of the
ceiling, i.e., PX ⊆ F∗(X) and PY ⊆ F∗(Y ). Then the
system function g of the FRI with reducible composition
F→D1c =

(
PX ,PY , R̂→D1c ,MOM

)
is monotonic, where

−→D1c∈ IstND1c
.

Proof: Once again, while the proof is valid for any fuzzy
sets which are normal, convex and strict on both sides of the
ceiling, for better readability we prove this result only for
triangular fuzzy sets.
For an input x′ ∈ X the fuzzy relational inference mechanism
(FRI-R-Singleton) with R = R̂→D1c is of the form,

B′(y) = R̂→D1c (x
′, y), y ∈ Y. (23)

Since Ai’s and Bi’s are convex and both form Ruspini partition
(see Definition 2.5) on their corresponding domains, clearly,
only adjacent Ai’s and Bi’s can overlap. Hence, w.l.o.g., let
the supports of Ai, Bi be such that Supp(Ai) = [xi−1, xi+1],
Supp(Bi) = [yi−1, yi+1], i = 2, 3, . . . , n − 1, Supp(A1) =
[x1, x2], Supp(An) = [xn−1, xn], Supp(B1) = [y1, y2],
Supp(Bn) = [yn−1, yn]. Further, let Ai(xi) = 1 and Bi(yi) =
1 for i = 1, 2, . . . , n.
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Let x′ ∈ X be any given input. Clearly, x′ ∈ [xm, xm+1]
for some m ∈ {1, 2, . . . , n − 1}. Since {Ai}ni=1 are normal
and form a Ruspini partition, Aj(x′) = 0, for all j 6=
m,m + 1 . From (23), B′(y) = [Am(x′) −→D1c Bm(y)] ∧
[Am+1(x

′) −→D1c Bm+1(y)]. Once again, let Am(x′) = s′m
and Am+1(x

′) = s′m+1 and hence, s′m + s′m+1 = 1 and

B′(y) = [s′m −→D1c Bm(y)] ∧ [s′m+1 −→D1c Bm+1(y)]

= B′m(y) ∧B′m+1(y) .

Clearly, since Bm, Bm+1 are convex and normal, B′m, B
′
m+1

are also convex and normal (see Proposition 6.4 of [18]).
Hence B′ = B′m ∩B′m+1 is also convex.
Claim 4: If x′ ∈ [xm, xm+1], then y′ = MOM(B′) ∈
[ym, ym+1] for m ∈ {1, 2, . . . , n−1} . Further, if Bm = Bm+1

then y′ = ym ∈ [ym, ym+1].
The proof is by considering three different orderings between
s′m and s′m+1.
Case-1: (s′m > s′m+1 6= 0): For a better understanding of
the proof we refer to the Fig. 4 where the implication used is
IRC(x, y) = 1 − x + xy, the Reichenbach implication. Note
that IRC ∈ IstND1c

. Recall that B′m(y) = s′m −→D1c Bm(y)

Fig. 4. The modified fuzzy sets using IRC(x, y) = 1−x+xy, 0 < s′m+1 <
s′m

and B′m+1(y) = s′m+1 −→D1c Bm+1(y). We partition the
space Y = [y1, yn] into the following five sub-domains:

Y = {y|y < ym−1} ∪ [ym−1, ym] ∪ [ym, ym+1]

∪ [ym+1, ym+2] ∪ {y|y > ym+2} , (24)

and then discuss the behavior of B′m and B′m+1 on these five
sub-domains.
Behavior of B′m and B′m+1 :

• Over {y|y < ym−1}: For y < ym−1, Bm(y) =
Bm+1(y) = 0. Hence,

B′m(y) = s′m −→D1c Bm(y) = s′m −→D1c 0 = c′m
(25)

and B′m+1(y) = s′m+1 −→D1c Bm+1(y)

= s′m+1 −→D1c 0 = c′m+1 . (26)

Thus both B′m and B′m+1 are a constant on this interval.
Now using the strictness of −→D1c , we have B′m(y) =
c′m = s′m −→D1c 0 < s′m+1 −→D1c 0 = c′m+1 =
B′m+1(y). Thus B′m and B′m+1 never intersect in {y|y <
ym−1}.

• Over [ym−1, ym]: On the interval [ym−1, ym], Bm+1 ≡
0 while Bm is strictly increasing. Since −→D1c is strict,

B′m = s′m −→D1c Bm is strictly increasing. Hence,
for any y ∈ [ym−1, ym], B′m+1(y) = s′m+1 −→D1c

0 = c′m+1, which is a constant value. Now, since B′m
is strictly increasing on this interval, B′m(ym−1) = c′m,
and B′m(ym) = s′m −→Dc

1
Bm(ym) = s′m −→D1c 1 =

1, the range of B′m over [ym−1, ym] is [c′m, 1]. Once
again, c′m+1 = s′m+1 −→D1c 0 > s′m −→D1c 0 =
s′m+1 −→D1c Bm(ym−1) = B′m(ym−1) = c′m . Now,
c′m+1 > c′m implies that c′m+1 ∈ [c′m, 1] and hence,
clearly, B′m and B′m+1 intersect at only one point in
[ym−1, ym]. Let it be y∗ ∈ [ym−1, ym].

• Over [ym, ym+1]: On the interval [ym, ym+1], Bm is
strictly decreasing while Bm+1 is strictly increasing.
Since −→D1c is strict, B′m is strictly decreasing, B′m+1

is strictly increasing and thus they intersect exactly at one
point. Let it be y′ ∈ [ym, ym+1].

• Over [ym+1, ym+2]: For any y ∈ [ym+1, ym+2],
Bm(y) = 0, while on this interval Bm+1 is strictly
decreasing. Hence, B′m(y) = s′m −→D1c 0 = c′m, which
is a constant value and by the strictness of −→D1c ,
B′m+1 = s′m+1 −→D1c Bm+1 is strictly decreasing.
Now, since

B′m+1(ym+1) = s′m+1 −→Dc
1
Bm+1(ym+1)

= s′m+1 −→D1c 1 = 1 ,

B′m+1(ym+2) = s′m+1 −→D1c 0 = c′m+1 ,

and B′m+1 is strictly decreasing on this interval, the range
of B′m+1 over the interval [ym+1, ym+2] is [c′m+1, 1].
Again, since c′m+1 > c′m and c′m /∈ [c′m+1, 1] clearly,
B′m and B′m+1 do not intersect in [ym−1, ym].

• Over {y|y > ym+2}: For y > ym+2, Bm(y) =
Bm+1(y) = 0. Thus both B′m and B′m+1 are a constant
on this interval as given in (25) and (26) above. Now
using the strictness of −→D1c , we have B′m(y) = c′m =
s′m −→D1c 0 < s′m+1 −→D1c 0 = c′m+1 = B′m+1(y),
and hence B′m and B′m+1 never intersect on {y|y >
ym+2}.

The behavior of both B′m and B′m+1 on the partition of Y as
given in (24) is summarized in the following Table II, where by
↗ and↙, we mean strictly increasing and strictly decreasing,
respectively. Hence the only points of intersection between B′m
and B′m+1 are y∗ ∈ [ym−1, ym] and y′ ∈ [ym, ym+1]. Once
again, due to the strictness of −→D1c , it can be shown that
y′ = MOM(B′) is a point of intersection of B′m and B′m+1,
similar to Claim 3 of Theorem 7.1. Thus, we have

y0 = g(x′) = MOM(B′) = MOM(B′m ∩B′m+1)

= Mean
(
{y ∈ Y |B′m(y) = B′m+1(y) and y ∈ Ceil (B′)}

)
=

{
y∗, if B′(y∗) > B′(y′)

y′, if B′(y′) > B′(y∗)

where, Mean(S) = Average of the values of the elements in
the set S. Since B′m+1 is constant on [y∗, ym] and increasing
on [ym, ym+1], B′m+1(y

′) > B′m+1(y
∗). Again, we have,

B′m(y∗) = c′m+1 = B′m+1(y
∗) < B′m+1(y

′) = B′m(y′). Now,
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y < ym−1 [ym−1, ym] [ym, ym+1] [ym+1, ym+2] y > ym+2

B′m Const (c′m) ↗ ↙ Const (c′m) Const (c′m)
B′m+1 Const (c′m+1) Const (c′m+1) ↗ ↙ Const (c′m+1)

Points of
Intersection None y∗ y′ None None

TABLE II
BEHAVIOR OF B′m AND B′m+1 ON THE OUTPUT SPACE Y , WHEN s′m > s′m+1

Fig. 5. The modified fuzzy sets using IRC(x, y) = 1 − x + xy, s′m+1 >
s′m > 0

B′m+1(y
∗) < B′m+1(y

′) and B′m(y∗) < B′m(y′) implies

min{B′m(y∗),B′m+1(y
∗)} < min{B′m(y′), B′m+1(y

′)}
=⇒ B′(y∗) < B′(y′) .

Hence, y0 = y′ ∈ [ym, ym+1]. Hence the Claim 4. 2
Case-2: (s′m+1 > s′m 6= 0): Along similar lines as argued in
Case-1, Claim 4 can be proven in this case too.
For a better understanding we refer to Fig. 5 where the
implication used is the same Reichenbach implication.
The behavior of both B′m and B′m+1 on the partition of Y
as given in (24) when s′m+1 > s′m > 0 is summarized in the
following Table III, where, once again, by↗ and↙, we mean
strictly increasing and strictly decreasing, respectively.
Case-3: (s′m = s′m+1 = 1

2 ): Since Ai’s form a Ruspini
partition, s′m + s′m+1 = 1 implies that if s′m = s′m+1 then
their common value is 1

2 .
Similarly, as in Case-1, we partition the space Y as given in
(24) and discuss the behavior of B′m and B′m+1 over these
five sub-domains.
For a better understanding we refer to the Fig. 6 where
the implication used is once again the same Reichenbach
implication. The behavior of both B′m and B′m+1 on the
partition of Y as given in (24) when s′m = s′m+1 = 1

2 is
summarized in the following Table IV.
Once again, due to the strictness of −→D1c , it can be shown
that y′ = MOM(B′) is a point of intersection of B′m and
B′m+1, similar to Claim 3 of Theorem 7.1 and the set of
points over which B′m and B′m+1 intersect can be summarised
as follows:

{y ∈ Y |B′m+1(y) = B′m(y)}
= {y|y < ym−1} ∪ {y′} ∪ {y|y > ym+2} .

Firstly, note that B′m+1(y) = B′m(y) = c′m on the sub-
domains {y|y < ym−1} and {y|y > ym+2}. Secondly,
since y′ ∈ [ym, ym+1] B

′
m(y′) = s′m −→D1c Bm(y′) >

Fig. 6. The modified fuzzy sets using IRC(x, y) = 1 − x + xy, s′m+1 =

s′m = 1
2

s′m −→D1c Bm(ym+1) = 1
2 −→D1c 0 = c′m , while

B′m+1(y
′) = s′m+1 −→D1c Bm+1(y

′) > s′m+1 −→D1c

Bm+1(ym) = 1
2 −→D1c 0 = c′m. Thus, we have

g(x′) = MOM(B′) = MOM(B′m ∩B′m+1)

= Mean
(
{y ∈ Y |B′m(y) = B′m+1(y) and y ∈ Ceil (B′)}

)
= y′ .

Thus we have proven that if x′ ∈ [xm, xm+1], then y′ ∈
[ym, ym+1] for m ∈ {1, 2, . . . , n− 1}.
Once again, the fact that when Bm = Bm+1, y′ = ym ∈
[ym, ym+1] follows along similar lines of the corresponding
case in Theorem 7.1 above.
Claim 5: The system function g is monotonic, i.e., if x′ ≤ x′′
then g(x′) = y′ ≤ y′′ = g(x′′).
Case 1: Let x′ ∈ [xm, xm+1] and x′′ ∈ [xm+p, xm+p+1],
where p ≥ 1. By the Claim 4 above, irrespective of the
orderings between Bm, Bm+1 and Bm+p, Bm+p+1, we have
that y′ ∈ [ym, ym+1] and y′′ ∈ [ym+p, ym+p+1] and hence
y′ ≤ y′′.
Case 2: Let x′, x′′ ∈ [xm, xm+1], i.e., p = 0 in the above
Case 1.

Case 2a: If Bm = Bm+1, then by the above Claim 4 we
obtain, y′ = y′′ = ym. Thus, trivially, we have x′ ≤ x′′ =⇒
y′ ≤ y′′.

Case 2b: Let Bm 6= Bm+1. The argument to show that
y′ ≤ y′′ proceeds along similar lines of the corresponding case
as given in Theorem 7.1 above and this proves the Claim 5
and completes the proof.

VIII. ILLUSTRATIVE EXAMPLES WITH YAGER’S CLASS OF
FUZZY IMPLICATIONS

In this section we begin by illustrating the results of the
previous section through some examples. We have chosen
two fuzzy implications, one each from the classes of IstNc

D1
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y < ym−1 [ym−1, ym] [ym, ym+1] [ym+1, ym+2] y > ym+2

B′m Const (c′m) ↗ ↙ Const (c′m) Const (c′m)
B′m+1 Const (c′m+1) Const (c′m+1) ↗ ↙ Const (c′m+1)

Points of
Intersection None None y′ y∗ None

TABLE III
BEHAVIOR OF B′m AND B′m+1 ON THE OUTPUT SPACE Y , WHEN s′m < s′m+1

y < ym−1 [ym−1, ym] [ym, ym+1] [ym+1, ym+2] y > ym+2

B′m Const (c′m) ↗ ↙ Const (c′m) Const (c′m)
B′m+1 Const (c′m+1) Const (c′m+1) ↗ ↙ Const (c′m+1)

Points of
Intersection y < ym−1 ym−1 y′ ym+2 y > ym+2

TABLE IV
BEHAVIOR OF B′m AND B′m+1 ON THE OUTPUT SPACE Y , WHEN s′m = s′m+1 = 1

2

and IstND1
. Further, these fuzzy implications also belong to the

class of Yager’s implications, see Section VI-E. In fact, as a
corollary of the results in Section VII, in Section VIII-B, we
show the monotonicity of BKS-Y inference mechanisms that
use the Yager’s family of fuzzy implications to model the rule
base. While we have considered only the MOM defuzzification
so far, in Section VIII-C, we consider other defuzzification
methods which allow us to make some interesting observa-
tions.

A. Some Illustrative Examples of the monotonicity of F→D1c

and F→D1

Let us consider the rule base as given in Example 5.2 and the
FRIs:

(i) F→D1
=
(
{Ai}3i=1, {Bi}3i=1, R̂→D1

,MOM
)

and

(ii) F→D1c =
(
{Ai}3i=1, {Bi}3i=1, R̂→D1c ,MOM

)
.

In the examples, we have investigated the behaviour of the
system function for monotonicity.
Example 8.1: Let us consider the fuzzy system F→D1c with
the rule base (11) given in Example 5.2, and let the implication
operator employed in the relation R̂→D1c be the Reichenbach
implication, which is strict but NIRC

6= ND1, i.e., IRC ∈
IstNc

D1
(see Table I). Let us denote this FRI by FRC for brevity.

The system function g with MOM defuzzification is given in
Fig. 7, which is clearly monotonic as claimed in Theorem 7.3.
Example 8.2: Let us consider the fuzzy system F→D1

with the
rule base (11) given in Example 5.2, and let the implication
operator employed in the relation R̂→D1

be the Yager’s im-
plication, which is strict and NIYG

= ND1, i.e., IYG ∈ IstND1

( see Table I). Let us denote this FRI by FYG for brevity.
The system function g with MOM defuzzification is given in
Fig. 7, which is clearly monotonic as claimed in Theorem 7.1.

B. Monotonicity of BKS-Y Inference Mechanisms

In our previous works, [16], [18], we have seen that BKS with
Yager’s families of fuzzy implications F→Y , where→Y stands
for any of the Yager’s families of fuzzy implications, possess
the following desirable properties, namely, interpolativity, con-
tinuity, robustness and universal approximation capability.

Fig. 7. System function with MOM defuzzification of the FRI (a) FRC

given in Example 8.1 (b) FYG given in Example 8.2 with −→D1= IYG,
the Yager’s implication.

Based on the results in Section VII, we show that BKS with
Yager’s families of fuzzy implications are also monotonic, i.e.,
the corresponding system functions are monotonic. The results
are, in fact, some special cases of the above Theorem 7.1 and
Theorem 7.3.
Corollary 8.3: Let us be given a fuzzy IF-THEN rule base
RM (Ai, Bi) as in (10) which is monotone and Ai ∈ PX ,
i = 1, 2, . . . , n, form a Ruspini partition on X and Bi ∈ PY
, i = 1, 2, . . . , n, form a Ruspini partition on Y , respectively.
Further, let every element of PX and PY be normal, convex
and strictly monotone on both sides of the ceiling, i.e., PX ⊆
F∗(X) and PY ⊆ F∗(Y ). Then the system function g of the
FRI F→f

=
(
PX ,PY , R̂f ,MOM

)
is monotonic, where R̂f

is defined as in (27) and −→f∈ IF = IF,∞ ∪ IF,1:

R̂f (x, y) = R̂→f
(x, y) =

n∧
i=1

(Ai(x) −→f Bi(y)), (27)

Proof: Every −→f∈ IF is strict. Thus −→f∈ IF ( Ist and the
result follows from Theorem 7.1 and Theorem 7.3.
Corollary 8.4: Let us be given a fuzzy IF-THEN rule base
RM (Ai, Bi) as in (10) which is monotone and Ai ∈ PX ,
i = 1, 2, . . . , n, form a Ruspini partition on X and Bi ∈ PY
, i = 1, 2, . . . , n, form a Ruspini partition on Y , respectively.
Further, let every element of PX and PY be normal, convex
and strictly monotone on both sides of the ceiling, i.e., PX ⊆
F∗(X) and PY ⊆ F∗(Y ). Then the system function g of the
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FRI F→g
=
(
PX ,PY , R̂g,MOM

)
is monotonic, where R̂g is

defined as in (28) and −→g∈ IG.

R̂g(x, y) = R̂→g
(x, y) =

n∧
i=1

(Ai(x) −→g Bi(y)), (28)

Proof: Every −→g∈ IG is strict and its natural negation is the
Gödel negation. Thus −→g∈ IG ( IstND1

( Ist and the result
follows from Theorem 7.1.

C. Monotonicity under Different Defuzzification Methods

In Section VII, we have proven our results, viz., Theorems 7.1
and 7.3 for the FRIs F→D1

and F→D1c with the MOM
defuzzification. The examples in Section VIII-A above illus-
trate these results, albeit by considering some specific fuzzy
implications from each of the classes of IstND1

and IstNc
D1

, but
here again we have used only the MOM defuzzification.
An interesting question that crops up now is this: What if we
use an alternate defuzzification method? Does the monotonic-
ity of the system function still hold?
In the examples, we investigate the monotonicity of the
system function by considering the same FRIs with reducible
composition, FRC and FYG, as in Section VIII-A,

(i) FYG =
(
{Ai}3i=1, {Bi}3i=1, R̂→D1

, d
)
,−→D1= IYG

and
(ii) FRC =

(
{Ai}3i=1, {Bi}3i=1, R̂→D1c , d

)
,−→D1c= IRC ,

but where the defuzzification method d is one of the following
(see Section II-B): (i) LOM, (ii) SOM, (iii) COG and (iv)
BIS. The system functions corresponding to the FRIs FRC

and FYG, with different types of defuzzification methods, are
shown in Fig. 8 and Fig. 9, respectively.

Fig. 8. System function of the FRI FRC given in Example 8.1 with LOM,
SOM, COG and BIS defuzzifier.

Note that, among the defuzzification methods considered, the
MOM, SOM and LOM methods can be seen as Ceiling-
based methods, since the defuzzified value depends only on
the ceiling of the fuzzy set under consideration. In the case
of convex fuzzy sets, these three methods are such that the
defuzzified output falls within the ceiling of the fuzzy set,
while the same is not true, in general, for COG and BIS
methods.
However, it is interesting to note the following. On the one
hand, for the FRI FRC, the corresponding system function is
monotonic with MOM defuzzification as well as with other
ceiling-based defuzzification methods (e.g., SOM and LOM),

Fig. 9. System function of the FRI FYG given in Example 8.2 with LOM,
SOM, COG and BIS defuzzifier.

see Fig. 8(—•—•—) and Fig. 8(− ◦ − − ◦−), whereas it is
not monotonic while considering the defuzzification methods
COG and BIS, see Fig. 8(−·−·−·−·) and Fig. 8(———). On
the other hand, for the FRI FYG, the corresponding system
function is monotonic with all the defuzzification methods
considered here, see Fig. 9
This seems to point to the fact that Theorems 7.1 and 7.3
may be valid even when d is taken to be any ceiling based
defuzzification method instead of the MOM defuzzifier.

IX. CONCLUDING REMARKS

In this work, we have investigated the monotonicity of a single
input single output (SISO) FRI with fuzzy implications under
suitable choice of operations for the other components of the
fuzzy system. The highlights of this work are two fold:

(i) This is the first work that has illustrated that monotonicity
for FRIs can be ensured without modifying the given rule
base, as is common in the literature.

(ii) The class of fuzzy implications considered do not come
from a residuated setting, which is once again the com-
mon setting in all the earlier works.

In fact, our results are valid for a large class of fuzzy implica-
tions, viz., Ist (see Section VI-D) and the proofs presented are
general enough not to depend on their form or representation.
Further, from the discussions in Section VIII-C, it appears
that our results could also be generalised for any ceiling-based
defuzzification methods.
There exist many families of fuzzy implications, other than
those obtained as residuals of generalised conjunctions. So far,
however, their employability in applications has not received
much attention. The first such work dealing with FRIs that
employ the Yager’s families of fuzzy implications and their
suitability appeared recently in this very journal [16] and
further studies on it appeared in [18]. Our results in Sec-
tion VIII-B have taken this to the next logical step by showing
that these FRIs can also be employed without compromising
on monotonicity.
Thus, it is clear from these works, that other well known fam-
ilies of fuzzy implications should not be treated as just objects
of mathematical curiosity but as those with the potential to be
used in an applicational setting.
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