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ABSTRACT
We present a two-dimensional numerical study for uniform flow past a streamwise oscillating square cylinder at a Reynolds number of 200.
To overcome the limitations with an oscillating inlet flow as used in earlier studies, a dynamic meshing feature is used to oscillate the cylinder.
A parametric study is carried out by varying amplitude and frequency of cylinder oscillation. Two symmetric modes, named here as S-II-I and
S-IV-D, have been found. In S-II-I mode, a pair of vortices are shed symmetrically on each side of the cylinder in one cycle (S-II mode), and
in S-IV-D mode, two pairs of vortices of opposite sense are shed on each side of the cylinder. A vortex flapping mode has also been obtained
for low to moderate amplitude and frequency ratios. A new mode of vortex shedding termed the “vortex dipole” mode is found and involves
the alternate arrangement of vortex pairs unlike the zigzag arrangement of single vortices in a Kármán vortex street. As in most nonlinear
oscillators, vortex shedding becomes chaotic when forced sufficiently strongly and is usually associated with nonlinear interactions between
competing frequencies. Many modes observed in the current study become chaotic when the peak cylinder velocity becomes comparable with
the inlet velocity. The 0-1 test for chaos is applied to the time series of lift coefficient to show that the signals are truly chaotic. We also observe
chaos due to mode competition when shedding transitions from an antisymmetric to symmetric modes.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5123347., s

I. INTRODUCTION

The study of vortex-induced vibrations (VIVs) is an area of
active research with many open questions of fundamental and
applied nature. Vibrations of pipes in heat exchangers and civil engi-
neering structures due to hydrodynamic loads have been extensively
studied. Structural failure may result from synchronization between
the fluid excitation force and natural frequency of the system. This
hydrodynamic load can sometimes lead to motion of the structure in
the streamwise direction.19,30 The problem of streamwise oscillation
could be particularly severe when a lightly damped cylindrical struc-
ture is used in liquids of high density such as water, oil, and metal at
high temperatures.

It is known that flow past stationary bluff bodies leads to anti-
symmetric vortex shedding behind the body called the Kármán vor-
tex street. In this case, the vortices arrange themselves in a zigzag

pattern of alternating strength. A large number of studies have
focused on transverse oscillations of cylinders6,15,33 primarily
due to interest in understanding vortex-induced vibrations (e.g.,
Williamson and Govardhan40 and references therein). Other recent
studies involving wakes due to vortex shedding from cylinders
include the effect of rotational motion of a circular25 and ellipti-
cal2 cylinder, wake flow subjected to free surface wave excitations,27

transverse oscillations of triangular cylinders,1 and an inline oscil-
lating cylinder in tandem with a stationary cylinder42 to name a
few.

The focus of the present study is to shed light on various shed-
ding patterns found in an inline oscillating square cylinder. It has
been observed in experiments4,9,22,31,41 that inline oscillations of the
body can lead to a variety of antisymmetric, symmetric, or even
chaotic modes of vortex shedding. Symmetric modes of shedding
have also been observed in numerical simulations,21,23,24,35,43 but to
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the best of our knowledge, all simulations rely on using an oscillating
inlet with a stationary body rather than oscillate the body. Pioneer-
ing flow visualization studies were carried out by Tatsuno and Bear-
man36 for flow induced by an oscillating circular cylinder in a qui-
escent fluid. The Keulegan-Carpenter (KC) and Stokes (β) numbers
were varied in the range of 1.6–15 and 5–160, respectively. A num-
ber of fascinating flow patterns were observed, including symmet-
ric, oblique, and antisymmetric vortex shedding. Direct numerical
simulations (DNS) and Floquet analysis by Elston et al.11,12 reveals
that the visual patterns observed in Tatsuno and Bearman can be
explained with a two-dimensional analysis. This also suggests that
the three-dimensionality for a majority of the modes in the above
range of KC and β is weak in the case of an oscillating circular
cylinder.

The above studies do not have a net mean flow. Adding a net
mean flow introduces a new frequency into the problem, f o, which
is the natural vortex shedding frequency for flow past a station-
ary cylinder. Though a direct comparison of the present study with
Tatsuno and Bearman36 or Elston et al.12 is difficult, a qualitative
comparison has been carried out. All results presented in this paper
are given in terms of nondimensional amplitude, A/h, and frequency
ratio, f e/f o, as was used in some earlier studies.21,28,35 The results
can be easily expressed in terms of KC and β through the following
simple relations:

KC = 2π(A
h
), β = fed2

ν
= ( fe

fo
)StRe, (1)

where St = f oh/Um and Re = Umh/ν are the Strouhal and Reynolds
numbers, respectively, for a stationary cylinder with a constant inlet
flow, Um. Among the various studies done on flow past inline oscil-
lating circular cylinder, Griffin and Ramberg19 were among the first
to carry out a systematic experimental study. They found a lock-on
regime in the range of 1.2 < f e/f o < 2.5, where the vortex shedding
frequency matches the excitation frequency. The presence of lock-on
provides an interesting avenue for flow control as was discussed in
the review of Griffin and Hall.18 Minewitsch et al.28 carried out a sys-
tematic numerical study by varying both amplitude and frequency
of excitation to study the lock-on regime in detail. All their compu-
tations were carried out at Re = 200 for a square cylinder with an
oscillating inlet. They generate a phase diagram in the frequency-
amplitude plane and show that the lock-on regime is sandwiched
below the region-of-superposition where combination frequencies
arise. No symmetric, flapping, or chaotic modes were observed in
their study. Ongoren and Rockwell31 in the second of a two part
paper on vortex formation behind cylinders of various cross section
discussed their experiments on a cylinder oscillating at an angle α,
where 0○ ≤ α ≤ 90○, relative to the incoming flow. Various flow struc-
tures were classified based on symmetricity, vortex arrangement, etc.
In brief, they observed one symmetric (called S-I) and four antisym-
metric wake patterns behind the circular cylinder. Konstantinidis
and Balabani22 in their experimental study also noted the S-I mode
wherein a pair of vortices of opposite sign are simultaneously shed
on either side of the cylinder. Xu et al.41 performed experimental
studies and discovered a new mode of symmetric shedding called S-
II, where two pairs of vortices, vortex dipoles, are shed from each
side of the cylinder, but in their case, they were not able to obtain
a fully symmetric S-II mode as the symmetric vortices got distorted

downstream. They erroneously conclude that the new mode can be
explained as a simple superposition of symmetric and antisymmet-
ric modes. The origin of error lies in an algebraic error in their
derivation of the vorticity equation. The S-II mode has also been
obtained by Krishnan et al.24,23 in their numerical studies on flow
past an inline oscillating square cylinder, but they were also not able
to obtain a fully symmetric S-II mode that can be attributed to the
range of parameters that they considered, using an oscillating inlet
flow or different Reynolds number. Krishnan et al.24 found that in
the mechanism of formation of several vortex shedding modes, the
interaction of base region vortices with the main shear layer vortices
plays an important role. In a further study, Krishnan et al.23 cor-
related the characteristics of the force coefficients to the near body
vortical events and also looked into the feasibility of energy extrac-
tion from the flow. Lecointe and Piquet26 carried out numerical
simulations of flow past inline and transversely oscillating cylinders.
They reported a single symmetric mode, S-I, and their study was
restricted to low amplitude and frequency ratios. Feymark et al.13

carried out experimental and large eddy simulations for flow past
stationary and inline oscillating circular cylinders. Their experimen-
tal study was carried out for fixed amplitude ratio, A/h = 0.96, and a
wide range of Reynolds numbers, 405 ≤ Re ≤ 2482. Their LES study
was restricted to a fixed frequency ratio, f e/f o = 1, and was found to
be in agreement with their experiments, especially the presence of
lock-on states.

Apart from symmetric and antisymmetric shedding, chaotic
vortex shedding was reported by Vittori and Blondeaux38 and
Perdikaris et al.32 The former study had no mean flow and showed
that the route to chaos is quasiperiodic, whereas the latter study
suggested that mode competition led to chaos. Srikanth et al.35

noted that chaos occurs when the flow transitions from an asym-
metric shedding to a symmetric shedding with either change in fre-
quency or amplitude of oscillation. A similar result has also been
found in the present study. Following the work of Gottwald and
Melbourne,16,17 a rigorous 0-1 test for chaos is applied on the time
series of lift coefficient to show that a periodic signal correspond-
ing to an antisymmetric shedding becomes chaotic with increase in
amplitude of cylinder oscillation and eventually leads to symmet-
ric shedding on further increase in amplitude. This clearly estab-
lished the mode-competition route to chaos alluded to in previous
studies.32,35

Though all experiments reported above deal with a cylinder
oscillating in a constant inlet flow, numerical challenges associated
with moving a cylinder have restricted almost all numerical studies
to the case of stationary cylinders with an oscillating inlet. If the inlet
velocity is modulated in a periodic fashion, then it is essential that
the minimum velocity in a given period is kept positive to preserve
the nature of the inlet and outlet boundary conditions. Consider an
inlet with an oscillating velocity28 given by

Ui = Um + ΔU cos(ωt),
where U i, Um, and ΔU are the magnitudes of the total, mean, and
fluctuating velocities at the inlet, respectively, and ω is the frequency
of pulsation. To preserve the nature of the boundary condition at the
inlet and outlet, we require that ΔU ≤ Um. This restricts the range
of fluctuating velocities that can be studied in such computations.
To overcome this difficulty, we have chosen to carry out simula-
tions with a cylinder oscillating in a uniform inlet. This is perhaps
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the first systematic study for inline oscillating cylinders where the
cylinder is in motion. We use the open-source computational fluid
dynamics (CFD) code OpenFOAM39 with the dynamic meshing fea-
ture for all computations reported here. To simplify the complexity
in mesh generation and mesh motion, we use a square cylinder for
the present study. Nevertheless, we expect the results presented in
this paper to be valid for cylinders of other shapes. Alternately, it
is also possible to use vortex blob methods7 for such computations,
but the ease of usage and excellent functionality of OpenFOAM39

prompted us to use the latter. In a recent study, Lee27 used Open-
FOAM to study the response of the wake to wave excitation arising
from a free surface.

For all simulations reported in this paper, we keep the Reynolds
number based on the mean velocity fixed at 200 since this value
has been used in other studies too.28,35 Emphasis will be given to
parameter regimes not previously investigated, so a discussion on
lock-on regime is largely omitted from the paper. The analysis is
also restricted to two dimensions. As noted by Elston et al.,12 flow
field due to an oscillating cylinder is largely two-dimensional in
nature. We assume that this two-dimensional nature is not signif-
icantly altered due to a mean flow. Nabatian et al.29 performed
three-dimensional (3D) numerical simulations for flow past inline
oscillating square cylinder in which they kept the frequency of oscil-
lation constant at natural vortex shedding at Reynolds number of
200 and varied amplitude ratio up to 0.5 and found that the 3D span-
wise effect is suppressed at Reynolds number of 200 by streamwise
oscillation of the cylinder and that two-dimensional (2D) simula-
tions can effectively model the temporal instability of wake flow.
This is similar to the findings of Toebes37 who found that transverse
oscillations of cylinder increase spanwise correlations of velocities
and forces, thus giving the flow a characteristically two-dimensional
nature even at higher Reynolds number. This was indeed the reason
cited by Blackburn and Henderson5 to perform two-dimensional
simulations even at Reynolds number as high as 500.

We acknowledge that three-dimensional effects may appear
even at the lower value of Re = 200 used in the present study, but we
assume that three-dimensionality does not completely destroy the
two-dimensional modes found here. For higher amplitude or fre-
quency values where the fluctuating velocity, ΔU, can be high, our
simulations may be susceptible to three-dimensional effects. Full 3D
simulations are computationally expensive and is currently beyond
the scope of the present study. It should also be noted that two-
dimensional experiments with thin films can be carried out as was
done in the experiments of Couder and Basdevant8 who studied
vortex streets due to an inline oscillating cylinder in a flowing soap
film. Similar experiments can be carried out for the parameter range
considered in the present paper to verify the veracity of the results
observed in the present study.

The main goal of this paper is to highlight the effect of ampli-
tude and frequency ratio on vortex shedding characteristics along
with a careful characterization of chaotic modes. We have there-
fore carried out an extensive parametric study involving more than
100 simulations varying the amplitude of the cylinder motion and
its frequency. Two new shedding modes are discovered, namely, the
S-IV-D mode and the vortex dipole mode. A stable S-II mode (here
referred to as S-II-I) is obtained for the first time in this study. This
mode was recently discovered but was found to be unstable to anti-
symmetric perturbations. All results are summarized in the form of

a “phase diagram” in the amplitude-frequency plane where param-
eter ranges for various modes are delineated. In addition, chaotic
modes are tested by 0-1 test of chaos. Another important novelty
of the paper as discussed above is the use of dynamic moving mesh
rather than have the cylinder oscillate. The advantage of using such
a feature is discussed in detail in Sec. II.

The rest of the paper is organized as follows: Section II dis-
cusses the problem formulation, the dynamic meshing approach
employed for the simulations, and a validation of the code with exist-
ing literature. A detailed study of various modes obtained by varying
the amplitude and frequency of excitation is discussed in Sec. III.
Chaotic vortex shedding and its characterization are contained in
Sec. IV. We briefly contrast and compare the present study with the
study of Tatsuno and Bearman36 for a circular cylinder in a quies-
cent flow in Sec. V. Section VI concludes the paper along with a brief
discussion on future outlooks.

II. FORMULATION, NUMERICAL APPROACH,
AND VALIDATION

In the present study, incompressible Navier-Stokes equations
are solved with no-slip boundary condition on the surface of the
square cylinder. The velocity is uniform at the inlet (i.e., left of com-
putational domain), Neumann boundary conditions are used at the
outlet, and free slip boundary conditions are employed at the top
and bottom of the computational domain.

All numerical simulations have been performed in OpenFOAM
v2.3.0, a free open source CFD software39 containing a variety
of solvers for different flow applications. The solver used for the
present simulations is pimpleDyMFoam, which is an extension of
the pimpleFoam solver for dynamic meshes. The solver is tran-
sient, allows for relatively large time steps, and uses a hybrid PISO-
SIMPLE algorithm called the PIMPLE algorithm. The standard
Gaussian finite volume integration has been chosen for discretiza-
tion. Gaussian integration is based on summing values on cell faces,
which must be interpolated from cell centers. For diffusion terms in
Navier-Stokes equations, linear interpolation is used for interpola-
tion of kinematic viscosity and limited scheme (blend of corrected
and uncorrected) is used to compute the surface normal gradient
at the cell faces. For convection terms, the linearUpwind scheme is
used as the interpolation scheme. For all simulations, the Courant
number is restricted to 0.5 and an adaptive time stepping scheme is
employed.

The dynamicMotionSolverFvMesh function has been used
to perform mesh motion without topological changes following
Laplace’s equation for motion displacement (dm) given by

∇ ⋅ (γ∇dm) = 0, (2)

where γ is the mesh diffusivity parameter. Tuning the parameter γ
restricts the region over which the mesh deforms as the cylinder
oscillates. In the current study, we have used displacementLapla-
cian as the solver and a quadratic diffusivity model to calculate the
diffusion coefficient.

To study the effect of inline oscillations, we prescribe a har-
monic motion for the cylinder, xb(t), in the direction of the incoming
flow as

xb(t) = x0 + A sin(ωt), (3)
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FIG. 1. (a) Schematic of the domain used
in the simulations along with its dimen-
sions, (b) the grid at the beginning of
the simulation [dimensions same as in
(a)], (c) high-density grid in the vicinity
of the cylinder within a square of size 5h
× 5h with (−h, −2.5h), (4h, −2.5h), (−h,
2.5h), and (4h, 2.5h) as the corners of
the square.

where x0 is the mean position of the cylinder, A is the amplitude,
and ω = 2πf e is the circular frequency of motion. Differentiating the
above equation with time, the velocity of the cylinder, Ub(t), in the
direction of the flow is given by

Ub(t) = Aω cos(ωt). (4)

At the inlet, we prescribed a constant uniform flow, Um. For
Aω < Um, the maximum cylinder velocity is less than the inlet flow
and relative velocity between incoming flow and cylinder is expected
to be positive at all times, whereas for Aω > Um, for a certain dura-
tion of each period, the net relative velocity between the incoming
flow and cylinder is negative; i.e., the cylinder is moving counter to
the incoming flow in absolute sense. This regime cannot be simu-
lated in the usual way with a stationary cylinder and an oscillating
inlet since prescribing a negative velocity at the inlet leads to numer-
ical complications. The present study is the first numerical study to
investigate this regime.

The nondimensional parameters involved in our simulations
are Reynolds number (Re), aspect ratio of the cylinder which is the
ratio of height of the cylinder to that of the width of the cylinder,
frequency ratio which is the ratio of forcing frequency of oscil-
lating cylinder to that of vortex shedding frequency of stationary
cylinders at the same Reynolds number (f e/f o), and amplitude ratio
which is the ratio of amplitude of oscillating cylinder to that of the
height of the cylinder (A/h). In our simulations, we have kept the
Reynolds number constant at 200 and aspect ratio at 1. The f o value
obtained from our simulation for stationary cylinder at Reynolds of
200 was 0.152 04. This matches the Strouhal number value given by
Okajima30 for a square cylinder at Reynolds number of 200 (with
h = 1 and Um = 1 that we used in our simulations).

Figure 1(a) shows the domain used for the simulations; h stands
for the height of the cylinder and all dimensions are characterized
in terms of h. The size of the domain is 34h × 18h with nonuni-
form grids of up to nearly 150 000 grid points, whose arrangement is

shown in Fig. 1(b). To capture the velocity gradients accurately for
precise quantification of drag and lift forces, we use a high-density
uniform grid in the vicinity of the cylinder as shown in Fig. 1(c)
within a square of size 5h × 5h with (−h, −2.5h), (4h, −2.5h), (−h,
2.5h), and (4h, 2.5h) as the corners of the square.

The domain size in Fig. 1(a) and the optimal values for grid
points in the domain were obtained after extensive validation stud-
ies and comparison with existing numerical results for a stationary
cylinder. A sample of the key studies is given in Tables I–IV, which
shows the results of the grid and domain dependence studies done
for f e/f o = 1.5, A/h = 0.05, and Re = 200. For grid dependence, the
total number of grid points were increased by a factor of 1.67, which
resulted in variation in grid points on each face of the cylinder, Ns,
from 60 to 100. For domain dependence, we separately vary the ver-
tical domain size, H, to study the effect of blockage ratio, Table II,
and the effect of downstream distance from the cylinder to the out-
let boundary, Table III, and the effect of upstream distance from
the cylinder to the inlet boundary, Table IV. In these tables, f 1 and
f 2 indicate the frequencies obtained from the spectra of lift coef-
ficient, CDmean and CLrms stand for the mean drag coefficient and
root-mean-square value of lift coefficient, respectively. The maxi-
mum deviation in the above parameters is well within acceptable
limits. Based on these studies, a mesh with Ns = 60 points on each
side of the cylinder and a grid size of 409 × 370 are chosen for all
subsequent simulations.

TABLE I. Details of the grid dependence test with domain size as shown in Fig. 1(a).

Grid size Ns f 1 f 2 CD ,mean CL ,rms

409 × 370 60 7.573× 10−2 0.151 75 7.763× 10−2 2.652× 10−2

618 × 682 100 7.263× 10−2 0.154 06 7.706× 10−2 2.532× 10−2
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TABLE II. Details of the domain dependence test for blockage.

Blockage (%) Grid size f 1 f 2 CD ,mean CL ,rms

5.56 (H = 18) 409× 370 7.573× 10−2 0.151 75 7.763× 10−2 2.652× 10−2

4.16 (H = 30) 409× 436 7.520× 10−2 0.150 46 7.733× 10−2 2.648× 10−2

TABLE III. Details of the domain dependence test for downstream distance.

Downstream distance Grid size f 1 f 2 CD ,mean CL ,rms

26h 409× 370 7.573× 10−2 0.151 75 7.763× 10−2 2.652× 10−2

56h 497× 370 7.475× 10−2 0.149 10 7.559× 10−2 2.502× 10−2

TABLE IV. Details of the domain dependence test for upstream distance.

Upstream distance Grid size f 1 f 2 CD ,mean CL ,rms

8h 409× 370 7.573× 10−2 0.151 75 7.763× 10−2 2.652× 10−2

14h 497× 370 7.527× 10−2 0.150 55 7.572× 10−2 2.492× 10−2

The numerical approach was validated as follows: For the
Reynolds numbers relevant to the present study, Strouhal numbers
obtained from flow past a fixed square cylinder were found to be
in good agreement with the experiments of Okajima,30 numerical
simulations of Ansumali et al.,3 and Sohankar et al.34 We also val-
idated our result with Minewitsch et al.28 by comparing the power
spectrum of lift coefficient at A/h = 0.25 and f e/f o = 2, as shown in
Fig. 2. For future reference, in all plots showing the spectrum of lift
coefficient, the vertical line (−⋅⋅−) represents f e and (− − −) repre-
sents f o. The lock-on window observed by Minewitsch et al.28 for a
fixed amplitude ratio of A/h = 0.225 was also observed in the present

FIG. 2. Comparison of power spectra of lift coefficient from Minewitsch et al.28 with
our results at A/h = 0.25 and f e/f 0 = 2.

simulations as shown in Fig. 3, where fv is the actual frequency of
vortex shedding which is found to be equal to 0.5f e in the lock-on
window.

We further validate the numerical code by reproducing the S-II
mode obtained by Khaledi et al.21 for flow past an oscillating plate of
aspect ratio of 50. As shown in Fig. 4, there is an excellent compari-
son in the vorticity plots. The direction of vorticity vector in Khaledi
et al. is opposite to that used in this paper; hence, the colors are
opposite to each other. Despite the larger domain used in Khaledi
et al., the vorticity plots agree quite well. Because of a moving grid
employed in the present simulations, we use a slightly coarser mesh

FIG. 3. Comparison of lock-on phenomenon with data given in Minewitsch et al.28

for A/h = 0.225 and 1 < f e/f o < 3.
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FIG. 4. Comparison of vorticity contours for the S-II mode from Khaledi et al.21 (a) with our result (b) for A/h = 0.5, f e/f o = 1.74 and Re = 100 at the same phase. In our case,
the cylinder center is at a distance of 8h from the inlet. The two figures are to the same scale and employ same color bar ranging from −1 to +1. The opposite colors in the
two plots are due to opposite sign convention in the definition of vorticity. Figure 4(a) reproduced with permission from Khaledi et al., “Flow past a normal flat plate undergoing
inline oscillations,” Phys. Fluids 24, 093603 (2012). Copyright 2012 AIP Publishing LLC.

than Khaledi et al. The difference in the sharpness of the two images
could therefore be attributed to differing grid densities in the two
studies.

III. MODE CHARACTERISTICS
An extensive parametric study ranging over 100 simulations

has been performed by systematically varying the amplitude ratio,
A/h, and frequency ratio, f e/f o. All simulations are carried out with
a Reynolds number based on the constant inlet velocity, Um, fixed
at 200. A summary of all simulations is shown in the form of a
“phase diagram” in Fig. 5. Neat clusters of similar shedding modes
are clearly visible in the plot. It can be observed that the symmet-
ric modes are obtained at both high amplitude-low frequency and
high frequency-low amplitude regions. The vortex flapping modes,
to be discussed later, are obtained for frequency ratio between 0.8
and 1.5. At low amplitude ratios, beyond f e/f o > 3, the modes appear
to become progressively symmetric with increasing amplitude ratio
and for f e/f o > 4.25, a symmetric mode, S-IV-A, is observed. We find

FIG. 5. A map of various shedding modes obtained by varying frequency, f e, and
amplitude, A, of excitation. The solid line is a rectangular hyperbola obtained by
equating the inlet velocity with the peak velocity of the body, i.e., Aω = U∞. See
text for a detailed discussion on various modes and their nomenclature.

that the shedding becomes chaotic as we move close to the line where
the peak body velocity, Aω, becomes equal to the inlet velocity, Um.
Recall that ω = 2πf e; thus, we have

2πfe A = Um Ô⇒ (A
h
)( fe

fo
) = Um

2πhfo
, (5)

which is the equation of a rectangular hyperbola as shown in Fig. 5.
Chaotic vortex shedding is also observed during mode transition
from antisymmetric to symmetric mode at low frequencies with the
increase in amplitude ratio. Unlike earlier studies, a rigorous test for
chaos is employed on the time series of lift coefficient and is dis-
cussed in Sec. IV. All results reported in this paper are in terms of
f e/f o and A/h since this has been the common choice of parameters
in many earlier works.19,21,28,35 But for a cylinder oscillating in a qui-
escent flow, a more convenient choice of parameters is KC and β as
was used in Tatsuno and Bearman and Elston et al. The two set of
parameters are directly related to each other with a simple scaling
factor as given in Eq. (1). For convenience of the reader, we include
these scalings in Fig. 5.

We now present a detailed discussion on the structure and
characteristics of various modes of vortex shedding obtained. It has
to be emphasized here that mode classification is based on the vortic-
ity plots rather than streamline plots. Minewitsch et al. showed that
for a time periodic flow, streamline plots for the same mode appear
different at different instants of time within a period of oscillation.
But we find that the vorticity plots for a given mode do not change
their characteristic as can be seen from the movies attached in the
supplementary material. Simulations were run up to a time of 300 s,
and in almost all cases, transients persisted for about 50–70 s. All
spectral analyses were carried out only after removing these initial
transients.

A. Symmetric mode-I (S-II-I)
Two symmetric modes have been observed in our simulations.

The first symmetric mode represented by the symbol (blue asterisk)
in Fig. 5 is obtained for f e/f o ≈ 1 and moderate values of A/h, or
equivalently for KC > 3 and β ≈ 25. The vorticity contours at a partic-
ular time and frequency ratio of f e/f o = 0.807 are shown in Fig. 6 for
different amplitude ratios. We choose to classify the modes accord-
ing to the vorticity plots since streamline plots can lead to misleading
classification as shown by Minewitsch.28
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FIG. 6. Symmetric mode (S-II-I) obtained at f e/fo = 0.807 and (a) A/h = 0.7, (b) A/h = 0.8, (c) A/h = 0.9, (d) A/h = 1, (e) A/h = 1.125. In all cases, the cylinder center is at a
distance of 8h from the inlet. (Color bars indicate vorticity in the z-direction in units of 1/s.)

This mode is similar to the S-II mode reported earlier by Xu
et al.41 and Krishnan et al.,24,23 but none of them were able to obtain
a stable symmetric mode that is symmetric and identifiable through-
out the domain which can be attributed to the different amplitude
and frequency ratios, Reynolds number, shape of the cylinder (in
the case of Xu et al.41), and the use of oscillating inlet (in the case
of Krishnan et al.24,23). This mode is also similar to the S-II mode
obtained by Srikanth et al.35 in the sense that that two vortices of
opposite sense are shed from each side of the cylinder, but the struc-
ture of the mode is different in appearance from that reported by
them. A pair of primary vortices of opposite sign start to form behind
the cylinder as the cylinder moves against the flow. And when the
cylinder moves with the flow, another small pair of secondary vor-
tices are created. The primary and secondary vortices form a vortex
pair, with the former dominating in strength. As the cylinder reaches
its extremum point while moving with the flow, both the vortex
pairs detach from the cylinder and form a pair of symmetric dipoles
on each side of the centerline, creating the S-II mode. The entire

evolution of the mode in one shedding cycle can be found in the
supplementary material. Since the secondary vortex is weak, it get
sheared away as the vortices travel downstream, and thus, only the
primary vortices on each side of the centerline survive, resulting in
an S-I mode. We therefore name the combined vortex structures
as S-II-I to indicate that two symmetric vortex pairs are shed from
the cylinder, but a single symmetric pair survives as the structure
travels downstream. A movie attached in the supplementary mate-
rial shows the evolution of vorticity contours over a few oscillation
cycles.

The parameters at which this mode appears in the present
study was not studied in earlier numerical studies of either Srikanth
et al.35 (restricted to low A/h cases from 0.1 to 0.175) or Minewitsch
et al.28 (restricted to A/h < 0.4). This mode seems similar to that
obtained by Zhou and Graham43 for Re = 600, KC = 3, and β = 200
(Zhou and Graham report their results in terms of B = Um/2πf eA
= 1), but their symmetric mode quickly switched to a Kármán-type
alternating vortex street downstream of the cylinder. Even the pure
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S-I mode reported in Zhou and Graham for Re = 400, KC = 2, and
β = 200 also switched to an antisymmetric pattern downstream.
This was attributed to a natural instability of the instability modes.
But we report no such instability, and the observed S-II-I modes
remain stable for a time much larger than that reported in Zhou
and Graham. A number of differences are present between the two
simulations—body shape, Reynolds number, the exact values of KC
and β at which the symmetric modes were found in the two studies,
and the differing numerical approaches in the two studies.

In the present study, the S-II-I mode is formed in a narrow
band of frequency ratios and a wider band of amplitude ratios.
As is evident from Fig. 6, the strength of the secondary vortices
increases with increasing amplitude. The frequency of vortex shed-
ding is found to be equal to f e, i.e., fv = f e. Since the spacing between
the successive vortex pairs is proportional to the “effective” flow
velocity and inversely proportional to the frequency of shedding, we
expect l∝ Ueff /fv , and we can assume Ueff = Um + αAω is the effec-
tive upstream velocity over one cycle of cylinder motion written in
terms of the mean velocity, Um, at the inlet and a fraction (0 < α < 1)
of the peak cylinder velocity, Aω. With β as the proportionality
constant and using fv = f e, we get

l = β(Um + αAω)
fe

. (6)

The above relation shows that the vortex spacing depends lin-
early on the amplitude of cylinder motion. In the above expression, α
and β can be determined by fitting measured vortex spacing against
amplitude ratio, A/h. We measure the spacing between the S-I pair
of vortices downstream of the cylinder in Fig. 6 and fit a straight line
of the form l = aA + b with a = 2.324 and b = 3.703. This is a least
squares fit and approximates the data reasonably well as shown in
Fig. 7. Comparing the fit to Eq. (6), we find α = 0.814 and β = 0.454,
suggesting that this mode of vortex shedding occurs when the peak
cylinder velocity during oscillation is nearly 81% of the mean inlet
velocity.

B. Symmetric mode-II (S-IV-D)
The second symmetric mode, represented by the symbol (red

open circle) in Fig. 5, is found in the opposite end of the parame-
ter space, i.e., for large f e/f o and small A/h. Vorticity plots for two
such modes are shown in Fig. 8. This mode has again not been
reported in earlier studies, especially the work of Srikanth et al.35

and Minewitsch et al.,28 as their study was restricted to f e/f o < 4.
Moreover, this mode occurs in the vicinity of the hyperbola in Fig. 5

FIG. 7. Effect of amplitude ratio, A/h, on the spacing between the vortices, l, mea-
sured downstream of the cylinder for the S-II-I mode shown in Fig. 6 at frequency
ratio f e/f o = 0.807.

where Aω is close to inlet velocity, which is difficult to achieve with
an oscillating inlet simulation as opposed to a cylinder oscillating in
a uniform flow.

In this mode, two pairs of vortices of opposite sense are being
produced on each side of the cylinder across the centerline in one
cycle. As the cylinder moves against the incoming flow, a vortex pair
on the front and rear side of the cylinder forms symmetrically on the
top and bottom side, and as the cylinder recedes in the direction of
incoming flow, one vortex out of each vortex pair grows, rolls up,
and moves away, while the other spreads out. As a result, there are
two vortex pairs shed from each side (top and bottom) of the cylin-
der. This mode can be termed S-IV, but it is different from the S-IV
mode obtained by Khaledi et al.21 which was due to splitting of the
vortices in the S-II mode. The spacing between the vortices is much
smaller in this mode due to the high frequency forcing provided by
the cylinder. Moreover, the vortex sizes are much smaller than those
found in the S-II-I mode. Intuitively, we expect such high frequency
modes to decay rapidly due to viscosity; thus, the effect of cylinder
oscillation is felt in a narrow region in the downstream direction. It is
therefore unsurprising that decreasing frequency ratio increases the
extent of the discrete vortical structures as can be seen in Fig. 8(b)
for A/h = 0.3 and f e/f o = 4.5. We therefore refer to this mode as S-
IV-D, where S stands for symmetry, IV represents the four vortex
pairs shed per cycle, and D stands for the vortex decay downstream.

FIG. 8. S-IV-D symmetric mode obtained
with (a) A/h = 0.225 and f e/f o = 5.26
and (b) A/h = 0.3 and f e/f o = 4.5. In our
case, the cylinder center is at a distance
of 8h from the inlet. (Color bars indicate
vorticity in the z-direction in units of 1/s.)
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A movie attached in the supplementary material shows the evolution
of vorticity contours over a few oscillation cycles.

1. Effect of frequency on S-IV-D mode
We report in Fig. 5 that the vortex shedding is antisymmet-

ric for f e/f o < 3. On increasing the frequency of excitation, two
significant changes occur to the flow: one, the flow transitions to
a symmetric mode near the cylinder, which we refer to as S-IV-
D, and two, the dominant shedding frequency matches the excita-
tion frequency. To understand how the S-IV-D mode emerges from
an antisymmetric mode, we fix the amplitude ratio, A/h, at 0.225
and vary the frequency ratio, f e/f o, from 3.5 to 4.3. At f e/f o = 3.5
shown in Fig. 9(a), vortex shedding in the vicinity of the cylinder
is symmetric even though it quickly disintegrates into an antisym-
metric mode downstream. We refer to these intermediate modes
with a small antisymmetric structure far downstream with the nota-
tion S-IV-D-A, where S-IV represents that the shedding in the

vicinity of the cylinder is an S-IV mode, D represents decay of vor-
tical structures, and A stands for antisymmetric shedding occurring
further downstream. The parameters at which these modes emerge
are represented by the symbol (blue cross) in Fig. 5. The symmetric
region increases in length with frequency ratio until the entire pat-
tern becomes symmetric, at least within the extent of the domain as
shown in Figs. 9(b)–9(f). It is unclear at this stage if a true S-IV-D
mode would appear if a domain of infinite downstream extent were
to be used. To verify this fact, we plot the “length” of the symmet-
ric region, ls, with frequency ratio. Interestingly, the length follows
a power law with frequency with a negative exponent as shown in
Fig. 10. A power-law fit of the form

ls = l0(f ∗c − f ∗e )
−α (7)

appears to agree well with the numerical data. Here, the length
l0 is a numerical prefactor, α > 0, f ∗c and f ∗e are the critical and

FIG. 9. Emergence of the symmetric mode S-IV-D with increasing frequency at a fixed A/h = 0.225: (a) f e/f o = 3.5, (b) f e/f o = 3.7, (c) f e/f o = 3.9, (d) f e/f o = 4.1, (e) f e/f o = 4.2,
(f) f e/f o = 4.3. Because of an antisymmetric region downstream, we call these intermediate modes S-IV-D-A. In all cases, the cylinder center is at a distance of 8h from the
inlet. (Color bars indicate vorticity in the z-direction in units of 1/s.)
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FIG. 10. Plot between the length at which first peak in vertical velocity reaches
a value of 1% of Um along the cylinder centerline from the cylinder center and
frequency ratio (f e/f o).

excitation frequency normalized by the frequency f o. We refer to
f ∗c as the critical frequency as this is the frequency at which the
length of symmetric region diverges, thus giving us a true symmetric
S-IV-D mode even for a domain of infinite extent. Both f ∗c and α are
determined by standard curve fitting techniques. The length of the
symmetric region is determined as follows: we plot the vertical veloc-
ity along the centerline and take ls to be equal to the length at which
the vertical velocity reaches 1% of the mean inlet velocity. It has to
be noted that for a perfectly symmetric mode, the vertical velocity,
by symmetry, would be identically zero along the centerline. The
exact length ls from this procedure would therefore depend on the

cutoff % employed, thus l0 is not a robust parameter. Nevertheless,
the power-law dependence remains unaffected by the choice of the
cutoff value for vertical velocity. It can therefore be stated with a
high degree of certainty that a symmetric S-IV mode emerges for a
nondimensional frequency ratio of 5.03 at this particular amplitude
ratio.

C. Vortex flapping mode
A vortex flapping mode has been found in our simulation for

A/h ≤ 0.5 and f e ≈ f o, represented by the symbol (open down-
pointing triangle) in Fig. 5. The vorticity plot for A/h = 0.4 and f e/f o
= 0.8 can be seen in Fig. 11(a). In this mode, the vortex street flaps
about the centerline of the square cylinder over a time scale much
longer than the shedding or excitation time scale. The entire evolu-
tion of the mode over one flapping time scale can be found in the
supplementary material. A plot of the lift coefficient with time is
shown in Fig. 12(a), and the corresponding frequency spectrum is
shown in Fig. 12(b), which reveals distinct peaks. The frequency is
normalized by inertial time scale, h/Um. A dominant peak appears at
f o, which corresponds to the vortex shedding frequency, and a sec-
ond peak appears at | f o − f e|, which is the frequency corresponding
to the flapping time scale. Clearly, this mode shares strong similar-
ities with the classical von Kármán street for a stationary cylinder
with shedding at the same frequency as for a stationary cylinder.
Using the numerical values of f o and f e, the nondimensional value of
the flapping frequency is 0.03 for this particular case. This mode has
been obtained previously by Krishnan et al.23,24 where they termed it
as modulated wake. This mode seems similar to the beating string
mode obtained by Detemple-Laake and Eckelmann9 where they
obtained it by superimposing vortex shedding with sound waves. As
f e → f o, the flapping time scale becomes progressively longer, and at

FIG. 11. (a) Vortex flapping mode
obtained at A/h = 0.4 and f e/f o = 0.8
and (b) vortex shedding at an angle but
with no flapping obtained at A/h = 0.4
and f e/f o = 1. In both cases, the cylin-
der center is at a distance of 8h from the
inlet. (Color bars indicate vorticity in the
z-direction in units of 1/s.)

FIG. 12. (a) Variation in lift coefficient
with time and (b) the spectrum of lift
coefficient for A/h = 0.4 and f e/f o = 0.8
corresponding to the flapping mode of
shedding.
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FIG. 13. (a) Vorticity contours for the S-
II-A-II mode at f e/f o = 1 and A/h = 0.7
showing an S-II-like shedding in the
vicinity of the cylinder and an antisym-
metric arrangement of the dipoles further
downstream, (b) the spectrum of lift coef-
ficient, and (c) the spectrum of drag coef-
ficient. In Fig. 13(a), the cylinder center is
at a distance of 8h from the inlet. (Color
bars indicate vorticity in the z-direction in
units of 1/s.)

f e/f o = 1, the flapping stops and the vortex street tilts to one side of
the centerline as shown in Fig. 11(b). It has to be noted that the vor-
tex street settling down on only one side of the centerline for f e → f o
is dictated by factors such as the numerical scheme used for spatial
and temporal discretization, preferential (but tiny) accumulation of
numerical errors over the course of the numerical simulation, etc.
The vortex shedding modes obtained in this region can be further
classified as 2S (for two vortex shed in a cycle), 2P (for two pairs of

vortex shed in a cycle), or combination as has been done by Krishnan
et al.24

D. Vortex dipole mode (S-II-A-II)
We report a new mode of antisymmetric vortex shedding

where alternate structures of vortex pairs or vortex dipoles arrange
themselves in a zigzag pattern. This mode was represented by the

FIG. 14. Vorticity contours of ambiguous
modes obtained with (a) A/h = 0.2 and
f e/f o = 4.5, (b) A/h = 0.875 and f e/f o

= 1.0375. (Color bars indicate vorticity in
the z-direction in units of 1/s.)

FIG. 15. Characteristics of ambiguous-II
mode of Fig. 14(b): (a) the spectrum of
lift coefficient, (b) the phase plot of lift
vs drag coefficient showing that this is a
nonchaotic mode.
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symbol (green open left-pointing triangle) in Fig. 5, and the vorticity
plot for f e/f o = 1 and A/h = 0.7 is shown in Fig. 13(a). In the vicinity
of the cylinder, shedding resembles an S-II mode, but further down-
stream, these dipoles undergo rearrangement into an antisymmetric
pattern. We therefore refer to this mode as S-II-A-II to represent an
S-II mode in the vicinity of the cylinder and A-II mode, an alter-
nating pattern of dipoles, further downstream. The spectrum of the
drag and lift coefficients shown in Figs. 13(b) and 13(c) reveals that
shedding is locked onto the excitation frequency f e. We find only
two instances of this mode occurring in our parametric study and is

perhaps the reason why this mode has not been reported in earlier
studies. Physically, this mode appears to be driven by an instability
caused to the S-I mode for x/h > 10.

E. Ambiguous mode
Apart from symmetric, antisymmetric, and chaotic modes, we

find modes of vortex shedding which do not lend themselves to a
clear classification. We therefore refer to these modes as “ambigu-
ous” modes, which are represented by symbols (orange open

FIG. 16. Variation in the spectrum of lift
coefficient (a) and drag coefficient (b)
obtained at a fixed frequency ratio of
f e/f o = 0.5 and varying the amplitude
ratio A/h from 0.1 to 1.1.
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FIG. 17. Plot of the spectrum of lift coef-
ficient obtained at (a) A/h = 0.3 and f e/f o

= 2.5 and (b) A/h = 0.4 and f e/f 0 = 2.5.

up-pointing triangle) and (brown open right-pointing triangle) in
Fig. 5.

Not surprisingly, the two types of ambiguous modes found in
the present simulations occur in very different parts of the paramet-
ric space. The first ambiguous mode (Ambiguous-I) is found in the
vicinity of A/h = 0.2 and f e/f o = 4, the location where S-IV modes are
found in the parametric plot 5. The vorticity plot of this ambiguous
mode at a particular time is shown in Fig. 14(a). This mode loosely
resembles an S-IV mode in the near wake but with an antisymmetric
character embedded within it. The mode clearly breaks down into
an antisymmetric vortex pattern further downstream.

Another ambiguous mode (Ambiguous-II) is found in the
vicinity of f e/f o = 1.0375 and A/h = 0.875. Vorticity contours for this
mode, shown in Fig. 14(b), reveal a complex spatial arrangement of
vortices, but this mode is clearly periodic as evident from the spec-
trum of lift coefficient and phase plot of lift vs drag coefficient in
Fig. 15.

F. Effect of varying amplitude at a fixed excitation
frequency

The region of superposition and lock-on found in the present
simulations are in agreement with those found by Minewitsch et al.28

Various dominant frequencies in the spectrum of lift coefficient
reported by Minewitsch et al.28 by varying amplitude ratio, A/h, at
different frequency ratios, f e/f o, are also found in the present sim-
ulations. We decipher the role of amplitude of excitation on the
frequency spectrum. We present results for three different frequency
ratios, f e/f o = 0.5, f e/f o = 2.5, and f e/f o = 4. These frequency ratios
cover a wide area in the parametric space of Fig. 5.

We first present the results for f e/f o = 0.5. Figure 16 shows the
frequency spectrum of lift and drag coefficient at different ampli-
tude ratios from A/h = 0.1–1.1. For this frequency ratio, the ratio
of the maximum body velocity to the inlet velocity increases from
0.0477 to 0.5254 as amplitude ratio increases from 0.1 to 1.1. It can
be seen from the frequency spectrum of lift coefficient that as the
amplitude ratio increases, the strength of the peak at f e progressively
increases and eventually becomes comparable with the peak at f o,
the frequency of vortex shedding for a stationary cylinder, suggest-
ing an eventual competition between natural frequency, f o, of the
unperturbed system and the external excitation frequency, f e. It is
therefore not surprising that the system becomes chaotic on further
increase in the amplitude of oscillation as is commonly expected in
most nonlinear oscillators when forced with an external excitation.
The smaller peaks in the frequency spectrum are higher harmonics
corresponding to (f o + f e), (f o + 2f e) and so on.

In the case of f e/f o = 2.5, Fig. 17(a) shows the spectrum of
lift coefficient for two different amplitude ratios, A/h = 0.3 and 0.4.
Because of the higher forcing frequency, more frequencies emerge
in the system. The dominant frequencies are fv (≈f o), f h = | f e + fv |,
f̄v (≈f e/2), and f̄h (= f̄v + fe). Note that this frequency ratio is just
beyond the window of lock-on shown in Fig. 3. If the systems were
to be in a lock-on regime, then we expect fv to be identically equal
to f e/2. We therefore see remnants of the lock-on frequency rep-
resented by f̄v and f̄h. This result is similar to that obtained by
Minewitsch et al.28 for f e/f o = 2.4 and A/h = 0.35. As the amplitude
ratio is increased to 0.4, there is a significant increase in the influence
of f h and f̄h and a minor increase in the influence of f̄v as can be seen
in Fig. 17(b). A further increase in excitation frequency to f e/f o = 4 at
A/h = 0.2 reveals an abundance of combination frequencies such as

FIG. 18. Plot of the spectrum of lift coef-
ficient obtained at (a) A/h = 0.2 and f e/f o

= 4 and (b) A/h = 0.3 and f e/f 0 = 4.
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f g = | f e − f o|, f h = | f e + f o|, f k = |2f e − f o|, and f l = |2f e + f o| as shown
in Fig. 18(a). A minor increase in amplitude ratio to 0.3 propels the
dominance of f h and other harmonics [Fig. 18(b)]. Similar results
have been found for f e/f o = 3, 4.5, and 5. In summary, an increase
in amplitude promotes greater competition between the modes and
eventually leads to chaotic regimes as shown in Fig. 5.

IV. CHAOTIC VORTEX SHEDDING
Several chaotic modes have been observed in our simulations

and are represented by the symbol (open square) in Fig. 5. Each
of these chaotic modes occur in different regions of the paramet-
ric space and are found to possess different frequency spectrum. We
discuss just three representative cases in Fig. 19, one, in the large
amplitude and small frequency range, two, in the small amplitude
and large frequency range, and three, in a moderate amplitude and
frequency range.

Figure 19(a) shows the phase portrait, with the lift coefficient
plotted against the drag coefficient for A/h = 1.125 and f e/f o = 1.026.

A complex two lobed nonrepetitive structure is seen, which is indica-
tive of a chaotic flow. The frequency spectrum of the lift coefficient
shown in Fig. 19(b) shows a broadband spectrum but with a dom-
inant peak near f e or f o shown by the dashed/dashed-dot vertical
lines. Since this chaotic mode occurs in the vicinity of the S-II-I
mode reported earlier (see Figs. 5 and 6), remnants of the dominant
frequency of the S-II-I at frequency f e are visible. Figure 19(c) shows
the phase portrait for A/h = 0.4 and f e/f o = 4. This chaotic mode
occurs in the vicinity of the S-IV-D modes discussed earlier, which
themselves have a dominant peak at f e. Therefore, the dominant
peak in this chaotic mode is closer to f e [Fig. 19(d)] with a sub-
dominant peak occurring closer to f o. The above two modes share
one characteristic feature: they become chaotic when the strength
of the forcing, determined by either a large amplitude or a large
frequency, becomes comparable with the strength of the inlet flow.
Therefore, these chaotic modes occur near the solid curved line in
Fig. 5.

Chaos can also occur through a mode competition during the
transition from antisymmetric to symmetric modes as discussed in

FIG. 19. Phase plot of lift vs drag
coefficient (left panels) and frequency
spectrum of lift coefficient (right panels)
obtained at [(a) and (b)] A/h = 1.125 and
f e/f o = 1.026, [(c) and (d)] A/h = 0.4 and
f e/f o = 4, [(e) and (f)] A/h = 0.54 and f e/f o

= 0.807.
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Srikanth et al.35 Such a competition occurs when the vortex flapping
mode transitions to a S-II-I mode with increase in the amplitude of
forcing. Figures 19(e) and 19(f) show the phase portrait and spec-
trum of lift coefficient at A/h = 0.6 and f e/f o = 0.807. The spectrum
is dominated by the frequencies f e and f o as expected from modes
which occur in the vicinity S-II-I mode and the flapping mode.

In the above discussion, chaos has been attributed to nonre-
peating orbits in the phase plots or broadband spectrum in the
frequency spectrum. Since this is an infinite-dimensional system,
a more rigorous test for chaos is necessary. Determining the max-
imum Lyapunov exponent is difficult since phase-space representa-
tion is not possible from the available data. We therefore employ the
0-1 test for chaos proposed by Gottwald and Melbourne.16,17 The test
has been validated for data obtained from logistic map and Lorenz
equations before applying it to the time series data of lift coeffi-
cient. We only provide a brief discussion on this test and refer to
the reader to Gottwald and Melbourne17 for a more complete discus-
sion. For brevity, the results of chaos test for one single chaotic mode
is presented below. Similar results were obtained for other chaotic
modes.

Consider the discrete time series data of lift coefficient obtained
from the numerical simulations to be represented by CL(t). These
data are sampled at an optimal time interface, τopt , which is deter-
mined by the minimum of average mutual information curve.
Mutual information method proposed by Fraser and Swinney14 has
been found to be a useful way to generate coordinates for the recon-
struction of strange attractor. In the present context, mutual infor-
mation serves to determine if there is a temporal coherence in the
time series data. We use the open source code developed by Weeks
for determining the mutual information for the current data set.

We define a new variable, L(t), which is the lift coefficient sam-
pled discretely such that the time interval between successive record-
ings follows the relation ti+1 − ti = τopt . We now define translation
variables as

pc(n) =
n

∑
j=1

L( j) cos( jc), qc(n) =
n

∑
j=1

L( j) sin( jc) (8)

for n = 1, 2, . . ., N and c ∈ (π/5, 4π/5). The mean square displacement
of these translation variables can be computed for different values of
c as follows:

Mc(n) = lim
N→∞

1
N

N

∑
j=1

⎛
⎝
[pc( j+n)−pc(t)]

2
+[qc(j+n−qc(t)]

2⎞
⎠

, (9)

where n≪ N. As suggested by Gottwald and Melbourne,17 ensuring
that n ≤ ncut =N/10 was found to yield good results. The mean square
displacement is indicative of the diffusive nature of the translation
variables. If the dynamics is regular, then the mean square displace-
ment is a bounded function in time and for chaotic dynamics, it
scales linearly with time. A modified mean square displacement Dc
can be defined to ensure better convergence properties but with the
same asymptotic growth rate,

Dc(n) =Mc(n) − Vosc(n), (10)

with

Vosc(c,n) = ⟨E(L)⟩2[
1 − cosnc
1 − cos c

]. (11)

The expectation ⟨E(L)⟩ is given by

⟨E(L)⟩ = lim
N→∞

1
N

N

∑
j=1

L( j). (12)

With the modified mean square displacement, we can now
compute the asymptotic growth rate Kc. We use the correlation
method to calculate the correlation coefficient, Kc, which quantifies
the correlation between Dc(n) and linear growth. We define two vec-
tors, ξ = (1, 2, . . ., ncut) and Δ = (Dc(1), Dc(2), . . ., Dc(ncut)), and the
correlation coefficient Kc given by

Kc = corr(ξ,Δ) = cov(ξ,Δ)√
var(ξ)var(Δ)

∈ [−1, 1], (13)

where the variance and covariance have their usual definitions. To
ensure robustness of the measure to outliers and spurious reso-
nances, the median value of Kc (say K) may be taken which is
obtained for different random values of c. This value of K would lie
close to 1 for chaotic signals and close to 0 for regular dynamics.

We apply the above 0-1 test for chaos for the chaotic sig-
nal observed at f e/f o = 0.807 and A/h = 0.54. Chaotic modes in
this region, shown in Fig. 5, appear in a narrow window separat-
ing the antisymmetric vortex flapping modes and the symmetric
S-II-I modes. It was predicted in earlier studies that a mode com-
petition between symmetric and antisymmetric modes can occur at
such boundaries. In the present study, it was found that this tran-
sition window is very narrow, with chaotic modes found at A/h
= 0.54 and periodic modes on either side of it. The narrow window
of chaos in this region also serves as a stricter case for the 0-1 test
than other chaotic solutions reported in Fig. 5. We calculate Kc for
two different amplitude ratios, at A/h = 0.54 and A/h = 0.64. The
first case was found to be within the chaotic window, while the lat-
ter yielded a S-II-I periodic solution. Figure 20 shows a plot of Kc
for different values of c. For A/h = 0.54, the median of Kc yields a

FIG. 20. Correlation coefficient Kc computed for lift coefficient time series with f e/f o

= 0.807 and A/h = 0.54 (solid curve) and A/h = 0.64 (dashed curve).
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value close to 1 (0.997 to be exact), while for A/h = 0.64, the median
of Kc is close to 0 (0.145 to be exact). This conclusively shows that
the time series for f e/f o = 0.807 and A/h = 0.54 indeed corresponds
to a chaotic flow. Similar results were obtained for other chaotic
cases.

V. COMPARISON WITH OSCILLATING CYLINDER
EXPERIMENTS

In the previous sections, a detailed discussion was presented
on how the shedding characteristics changed with varying ampli-
tude and frequency of the cylinder. Here, we make a brief attempt at
comparing the present simulation results with earlier experiments
of Tatsuno and Bearman36 for an oscillating circular cylinder in
a quiescent flow. Such a comparison needs be viewed with cau-
tion for two main reasons: (i) the shape of the cylinder is different
in the two cases and (ii) the presence of large mean flow in the
present simulations make the scenario very different from a quies-
cent flow case. Nevertheless, a comparison exercise could serve use-
ful to compare and contrast the modes observed in the two types of
studies.

Tatsuno and Bearman36 carried out an extensive visual study of
a circular cylinder in a quiescent flow. They observed a number of
modes with varying Keulegan-Carpenter, KC ∈ (0, 15), and Stokes,
β ∈ (0, 160), numbers. For comparison, we have indicated the KC
and β ranges in our present study in Fig. 5. It has to be noted that
any qualitative similarity with experiments should be construed as
indicative rather than conclusive and may not necessarily occur in
the same parameter range in the present study. Tatsuno and Bear-
man classified their modes as A∗–G. The mode A∗ was observed
for low KC at almost all values of β, and this mode corresponds to
emergence of tiny symmetric vortices on either side of the cylinder
but without any vortex shedding. Therefore, the addition of a large
mean flow like in the present study is expected to remain insensi-
tive to small oscillations induced by the cylinder. Hence, in a similar
parameter range, we observe Kármán or near-Kármán type vortex
shedding.

In regime A which was observed only for β < 50, stronger sym-
metric vortices emerge on either side of the cylinder which begin to
shed for larger values of KC. With a mean flow, the resultant vortex
shedding pattern is expected to be a combination of vortex pattern
without cylinder oscillations and the symmetric pattern observed in
regime A. In the present study, regime A partly overlaps with sym-
metric shedding mode S-II-I. This is suggestive of significant inter-
action between the symmetric modes of regime A with the natural
vortex shedding mode for a stationary cylinder.

There is no analogue of regime B in the present study since
Tatsuno and Bearman noted this to be a fully 3D mode. It was
pointed out by Elston et al.11 that this regime can be explained with
a Floquet analysis as a secondary instability on the two-dimensional
base state. We observe symmetric shedding modes S-IV in this
parameter space.

Regimes D and E are peculiar and correspond to asymmetric
vortex shedding. In regime D, Tatsuno and Bearman noted that vor-
tex shedding tilted to one side of the oscillating cylinder, whereas in
regime E, aperiodic changes to the direction of shedding occurred.
Such symmetric breaking modes are also observed in the present
study and have been termed either vortex flapping modes or chaotic

modes. But the flapping modes were observed for much lower val-
ues of KC than those corresponding to regime D. Chaotic modes
were not reported in Tatsuno and Bearman. It has to be noted that
the mode-competition route to chaos is completely absent in their
experiment.

VI. CONCLUSIONS
In this work, a systematic study of vortex shedding past an

inline oscillating square cylinder at a Reynolds number of 200 is
presented. The amplitude of cylinder oscillation and the frequency
of excitation were varied, spanning over 100 computer simulations,
to reveal a number of new features. Some of these features, such as
the observation of two new symmetric modes, a fully stable S-II-I
mode and S-IV-D modes, and the vortex dipole mode, S-II-A-II,
are being reported for the first time, while other features such as
vortex flapping modes and chaotic modes have been investigated in
greater detail. A summary of all simulations, shown in Fig. 5, shows
clustering of modes based on the structure of the vortex street.

In the S-II-I mode of Fig. 6, two pairs of vortices are shed for
every cycle of cylinder oscillation symmetrically, of which the sec-
ondary pair gets sheared away downstream. This results in a stable
S-I mode downstream of the cylinder. This mode is found in the
top-left region of the parameter space of Fig. 5 which corresponds to
moderate/large values of amplitude ratio and small frequency ratio.
In the bottom-right region of the parameter space of Fig. 5 which
corresponds to low values of amplitude ratio but high values of fre-
quency ratio, we find another symmetric mode which we name S-IV-
D. This mode is characterized by two pairs of vortex dipoles shed on
each side of the cylinder in every cycle of cylinder oscillation. A sys-
tematic study of these symmetric modes is presented in this paper. In
addition, we also study the emergence of the S-IV-D mode from an
antisymmetric state as a function of the frequency. We find that the
length of the symmetric region increases with frequency and obeys
a power law with a negative exponent. This suggests that a true S-
IV-D mode (even in a domain of infinite length) emerges when the
frequency reaches a critical value.

Another interesting feature observed in the present simulations
is the emergence of the so-called “flapping mode” where the entire
vortex street oscillates about the centerline. This mode is charac-
terized by two time scales, a fast time scale at frequency f o corre-
sponding to the shedding of individual vortices from the cylinder
and a slow time scale at frequency | f o − f e| corresponding to the
flapping frequency. As f e → f o, the time scale of flapping which is
proportional to 1/| f e − f o| becomes progressively longer and even-
tually leads to an oblique shedding when f e = f o. We also find a
range of new combination frequencies such as f h = | fv + f e|, f g
= | f e − f o|, f k = |2f e − f o|, and f l = |2f e + f o| appear with the
increase in either amplitude or frequency of excitation. Interactions
between these new frequencies often leads to chaos. We find that
such chaos usually occurs when the cylinder velocity (A × 2πf e)
becomes comparable with the inlet velocity, Um, as shown by the
solid curved line in Fig. 5. Another route to chaos observed in our
analysis is a mode-competition mechanism during the transition
from an antisymmetric shedding to a symmetric shedding.

A number of issues remain unexplored and are briefly discussed
below. Some of these questions are currently being addressed and
will be presented elsewhere. A systematic bifurcation diagram for the
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transition to chaos when shedding transforms from antisymmetric
to symmetric type is unknown. The evolution of the different modes
obtained in this paper by varying the two parameters (amplitude
ratio and frequency ratio) is currently being studied with the help
of linear stability analysis. It is well known that the antisymmetric
pattern found in the classical von Kármán vortex street can be pre-
dicted using a local stability analysis on a stationary wake profile (see
Hultgren and Agarwal20). We are attempting a similar analysis on an
oscillating velocity profile. Another avenue of interest is to under-
stand the energetics of such wake flows with emphasis on transfer of
energy between the mean and oscillatory fields.10

SUPPLEMENTARY MATERIAL

For animations of S-II-I mode presented in Sec. III A and
vortex flapping model presented in Sec. III C, see supplementary
material online.
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